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Abstract. In this paper we construct a numerical homogenization technique for nonlinear elliptic
equations. In particular, we are interested in when the elliptic flux depends on the gradient of the
solution in a nonlinear fashion which makes the numerical homogenization procedure nontrivial. The
convergence of the numerical procedure is presented for the general case using G-convergence theory.
To calculate the fine scale oscillations of the solutions we propose a stochastic two-scale corrector
where one of the scales is a numerical scale and the other is a physical scale. The analysis of the
convergence of two-scale correctors is performed under the assumption that the elliptic flux is strictly
stationary with respect to spatial variables. The nonlinear multiscale finite element method has been
proposed and analyzed.
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1. Introduction. Multiscale problems occur in many scientific and engineering
disciplines, such as material science, earth and environmental science, petroleum en-
gineering, etc. These problems are characterized by the great number of spatial and
time scales. They are difficult to analyze theoretically or solve numerically.

When a standard finite element or finite difference method is applied to the mul-
tiscale problems, the degrees of freedom of the resulting discrete system can be ex-
tremely large due to the necessary resolution for achieving meaningful (convergent)
results. Limited by computing resources, many practical problems are still beyond the
reach of direct simulations. On the other hand, the large-scale features of the solu-
tions are often of main interest. Thus, it is desirable to have a numerical method that
can capture the effect of small scales on large scales without resolving the small-scale
details.

In this paper we consider nonlinear elliptic equations where the flux depends on
the gradient of the solutions in a nonlinear manner:

−div(aε(x,Duε)) = f,(1)

where ε is a small scale. In the previous findings, MsFEM (see [10, 9, 7, 8]) and
other upscaling techniques (see, e.g., [21, 5, 2]) have been successfully applied to
linear elliptic equations. In this case the coarse scale solution can be constructed
by rescaling of the local solution or the coupling of the local solution through the
variational formulation of the problem. This technique is no longer applicable for
nonlinear elliptic equations when the elliptic flux depends on the gradient of the
solution in a nonlinear fashion.

Our motivation in considering (1) mostly stems from the applications of flow
in porous media, though many applications of nonlinear elliptic equations of these
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kinds occur in transport problems. Two-phase immiscible flow in porous media is
governed by the pressure equation ∇ · λ(S)k∇p = f , and the saturation equation
St + v · ∇f(S) = 0, where v = −λ(S)k∇p. The pressure field, p, is the solution of
the nonlinear elliptic equation, where the elliptic flux depends on the saturation S
through the function λ(S). On the other hand, S depends on the velocity field v,
which in turn is a function of ∇p. Taking the present value of the velocity in the
saturation equation yields the form (1) for the pressure equation. A simple way to
view it is to solve the saturation equation explicitly with the pressure implicit, i.e.,
S(·, t) = S(·, t−∆t)+∆tλ(S(·, t−∆t)k(·)∇p(·, t)∇f(S(·, t−∆t), and substitute this
value of the saturation into the pressure equation. The resulting pressure equation
will contain the gradient of the pressure in a nonlinear fashion.

The paper deals with two main issues: (1) the calculation of the homogenized
solution on a numerical coarse grid and (2) the computation of numerical correctors
that approximates the gradient of the solution. It is known that the solution uε
converges to u (up to a subsequence), which is the solution of −div(a∗(x,Du)) = f
(e.g., see [16, p. 90]). In the periodic case the solution uε has the following multiscale
expansion

uε = u0 + εu1(x, x/ε) + · · · ,(2)

where u1 can be expressed through u0 (see, e.g., [1]).
In the first part of the paper we propose a numerical procedure for the calcu-

lation of the homogenized solution at length scales h, 1 � h � ε. Our numerical
homogenization procedure is based on the general finite element formulation of the
coarse scale equations. It selectively solves the local problems that reduce overall
computations even in the periodic case. In this part of the paper we also prove the
convergence of the numerical solution computed on the coarse grid to the solution
of the homogenized equation. The proof is presented for the general case using G-
convergence theory. We show that the discrete problem has a unique solution, and this
solution converges (up to a subsequence) to the solution of the discretized problem
for a homogenized equation. Next, the nonlinear multiscale finite element method is
presented, and the similarity with the proposed numerical homogenization technique
is discussed. The nonlinear multiscale finite element is a Petrov–Galerkin finite ele-
ment method where the “test space” and trial space are different. In particular, the
trial space is chosen to be the space of usual linear bases, while the “test space” is a
manifold (not a linear space) that can be mapped from the trial space in a nonlinear
manner.

The second part of the paper deals with the construction of the fine scale features
of the solution. One of our goals here is to build a numerical corrector. To the best
of our knowledge, there is no corrector result for the random case. In the paper we
construct the two-scale correctors for the random operators that are strictly stationary
with respect to spatial variables. Our approach borrows some ideas from the periodic
case [4]. A distinctive feature of our approach is the introduction of stochastic two-
scale correctors, where one of the scales represents the numerical (coarse) grid size and
the other scale is a physical scale. The convergence for the corrector is obtained. These
results show us a way to obtain numerically the fine scale features of the solution.
Moreover, the nonlinear multiscale finite element method as in the linear case recovers
the fine scale features of the solution gradient in a robust way. We would like to note
that the computation of the oscillation of solutions is important for the application
to flow in porous media and other transport problems.
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The paper is organized as follows. In the next section we present some basic facts
that are used later in the analysis. Section 3 is devoted to the numerical homogeniza-
tion procedure, its analysis, and the nonlinear multiscale finite element method. The
following section is devoted to the two-scale corrector result and its mathematical
analysis. In the conclusion we describe how the method can be extended to treat
more general elliptic equations.

2. Preliminaries. Let (Ω,Σ, µ) be a probability space and Lp(Ω) the space of
all p integrable functions. Consider a d dimensional dynamical system on Ω, T (x) :
Ω → Ω, x ∈ Rd, that satisfies the following conditions: (1) T (0) = I, and T (x + y) =
T (x)T (y); (2) T (x) : Ω → Ω preserves the measure µ on Ω; (3) for any measurable
function f(ω) on Ω, the function f(T (x)ω) defined on Rd×Ω is also measurable (e.g.,
see [11, 17]).

U(x)f(ω) = f(T (x)ω) defines a d-parameter group of isometries in the space
Lp(Ω), and U(x) is strongly continuous (see [11, p. 223]). Further, we assume that
the dynamical system T is ergodic; i.e., any measurable T -invariant function on Ω is
constant. Denote by 〈·〉 the mean value over Ω,

〈f〉 =

∫
Ω

f(ω)dµ(ω) = E(f).

Denote by Di
ω the generator of U(x) along the ith coordinate direction, i.e.,

Di
ω = lim

δ→0

f(Txeiω)− f(ω)

δ
.

The domains ∂i of Di
ω are dense in L2(Ω), and the intersection of all Di

ω is also dense.
Next, following [16, p. 137] (cf. [11]) we define potential and solenoidal fields.

A vector field f ∈ Lp(Ω) is said to be potential (or solenoidal, respectively) if its
generic realization f(Txω) is a potential (or solenoidal, respectively) vector field in
Rd. Denote by Lp

pot(Ω) (respectively, Lp
sol(Ω)) the subspace of Lp(Ω) that consists of

all potential (respectively, solenoidal) vector fields. Introduce the following notations:

V p
pot = {f ∈ Lp

pot(Ω), 〈f〉 = 0}, V p
sol = {f ∈ Lp

sol(Ω), 〈f〉 = 0}.
The following properties are well known (see [16, p. 138]):

Lp
pot(Ω) = V p

pot ⊕Rd, Lp
sol(Ω) = V p

sol ⊕Rd, Lq
sol(Ω) = (V p

pot)
⊥, Lq

pot(Ω) = (V p
sol)

⊥.

(3)

Consider the equation

−div(a(Tx/εω,Duε)) = f in Q,

uε = 0 on ∂Q,
(4)

where f is a deterministic function that does not depend on ε and is sufficiently
smooth, and Q ⊂ Rd is a bounded domain with Lipschitz boundaries.

Assume for all ω ∈ Ω

|a(ω, ξ1)− a(ω, ξ2)| ≤ C(1 + |ξ1|+ |ξ2|)p−1−α|ξ1 − ξ2|α(5)

and

(a(ω, ξ1)− a(ω, ξ2), ξ1 − ξ2) ≥ C(1 + |ξ1|+ |ξ2|)p−β |ξ1 − ξ2|β .(6)
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For simplicity of analysis we assume β = p, p ≥ 2, and a(ω, 0) = 0. The analysis can
be easily generalized.

It is known [15, 16] that as ε → 0 Duε, converges to Du weakly in Lp(Q) for a.e.
ω, and Du is the solution of

−div(a∗(Du)) = f, u ∈ W 1,p
0 (Q).(7)

a∗ can be constructed using the solution of the following auxiliary problem. Given
ξ ∈ Rd define wξ ∈ V p

pot such that

a(ω, ξ + wξ(ω)) ∈ Lq
sol(Ω).

Then a∗(ξ) is defined as

a∗(ξ) = 〈a(ω, ξ + wξ(ω))〉.
Moreover, a∗(ξ) satisfies the estimates (5) and (6) with new α (see [16, p. 154]). In
the first part of the paper we will use general G-convergence theory for the analysis.
We refer the reader to previous papers [3, 18, 16] where G-convergence for monotone
operators is described.

Throughout the paper C denotes a generic constant, q is defined by 1/p+1/q = 1,
and ‖ · ‖p refers to the Lp(Q) norm.

3. Numerical homogenization. In this section we present a numerical proce-
dure for the calculation of the homogenized solution. The analysis of this procedure
will be carried out using G-convergence theory; i.e., we do not impose any restric-
tions on the nature of heterogeneities. The proof of the homogeneous random case is
simpler and will be addressed. Consider

−div(aε(x,Duε)) = f, uε ∈ W 1,p
0 (Q),(8)

where ε is a small scale. The elliptic flux aε(x, ξ) satisfies the same assumptions,
(5) and (6), imposed in the previous section. We denote the differential opera-
tor corresponding to (8) by Aε. It is known that (e.g., [16, p. 90]) uε → u and
aε(x,Duε) → a∗(x,Du) (up to a subsequence) weakly in W 1,p

0 (Q) and Lq(Q)n, re-
spectively, and

−div(a∗(x,Du)) = f, u ∈ W 1,p
0 (Q).(9)

Our numerical homogenization procedure is based on finite element computations
on a grid h such that 1 � h � ε. To solve a homogenized equation (9) within the
framework finite element we seek the solution of (9) in a finite dimensional space over
the standard triangulation K of Q =

⋃
K,

Sh = {vh ∈ C0(Q) : the restriction vh is linear for each triangle K, and vh = 0 on ∂Q},
such that

(A∗uh, vh) =

∫
Q

fvhdx ∀v ∈ Sh,

where

(A∗uh, vh) =
∑
K

∫
K

(a∗(x,Duh), Dvh)dx.(10)
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The actual computation of uh is carried out by introducing the natural bases in
Sh = span(φi(x)), uh =

∑N
i=1 θiφi(x). The numerical homogenization procedure

approximates
∫
K
a∗(x, ξ)dx (ξ = Duh) using the solutions of the local problems. In

particular, we seek uh,ε(= uh) ∈ Sh such that

(Ah,εuh,ε, vh) =

∫
Q

fvhdx ∀vh ∈ Sh,(11)

where

(Ah,εuh,ε, vh) =
∑
K

∫
K

(aε(x,Dvε), Dvh)dx.(12)

Here vε is the solution of

−div(aε(x,Dvε)) = 0 in K,

vε = ξ · x on ∂K,
(13)

where ξ = const ∈ Rd in each K defined by ξ = Duh,ε. Here and later we will
denote by ξ = const ∈ Rd (const in each K) the gradient of an element uh ∈ Sh in
each K, ξ = Duh. Equation (11) is our numerical homogenization procedure whose
convergence will be studied next. We would like to note that as a boundary condition
in (13) one can also take vε = uh,ε(= ξ ·x+ c) (a linear function) on ∂K. The discrete
formulation of the numerical homogenization procedure is as follows. We seek the
solution uh =

∑N
i=1 θiφi(x) such that

F(θ) = b,(14)

where θ = (θ1, . . . , θN ), bi =
∫
Q
fφi(x)dx, Fi(θ) =

∑
K

∫
K
(aε(x,Dvε), Dφi(x))dx,

i = 1, . . . , N , and vε satisfies (13) with boundary conditions vε =
∑

i θiφi(x) on ∂K
(or vε = ξ · x, where ξ is a constant which is equal to D

∑
i θiφi(x) in K). The

implementation of the numerical homogenization procedure will also be discussed.

Theorem 3.1. uh,ε → u in W 1,p
0 (Q) (up to a subsequence of ε) as limh→0 limε→0,

under some additional smoothness assumptions on a∗(x, ξ) discussed below. Here uh,ε
is the solution of (11) and u is the solution of (9).

Remark. We note that within the theory of G-convergence of monotone operators
the limit operator (9) may be nonunique. Thus, in Theorem 3.1 we have a convergence
up to a subsequence to the solution of a homogenized equation. In the case of the
random homogeneous elliptic flux the limiting homogenization equation is unique and,
thus, the whole sequence converges.

To prove the theorem we will first investigate the limit of (11) as ε → 0 and then
as h → 0. For the proof we need the trace-free analogue of vε, the solution of (13),
vbε ∈ W 1,p

0 (K), that satisfies

div(aε(x, ξ + Dvbε)) = 0,(15)

where ξ = Duh (cf. (13)) and uh is an element of Sh.

Lemma 3.2. Ah,ε is strictly monotone for any h > 0.

Proof. For any u1
h ∈ Sh and u2

h ∈ Sh we have
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(Ah,εu1
h −Ah,εu2

h, u
1
h − u2

h) =
∑
K

∫
K

(aε(x,Dv1
ε )− aε(x,Dv2

ε ), Du1
h −Du2

h)dx

=
∑
K

∫
K

(aε(x, ξ1 + Dv1,b
ε )− aε(x, ξ2 + Dv2,b

ε ), ξ1 − ξ2)dx

=
∑
K

∫
K

(aε(x, ξ1 + Dv1,b
ε )− aε(x, ξ2 + Dv2,b

ε ), Dv1,b
ε + ξ1 − (Dv2,b

ε + ξ2))dx

≥ C
∑
K

∫
K

|ξ1 + Dv1,b
ε − (ξ2 + Dv2,b

ε )|pdx = C
∑
K

∫
K

|Dv1
ε −Dv2

ε |pdx.

(16)

Here v1
ε and v2

ε satisfy (13) with ξ1 = Du1
h and ξ2 = Du2

h, and v1,b
ε = v1

ε − u1
h and

v2,b
ε = v2

ε − u2
h. Taking into account that Dv1

ε = Dv2
ε if and only if ξ1 = ξ2 we obtain

strict monotonicity.
Lemma 3.3. Ah,ε is coercive for any h > 0.
Proof. Indeed, for any uh ∈ Sh

(Ah,εuh, uh) =
∑
K

∫
K

(aε(x,Dvε), ξ)dx =
∑
K

∫
K

(aε(x, ξ + Duε), ξ)dx

≥ C
∑
K

∫
K

|ξ + Duε|pdx = C
∑
K

∫
K

|Dvε|pdx.
(17)

If aε(x, ξ) is an homogeneous function with respect to ξ, i.e., aε(x, λξ) = λp−1aε(x, ξ),
then it can be easily shown using a rescaling argument that ‖Dvε‖p = C‖ξ‖p. In gen-
eral we use the trace inequality (see [14, 12]) ‖u‖p,∂K ≤ C‖Du‖p,K to obtain lower
bound for (17). Denote K1 to be rescaled K such that diam(K1) = O(1), y = x/h,
v1
ε = vε(yh). Then

∫
K

|Dvε|pdx = C
hd

hp

∫
K1

|Dyv
1
ε |pdy ≥ C

hd

hp

∫
∂K1

|v1
ε |pdSy = Chd

∫
∂K1

|ξ · x|pdSy

≥ C|ξ|phd = C

∫
K

|ξ|pdx.

(18)

Here we have used the fact that the norms in finite dimensional spaces are equivalent,
and

∫
∂K1

|ξ · x|dSy generates a norm in the corresponding finite dimensional space of
ξ’s. Note that since we use the equivalence of norms in a finite dimensional space the
constant C in (18) depends on h in general. Thus,

(Ah,εuh, uh) ≥ C‖Duh‖pLp(Q).

Strict monotonicity and coercivity guarantee the existence and uniqueness of the
solution uh,ε of (11) for any h > 0.

Lemma 3.4. For any uh ∈ Sh we have

lim
ε→0

Ah,εuh = Ahuh,

where Ah is defined on Sh and given by

(Ahuh, vh) =
∑
K

∫
K

(a∗(x,Dv0), Dvh)dx.(19)
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Here v0 is the solution of

−div(a∗(x,Dv0)) = 0 in K,(20)

v0 = ξ · x on ∂K, ξ = Duh.
Proof. The proof follows from the convergence of arbitrary solutions of the G-

convergent sequence of operators. Assume a∗(x, ξ) is a flux for a G-limit of Aε (up to
a subsequence). We call this subsequence the original subsequence in further analysis.
Then from (13) and the local nature of the G-converging sequence (e.g., [16, p. 96],)
it follows that vε → v0 (up to a subsequence) weakly in W 1,p(K) as ε → 0, where v0

is the solution of (20). Moreover,

aε(x,Dvε) → a∗(x,Dv0)

weakly in Lq(K)n as ε → 0. Since the solution v0 is unique the whole sequence (of the
original subsequence) converges. Using the latter and taking into account the form of
Ah,ε we obtain the desired result by taking the limit as ε → 0 of (12).

Next, we show that the above convergence in Lemma 3.4 is uniform in a compact
set. For this it is sufficient to show that Ah,ε is equicontinuous since the problem is
finite dimensional.

Lemma 3.5.

‖Ah,εu1
h −Ah,εu2

h‖ ≤ C‖u1
h − u2

h‖γ ,(21)

with γ > 0, for any u1
h and u2

h in a compact set. The constant C is independent of ε.
Remark. Both norms are considered in finite dimensional space; thus we do not

specify them.
Proof. Clearly, for any u1

h ∈ Sh and u2
h ∈ Sh we have

‖Ah,εu1
h −Ah,εu2

h‖

≤
∣∣∣∣∣
∑
K

∫
K

(aε(x, ξ1 + Dv1,b
ε )− aε(x, ξ2 + Dv2,b

ε ))dx

∣∣∣∣∣
≤ C

∑
K

∫
K

(1 + |Dv1
ε |p−1−s + |Dv2

ε |p−1−s)||ξ1 + Dv1,b
ε − (ξ2 + Dv2,b

ε )|sdx

≤ C

(∑
K

∫
K

|ξ1 + Dv1,b
ε − (ξ2 + Dv2,b

ε )|pdx
)1/p

≤ C

(∑
K

∫
K

(a(x,
x

ε
, ξ1 + Dv1,b

ε )− a(x,
x

ε
, ξ2 + Dv2,b

ε ), ξ1 + Dv1,b
ε − ξ2 −Dv2,b

ε )dx|
)1/p

= C

(∑
K

∫
K

(a(x,
x

ε
, ξ1 + Dv1,b

ε )− a(x,
x

ε
, ξ2 + Dv2,b

ε ), ξ1 − ξ2)dx|
)1/p

≤ C

(∑
K

∫
K

|ξ1 − ξ2|pdx
)1/p2

≤ C

(∫
Q

|Du1
h −Du2

h|pdx
)1/p2

,

(22)

where viε = vi,bε + uih (i = 1, 2) are local solutions (see (13) and (15)) and ξi = Duih
(i = 1, 2). Here we have used the fact that Dv1

ε and Dv2
ε are bounded in Lp. Indeed,
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it can be easily derived that ‖Dviε‖Lp(Q) ≤ C‖Duih‖Lp(Q) (i = 1, 2), and since uih is
assumed to be in a compact set, thus ‖Dviε‖Lp(Q) ≤ C (i = 1, 2).

From the coercivity of Ah,ε we obtain that uh,ε → uh (finite dimensional) as ε → 0
(up to a subsequence) for any h > 0. Taking the limit as ε → 0 of (11) and using
Lemmas 3.4 and 3.5 we get

(Ahuh, vh) =

∫
Q

fvhdx ∀vh ∈ Sh,(23)

where Ah is defined by (19). We can easily show that (see below) the solution of
this discrete equation exists and is unique; thus the whole sequence converges. Note
that this whole sequence is a subsequence of the G-convergent sequence discussed in
Lemma 3.4.

We note that if the homogenized operator does not depend on the spatial variables,
then the proof of the Theorem 3.1 is complete. Indeed, in this case v0 = uh, and thus
Ah = A∗, where A∗ is defined by

(A∗uh, vh) =
∑
K

∫
K

(a∗(x,Duh), Dvh)dx.(24)

Thus the discrete equation (Ahuh, vh) = (A∗uh, vh) =
∫
Q
fvh is a standard Galerkin

discretization of a homogenized equation, and, consequently, uh converges to u in
W 1,p

0 (Q) as h → 0. If a∗(x, ξ) has spatial dependence, then Ah differs from A∗.
Our further goal is to study the limit as h → 0. For this reason we need to assume
some smoothness for a∗(x, ξ) with respect to spatial variables. Introduce a∗(ξ) =
1

|K|
∫
K
a∗(x, ξ)dx. Clearly div(a(Duh)) = 0. Assume that |a∗(ξ)−a∗(x, ξ)| ≤ Cαh(1+

|ξ|p−1), where αh is a generic sequence (independent of x), such that αh → 0 as
h → 0. The latter is true, for example, if a∗(x, ξ) is Hölder continuous with respect
to spatial variables. We do not know how to show it (Hölder continuity of a∗(x, ξ)),
in general, based on the smoothness properties of aε(x, ξ), and this is currently under
investigation.

For the following analysis we note that a∗ satisfies assumptions such as (5) and
(6) with possibly different constant in (5) (e.g., see [16, p. 86]):

|a∗(x, ξ1)− a∗(x, ξ2)| ≤ C(1 + |ξ1|+ |ξ2|)p−1−α|ξ1 − ξ2|α.(25)

Lemma 3.6. Ah (defined by (19)) is coercive for sufficiently small h.

Proof. For any uh ∈ Sh we have

(Ahuh, uh) =
∑
K

∫
K

(a∗(x,Dv0), Duh)dx

=
∑
K

∫
K

(a∗(x,Dv0), Duh + Dvb0)dx

≥ C‖Dv0‖pLp(Q),

(26)
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where v0 satisfies (20). Next, we estimate Dv0.

‖Dv0 −Duh‖pLp(Q)

≤ C
∑
K

∫
K

(a∗(x,Dv0)− a∗(x,Duh), Dv0 −Duh)dx

= C
∑
K

∫
K

(a∗(x,Dv0)− a∗(Duh), Dv0 −Duh)dx

+ C
∑
K

∫
K

(a∗(Duh)− a∗(x,Duh), Dv0 −Duh)dx

= C
∑
K

∫
K

(a∗(Duh)− a∗(x,Duh), Dv0 −Duh)dx

≤ Cδαh(1 + ‖Duh‖pLp(Q)) + Cδ‖Dv0 −Duh‖pLp(Q).

(27)

With an appropriate choice of δ and for sufficiently small h we obtain

‖Dv0‖pLp(Q) ≥ C‖Duh‖pLp(Q) − Cαh.

It can be easily shown that (as in Lemma 3.2) Ah is strongly monotone, which
implies that the solution uh of (23) is unique. Note that from the coercivity of Ah

we obtain that ‖Duh‖p,Q ≤ C, where C is independent of h. Next, we study the
approximation properties of Ah.

Lemma 3.7. (Ahuh − A∗uh, wh) → 0 as h → 0 for any families of uh ∈ Sh and
wh ∈ Sh uniformly bounded in W 1,p

0 (Q), where Ah and A∗ are defined by (19) and
(24), respectively.

Proof.

(Ahuh −A∗uh, Dwh) =
∑
K

∫
K

(a∗(x,Dv0)− a∗(x,Duh), Dwh)dx

≤ C(1 + ‖Dv0‖(p−qα)/q
p,Q + ‖Duh‖(p−qα/q

p,Q )‖Dv0 −Duh‖αp,Q‖Dwh‖p,Q

≤ Cαh

(∫
Q

(1 + |Duh|p)dx
)α/p(∫

Q

(|Dwh|p)dx
)1/p

.

(28)

In the last step we have used (27). Clearly, the right-hand side (r.h.s.) converges to
zero as h → 0 for any uniformly bounded family of uh and wh in W 1,p

0 (Q).
To finish the proof of the Theorem 3.1 we introduce Phu, the orthogonal projection

of the solution of (9) onto Sh. Clearly, Phu → u in W 1,p
0 (Q) as h → 0. Then

‖Duh −DPhu‖pLp(Q) ≤ C(A∗uh −A∗Phu, uh − Phu) = C(A∗uh −Ahuh, uh − Phu)

+C(Ahuh −A∗Phu, uh − Phu) ≤ αh + C(f −A∗Phu, uh − Phu)

= αh + C(A∗u−A∗Phu, uh − Phu).

(29)

Here we have used Lemma 3.7, where αh is a generic sequence, αh → 0, as h → 0, and
the facts that (Ahuh, vh) = (f, vh) = (A∗u, vh), for all vh ∈ Sh, and both DPhu and
Duh are uniformly bounded in Lp(Q). The second term converges to zero because A∗

is continuous. Thus, ‖Duh −DPhu‖Lp(Q) → 0 as h → 0. This completes the proof of
Theorem 3.1.
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Next we make some comments on the use of Newton’s methods (e.g., see [20])
for solving the nonlinear equation (11). The discrete formulation of this equation is
F(θ) = b (see (14)). To solve this system using Newton’s method we do θn+1 =
θn − (F

′
(θn))−1F(θn). The corresponding linearized system Bij ,

Bij =
∂

∂θj
Fi(θ),

is sparse. Note that the convergence of Newton’s method requires additional assump-
tions on a∗(x, ξ), such as smoothness with respect to ξ. We do not know how to show
it based on the smoothness of aε(x, ξ). Thus, in applying Newton’s method we need
to assume that a∗(x, ξ) is continuously differentiable with respect to ξ.

In order to carry out an iteration of Newton’s method for a given θi we need
to compute F(θ) and Bij . The latter requires the computation of

∫
K
a∗(x, ξ)dx for

a given constant ξ ∈ Rd and its derivatives with respect to θ. The approximation
of
∫
K
a∗(x, ξ)dx is computed as shown above using the local solution of (13). We

would like to note that because of strict monotonicity of F(θ) Bij is nonsingular.
Consequently, Newton’s method is applicable, provided a∗(x, ξ) is continuously dif-
ferentiable with respect to ξ.

Note that in the periodic case one can solve a cell problem for each ξ and x and
compute a∗. As can be seen, our numerical procedure has some advantage even in the
periodic case because we compute only a∗(x, ξ) for some values of ξ that are needed
in the iterative procedure. Furthermore, the matrix Bij is defined on the coarse grid;
thus its inversion can be calculated quickly. The latter is similar to the numerical
homogenization of linear equations where the resulting stiffness matrix is defined on
the coarse grid.

It is often advantageous to solve the local problem in a larger domain (larger than
K) in order to reduce the boundary effects. In this case to show the convergence of the
numerical procedure the following theorem on the convergence of arbitrary solutions
(e.g., see [16]) can be used.

Theorem 3.8. Assume Aε →G A∗ in Q, Q1 ⊂ Q, uε → u0 weakly in W 1,p(Q1),
−div((aε(x, ξ + Duε)) = 0. Then aε(x, ξ + Duε) → a∗(x, ξ + Du0) in Lq(Q1) and
−div(a∗(x, ξ + Du0)) = 0.

In the periodic case one can use instead of the elements K a period of size ε as it
is done in HMM [6].

3.1. Nonlinear multiscale finite element methods (NMsFEM). The nu-
merical homogenization procedure presented above can be put in a framework of finite
elements as it is done in the case of multiscale finite element methods [9]. For multi-
scale finite element methods the space that contains the small-scale information of the
solution is a linear space. The latter is no longer the case for the nonlinear equations.
Consider a standard finite dimensional space Sh over the coarse triangulation of Q,
where the base functions φi0 are linear functions on each triangle. Define a nonlinear
space, V h

ε , of functions over the coarse triangulation whose elements are the solutions
of

div(aε(x,Dφiε)) = 0 in K,

with boundary conditions φiε = φi0 on ∂K. Clearly, the sum of two elements of V h
ε does

not belong to V h
ε . For each two elements φiε and φjε , we define their sum φi,jε = φiε+φjε

as the solution of

div(aε(x,Dφi,jε )) = 0 in K,
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with boundary conditions φi,jε = φi0 + φj0 on ∂K. Clearly, with such summation rule
each element of vh,ε ∈ V h

ε can be represented as vh,ε =
∑

i θiφ
i
ε, and there is one-to-

one nonlinear operator E such that E : Sh → V h
ε . In particular, for each vh ∈ Sh a

corresponding element of vh,ε ∈ V h
ε solves div(aε(x,Dvh,ε)) = 0 in each K subject to

boundary conditions vh,ε = vh on ∂K.
Next we propose the Petrov–Galerkin formulation of (8). Find uh ∈ V h

ε such that

A(uh, vh) =

∫
Q

fvhdx ∀vh ∈ Sh,(30)

where

A(uh, vh) =

∫
Q

(aε(x,Dvε), Dvh)dx,

and vε is the solution of (13). This formulation is equivalent to the numerical ho-
mogenization procedure described previously. Consequently, uh converges (up to a
subsequence, in general, and the whole sequence in the case of an homogeneous ran-
dom field) to a homogenized solution of the original equation. Next, we will show that
uh =

∑
i θiφ

i
ε approximates the gradient of the solution of original equation under the

assumption that the elliptic flux is strictly stationary with respect to spatial variables.

4. Two-scale corrector. An approximation of the solution gradient. In
this section we show how the gradient of the solution can be approximated for the case
of spatially homogeneous elliptic fluxes, (4). The importance of this approximation is
motivated by some applications where details of the fluxes play a key role in a physical
phenomenon (e.g., flow in porous media). For the construction we assume that the
homogenized solution is computed with a reliable accuracy as in the previous section.
Our construction borrows its main idea from [4], which is for periodic operators.
The distinction is that we introduce two scales in the construction where one scale
represents the numerical scale h and the other the physical scale ε.

Define Mhφ(x) in the following way:

Mhφ(x) =
∑
i

1Qi

1

|Qi|
∫
Qi

φ(y)dy,

where
⋃

Qi = Q. Here Qi are domains with diameter of order h, e.g., finite element
triangles or some unions of the triangles. Note that Mhφ → φ in Lp(Q) as h → 0
(also a.e. in Q; e.g., see [22]). Further, denote

P (Tyω, ξ) = ξ + wξ(Tyω),

where wξ ∈ Lp
pot(Ω) is the solution of auxiliary problem a(ω, ξ +wξ(ω)) ∈ Lq

sol(Ω), or

−div(a(Tyω, ξ + wξ(Tyω))) = 0

in the sense of distribution.
One of our main results is the following theorem.
Theorem 4.1.

lim
h→0

lim
ε→0

∫
Ω

∫
Q

|P (Tx/εω,MhDu)−Duε|pdxdµ(ω) → 0,(31)
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where uε and u are solutions of (4) and (7), respectively.
The result indicates that the gradient of the solution can be approximated by

P (Tx/εω,MhDu). This quantity can be computed based on MhDu, i.e., the gradient
of the coarse solution in each coarse block, as we will show later.

For the proof of the Theorem 4.1 we need the following lemma.
Lemma 4.2. For every ξ ∈ Rd

∫
Ω

|P (ω, ξ)|pdµ(ω) ≤ C(1 + |ξ|)p.

Proof. From monotonicity of a we obtain

∫
Ω

|P (ω, ξ)|pdµ(ω) ≤ C

∫
Ω

(a(ω, P )− a(ω, 0), P )dµ(ω)

=

∫
Ω

(a(ω, P ), P )dµ(ω) =

∫
Ω

(a(ω, P ), ξ)dµ(ω) ≤ Cη‖P‖pp + Cη−1/(p−1)(1 + |ξ|p).

(32)

With an appropriate choice of η we obtain the desired result.
From here it follows that P (Tyω, ξ) ∈ Lp

loc(R
d) for a.e. ω.

Theorem 4.3.

lim
ε→0

∫
Ω

∫
Q

|P (Tx/εω,MhDu)−Duε|pdxdµ(ω)

≤ C

[∫
Q

(a∗(MhDu),MhDu)dx−
∫
Q

(a∗(MhDu), Du)dx−
∫
Q

(a∗(Du),MhDu)dx

+

∫
Q

(a∗(Du), Du)dx

]
.

(33)

The proof of the theorem will be based on the following estimate:

∫
Ω

∫
Q

|P (Tx/εω,MhDu)−Duε|pdxdµ(ω)

≤ C

∫
Ω

∫
Q

(a(Tx/εω, P (Tx/εω,MhDu))− a(Tx/εω,Duε), P (Tx/εω,MhDu)−Duε)dxdµ(ω)

= C

∫
Ω

∫
Q

(a(Tx/εω, P (Tx/εω,MhDu)), P (Tx/εω,MhDu))dxdµ(ω)

− C

∫
Ω

∫
Q

(a(Tx/εω, P (Tx/εω,MhDu)), Duε)dxdµ(ω)

− C

∫
Ω

∫
Q

(a(Tx/εω,Duε), P (Tx/εω,MhDu))dxdµ(ω)

+ C

∫
Ω

∫
Q

(a(Tx/εω,Duε), Duε)dxdµ(ω).

(34)

We will investigate the r.h.s. of (34) in the limit as ε → 0.
For the first term of the r.h.s. of (34) we have the following.
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Lemma 4.4.∫
Ω

∫
Q

(a(Tx/εω, P (Tx/εω,MhDu)), P (Tx/εω,MhDu))dxdµ(ω) →
∫
Q

(a∗(MhDu),MhDu)dx

as ε → 0.
Proof. ∫

Ω

∫
Q

(a(Tx/εω, P (Tx/εω,MhDu)), P (Tx/εω,MhDu))dxdµ(ω)

=
∑
i

∫
Ω

∫
Qi

(a(Tx/εω, ξi + wξi(Tx/εω)), ξi + wξi(Tx/εω))dxdµ(ω)

→
∑
i

∫
Qi

1Qi(a
∗(ξi), ξi)dx

(35)

as ε → 0. In the last step we have used the Birkhoff ergodic theorem (see [11, p. 225]),
and the fact that 〈(a(ω, ξ+wξ), wξ)〉 = 0, because of wξ ∈ V p

pot, a(ω, ξ+wξ) ∈ Lq
sol(Ω),

and Lq
sol(Ω) = (V p

pot)
⊥ (see (3)). Next we note that the limit can be written as

∑
i

∫
Qi

1Qi(a
∗(ξi), ξi)dx =

∫
Q

(a∗(MhDu),MhDu)dx.(36)

For the second term of the r.h.s. of (34) we have the following.
Lemma 4.5.∫

Ω

∫
Q

(a(Tx/εω, P (Tx/εω,MhDu)), Duε)dxdµ(ω) →
∫
Q

(a∗(MhDu), Du)dx

as ε → 0.
Proof. ∫

Ω

∫
Q

(a(Tx/εω, P (Tx/εω,MhDu)), Duε)dxdµ(ω)

=
∑
i

∫
Ω

∫
Qi

(a(Tx/εω, P (Tx/εω, ξi)), Duε)dxdµ(ω).
(37)

Note that Duε is bounded in Lp(Q) for a.e. ω. Next we show that a(Tx/εω, P (Tx/εω, ξi))
is bounded in Lr(Qi), where r > q. Since −div(a(Tx/εω, P (Tx/εω, ξi))) = 0 in 3×Qi

(where 3×Qi is a domain that contains Qi and is surrounded with a ring of size Qi),
using Meyers’s theorem (see [13]) we can conclude that

‖P (Tx/εω, ξi)‖p+η(Qi) ≤ C‖P (Tx/εω, ξi)‖p(3×Qi),

where C is independent of ω and depends only on operator constants and Qi. Since
‖P (Tx/εω, ξi)‖p(3×Qi) is bounded for a.e. ω (see Lemma 4.2), ‖P (Tx/εω, ξi)‖p+η(Qi)

is also bounded for a.e. ω. From here using (5) for a(Tyω, ξ) we can easily obtain
that a(Tx/εω, P (Tx/εω, ξi)) is bounded in Lr(Qi), where r > q for a.e. ω. Since P is
in Lp+η(Qi) for a.e. ω, we can pick r = q + η/(p − 1). Consequently, (a(Tx/εω, ξi +
wξi(Tx/εω)), Duε) is bounded in Lσ(Qi), σ > 1. Thus it contains a subsequence that
weak* converges to gi for any i and a.e. ω. Since −div(a(Tx/εω, P (Tx/εω, ξi))) =
0 in Qi, using compensated compactness argument we can obtain that as ε → 0
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gi = (a∗(ξi), Du). The latter is because Duε weakly converges to Du for a.e. ω
and a(Tx/εω, P (Tx/εω, ξi)) converges to a∗(ξ) as ε → 0 (the whole sequence). The
weak convergence of a(Tx/εω, P (Tx/εω, ξi)) is a consequence of the Birkhoff ergodic
theorem. Consequently, as ε → 0,∑

i

∫
Ω

∫
Qi

(a(Tx/εω, P (Tx/εω, ξi)), Duε)dxdµ(ω) →
∑
i

∫
Ω

∫
Qi

(a∗(ξi), Du)dxdµ(ω).

Thus, ∫
Ω

∫
Q

(a(Tx/εω, P (Tx/εω,MhDu)), Duε)dxdµ(ω)

→
∫

Ω

∫
Q

(a∗(MhDu), Du)dxdµ(ω).

For the third term of the r.h.s. of (34) we have the following.
Lemma 4.6.

∫
Ω

∫
Q

(a(Tx/εω,Duε), P (Tx/εω,MhDu))dxdµ(ω) →
∫
Q

(a∗(Du),MhDu)dx(38)

as ε → 0.
Proof. ∫

Ω

∫
Q

(a(Tx/εω,Duε), P (Tx/εω,MhDu))dxdµ(ω)

=
∑
i

∫
Ω

∫
Qi

(a(Tx/εω,Duε), P (Tx/εω, ξi))dxdµ(ω).
(39)

Since a(Tx/εω,Duε) weakly converges to a∗(Du) in Lq(Q) for a.e. ω, and P (Tx/εω, ξi)
converges to ξi in Lp(Q) and is bounded in Lp+η(Q), similar to the analysis of the
second term we can obtain that∑

i

∫
Ω

∫
Qi

(a(Tx/εω,Duε), P (Tx/εω, ξi))dxdµ(ω) →
∑
i

∫
Qi

(a∗(Du), ξi)dx

=

∫
Q

(a∗(Du),MhDu)dx.

(40)

For the fourth term of the r.h.s. of (34) we have the following.
Lemma 4.7.∫

Ω

∫
Q

(a(Tx/εω,Duε), Duε)dxdµ(ω) →
∫
Q

(a∗(Du), Du)dx

as ε → 0.
Proof. ∫

Ω

∫
Q

(a(Tx/εω,Duε), Duε)dxdµ(ω)

= −
∫

Ω

∫
Q

(div(a(Tx/εω,Duε)), uε)dxdµ(ω) =

∫
Ω

∫
Q

fuεdxdµ(ω)

→
∫
Q

fudx =

∫
Q

(a∗(Du), Du)dx.

(41)
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Combining all the estimates we have

lim
ε→0

∫
Ω

∫
Q

|P (Tx/εω,MhDu)−Duε|pdxdµ(ω)

≤ C(

∫
Q

(a∗(MhDu),MhDu)dx−
∫
Q

(a∗(MhDu), Du)dx−
∫
Q

(a∗(Du),MhDu)dx

+

∫
Q

(a∗(Du), Du)dx).

(42)

This completes the proof of the Theorem 4.3.
Next, it is not difficult to show that the r.h.s. of (42) approaches zero as h → 0.

For this reason we write the r.h.s. as∫
Q

(a∗(MhDu),MhDu)dx−
∫
Q

(a∗(MhDu), Du)dx−
∫
Q

(a∗(Du),MhDu)dx

+

∫
Q

(a∗(Du), Du)dx =

∫
Q

(a∗(Du)− a∗(MhDu), Du−MhDu)dx.

(43)

Using the estimate (25) for a∗ and the fact that ‖MhDu − Du‖p → 0 as h → 0 we
obtain that the r.h.s. of (43) converges to zero as h → 0. This completes the proof of
Theorem 4.1.

Theorem 4.1 shows a way to compute approximation for the gradient of uε, though
it involves the solution of the auxiliary problem. Next, we present a computational
approach for calculating the approximation for the gradient of the solution using
Theorem 4.1. In each element triangular K we solve

−div(aε(Tx/εω,Dvε)) = 0 in K,

vε = uh on ∂K,
(44)

where uh ∈ Sh is computed using the numerical homogenization procedure presented
in the previous section. Note that Duh → Du as h → 0 in Lp(Q), and this allows us
to prove the following theorem.

Theorem 4.8.

lim
h→0

lim
ε→0

∫
Ω

∫
Q

|Dvε −Duε|pdxdµ(ω) = 0,

where vε and uε are defined by (44) and (4), respectively.
Proof. Because of Theorem 4.1 we just need to show

lim
h→0

lim
ε→0

∫
Ω

∫
Q

|Dvε − P (Tx/εω,MhDu)|pdxdµ(ω) = 0.

Further, using Theorem 4.3 we obtain that

lim
h→0

lim
ε→0

∫
Ω

∫
Q

|Dvε − P (Tx/εω,Duh)|pdxdµ(ω) = 0.(45)

Indeed, the homogenized equation for (44) is −div(a∗(Dv)) = 0 in K, v = uh on ∂K.
Thus v = uh in K, since uh is a linear function, and MhDv = Duh. Thus it remains
to show that

lim
h→0

lim
ε→0

∫
Ω

∫
Q

|P (Tx/εω,Duh)− P (Tx/εω,MhDu)|pdxdµ(ω) = 0.(46)
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To show this we note that

∫
Ω

|P (ω, ξ)− P (ω, ζ)|pdµ(ω)

≤ C

∫
Ω

(a(ω, P (ω, ξ))− a(ω, P (ω, ζ)), P (ω, ξ)− P (ω, ζ))dµ(ω)

= C

∫
Ω

(a(ω, P (ω, ξ))− a(ω, P (ω, ζ)), ξ − ζ)dµ(ω)

≤ C

∫
Ω

(1 + |P (ω, ξ)|+ P (ω, ζ)|)p−1−α|P (ω, ξ)− P (ω, ζ)|α × |ξ − ζ|dµ(ω)

≤ C

(∫
Ω

(1 + |P (ω, ξ)|p + P (ω, ζ)|p)dµ(ω)

)(p−α−1)/p(∫
Ω

|P (ω, ξ)− P (ω, ζ)|p
)α/p

|ξ − ζ|.

(47)

From here using Lemma 4.2 we have∫
Ω

|P (ω, ξ)− P (ω, ζ)|pdµ(ω) ≤ C(1 + |ξ|p + |ζ|p)(p−α−1)/(p−α)|ξ − ζ|p/(p−α).

Next, denote by ξK = Duh and ζK = MhDu in each K. Then for (46) we have

lim
h→0

lim
ε→0

∫
Ω

∫
Q

|P (Tx/εω,Duh)− P (Tx/εω,MhDu)|pdxdµ(ω)

≤ C lim
h→0

lim
ε→0

∑
K

∫
Ω

∫
K

(a(Tx/εω, P (Tx/εω, ξK))

− a(Tx/εω, P (Tx/εω, ζK)), P (Tx/εω, ξK)− P (Tx/εω, ζK))dxdµ(ω)

= C lim
h→0

∑
K

∫
K

(a∗(ξK))− a∗(ζK)), ξK − ζK)dx

= C lim
h→0

∫
Q

(a∗(Duh)− a∗(MhDu), Duh −MhDu)dx = 0.

(48)

In the last step we have used the fact that Duh − MhDu → 0 in Lp(Q) as h → 0
because of Theorem 3.1 and the fact that MhDu → Du in Lp(Q) as h → 0. When
taking the limit as ε → 0 we followed the proof of Lemma 4.4.

Remark. Theorem 4.8 shows that if NMsFEM is employed, then the solution
computed in V ε

h will approximate the solution of the original equation, (4), in W 1,p
0 (Q)

(and in the mean with respect to ω).
Remark. The convergence results of section 4 can be generalized to the case for

a.e. ω using essentially the same proof.

5. Concluding remark. In conclusion we would like to note that the numerical
homogenization procedure can be applied to more general nonlinear equations (quasi-
monotone and type S+ (see [19, p. 7])

−div(aε(x, uε, Duε)) + a0,ε(x, uε, Duε) = f.

The numerical homogenization will be given as follows:

(Ah,εuh,ε, vh) =

∫
Q

fvhdx ∀vh ∈ Sh,
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where

(Ah,εuh,ε, vh) =
∑
K

∫
K

[(aε(x, η
uh , Dvε), Dvh) + a0,ε(x, η

uh , Dvε)vh]dx.

Here vε is a unique solution of

−divaε(x, η
uh , Dvε) = 0 in K,

with vε = uh on ∂K, and ηuh is a constant in K that is equal to the average of uh,

ηuh =
1

|K|
∫
K

uhdx.

The convergence results for this scheme will be presented elsewhere.
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