
J
H
E
P
1
2
(
2
0
1
4
)
0
3
5

Published for SISSA by Springer

Received: October 8, 2014

Accepted: November 6, 2014

Published: December 3, 2014

Braneworld localisation in hyperbolic spacetime

B. Crampton,a C.N. Popeb,c and K.S. Stellea

aThe Blackett Laboratory, Imperial College London,

Prince Consort Road, London SW7 2AZ, U.K.
bGeorge P. & Cynthia W. Mitchell Institute for Fundamental Physics, Texas A&M University,

College Station, TX 77843-4242, U.S.A.
cDAMTP, Centre for Mathematical Sciences, Cambridge University,

Wilberforce Road, Cambridge CB3 OWA, U.K.

E-mail: benedict.crampton@gmail.com, pope@physics.tamu.edu,

k.stelle@imperial.ac.uk

Abstract: We present a construction employing a type IIA supergravity and 3-form flux

background together with an NS5-brane that localises massless gravity near the 5-brane

worldvolume. The nonsingular underlying type IIA solution is a lift to 10D of the vacuum

solution of the 6D Salam-Sezgin model and has a hyperbolic H(2,2) × S1 structure in the

lifting dimensions. A fully back-reacted solution including the NS5-brane is constructed

by recognising the 10D Salam-Sezgin vacuum solution as a “brane resolved through trans-

gression.” The background hyperbolic structure plays a key rôle in generating a mass gap

in the spectrum of the transverse-space wave operator, which gives rise to the localisation

of gravity on the 6D NS5-brane worldvolume, or, equally, in a further compactification

to 4D. Also key to the successful localisation of gravity is the specific form of the corre-

sponding transverse wavefunction Schrödinger problem, which asymptotically involves a

V = −1/(4ρ2) potential, where ρ is the transverse-space radius, and for which the NS5-

brane source gives rise to a specific choice of self-adjoint extension for the transverse wave

operator. The corresponding boundary condition as ρ → 0 ensures the masslessness of

gravity in the effective braneworld theory. Above the mass gap, there is a continuum of

massive states which give rise to small corrections to Newton’s law.
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1 Introduction: the problem of localising gravity on a brane

The problem of how to localise gravity on a submanifold of a higher-dimensional spacetime

has been a key concern for cosmological braneworld models since the beginnings of the

subject [1]. With compact extra dimensions, this is not a main concern, because there is a

natural eigenvalue gap between a zero-mode of the Laplacian for the transverse dimensions

and the first excited state, giving a corresponding mass gap in the effective 4D theory

spectrum between massless 4D gravitational modes and the lowest lying massive modes.

With noncompact extra dimensions, however, the problem that arises in principal is to avoid

having a continuum of massive states ranging down all the way to those corresponding to

massless 4D gravity.

An approach to the localisation of gravity on a 4D subsurface of an infinite higher-

dimensional spacetime was given in [2, 3], joining segments of AdS5 with the junction

providing a delta-function source to the Einstein equations which gives rise to a normalis-

able bound state in the corresponding effective Schrödinger problem. Similar constructions

involving excisions of spacetime were made, for example in [4]. A problem with such con-

structions, however, is to realise the delta-function source as a natural brane construct in
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string or M-theory. An embedding of the 5D Z2 symmetric construction of ref. [2] was

given in [5], but lifting the 5D realisation up to 10D proved to involve a singularity with

no clear brane or orbifold interpretation, located at the lift of the Z2 reflection point [6].

An analysis of the difficulties of realising lower-dimensional gravity, massless or mas-

sive, on a subsurface of an infinite higher-dimensional spacetime was given in ref. [7].

For string constructions with asymptotically maximally-symmetric spacetimes (de Sitter,

Poincaré, or anti-de Sitter), it proves to be difficult to obtain the peak in the warp factor

for the 4D subspace that is needed in order to give rise to the localising bound state.

Another theme in the study of supergravity theories which has been somewhat ex-

plored but not widely applied is the existence of supergravity models with noncompact

gauge symmetries (see, for example, [8]). Such gaugings may elegantly be obtained using

the embedding-tensor formalism [9]. Models with gauged noncompact group symmetries

of this sort manage to have a purely positive-energy spectrum thanks to the nonlinear

realisation of the noncompact symmetry on appropriate sets of scalar fields, acting on

prefix factors of positive-energy kinetic terms, with linear realisation only on a compact

subgroup of the gauged symmetry. One reason that few proposed physical applications of

higher-dimensional models with noncompact gauge symmetries have been made, however,

is the generally continuous spectrum of eigenstates in the space transverse to the lower-

dimensional spacetime. The corresponding continuous spectrum of effective-theory massive

states can prevent the effective localisation of lower-dimensional gravity, unless somehow

a mass gap can be arranged below the edge of the continuous spectrum.

In this paper, we combine these two developments to provide a construction that lo-

calises gravity on a subspace of a background spacetime arising from just such a noncompact

gauged supergravity. Instead of a simple patching of slices of the background spacetime,

however, our construction employs a natural object in string or M-theory: an NS5-brane.

This is one of the fundamental brane objects arising in 11D M-theory [10], and it gives rise,

upon “vertical” dimensional reduction [11], to the NS5-brane of type IIA supergravity.

The construction is ultimately based upon a 6D model with R-symmetry gauging

obtained by Salam and Sezgin in 1984 [12]. This model has the unusual property of having a

scalar field with a positive potential, as opposed to the negative or indefinite sign potentials

arising in models with gauged compact symmetries. Although the Salam-Sezgin model does

not admit a maximally symmetric 6D spacetime solution, the positive scalar potential does

allow for a solution combining an S2 subspace with U(1) magnetic monopole flux and with

flat 4D Minkowski space. The link between the Salam-Sezgin model and supergravities

related to string theory is given by its embedding into 10D type IIA supergravity by a lift

on the noncompact space H(2,2) [13]. When viewed as a 7D supergravity theory, the full

theory obtained via H(2,2) reduction from 10D has a gauged SO(2, 2) symmetry, positive-

energy kinetic terms for all fields and 9 scalar fields with a positive-definite potential

generalising that of the Salam-Sezgin model (which can then be obtained by a consistent

truncation of the SO(2, 2) invariant theory). If desired, the construction can be extended

to an 11D embedding by the inclusion of an additional lift on a further spatial S1.

In section 2, we begin by presenting the details of the embedding of the Salam-Sezgin

6D S2×R4 “vacuum” solution into a 10D type IIA supergravity solution via a Kaluza-Klein
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lift on H(2,2). This then sets the stage in section 3 for an initial analysis of gravitational

fluctuations about the Salam-Sezgin background, and for a discussion of normalisable can-

didate bound states that could localise gravity in a lower-dimensional subspacetime. For

spin-two excitations, a simplifying feature of such analysis is that one needs only to study

the scalar wave equation in the space transverse to the lower-dimensional spacetime [7, 14].

The only such wavefunction that can explicitly be given in terms of standard functions turns

out to be the zero-eigenvalue eigenfunction ξ0 of the transverse wave operator. Gravita-

tional fluctuations with this transverse wavefunction structure are massless from the point

of view of the lower-dimensional physics. However, the wavefunction ξ0 has a logarithmic

asymptotic behaviour as one approaches the “waist” (ρ = 0 in the radial coordinate) of the

H(2,2) space, as distinct from the non-singular structure of the underlying Salam-Sezgin

vacuum. This implies the need for a source at ρ = 0 in the fluctuation wave equation.

Preserving the eight-supercharge unbroken supersymmetry of the vacuum Salam-

Sezgin solution points to a NS5-brane as the relevant inclusion, as analysed in section 4,

which then proceeds on to a main result: the fully back-reacted solution generalising the

Salam-Sezgin vacuum background by the inclusion of an NS5-brane. The key to this con-

struction is recognition of the nonsingular vacuum Salam-Sezgin solution, when reduced

from 10D to 9D by compactification on the NS5-brane “waist” coordinate ψ, as an instance

of a “brane resolved by transgression” in the fashion of ref. [15].

In section 5, the needed NS5-brane worldvolume source action is included in the field

equations, yielding, firstly, the relation between the NS5-brane tension T and the inte-

gration constant k found for the bulk solution inclusion of the NS5-brane, and secondly,

the boundary conditions for transverse fluctuation wavefunctions that are required by the

NS5-brane source. This analysis is surprisingly subtle, especially concerning the question of

self-adjointness of the transverse wave operator: the corresponding Schrödinger problem for

the transverse wavefunction involves, asymptotically as ρ→ 0, a potential V = −1/(4ρ2),

which has represented a continuing puzzle in quantum mechanics since the 1950’s [16–19].

Analysis of the NS5-brane source action’s implications for the asymptotic ρ→ 0 structure

of the transverse wavefunction, with careful regulation of the corresponding source delta

function, selects just one transverse bound state. This is the zero mode ξ0, which happily

remains exactly the same as in the preliminary fluctuation analysis about the Salam-Sezgin

vacuum solution given in section 2. This yields massless gravity in the lower-dimensional

braneworld. Moreover, as one moves away from the ρ = 0 “waist” of the H(2,2) space,

the Schrödinger potential rises to a positive value (1 + k), depending on the strength k

of the NS5-brane. This gives rise to a (1 + k)g2 gap in the lower-dimensional braneworld

(mass)2 eigenvalues between the massless states and the edge of the continuum massive

spectrum, where g is the (length)−1 dimensional parameter characterising the scale of the

H(2,2) hyperbolic geometry.

The lower-dimensional effective braneworld gravity arising from this construction is

initially six-dimensional, corresponding to the worldvolume dimension of the NS5-brane.

Of these six worldvolume dimensions, the “waist” coordinate ψ is naturally compactified.

Another worldvolume coordinate, y, may be chosen to be compactified on S1, or can be used

in an S1/Z2 Hořava-Witten [20] type construction in order to produce a 4D chiral theory,
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with attendant matter fields as needed to cancel anomaly inflow [21, 22]. The 4D effective

gravity is next analysed. Normalisation of the ξ0 bound-state transverse wavefunction is

carried out explicitly in section 6 and a preliminary consideration of corrections to 4D

Newtonian gravity arising from the continuum of massive states is given in section 7. The

paper concludes in section 8 with a consideration of open problems and the realisation of

our construction in string theory.

2 Salam-Sezgin theory and its embedding in H(2,2)

The bosonic sector of the six-dimensional Salam-Sezgin theory is described by the La-

grangian

L̄6 = R̄ ∗̄1l− 1

4
∗̄dφ̄ ∧ dφ̄− 1

2
e

1
2
φ̄ ∗̄F̄(2) ∧ F̄(2) −

1

2
eφ̄ ∗̄H̄(3) ∧ H̄(3) − 8ḡ2 e−

1
2
φ̄ ∗̄1l , (2.1)

where dH̄(3) = 1
2 F̄2 ∧ F̄(2) and F̄2 = dĀ(1). (We put a bar on all quantities in the six-

dimensional theory.) It was shown in [13] that the Salam-Sezgin theory can be embedded

in the ten-dimensional type I supergravity theory, whose bosonic Lagrangian can be taken

to be

L10 = R ∗1l− 1

2
∗dφ ∧ dφ− 1

2
∗F3 ∧ F(3) , (2.2)

via a consistent dimensional reduction on R times the three-dimensional hyperbolic space

H(2,2). This space can be defined as the surface X2
1 + X2

2 − X2
3 − X2

4 = 1 embedded in

the Euclidean space E4, with the natural metric inherited as the restriction of ds2
Euclidean =

dX2
1 + dX2

2 + dX2
3 + dX2

4 to this surface. Its isometry group is U(1) × U(1), which is the

intersection of the O(2, 2) symmetry of the embedding condition and the O(4) symmetry of

the Euclidean metric on E4. It was shown in [13] that the metric on H(2,2) can be written as

ds2
3 = cosh 2ρ dρ2 + cosh2 ρ dα2 + sinh2 ρ dβ2 , (2.3)

where ρ ≥ 0 and 0 ≤ α < 2π, 0 ≤ β < 2π. It will be more convenient for our purposes to

introduce coordinates ψ ∈ [0, 4π) and χ ∈ [0, 2π) in place of α and β, defined by

ψ = α+ β , χ = α− β . (2.4)

In terms of these, the embedding of the Salam-Sezgin theory in ten-dimensional type I

supergravity that was constructed in [13] is given by

ds2
10 = (cosh 2ρ)1/4

[
e−

1
4
φ̄ ds̄2

6 + e
1
4
φ̄ dy2 +

1

2
ḡ−2 e

1
4
φ̄

(
dρ2

+
1

4
[dψ + sech2ρ(dχ− 2ḡĀ)]2 +

1

4
(tanh 2ρ)2 (dχ− 2ḡĀ)2

)]
,

F(3) = H̄(3) −
sinh 2ρ

4ḡ2(cosh 2ρ)2
dψ ∧ (dχ− 2ḡĀ(1))

+
1

4ḡ cosh 2ρ
F̄2 ∧ [dψ + cosh 2ρ (dχ− 2ḡĀ(1))] ,

eφ = (cosh 2ρ)−1/2 e−
1
2
φ̄ . (2.5)

– 4 –



J
H
E
P
1
2
(
2
0
1
4
)
0
3
5

For the present, our focus will be on the remarkable (Minkowski)4×S2 vacuum solution

of the Salam-Segin theory [12], which is given by

ds̄2
6 = dxµdxνηµν +

1

8ḡ2
(dθ2 + sin2 θdϕ2) ,

Ā(1) = − 1

2ḡ
cos θ dϕ , H̄(3) = 0 , φ̄ = 0 . (2.6)

The lift of this solution to ten dimensions, using (2.5), was given in [13]. As noted there, the

solution is more elegantly written in the ten-dimensional string-frame metric ds2
str, related

to the Einstein-frame metric ds2
10 by

ds2
10 str = e

1
2
φ ds2

10 . (2.7)

After making the coordinate transformation (2.4) the lifted Salam-Sezgin vacuum is given

by [13]1

ds2
10 str = dxµdxνηµν + dy2 +

1

4g2
[dψ + sech2ρ (dχ+ cos θ dϕ)]2 +

1

4g2
sech2ρ ds2

EH ,

eφ = (sech2ρ)1/2 , A(2) =
1

4g2
[dχ+ sech2ρ dψ] ∧ (dχ+ cos θ dϕ) , (2.9)

where

ds2
EH = cosh 2ρ dρ2 +

(sinh 2ρ)2

4 cosh 2ρ
(dχ+ cos θ dϕ)2 +

1

4
cosh 2ρ (dθ2 + sin2 θ dϕ2) . (2.10)

We now observe that if we make the coordinate transformation cosh 2ρ = r2, the metric

ds2
EH becomes

ds2
EH =

(
1− 1

r4

)−1

dr2 +
1

4
r2

(
1− 1

r4

)
(dχ+ cos θ dϕ)2 +

1

4
r2 (dθ2 + sin2 θ dϕ2) . (2.11)

This can be recognised as the Eguchi-Hanson metric, with unit scale parameter [23]. Recall-

ing that the χ coordinate has period 2π, one sees from (2.10) that at large distance the space

approaches R4/Z2 [24]. On the other hand, as ρ goes to zero, ρ and χ become like plane

polar coordinates in the neighbourhood of the origin, so the space approaches R2×S2 there.

The Salam-Sezgin (Minkowski)4×S2 vacuum is supersymmetric [12] in six dimensions,

and hence it lifts to a supersymmetric solution in ten dimensions. The general reduction

of the fermions was discussed also in [13]. For our present purposes, it is useful just

to exhibit the Killing spinors of the lifted Salam-Sezgin vacuum (2.9). These are most

elegantly expressed in the string frame also, wherein the ten-dimensional supersymmetry

transformation rules take the form

δψM = ∇M ε− 1

8
FMNP ΓNP Γ11 ε , δλ = ΓM∂Mφ ε−

1

12
FMNP ΓMNP Γ11 ε . (2.12)

1As in [13], it is convenient to re-express the gauge coupling constant ḡ of the Salam-Sezgin theory in

terms of a new constant

g =
√

2 ḡ , (2.8)

and we shall use g from now on. (This rescaling was done in order to avoid
√

2 factors in the general

reduction ansatz.)
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We shall give a more detailed discussion of the derivation of the Killing spinors later, when

we consider a modification of the ten-dimensional lift of the Salam-Sezgin vacuum in which

a singular NS5-brane is introduced. For now we shall just present the result for the lifted

Salam-Sezgin vacuum itself. We find that there exist eight Killing spinors, which are given

by

ε = e−
1
2
χΓ89 η , (2.13)

where η is any constant spinor satisfying the two projection conditions

Γ11 η = −η , Γ67η = Γ89 η . (2.14)

Here, the 6, 7, 8 and 9 vielbein indices on the gamma matrices refer to the four directions

in the Eguchi-Hanson transverse space, with

ẽ6 =
1

2
sinh 2ρ (cosh 2ρ)−1/2 (dχ+ cos θ dϕ) , ẽ7 = (cosh 2ρ)1/2 dρ ,

ẽ8 =
1

2
(cosh 2ρ)1/2 dθ , ẽ9 =

1

2
(cosh 2ρ)1/2 sin θ dϕ , (2.15)

and ds2
EH =

∑9
i=6 ẽ

2
i .

3 Bound states and mass gaps

Now consider gravitational fluctuations around the Salam-Sezgin background, considered

from a braneworld four-dimensional perspective. General studies [7, 14] of the fluctuation

problem about supergravity backgrounds start with an ansatz replacing the 4D metric ηµν
by ηµν + hµν(x, z) where xµ are the 4D coordinates and zn = (y, ψ, θ, ϕ, χ, ρ) are the six

“transverse” coordinates. One notes from the Salam-Sezgin background solution (2.9) that,

of these, the five coordinates (y, ψ, θ, ϕ, χ) all refer to naturally compact directions, while

ρ is the non-compact “radius”. The fluctuation problem for hµν(x, z) can be treated by

separation of variables. A full expansion of the fluctuations in the ten-dimensional theory

would involve introducing harmonic eigenfunctions for the dependences on the five compact

coordinates as well as the non-compact ρ coordinate. However, for a study of the lowest-

lying fluctuation states, one may simplify the problem by availing oneself of a consistent

truncation to the sector independent of y, ψ, θ, ϕ &χ: this amounts to considering only

S-wave, i.e. singlet, states with respect to the corresponding background symmetries (i.e.

(U(1))3 for y, ψ and χ, and SO(3) for θ and ϕ). The essential remaining dependence is

then on the non-compact coordinate ρ.

Accordingly, we posit an expansion

hµν(x, ρ) =
∑
i

h(λi)
µν (x)ξλi(ρ) +

∫ ∞
Λedge

dλh(λ)
µν (x)ξλ(ρ) , (3.1)

where the ξλi are discrete states and the ξλ are continuum states for eigenvalues λ starting

from some lower value Λedge at the edge of the continuous spectrum. Limiting attention

to linearised 4D gravitational fluctuations in hµν(x) about the Salam-Sezgin background,

we may focus on pure spin-two fluctuations with ηµνhµν(x) = 0 and we may also impose

– 6 –
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the gauge conditions ∂µhµν(x) = 0. The analysis of [7] then shows that the gravitational

fluctuations must solve a scalar wave equation in the full ten-dimensional spacetime

�(10)hµν(x, z) = 0 , (3.2)

where the 10D wave operator splits up as

�(10) = H
1
4
SS(�(4) + g24y,ψ,θ,ϕ,χ + g24rad) , (3.3)

where

HSS = (cosh 2ρ)−1 (3.4)

is the Salam-Sezgin warp function, �(4) is the 4D d’Alembertian, 4y,ψ,θ,ϕ,χ is the Laplacian

for the five compact directions (y, ψ, θ, ϕ, χ) (which will have zero eigenvalue for our S-wave

treatment) and

4rad =
∂2

∂ρ2
+

2

tanh(2ρ)

∂

∂ρ
. (3.5)

Solutions to (3.2) in ten dimensions will then give rise to 4D solutions with (mass)2 values

given by the 4rad eigenvalue λ:

4radξλ(ρ) = −λξλ(ρ) ,

�(4)h
λ
µν(x) = m2hλµν(x) ,

m2 = g2λ . (3.6)

3.1 The Schrödinger equation for 4rad eigenfunctions

One can rewrite the 4rad eigenvalue problem as a Schrödinger equation by making the

rescaling

Ψλ =
√

sinh(2ρ)ξλ , (3.7)

thereby eliminating the first-derivative term from the eigenfunction equation, which then

takes the Schrödinger-equation form

− d2Ψλ

dρ2
+ V (ρ)Ψλ = λΨλ , (3.8)

where the potential is

V (ρ) = 2− 1

tanh2(2ρ)
. (3.9)

The Schrödinger equation potential (3.9) asymptotes to the value 1 for large ρ. In this

large-ρ limit, the Schrödinger equation becomes

d2Ψλ

dρ2
+ 4e−4ρΨλ + (λ− 1)Ψλ = 0 , (3.10)

giving scattering-state solutions for λ > 1:

Ψλ(ρ) ∼
(
Aλe

i
√
λ−1ρ +Bλe

−i
√
λ−1ρ

)
for large ρ , (3.11)
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while for λ < 1 one can have L2 normalizable candidate bound states. Recalling the ρ

dependence of the measure
√
−g(10) ∼ (cosh(2ρ))

1
4 sinh(2ρ), one finds for large ρ that∫ ∞

ρ1�1
|Ψλ(ρ)|2dρ <∞⇒ Ψλ ∼ Bλe−

√
1−λρ for λ < 1 . (3.12)

It follows that for λ < 1, we have candidate bound states of the transverse 4rad system.

We shall need to discover how to fix the value of λ. Clearly of particular interest will be

the value zero, which corresponds to massless gravity in four dimensions.

Before analysing the transverse bound-state spectrum, we need to consider the norm

that is to be used in considering the normalizability of the transverse wavefunction ξ(ρ).

In fact, for the rescaled wavefunction (3.7), the trivial L2 norm is the correct one. One

may see this by starting from the 10D type IIA action with Einstein-frame integration

over
∫
d10x
√
g(10) ein. With the ηµν → ηµν + hµν(x, ρ) ansatz for the 4D gravitational

fluctuations, one obtains the correct norm measure by collecting the ρ-dependent terms

multiplying the 4D gravitational kinetic terms. In the quadratic terms of the 4D effective

action, up to a constant factor of 1
16g5

, one has |ξ(ρ)|2 from the two hµν fields, multiplied

by HSS sinh 2ρ cosh 2ρ
√
g(2) and then integrated over the six dimensions transverse to the

4D space, where
√
g(2) is the standard 2-sphere metric density.2 The ρ-dependent terms

combine to give simply sinh 2ρ. Consequently, after the wavefunction rescaling in (3.7),

the correct norm for the transverse ρ-dependent wavefunction is simply

||Ψ||2 =

∫
dρ|Ψ|2 . (3.13)

3.2 The zero-mass candidate bound state

The general behaviour of candidate Ψλ eigenfunctions cannot be given in terms of standard

functions, but for λ = 0 the Schrödinger equation happily can be solved exactly, giving the

normalised result

Ψ0(ρ) =
2
√

3

π

√
sinh(2ρ)ξ0(ρ) , (3.14)

ξ0(ρ) = log(tanh ρ) . (3.15)

Sketching the zero-mode wavefunction (3.14) and the potential (3.9) together, we have the

picture shown in figure 1:

The (y, ψ, θ, ϕ, χ) coordinates correspond to a compact T 2×S2×S1 space on which one

may make a standard Kaluza-Klein dimensional reduction. Note that χ is a coordinate

corresponding to collapsing curves as one takes the limit ρ → 0: the ρ, χ submanifold

simply tends to R2 in this limit; we will come back to this point in the next section. All of

the other compact coordinates correspond to non-collapsing curves and there is no subtlety

in restricting attention to fields independent of y, ψ, θ and ϕ on T 2×S2. Provided one has

reason to specify the normalizable λ = 0 wavefunction as the remaining part of the hµν(x, ρ)

2Note that this agrees fully with the expression
∫
d6y

√
[ĝ]e2Aξ2 given in [7] for the norm, in which

√
[ĝ]

is the density in the transverse six dimensions and e2A is the warp factor of the 4D subspace.
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Figure 1. The normalizable zero-mode Ψ0 and the H(2,2) Schrödinger equation potential,

limiting to the value 1 as ρ→∞.

field dependence on the coordinates transverse to the 4D subspace, this will concentrate

the gravitational fluctuations in the region closely surrounding the 4D subspace and will

give rise to massless 4D effective gravity. It remains now to justify why this zero mode is

in fact the correct transverse wavefunction.

4 Salam-Sezgin background with an NS5-brane inclusion

In the preceding section, we found an attractive zero-mode candidate for the gravitational

fluctuation wavefunction in the space transverse to our 4D spacetime. There are, however,

two linked aspects of this zero-mode wavefunction that require us to expand our consid-

eration of background type IIA supergravity solutions in which the 4D gravity-localising

subspace may be embedded. Although the Salam-Sezgin background (2.9) is itself a com-

pletely smooth solution of type IIA supergravity, the ξ0 zero-mode (3.15) diverges in the

limit as ρ→ 0. Moreover, as we shall see in detail later, this transverse wavefunction does

not, strictly speaking, yield a true solution of type IIA supergravity: it requires a source at

ρ = 0 (just as the 1/r potential requires a source in the 3D Laplace equation). This situation

is not in itself any more disturbing than the need, strictly speaking, for a source for the M2

brane [25], or for essentially any of the classic string or M-theory brane solutions. But the

question before us here is: a source for what? A number of hints can be found in the Salam-

Sezgin background solution (2.9) and in the logarithmic character of the ξ0 zero-mode itself.

The log ρ behaviour of ξ0(ρ) as ρ → 0 is a clear hint that this wavefunction belongs

to a two-dimensional transverse space. The natural coordinate to accompany ρ in this

transverse 2-space is χ, which together with ρ comprises polar coordinates on R2, in the

limit ρ→ 0, as mentioned above. If we are looking to modify the Salam-Sezgin solution by

the inclusion of some kind of brane, the natural situation would be to have a flat subspace of

the 10D solution as the worldvolume. Within the Salam-Sezgin background solution (2.9),

in addition to the flat 4D coordinates xµ, the T 2 coordinates y and ψ are a natural pair of

coordinates of further flat directions. So the suggestion is to consider (xµ, y, ψ) as world-

volume coordinates, with (ρ, χ, θ, ϕ) as coordinates transverse to a brane inclusion. This

implies that one should look for a 5-brane inclusion, with (xµ, y, ψ) as the worldvolume

coordinates. Of the transverse coordinates, we clearly want to focus on solutions depending
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only on ρ, and so we will not be exciting modes depending on θ, ϕ or χ. As we have seen,

however, χ, together with ρ, form polar coordinates on R2 near ρ = 0, and although we

will not be considering functional dependence on χ, care will be needed in treating it, since

it is part of a suspected operative two-dimensional transverse space. The coordinates (θ

and ϕ parameterise an S2 in the transverse space, on which we will be considering only

S-wave, i.e. S2-independent, solutions. The hints from the structure of the 10D Salam-

Sezgin solution (2.9) therefore point towards the inclusion of a 5-brane smeared over the

transverse S2 directions, thus leaving ρ and χ as the coordinates of the operative two-

dimensional transverse space, in which a wave function logarithmic in ρ would be natural.

The hints of 5-brane structure in the Salam-Sezgin solution were noted already in Refer-

ence [13], where the ρ→∞ asymptotic structure of the Salam-Sezgin background was iden-

tified with an NS5-brane geometry in ten dimensions, with two of the worldvolume coordi-

nates (here y and ψ) wrapped around a T 2 torus. This structure thus makes use of both the

“diagonal” and “vertical” dimensional reduction arrangements outlined in Reference [11].

A further confirmation that an NS5-brane is the right kind of brane inclusion to con-

sider comes from supersymmetry. We saw in (2.13) and (2.14) that the Salam-Sezgin

background has eight unbroken supersymmetries. Supersymmetry preservation for a probe

NS5-brane on this background follows from the requirement of κ-symmetry invariance. For

a probe NS5-brane with worldvolume directions (0, 1, 2, 3, 4, 5) in the notation of section 2,

the corresponding requirement is [26]

Γ012345η = η . (4.1)

The appropriateness of an NS5-brane inclusion can then be seen by rewriting the second

equation in (2.14) as

Γ6789η = −η . (4.2)

The first equation in (2.14) can be rewritten as

Γ012345Γ6789η = −η , (4.3)

and so (4.2) and (4.3) together imply (4.1) already from the Salam-Sezgin supersymmetry

conditions, resulting in no further diminution of unbroken supersymmetry arising from the

inclusion of an NS5-brane: the eight unbroken Salam-Sezgin supersymmetries persist upon

inclusion of an NS5-brane.

These considerations based on the structure of the Salam-Sezgin background geometry

and probe-brane supersymmetry preservation indicate that the inclusion of an NS5-brane in

the Salam-Sezgin geometry is the appropriate way to create an initially static background

about which 4D massless gravitational fluctuations with a normalizable transverse wave-

function can exist. To complete the construction, however, we will need a fully back-reacted

geometry including an NS5-brane. Constructing this solution is now our main task.

4.1 Lifted Salam-Sezgin vacuum and brane resolution by transgression

In order to show how an NS5-brane can be introduced, it is helpful first to perform a

dimensional reduction to 9D of the ten-dimensional theory, and of the lifted Salam-Sezgin

– 10 –
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vacuum, on a circle. Specifically, we shall reduce on the ψ coordinate in (2.5) and (2.9),

or, more precisely, on the rescaled dimensionful coordinate

w ≡ 1

2g
ψ. (4.4)

It is convenient to use the string frames in ten and in nine dimensions, with the reduction

ansatz

ds2
10 str = ds̃2

9 str + e
√

2 φ̃2 (dw + Ã(1))
2 , A(2) = Ã(2) + Ã(1) ∧ dw . (4.5)

(We put tildes on all nine-dimensional fields.) The dimensionally-reduced theory in nine

dimensions, written now in the Einstein frame ds̃2
9 ein = e−2φ/

√
7+
√

2 φ̃2/7 ds̃2
9 str, is described

by the Lagrangian

L̃9 =
√
−g̃
(
R̃− 1

2
(∂φ1)2− 1

2
(∂φ̃2)2− 1

12
e

4√
14
φ1 F̃ 2

(3)−
1

4
e

2√
14
φ1 (e−

√
2φ̃2 F̃ 2

(2) +e
√

2 φ̃2 F̃2
(2))

)
,

(4.6)

where φ1 = −
√

8
7 φ+ 1√

7
φ̃2, and the nine-dimensional field strengths are given by

F̃(3) = dÃ(2) − dÃ(1) ∧ Ã(1) , F̃(2) = dÃ(1) , F̃(2) = dÃ(1) . (4.7)

The nine-dimensional reduction of the lifted Salam-Sezgin vacuum is given by

ds̃2
9 str = dxµdxµ + dy2 +

1

g2
sech2ρ ds2

EH ,

Ã(2) =
1

4g2
cos θ dχ ∧ dϕ , Ã(1) = − 1

2g
sech2ρ (dχ+ cos θ dϕ) ,

Ã(1) =
1

2g
sech2ρ (dχ+ cos θ dϕ) , e

√
7
2
φ1 = cosh 2ρ , φ̃2 = 0 . (4.8)

The 2-form field strengths are therefore given by

F̃2 = −F̃(2) =
1

2g(cosh 2ρ)2
(ẽ6 ∧ ẽ7 − ẽ8 ∧ ẽ9) , (4.9)

where ẽi is the vielbein for the Eguchi-Hanson metric, defined in (2.15). The 2-form

in (4.9) can be recognised as being the normalizable anti-self-dual harmonic 2-form in

Eguchi-Hanson geometry. This was used in [15] to construct so-called “branes resolved

through transgression,” and in fact the solution (4.8) is precisely an example of this kind.

Applied to our nine-dimensional case, the procedure described in [15] allows us to construct

resolved 4-brane solutions, with (xµ, y) being the worldvolume coordinates, since F̃(3) obeys

the Bianchi identity dF̃(3) = −F̃(2) ∧ F̃(2) (see (4.7)). Provided ds2
EH is Ricci-flat (which it

is here, for Eguchi-Hanson space), and that F̃(2) and F̃(2) are (anti)self-dual in the ds2
EH

metric, then by making a standard 4-brane ansatz, which is

e

√
7
2
φ1 ∗̃F̃(3) = dÃ(5) , Ã(5) = H−1 d4x dy , e

√
7
2
φ1 = H−1 , (4.10)

we get a solution provided H satisfies

4EHH =
1

2
F̃ ij F̃ij , (4.11)
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where 4EH is the scalar Laplacian in the transverse metric. Note that the radial part of

4EH is the same as the radial Laplacian 4rad (3.5) encountered earlier. For the transverse

S-wave solutions considered here (i.e. for solutions without excitations in the ψ, θ, ϕ, χ or

y variables), we will henceforth just write 4EH.

Plugging (4.9) into (4.11), we obtain the equation

4EHH = − 8

cosh4 2ρ
. (4.12)

The Salam-Sezgin vacuum itself corresponds to the “fully-resolved” solution

HSS = sech2ρ . (4.13)

The most general solution of the form H = H(ρ) is given, however, by allowing for an

additional homogeneous term H̃ solving 4EH H̃ = 0:

H = HSS + H̃ (4.14)

H̃ = c1 + c2 log tanh ρ , (4.15)

where c1 and c2 are arbitrary constants. The singularity at ρ = 0 that arises when c2 is

non-zero corresponds to having an actual 4-brane solution that will require an appropriate

delta-function source, as we shall see in section 5. It will be necessary to take c2 to be

negative in order to obtain a well-behaved positive-tension brane solution. It will also turn

out that normalizability requirements for the zero-mode fluctuations around the brane

solution imply that we should take c1 = 0. Thus from now on we shall take

H = sech2ρ− k log tanh ρ , (4.16)

where k is a positive constant.

Finally, we lift the nine-dimensional 4-brane solution back to ten dimensions us-

ing (4.5). This gives the fully back-reacted metric including the NS5-brane (again in the

string frame)

ds2
10 str = dxµdxνηµν + dy2 +

1

4g2
[dψ + sech2ρ (dχ+ cos θ dϕ)]2 +

H

g2
ds2

EH ,

eφ = H1/2 , A(2) =
1

4g2

[
(1− k) dχ+ sech2ρ dψ

]
∧ (dχ+ cos θ dϕ) , (4.17)

with ds2
EH being the Eguchi-Hanson metric (2.10) and where the function H is given

by (4.16). One may return to the Einstein frame using (2.7). This yields the Einstein-frame

form of the full metric including the NS5-brane:

ds2
10 ein = H−

1
4ds2

10 str . (4.18)

This is the exact NS5-brane generalisation of the lifted Salam-Sezgin vacuum that will form

the basis for our braneworld analysis in the subsequent sections. Note that there is a “twist”

in the ψ worldvolume direction on the NS5-brane.3 Although this twist means that there

3Such kinds of twisted lifts of resolved brane solutions have been constructed previously, in [28].
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is not a full six-dimensional Poincaré symmetry of the worldvolume coordinates (xµ, y, ψ)

of the NS5-brane, the only essential symmetry for our purposes is the four-dimensional

Poincaré symmetry of the four-dimensional spacetime coordinates xµ.

At very small ρ we have

H ∼ −k log ρ . (4.19)

The fact that H has the characteristic form of a harmonic function in two dimensions

rather than the full four dimensions of the transverse space is a reflection of the fact that

near the origin ρ = 0 the Eguchi-Hanson space is of the form R2 × S2.

4.2 Supersymmetry of the NS5-brane

The general arguments in [15] show that the degree of supersymmetry of a “brane resolved

through transgression” will be the same for any solution H of the equation (4.11). Thus we

expect in our case that the inclusion of the NS5-brane in the lifted Salam-Sezgin vacuum,

achieved by taking the constant k in (4.16) to be non-zero, will give a background that has

the same number of Killing spinors as we found in section 2 for the lifted Salam-Sezgin

vacuum itself. Here, we present some results necessary for constructing the Killing spinors

in the NS5-brane background.

We shall work in the ten-dimensional string frame metric, and so from (4.17) it is

natural to choose the vielbein

eµ = dxµ , µ = 0, 1, 2, 3 , e4 = dy , e5 =
1

2g
[dψ + sech2ρ(dχ+ cos θdϕ)] ,

ei = H1/2 g−1 ẽi , i = 6, 7, 8, 9 , (4.20)

where ẽi is the Eguchi-Hanson vielbein defined in (2.15). From (4.20) we calculate the

torsion-free spin connection ωAB, which, encapsulated in the spinor exterior covariant

derivative ∇ ≡ d+ 1
4ωAB ΓAB, turns out to be

∇ = d+
1

4
ω̃ij Γij − 1

8
H−1Fij Γij e5 − 1

4
H−1 (sech2ρ)1/2H ′ ej Γ7j

+
1

4
H−1Fij Γ5i ej , (4.21)

where the indices i and j range over the Eguchi-Hanson directions 6, 7, 8 and 9, and ω̃

is the torsion-free spin connection in the Eguchi-Hanson space. From (4.17), the 3-form

F(3) = dA(2) is given by

F(3) = − 2g

H(cosh 2ρ)2
e5 ∧ (e6 ∧ e7 − e8 ∧ e9)− gH ′

H3/2 (cosh 2ρ)1/2
e6 ∧ e8 ∧ e9 . (4.22)

Substituting these expressions into the string-frame supersymmetry transformation

rules (2.12), we find that there exist Killing spinors εstr given by

εstr = e−
1
2
χΓ89 η , (4.23)

where η is any constant spinor satisfying the two projection conditions

Γ11 η = −η , Γ67 η = Γ89 η . (4.24)
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Thus in the string frame, the Killing spinors are identical to those we obtained in section 2

for the lifted Salam-Sezgin vacuum. In the Einstein frame (2.7), the Killing spinor is given

by

εein = e−
1
8
φεstr = H−

1
16 εstr . (4.25)

5 Inclusion of the NS-5 brane source

Having developed the fully back-reacted solution (4.17) for an NS5-brane on the Salam-

Sezgin background, we now need to include in the action and field equations the corre-

sponding source. Just as the solution V = q/r for the three-dimensional Laplace equation

requires a source, 4V = −4πqδ3(r), or as the M2 brane requires a corresponding 2-brane

source [25], so here we require an appropriate source for the NS5-brane.

The NS5-brane action [27] is rather complicated on account of the worldvolume self-

dual 3-form field strength. However, here all we really need are the parts that source

the Einstein and 10D dilaton equations. For this purpose, it is appropriate to use the

Einstein-frame form of the fully back-reacted metric (4.18). Since we are interested in

S-wave solutions that have SO(3) symmetry in the S2 directions, the source needs to be

smeared over the S2 directions in the transverse space. The ψ and y directions of the

solution (4.17) are worldvolume directions, so the NS5-brane is seen to be wrapped around

these cycles. The needed NS5-brane source is then

Is =
−T
Ω2

∫
d2Ω

∫
d6ζ

[
−det

(
∂ix

M∂jx
NgMN (x(ζ))

)] 1
2
e−φ/2 . (5.1)

The inclusion of the NS5-brane source is depicted in figure 2:

With the inclusion of this source, the relevant part of the Einstein equation for the

static Salam-Sezgin + NS5 background, with 4D gravity fluctuations, is

1

16πG10

(
g2ηµν4EHH̃ −H2�(4)hµνξ − g2Hhµν4EHξ

)
= −T g4

√
gEH

(ηµν − hµν ξ(ρ))δ2(z) ,

(5.2)

where H and H̃ are as in (4.14) and (4.15), and G10 is the 10D Newton constant. Owing

to the smearing of the source in the S2 directions, the relevant transverse space is reduced

to just two dimensions; hence one has just the two-dimensional δ2(z) delta function, for

za = (r, χ), on the right-hand side of (5.2).

For the static background with H̃ = −k log tanh ρ ∼ −k log ρ, Equation (5.2) gives∫
√
gEH4EHH̃ = −16πG10Tg

2 . (5.3)

Performing the integral while noting that
√
gEH = 1

8 cosh 2ρ sinh 2ρ sin θ → 1
4ρ sin θ as

ρ→ 0, and that

d2zδ2(z) =
1

2π
dρdχδ(ρ) (5.4)

for SO(2) invariant (i.e. χ-independent) functions, and using the explicit form of H̃, one

obtains on the left-hand side π
2ρ

∂
∂ρH̃. One thus gets the following relation between k and T :

k = 32G10Tg
2 . (5.5)
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NS5-brane
wrapped on H (2,2)

Figure 2. NS5-brane source wrapped on the ψ ∈ [0, 4π) cycle of H(2,2) and smeared in the

transverse S2 directions of the bulk solution (4.17).

5.1 Fluctuations about the NS5-brane

Having identified the relation (5.5) between the 10D bulk solution integration constant k

and the NS5-brane source tension T , one can confront the analysis of gravitational hµν(x, ρ)

fluctuations around the static Salam-Sezgin + NS5 background. From the different factors

of H in the sourced equation (5.2), one finds that the sourced eigenvalue problem relevant

to 4D gravitational fluctuations with mass2 = g2λ is

1

16πG10

(4EHξλ(ρ) + λHξ(ρ)) = −T g2

H
√
gEH

ξλ(ρ)δ2(z) . (5.6)

At this point, one hopes to use the sourced equation (5.6) to determine the relevant

boundary conditions as ρ → 0 for the transverse wavefunction ξλ(ρ). A standard Frobe-

nius analysis of the eigenfunction problem shows that as ρ → 0, ξλ(ρ) has the following

asymptotic behaviour, both in the original Salam-Sezgin background and also with the

NS5-brane inclusion, and for arbitrary eigenvalue λ:

ξλ(ρ)→ aλ + bλ log ρ . (5.7)

For a transverse bound state, one requires normalizability of the transverse wavefunc-

tion ξλ(ρ) with respect to the full norm, including also the effects of the NS5-brane inclusion

via the total H function (4.14),

||ξ||2 =
1

π2

∫
d4zEHH

√
gEH|ξ|2 . (5.8)
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Overall normalizability, including all contributions from ρ ∈ (0,∞), will determine an

overall normalisation constant for ξλ. But we also need to know the asymptotic value

for the ratio aλ/bλ, which can be parametrised by $ = arctan(aλbλ ). Numerical study of

the eigenvalue problem shows that there is a one-to-one relationship $(λ) between the

eigenvalue λ and $, with $ = 0 corresponding to λ = 0.

Unlike the situation as ρ → ∞, where the requirement of normalizability selects the

most strongly falling ξλ(ρ) solution with λ < 1+k for candidate bound state wavefunctions,4

as we saw for Ψλ in (3.12), normalizability considerations with respect to the norm (5.8) as

ρ→ 0 do not fix the value of $ for the asymptotic limit of the transverse ξ(ρ) wavefunction.

This is due to the sinh 2ρ factor in
√
gEH for the Eguchi-Hanson metric (2.10), which allows

any value of $ to correspond to a normalizable wavefunction. The boundary condition

for $ has to come instead from a careful consideration of the effects of the delta-function

source term in (5.6).

Even taking into account the sourced equation (5.6), determining the asymptotic value

of $ is somewhat elusive. The obvious thing to try to do is to multiply (5.6) by
√
gEH and

then to integrate over a small volume surrounding ρ = 0 (this volume corresponds to a D2

disk in (ρ, χ) times an S2 sphere for the angular directions (θ, ϕ)). However, noting that H

has the asymptotic behaviour (4.19) as ρ→ 0, one finds that the bλ log ρ asymptotic part

of (5.7) simply reproduces the k to T relation (5.5) while the aλ part of (5.7) is eliminated

in the ρ → 0 limit after division by H on the right-hand side, and similarly drops out of

the left-hand side of the integral of (5.6).

In order to determine the asymptotic value of $ for the transverse wavefunction, one

needs to be more careful and employ a regularised approach to the δ2(ρ, χ) delta function

in the sourced equation (5.6). The support domain of the delta-function source needs to

be expanded out slightly, to become a ring at radius ρ = ε. Subsequently, we will take a

limit in which ε is shrunk to zero. Thus, one replaces the pointlike delta-function at the

center of the D2 integration disk by a ring delta-function

d2zδ2(z) =
1

2π
dρdχδ(ρ− ε) . (5.9)

Integrating the NS5-sourced equation (5.6) over a small volume including the delta-function

source extending from ε− < ε to ε+ > ε, one gets∫ ε+

ε−

√
gEH4EHξλ = −16πG10Tg

2

∫ ε+

ε−

dρ
ξλ
H
δ(ρ− ε) . (5.10)

Performing the integral and recalling that H → −k log ρ as ρ→ 0, one gets

π

2
ρ
∂

∂ρ
ξλ

∣∣∣ε+
ε−

=
16πG10Tg

2

k

∫ ε+

ε−

ξλ
log ρ

δ(ρ− ε)dρ . (5.11)

4Note that −k log(tanh ρ) and the original HSS function sech2ρ in the function H have the same 2e−2ρ

asymptotic behaviour as ρ→∞. Consequently, the ρ→∞ asymptotic form of the eigenfunction problem

remains unchanged with respect to the undeformed Salam-Sezgin system, except that the edge of the

continuous spectrum is shifted to λ = 1 + k.
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Note that inside the ring delta-function source, the wavefunction solution ξλ must be

singularity-free, and thus must be entirely composed of the constant asymptotic solution

ξλ(ρ)|in = aλ , (5.12)

so that inside the source one has ∂ξλ
∂ρ |in = 0. Letting the asymptotic value of the ξλ(ρ)

wavefunction outside the source be

ξλ(ρ)|out = ãλ + bλ log ρ , (5.13)

one accordingly has the continuity relation for the undifferentiated wavefunction

ξλ(ρ)|in = aλ = ãλ + bλ log ε = ξλ(ρ)|out , (5.14)

while from (5.11) one obtains the discontinuity in ∂ξλ
∂ρ :

ρ
∂ξλ
∂ρ

∣∣∣ε+
ε−

= bλ =
32G10Tg

2

k

(ãλ + bλ log ε)

log ε
, (5.15)

which implies

bλ

(
1− 32G10Tg

2

k

)
=

32G10Tg
2

k

ãλ
log ε

. (5.16)

Hence the regularised relation between the ρ → 0 asymptotic coefficients in the solution

outside the source is

ãλ = bλ

(
k

32G10Tg2
− 1

)
log ε . (5.17)

At the same time, the relation (5.5) between k and T is now also modified. Instead of

relation (5.3), one now has∫ ε+

ε−

dρ
√
gEH4EHH̃ = −16πG10Tg

2

∫ ε+

ε−

dρδ(ρ− ε) = −16πG10Tg
2 . (5.18)

Recalling that inside the source the solution has to be singularity-free, so H̃in = 0, i.e.

inside the source there is no NS-5 brane back-reaction, while outside the source one has

the fully back-reacted solution with H = H̃ + HSS , one can perform the integral on the

left-hand side to obtain

π

2
ρ
∂

∂ρ
(−k log tanh ρ)

∣∣∣ε+
ε−

= −16πG10Tg
2 . (5.19)

Now

ρ
∂

∂ρ
(−k log tanh ρ) =

ρ

tanh ρ

(
1− tanh2 ρ

)
→ 1− 2

3
ρ2 (5.20)

as ρ→ 0, so the regularised k ↔ T relation becomes

− k
(

1− 2

3
ρ2

)
= −32G10Tg

2 , (5.21)

which implies
k

32G10Tg2
− 1 =

2

3
ε2 +O(ε4) . (5.22)
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If one takes the limit ε → 0 at this point in (5.22), one simply reobtains (5.5). How-

ever, a careful derivation of the boundary condition for $ from the sourced fluctuation

problem (5.6, 5.9) requires combining the regularised k ↔ T relation with the regularised

exterior aλ ↔ bλ relation (5.17). Putting these two equations together, one obtains

aλ =
2

3
bλε

2 log ε+O(ε4) , (5.23)

and so, upon finally taking the limit ε→ 0, one finds the requirement

aλ/bλ → 0 i.e. $(λ) = 0 , (5.24)

which for bound states corresponds uniquely to the eigenvalue λ = 0.

Hence the unique bound-state wavefunction for 4D gravitational fluctuations in the

presence of the NS5-brane is the zero-mode

ξ0(ρ) = log(tanh ρ) , (5.25)

which, agreeably, is exactly the same as that found in (3.15) in our preliminary Salam-

Sezgin background analysis, prior to the inclusion of the NS5-brane. This is a key result

of this paper: recalling that m2 = g2λ, we have found that a careful treatment of the NS5-

brane source for the transverse part of the gravitational fluctuation wavefunction shows

that linearised 4D fluctuations consistent with the conditions imposed by the NS5-brane

source are massless in the 4D subspace.

5.2 Asymptotic conformal invariance and self-adjointness

The delicacy needed in analysing the ρ→ 0 boundary condition (5.24) reflects the specific

asymptotic character of the radial Schrödinger problem (3.8, 3.9), both in the original

undeformed Salam-Sezgin background and also after inclusion of the NS5-brane. Taking

the ρ→ 0 limit of the potential (3.9), one obtains

Vρ→0 = − 1

4ρ2
. (5.26)

The corresponding one-dimensional quantum mechanical problem has a long history [16–

18]. A good overview is given in [19]. The special character of this one-dimensional problem

involves not only the 1/ρ2 form of the potential, which gives rise to an O(2, 1) 1D conformal

invariance, but also the −1
4 coefficient, which is a critical value. For a potential V = γ/ρ2

with coefficient γ > −1
4 , a regularised treatment shows that there is no L2 normalizable

bound state, while for γ < −1
4 , an infinity of discrete L2 normalizable bound states appears.

At the critical value γ = −1
4 , there is just a single bound state.

The character of the V = −1/(4ρ2) Schrödinger problem is exactly as we have found

above in section 5.1: the requirement of normalisation does not fix the asymptotic form

of a bound-state wavefunction at the origin. A candidate bound-state wavefunction for

a general value of λ would spontaneously break the asymptotic 1D conformal invariance.

The one exception to this is the λ = 0 wavefunction that we found in (5.24).
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Another key feature of the V = −1/(4ρ2) Schrödinger problem is the delicate issue of

self-adjointness of the corresponding Hamiltonian, or, in our case, of the − d2

dρ2
part of the

wave operator (3.8). For two normalizable candidate bound-state wavefunctions Ψ1 and

Ψ2, self-adjointness of this operator requires
∫∞

0 (Ψ∗1
d2

dρ2
Ψ2 −Ψ2

d2

dρ2
Ψ∗1) = 0, which in turn

requires (
Ψ∗1

d

dρ
Ψ2 −Ψ2

d

dρ
Ψ∗1

)∣∣∣∣∞
0

= 0 . (5.27)

For normalizable bound-state wavefunctions, there is no problem with this requirement as

ρ→∞, but for Ψ1 and Ψ2 having ρ→ 0 asymptotic structure
√
ρ(ai+bi log ρ) (correspond-

ing to (5.7) for rescaled wavefunctions (3.7), with i = 1, 2) the condition (5.27) requires

a1

b2
=
a2

b2
, (5.28)

i.e. Ψ1 and Ψ2 must have the same eigenvalue λ, since aλ/bλ is a single-valued function of

λ, as we have seen.5

This is the underlying reason for the existence of precisely one bound-state eigenfunc-

tion. In our case, coupling to the NS5-brane source as in (5.6) selects λ = 0. In the case

of the classic V = −1/(4ρ2) Schrödinger problem, this would not be very good, because it

would put the single allowed bound state right at the edge of the continuum of scattering

states. However, in the present case, the potential (3.9) deviates from the −1/(4ρ2) struc-

ture as ρ increases away from zero. This has the effect of raising the edge of the continuous

spectrum up to λ = 1 + k, as we have seen above in sections 3.1 and 5.1.

6 The braneworld Newton constant

Having established that there exists a zero-eigenvalue bound-state transverse wave func-

tion (3.15), the basic aim of constructing a type IIA supergravity brane configuration that

localises massless gravity in a four-dimensional brane subspace has been achieved. A key

achievement of this construction is the non-zero value of Newton’s constant for the massless

effective gravity theory in the 4D subspace, despite the infinite volume of the transverse

space. Starting from the Einstein-frame gravitational action for the 10D metric ĝMN

I10 =
1

16πG10

∫
d10x

√
ĝR̂(ĝ) , (6.1)

the effective theory for 4D gravitational fluctuations is obtained starting from the Einstein-

frame form ds2
10 ein = e−φ/2ds2

10 str of the static string-frame metric given in (4.17) and mak-

ing the replacement ηµν → ηµν+hµν(x)ξ(ρ), as we have done above in sections 3 and 5. The

angular coordinates ψ, θ, φ and χ, for which we are considering only S-waves without further

excitation, give rise to compact integrals producing corresponding factors of g (with length

dimension −1) in the effective theory. In order to obtain a 4D effective theory, we compactly

5For scattering-state wavefunctions, condition (5.27) and hence (5.28) are also required, but the require-

ments as ρ→∞ are different for delta-function normalizable states and no single scattering-state eigenvalue

λ is selected.
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also the y coordinate with a circumference `y. Recalling that ψ takes values in the range

[0, 4π), one finds at quadratic order in hµν(x) an effective action for 4D linearised gravity

Ilin 4 =
1

υ2
0

∫
d4x

(
−1

2
∂σhµν∂

σhµν +
1

2
∂µh

σ
σ∂

µhτ τ + ∂νhµν∂
σhµσ + hσσ∂

µ∂νhµν

)
, (6.2)

where

υ0 =

(
16πG10g

5

π2`yI2

) 1
2

, (6.3)

in which

I2 =

∫ ∞
0

dρH sinh 2ρ cosh 2ρ ξ2
0 =

π2

24
(2 + 3k) . (6.4)

Note that, up to a factor 2π3

g5
, I2 is just the (norm)2 (5.8) of ξ0. Combining Eqns (6.3)

and (6.4), one has the normalisation factor

υ0 =

(
384G10g

5

π3`y(2 + 3k)

) 1
2

. (6.5)

If it were not for the normalizable character of the zero-mode ξ0(ρ), one would obtain

a vanishing value for υ0. This is what would happen for a standard Kaluza-Klein reduction

to the ρ-independent sector of the theory, as in [13], where ξ0(ρ) is simply a constant. In

order to calculate the effective 4D Newton’s constant, one now needs to rescale hµν = υ0h̃µν
in order to obtain a canonically-normalised kinetic term (6.2) for h̃µν . Then the leading

effective 4D coupling κ4 =
√

32πG4 for gravitational self-interactions is obtained from the

coefficient in the trilinear terms in h̃µν in the 4D effective action. These involve an integral6

I3 =

∫ ∞
0

dρH sinh 2ρ cosh 2ρ ξ3
0 = −3(1 + 2k) ζ(3)

4
. (6.6)

The sinh 2ρ factor in (6.6), arising from
√
gEH, leads to the convergence of (6.6) in the limit

as ρ → 0, just as it does for I2. The 4D massless gravitational coupling κ
(0)
4 =

√
32πG4

is then obtained upon rescaling hµν = υ0h̃µν so as to obtain a conventionally normalised

quadratic action for h̃µν , and then extracting the coefficient of the trilinear h̃µν terms in

the effective action:

κ
(0)
4 =

∣∣∣∣∣
(

16πG10g
5

π2`y

) 1
2 I3

(I2)
3
2

∣∣∣∣∣ . (6.7)

Using (6.4) and (6.6), this becomes

κ
(0)
4 = 144

√
6ζ(3)

(
G10g

5

π7`y

) 1
2 (1 + 2k)

(2 + 3k)
3
2

, (6.8)

and so the 4D Newton constant is given by

G4 =
3888 ζ(3)2G10g

5

π8`y

(1 + 2k)2

(2 + 3k)3
. (6.9)

6The specific form (5.25) of the ξ0 zero-mode has the agreeable property that the coefficients of yet

higher-order terms in hµν(x) in the 4D effective action can also be explicitly evaluated. One finds Ip ≡∫∞
0
dρH sinh 2ρ cosh 2ρ ξp0 = (−1)p p! 2−p−1 ζ(p) [2 + (p+ 1) k].
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Evaluating gravitational couplings to matter, as opposed to the gravitational self-

coupling, requires setting up a model of non-gravitational matter in the 4D subspace. One

approach to this would be to employ a Hořava-Witten construction [20], replacing the S1

compactification of the y direction by a S1/Z2 orbifold. One way to view this would be

as a 7D to 6D reduction starting from the 7D theory on H(2,2) [13], thus obtaining a 6D

chiral (1, 0) supersymmetric theory with potential anomalies arising from anomaly inflow,

and hence requiring compensating 6D matter fields [22]. Another way to view it would

be as a 5D to 4D reduction after the additional S2 & monopole reduction from 7D, thus

producing a 4D chiral N=1 supersymmetric theory, again with anomaly inflow requiring

compensating 4D matter fields [21]. Either of these two S1/Z2 approaches would have the

additional effect of reducing the final surviving supersymmetry to N = 1 in 4D, which could

be of practical physical interest. A simpler approach to modelling matter fields, however,

which is all that we shall consider here, is just to consider the non-gravitational 4D fields

accompanying gravity in the descent to 4D from 10D type IIA supergravity. From the

string-frame unbroken supersymmetry (4.23), one sees that superpartners of the graviton

should involve the same ξ0 transverse wavefunction, giving rise to bilinear kinetic and

trilinear gravitational effective-action terms involving the same I2 and I3 integrals as for

the gravitational self-coupling, and hence the same κ4 gravitational coupling constant (6.8).

7 Corrections to 4D Newtonian gravity

Finally, let us sketch the consequences of the continuum of λ 6= 0 transverse gravitational

eigenmodes. The corresponding 4D h
(λ)
µν massive gravitational modes are separated from

the massless 4D gravitational states with transverse eigenmode ξ0 by a gap in (mass)2

eigenvalues of height (1 + k)g2, as we have seen. For λ > 1 + k, as seen in section 3.1 (but

now with the NS5-brane moving the edge of the continuum from λ = 1 to λ = 1 + k),

the transverse ξλ(ρ) eigenfunctions have oscillatory behaviour as ρ → ∞, instead of the

rising or falling exponential behaviour of the candidate bound states for λ < 1 + k. The

boundary-condition implications of the NS5-brane source as analysed in section 5.1 remain

valid also for λ 6= 0 eigenmodes: a general Frobenius analysis shows that their ρ → 0

asymptotics have to be as in (5.7), but the constraints of the NS5-brane source imply

that the asymptotic constant part of a ξλ 6=0 wavefunction must vanish, just as it must

for ξ0. For the candidate λ < 1 + k bound states, it is only for λ = 0 that this boundary

condition proves to be consistent with the other boundary condition needing to be imposed

as ρ → ∞: elimination of the most weakly falling exponential term, in order to obtain

normalizability. However, for the continuum of λ > 1 + k wave functions, one does not

demand standard normalizability with respect to the norm (5.8). Instead, just as in free-

field theory, continuum wavefunctions need to be delta-function orthonormalised.

Gravitational fluctuations involving λ 6= 0 transverse ξλ eigenmodes make small con-

tributions to the 4D effective action. Starting from the edge of the continuous transverse

spectrum at λ = 1+k, one sees from (3.6) that the spectrum of gravitational modes arising

from the transverse dynamics will have continuous (mass)2 eigenvalues ranging over the

interval (1 +k)g2 ≤ m2 ≤ ∞. Repeating the normalisation analysis for such ξλ modes, one
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finds that in order to have canonically normalised kinetic terms, the h
(λ)
µν massive graviton

fields require rescaling by

υλ =

(
16πG10g

5

π2`y

) 1
2

Nλ , (7.1)

where Nλ is a normalisation coefficient depending on the details of ξλ.

Assuming that matter interacting with the continuum of massive gravitational modes

itself has transverse wavefunction ξ0, its interaction with such massive gravitational modes

at the trilinear level involves an integral

I2,λ =

∫ ∞
0

dρH sinh 2ρ cosh 2ρ ξ2
0 ξλ , (7.2)

which is convergent as ρ→ 0 owing to the sinh 2ρ term, and as ρ→∞ owing to the e−2ρ

asymptotic falloff of ξ0. Rescaling all fields in order to produce canonical kinetic terms

then gives rise to the coupling between h
(λ)
µν and 4D matter:

κ
(λ)
4 =

∣∣∣∣∣
(

16πG10g
5

π2`y

) 1
2 I2,λ

I2
Nλ

∣∣∣∣∣ =
24

π2(2 + 3k)

∣∣∣∣∣
(

16πG10g
5

π2`y

) 1
2

I2,λNλ

∣∣∣∣∣ . (7.3)

Any given continuum massive gravitational mode will produce a Yukawa correction

∆Vλ = −(κ
(λ)
4 )2M1M2

e−g
√
λ|x|

|x|
(7.4)

to the 4D Newtonian V = −(κ
(0)
4 )2M1M2/|x| potential, where |x| is the distance between

masses M1 and M2 in the 4D subspace. If one assumes that κ
(λ)
4 does not have a strong

dependence on λ for λ ' 1+k, and noting that for large λ the falling exponential suppresses

∆Vλ contributions, then one obtains an integrated correction to the Newtonian potential

∆V =

∫
1+k

dλ∆Vλ

' −2M1M2(κ
(1+k)
4 )2e−g

√
(1+k)|x|

g|x|2

(
(1 + k)

1
2 +

1

g|x|

)
. (7.5)

Note that the corrections to the Newtonian potential have leading behaviour e(−g
√

(1+k)|x|)

g|x|2

here instead of the 1
|x|3 leading correction in [2], because the edge of the continuous spectrum

in the present construction is located at m2 = g2(1 + k) instead of m2 = 0.

8 Conclusion

The hyperbolic background with NS5-brane construction that we have given in this paper

provides a successful localisation of gravity in a lower-dimensional subspace of type IIA

supergravity. In doing so, it has evaded a number of problems with braneworld gravity

localisation that have been raised in the literature. A fuller analysis will be needed to

understand how this construction may be generalised to other situations, but we may
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identify a number of features of our construction that help to evade some of the problems

that have been raised. In the discussions that arose following ref. [2], which was based on

the junction of AdS slices, a “no-go” theorem was put forward in ref. [29]. This ruled out

braneworld reductions that are non-singular or with singularities satisfying an admissibility

criterion that the g00 component of the metric should not increase as one approaches the

singularity (which our NS5-brane construction satisfies). However, that analysis assumed

that the scalar-field potential is non-positive. This is clearly not the case for the SO(2, 2)

invariant potential of the 7D theory [13] obtained via H(2,2) reduction, which is positive-

definite, generalising the positive potential of the Salam-Sezgin model [12]. The positivity

of this potential is key to allowing a solution incorporating an S2 and 4D flat space —

otherwise, reduction on an S2 factor would give rise to an anti-de Sitter space in 4D. The

noncompact SO(2, 2) invariant structure is a consequence of the underlying hyperbolic

geometry, which thus appears to be a key feature of our successful construction.

A more substantial potential problem with braneworld localisations related to our con-

struction was outlined in ref. [7]. Indeed, a simple argument was given there that would

seem to imply that a localisation producing massless effective gravity in the lower dimen-

sion of a spacetime with infinite transverse geometry can only be made with a constant

transverse wavefunction. This would seem to rule out normalisable bound states yielding

massless gravity. However, a key feature of that argument involves integration by parts of

one of the derivatives in the transverse wave operator. In the corresponding integration by

parts in our construction, one cannot ignore the surface term, and so the demonstration

that the wavefunction ξ0 has to be constant fails in our case. This does, however raise

the issue of self-adjointness of the transverse wave operator, which we have discussed in

section 5.2. Provided there is just one bound state, the wave operator can be self-adjoint,

as in our case with the single transverse bound state ξ0. So another important feature of

our construction appears to be this quite special behaviour of the transverse eigenvalue

problem near the ρ = 0 “waist” of the H(2,2) space, which also can be viewed as the apex

of the underlying Eguchi-Hanson space.

The present construction has been purely classical, focusing only on a supergravity

realisation. Since the only elements used, i.e. type IIA supergravity and an NS5-brane, are

also native objects in string theory, the construction carries over directly into string theory.

From that point of view, the solution for eφ in the fully NS5 back-reacted solution (4.17)

with H given by (4.16), i.e. with an asymptotic e−2ρ behaviour, shows that the solution has

asymptotically φ ∝ −ρ: it asymptotically tends to a linear-dilaton string-theory vacuum.

The eight-supercharge unbroken supersymmetry (2.13, 2.14) of the back-reacted solution

guarantees stability. This remains so should one decide to sacrifice half of this super-

symmetry either by reducing the y coordinate on S1/Z2, or by making a corresponding

Hořava-Witten construction, leaving just N = 1 supersymmetry in four dimensions. At

the quantum level, some usual additional considerations will come into play. For example,

the NS5-brane charge T will have to take its value on a quantised charge lattice, following

from Dirac-Schwinger-Zwanziger quantisation conditions [30–32].

Duality symmetries will yield other realisations of the construction given in this paper.

For example, a T-duality transformation will change the present 10D type IIA solution into
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a solution of type IIB supergravity. Depending on whether this is done in a worldvolume

or in a transverse direction (e.g. in one of the smeared transverse angle coordinates), one

can get a 4-brane or an ALF space [33]. A general understanding of the duality maps of

the present construction may help to categorise situations in which localised braneworld

gravity can exist.

The gravity-localising construction given in this paper is not a dimensional reduction:

at all stages, we have been working with solutions of 10D supergravity. Although reduc-

tion on H(2,2) produces a consistent Kaluza-Klein truncation [13] to the SO(2, 2) invariant

theory containing the Salam-Sezgin model, in the present paper we have not sought to

eliminate dependence on all the transverse coordinates. For simplicity, we have considered

“S-wave” solutions independent of the transverse-coordinate angles θ, φ and χ, but this

restriction could straightforwardly be relaxed. Our construction depends in a fundamental

way, however, on the transverse radial coordinate ρ, and the effective theory derived from

the transverse zero-mode ξ0(ρ) is not a consistent Kaluza-Klein truncation. The contin-

uum of massive modes lying above the g
√

1 + k mass gap produce small corrections to the

leading-order massless braneworld gravity. In section 7, we have made a preliminary sketch

of these corrections, but this question clearly deserves a more complete study.
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[28] H. Lü and J.F. Vazquez-Poritz, Resolution of overlapping branes, Phys. Lett. B 534 (2002)

155 [hep-th/0202075] [INSPIRE].
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