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1 Introduction

The Standard Model (SM) of electroweak interactions, based on the spontaneously SU(2)L×
U(1)Y gauge symmetry breaking, has been extremely successful in describing phenomena

below the electroweak scale. The most important problem in the SM is the source of the

electroweak gauge symmetry breaking and the related problem of hierarchical flavor struc-

ture. It is well known that the top quark is very heavy comparing to the other SM fermions

and its value is obtained in an ad hoc manner by adjusting the phenomenologically in-

troduced Yukawa couplings. Besides, the top quark couples more strongly to electroweak

symmetry breaking sector than the light quarks and it is possible that some of the elec-

troweak symmetry breaking is due to top sector. The idea of top condensation [1] is an

attractive approach to explain these problems.

However, the minimal top condensation framework predicts a too high top quark mass

mt as well as a high Higgs mass, and then the extreme fine-tuning is needed to trigger

the condensation. Also, the Nambu-Jona-Lasinio (NJL) model must be considered as an

approximation of some new strong dynamics–the topcolor gauge interactions. One can

combine topcolor with technicolor to get a TC2 model [2] in which the electroweak symmetry

breaking gets contributions from both the top condensation and the technicolor sectors.

The other very interesting scenario is the top seesaw model [3] which naturally predicts the

acceptable top quark mass without the need of new electroweak symmetry breaking sector.

The UV completion of topcolor needs more matter contents and certain interactions which

are put in by hand. We would like to present a model which will give rise to these terms

automatically.

It is well known that the SM requires the existence of Higgs fields to trigger electroweak

gauge symmetry breaking. However, the quantum corrections to Higgs boson masses have

quadratic divergences. Thus, the entire SM mass spectrum, which depends on the Vacuum

Expectation Value (VEV) of Higgs field, is directly and indirectly sensitive to the cut-off

scale of the theory like the Planck scale. This is the gauge hiearchy problem. One natural

solution is supersymmetry (SUSY) by adding supersymmetric partners of the SM particles

to cancel the quadratic divergences. However, the ATLAS and CMS Collaborations at

the LHC have not found any signal of supersymmetric particles (sparticles) yet. Moreover,

SUSY can provide a viable dark matter candidate, achieve the gauge coupling unification as

well as be an essential ingredient to certain quantum gravity candidate. Thus, it is possible

that our Universe could adopt supersymmetry at relatively high scale.

It had been conjectured long time ago that all the building blocks of the SM are com-

posite particles instead of being fundamental particles. The existence of chiral symmetry is

essential to guarantee the disappearance of the known fermion masses. However, ’t Hooft

anomaly matching conditions [4] are very restrictive and hardly can one obtain the realistic

composite models. A very interesting progress was achieved by Seiberg who discovered the

duality [5] between different SUSY gauge theories. Seiberg duality is highly non-trivial and

satisfies the ’t Hooft anomaly matching conditions and decoupling conditions as well as

the other consistent checks. Besides, new emergent gauge groups and composite fermions

appear in certain case of the dual description. We conjecture that the SM particles are com-

– 2 –



posite and such compositeness are the consequences of SUSY strong dynamics and SUSY

breaking. The observed small mass terms of the SM fermions are the consequences of the

strong dynamics arise from the emergent gauge interactions. Especially, the Higgs boson

mass around 125 GeV, which was discovered at the LHC recently [6, 7], can be realized as

well.

This paper is organized as follows. In Section 2, we discuss the emergent topcolor

gauge group and matter contents from SUSY strong dynamics. SUSY is broken by rank

conditions in our scenario, which results in the ISS-type metastable vacua [8]. In Section 3,

we discuss the complete top and bottom seesaw sector. The composite matter content from

Seiberg duality results in partial composite physical top and bottom quarks. Composite

multiple Higgs doublets appear in our model at low energy and are fully responsible for

electroweak gauge symmetry breaking. Section 4 contains our Conclusions.

2 Composite Particles from SUSY Strong Dynamics

Top quark, which couples more strongly to the electroweak symmetry breaking sector than

other light quarks, could be responsible for electroweak symmetry breaking. The idea of top

condensation is fairly attractive and gives an explanation on how top quark can participate

in the electroweak symmetry breaking mechanism and obtain a dynamically-generated mass

term. The UV completion of the top condensation idea suggests the existence of new

topcolor gauge interactions. The complete topcolor sector requires new Higgs fields in (3, 3̄)

representation to break the topcolor gauge symmetry down to SU(3)C . Besides, top seesaw

sector requires new vector-like particles. We want to obtain all the required ingredients

from SUSY strong dynamics. The most simple setting is the vector-like supersymmetric

QCD.

Let us consider SU(NC) SUSY QCD which has the massive vector-like quarks Qi

and Q̃i with i = 1, 2, ..., NF , and several SU(NC) singlet massive messenger fields f̄k and

fk(k = 1, ..., nI ) for gauge mediation. The global flavor symmetry is SU(NF )1×SU(NF )2×
U(1)V × U(1)R. We adopt the following superpotential

W = mi
jQiQ̃

j + κij
QiQ̃

j f̄kfk
M∗

+M0f̄
kfk. (2.1)

where the following mass terms

mi
j = m0δ

i
j , (2.2)

break the flavor symmetry down to SU(NF )V ×U(1)V and M∗ some new mass scale below

which non-renormalizable operators of the form in the formula is generated. This superpo-

tential is of the simplified gauge mediation type proposed in Ref. [9].

According to the Seiberg duality [5], this theory is dual to an SU(NF − NC) gauge

theory. We can identify the dual magnetic gauge group as the new topcolor-like SU(3)1.

Besides, we require that the dual magnetic gauge group be IR-free which sets NC + 1 <

NF < 3/2NC . Thus, the only possible choice is NC ≥ 6. We chose NC = 7 and NF = 10

in our scenario.
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We also embed the gauge symmetry SU(3)2×SU(2)L×U(1)Y into the SU(6) subgroup

of the global symmetry SU(10)V by assigning

QT = (3, 1)0, QD = (1, 2)−1/3, QS = (1, 1)2/3,

Q̃T = (3̄, 1)0, Q̃D = (1, 2)1/3, Q̃S = (1, 1)−2/3 . (2.3)

We also embedding an additional U(1)1 into U(1)V . The purpose of such additional U(1)1
will be clear later. The fields QT and Q̃T , etc, are gauge singlets with respect to U(1)1.

However, the messenger fields fk and f̄k carry non-zero U(1)1 charge.

The electric theory is dual to a magnetic SU(3)1 gauge theory with superpotential

W = hTr(q̃M̃q) + hΛm0Tr(M̃) +
Λ

M∗
Tr(κM̃)f̄kfk +M0f̄

kfk , (2.4)

and the scale is defined as

(−1)Nf−NcΛbe+bm = Λ
3Nc−Nf
e Λ

2Nf−3Nc

m , (2.5)

where be and bm are respectively the SUSY QCD beta functions of the electric and magnetic

theories with the respectively dynamical transmutation scales Λe and Λm.

In general, the SUSY breaking requires the presence of R-symmetry [10]. However, an

exact R-symmetry forbids gaugino masses which is not acceptable. One possible solution

is to explicitly break the R-symmetry by introducing small R-symmetry violation terms

which lead to meta-stable vacua. In our scenario, we can see that the first three terms have

a U(1)R symmetry with R(M̃) = 2 and R(q̃) = R(q) = R(f̄) = R(f) = 0. Such an exact

U(1)R symmetry is obviously broken to an approximate one by the last term.

The magnetic theory requires the existence of meson-like composites to satisfy the

anomaly matching conditions. Components of the meson fields M̃ from QT , QD, QS and

Q̃T , Q̃D, Q̃S composition can be decomposed in terms of SU(3)2 × SU(2)L × U(1)Y as

Q̃TQT ∼ (8, 1)0 ⊕ (1, 1)0,

Q̃TQD ⊕ Q̃DQT ∼ (3, 2)1/3 ⊕ (3̄, 2)−1/3,

Q̃TQS ⊕ Q̃SQT ∼ (3, 1)−2/3 ⊕ (3̄, 1)2/3,

Q̃DQS ⊕ Q̃SQD ∼ (1, 2)−1 ⊕ (1, 2)1,

Q̃DQD ⊕ Q̃SQS ∼ (1, 3)0 ⊕ (1, 1)0 ⊕ (1, 1)0. (2.6)

Similarly, the (3, 6̄)/(3̄, 6) components of the dual quarks (3, 10)/(3̄, 10) are transformed in

terms of SU(3)1 × SU(3)2 × SU(2)L × U(1)Y as

q(3, 6̄) ∼ (3, 3̄, 1)0 ⊕ (3, 1, 2)1/3 ⊕ (3, 1, 1)−2/3 ,

q̃(3̄, 6) ∼ (3̄, 3, 1)0 ⊕ (3̄, 1, 2)−1/3 ⊕ (3̄, 1, 1)2/3 .
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Thus, in our theory we can identify

TL ≡
(

tL
bL

)

∼ (3, 1, 2)1/3, Xc
L ≡

(

χc
L

ωc
L

)

∼ (3̄, 1, 2)−1/3, XL ≡
(

χL

ωL

)

∼ (1, 3, 2)1/3 ,

P c
L ≡

(

ρcL
σc
L

)

∼ (1, 3̄, 2)−1/3, bcL ∼ (1, 3̄, 1)2/3 , ω̃L ∼ (1, 3, 1)−2/3 , σ̃L ∼ (3, 1, 1)−2/3 ,

ω̃c
L ∼ (3̄, 1, 1)2/3, σ̃c

L ∼ (1, 3̄, 1)2/3, H1 ∼ (1, 1, 2)−1, H2 ∼ (1, 1, 2)1,

Φ1 ∼ (3, 3̄, 1)0, Φ2 ∼ (3̄, 3, 1)0, Sa ∼ (1, 1, 1)a0 (a = 1, 2) . (2.7)

From the dynamical superpotential by Seiberg duality, we can identify the following

interactions

W ⊃ h

(

χL

ωL

)T

Φ1

(

χc
L

ωc
L

)

+ h

(

tL
bL

)T

Φ2

(

ρcL
σc
L

)

+ h

(

tL
bL

)T (

χc
L

ωc
L

)

Sa

+ hω̃c
LΦ1ω̃L + hσ̃c

LΦ2σ̃L + h

(

tL
bL

)

H1ω̃
c
L + h

(

χc
L

ωc
L

)

H2σ̃L + hω̃Lσ̃
c
LSa . (2.8)

We also introduce the right-handed top quark chiral supermultiplets in terms of gauge

group SU(3)2 × SU(2)L × U(1)Y × U(1)1 quantum number

tcL ∼ (1, 3̄, 1)(−4/3,1) , PL ≡ (ρL, σL) ∼ (1, 3, 2)(1/3,1) , (2.9)

and possible Higgs sector to completely break U(1)1 at low energy. The necessity of chiral

fermions is obvious. SUSY QCD is vector-like and the resulting dual gauge theory is still

vector-like. In order to get the chiral fermions, we must introduce by hand at least one

chiral component. This fact also appears in the (latticed) extra dimensional interpretation

of top seesaw [11]. Localized heavy kink mass terms are necessary to get the localized chiral

fermions.

Supersymmetry is broken by rank conditions [8]. Neglecting temporarily the contribu-

tions of the messenger fields, we can see from the rank conditions

− F ∗

M̃j
i

= λq̃iqj + Λδjim0 , (2.10)

that supersymmetry is indeed broken. This is a typical in ISS-like models. The scalar

potential is minimized along a classical pseudo-moduli space of vacua which is given by [8]

M =

(

0 0

0 φ0

)

, q =

(

q0
0

)

, q̃ =

(

q̃0
0

)

, (2.11)

with

q0q̃0 = m0Λ , (2.12)

and arbitrary φ0. In our scenario, the q0 and q̃0 parts corresponding to the VEVs of Φ1 and

Φ2 fields within the dual quark decomposition.
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Flat pseudo-moduli will in general be lifted by quantum effects. The one-loop stable

minimum by Coleman-Weinberg potential [8] is

φ0 = 0Ñ×Ñ , q0 = M11N×N , q̃0 = M21N×N ,M1 = M2 =
√

−m0Λ . (2.13)

The U(1)R violation terms involving the messengers will shift the minimum of M̃ through

one-loop Coleman-Weinberg potential by an amount

< φ0 >= ∆φ0 ≡ s1 ∼
λ3m0Λ

4

MM3
∗

. (2.14)

The lifetime of the metastable vacua requires

|ǫ| ∼
√

m0

Λm
≪ 1 , (2.15)

with the tunneling probability eS to exceed the lifetime of our universe e40 seconds

S ∼ ǫ
−

4(3Nc−Nf )

Nf−Nc > 40. (2.16)

There are large viable parameter spaces that can satisfy this requirement.

Possible new SUSY breaking minimum can arise through the combination of mij and
κijΛ
M∗

f̄kfk. For example, a possible new minimum may be possible if f̄kfk = mM∗

κ . However,

the lifetime (for tunneling to the new possible minimum) of the previous metastable vacuum

can be long enough if we set

M2M∗

λ
& mΛ2 . (2.17)

The F-term of the meson fields induce the scalar mass terms for TL, Xc
L, σ̃L, and ω̃c

L

from the induced superpotential q̃Mq. Other soft SUSY masses can be generated through

the effective messenger fields

Mmess = M0 +
κΛ

M∗
< M̃ >≃ M0 , (2.18)

with

Fmess = κijΛ
F
M̃j

i

M∗
=

κiim0Λ
2

M∗
. (2.19)

Thus, we obtain the gaugino masses [12]

Ma ≃ αa

4π

∑

I

na(I)
FM

M
, (2.20)

and sfermion masses

m2
φi

≃ 2

[

∑

a

(αa

4π

)2
Ca(i)na(I)

]

(

FM

M

)2

. (2.21)
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Below the scale
√
F which is the typical scalar masses for dual squarks, the SUSY QCD

reduce to non-supersymmetric dynamics. The gaugino and remaining sfermions can acquire

masses from gauge loops. The matter contents participate in (part of) the following types

of interactions SU(3)1 × SU(3)2 × SU(2)L × U(1)Y × U(1)1. Besides, the soft masses of

remaining superpartner are controlled by the messenger mass parameter M as well as FM .

We will see shortly that the additional U(1)1 coupling as well as one SU(3) is nearly strong-

coupled, thus dominate the gauge mediation contributions to the soft sfermion masses.

Requiring the scale M and
√
FM is comparable to each other and taking into account

the messenger species multiplication factor na(I), we can easily tune the soft squark and

gaugino masses to lie near
√
F . Thus, after integrating out the relevant supersymmetry

partners, we get at the low energy an SU(3)1 × SU(3)2 × SU(2)L × U(1)Y × U(1)1 gauge

theory with proper matter contents and interactions. The gauge group of the SU(3)1 is

emergent and almost all the matter contents are composite particles.

3 Top and Bottom Seesaw

It is well known from the topcolor dynamics that the predicted top quark mass is too high if

topcolor is responsible for full electroweak symmetry breaking. In order to get realistic top

quark mass, top seesaw model was proposed by introducing additional vector-like particles

besides the topcolor matter content. In our model, partial composite top and bottom quarks

will naturally lead to top and bottom seesaw mechanism.

After Φ1 and Φ2 respectively acquire VEVs M1 and M2, the SU(3)1 × SU(3)2 gauge

symmetry is broken down to SU(3)C . The theory has a set of massless gluons and massive

octet colorons. The remaining QCD coupling is

1

g2c
=

1

h21
+

1

h22
, cot θ =

h1
h2

, (3.1)

where h1 and h2 are the gauge couplings for SU(3)1 and SU(3)2, and the massive colorons

acquire masses M2
B = (h21 + h22)(M

2
1 +M2

2 ).

After we integrate out the coloron fields and the sfermions for the third generation

quarks, we obtain the effective four-fermion interactions

L = Lkinetic − (M2X
T
LCXc

L +M1T
T
LCP c

L + s1T
T
L CXc

L) + Lint (3.2)

with

Lint = − h22
M2

B

(

X†
Lσ̄

µM
A

2
XL

)(

tcLσ
µM

A

2
(tcL)

†

)

+ (XL → PL, t
c
L → P c

L) + · · · . (3.3)

After performing the Fierz rearrangement and at the leading order in 1/Nc, we have

Lint =
h22
M2

B

[

(X̄LtR)(t̄RXL) + (X̄LPR)(P̄RXL) + (P̄LPR)(P̄RPL) + · · ·
]

. (3.4)

We can transform the interaction eigenstates to the partial mass eigenstates by

tcL → tc′L = tcL , Xc
L → Xc′

L = Xc
L cos β + P c

L sin β , P c
L → P c′

L = −Xc
L sinβ + P c

L cos β ,

(3.5)
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where

tan(2β) =
2s1M1

s21 +M2
2 −M2

1

. (3.6)

We define the unitary mixing matrix T̃i ≡ N−1
ij Tj with

T̃1 ≡ T ′
L, T̃2 ≡ X ′

L, T̃3 ≡ P ′
L, T1 ≡ TL, T2 ≡ XL, T3 ≡ PL . (3.7)

In this basis, the NJL model takes the form

L = Lkinetic − (M 1X
′
LX

′
R +M2P

′
LP

′
R) +

h22
M2

B

{ [(

3
∑

i=1

N2iT̃ i

)

t′R

][

t̄′R

(

3
∑

i=1

N2iT̃ i

)]

+









3
∑

i=1

3
∑

j=2

NjiT̃ i





(

−X ′
R sin β + P ′

R cos β
)









(

−X̄ ′
R sin β + P̄ ′

R cos β
)





3
∑

i=1

3
∑

j=2

NjiT̃i















(3.8)

with M 1 and M2 the eigenvalues of the matrix

(

s21 +M2
2 s1M1

s1M1 M2
1

)

. (3.9)

Assume the gauge couplings for SU(3)2 and U(1)1 get strong quickly towards IR and

trigger the fermion condensation. The vacuum is tilted by the U(1)1 interactions so that

condensation between ρL and tcL is disallowed by the repulsive forces of U(1)1. From the

expansion, we can see that possible types of dynamical condensations for X̄LtR are

< t̄′Lt
′
R >, < χ̄′

Lt
′
R >, < ρ̄′Lt

′
R >, (3.10)

with corresponding mass gap

− µttt̄
′
Lt

′
R − µχtχ̄

′
Lt

′
R − µρtρ̄

′
Lt

′
R . (3.11)

And they have the following relations

µtt = µN21, µtχ = µN22, µtρ = µN23 , (3.12)

so that they are not independent. Just as the case for ordinary topcolor, the dynamical

mass terms µ can be calculated through the gap equations. The relevant diagrams are

shown in Fig(1). Detailed expressions for χ̄′
Lt

′
R condensation can be seen in appendix A.

From the gap equation, we can get the analytical expressions for the condensation scale µ

and the effective critical coupling. This approach with mass insertion is an approximation

at large Nc expansion. We will deduce more precise forms of the condensation in symmetry

broken phase.

Similarly, we can get the other condensations

< t̄′Lρ
′
R >,< χ̄′

Lρ
′
R >,< ρ̄′ρ′R >, · · · (3.13)
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to give < X̄LPR > and < P̄LPR >. After all condensation occurs, we get the most general

possible mass matrix for top sector

(tL , χL , ρL)







0 sa M1

µ M2 µ1

0 0 µ2













tcL
χc
L

ρcL






. (3.14)

The mass eigenvalues and eigenstates can be obtained by the following unitary transforma-

tions

M = U †
LMdiagUR. (3.15)

The analytical expressions are very complicate. Careful analysis indicates that the three

mass eigenvalues are of order

(mχ)
2
Phy≡λ2

2 ∼ M2
1 , (mρ)

2
Phy≡λ2

3 ∼ M2
2 , (mt)

2
Phy≡λ2

1 ≈
s2aµ

2µ2
2

M2
1M

2
2

, (3.16)

in case M2 = M1 & sa ≫ µ. We will not give the explicit expression of the mass eigenstates

for the top quark sector. We just parameterize them as

(tmL , χm
L , ρmL )T = UL

ij(tL, χL, ρL)
T , (tmR , χm

R , ρmR )T = UR
ij (tL, χL, ρL)

T , (3.17)

with the lowest mass eigenstates tmL,R corresponding to the physical top quark. One Higgs

doublet field in the multiple-Higgs-doublets are the condensations

H1 ∼ (χ̄LtR, ω̄LtR) = ((h0 + π0
t + vh0)/

√
2, π+

t ) , (3.18)

and additional two singlets (and triplets) are from the condensations

H2 ∼ X̄L ⊗ PR = ∆2(3) ⊕ S2(1) ,H3 ∼ P̄L ⊗ PR = ∆3(3) ⊕ S3(1) . (3.19)

We obtain the precise gap equation of this theory in the broken phase [13] at the cut-off

scale M

LΛ = −(tL , χL , ρL)







0 sa M1

µ M2 µ1

0 0 µ2













tR
χR

ρR






− h2M√

2MB

χ̄t(h0 + vh0)−
ih2M√
2MB

χ̄γ5tπ0
t

−h2M

MB
ω̄LtRπ

−
t − h2M√

2MB

X̄LPR(S2 +∆2 + vS1)−
h2M√
2MB

P̄LPR(S3 +∆3 + vS2)

−1

2
M2

(

h20 +

3
∑

i=2

(S2
i + 2|∆i|2)

)

−M2

(

vh0h0 +
∑

i

vSi
Si

)

⊇ −λ1t̄
m
L tmR − λ2χ̄

m
L χm

R − λ3ρ̄
m
L ρmR

−1

2
M2

(

h20 +

3
∑

i=2

(S2
i + 2|∆i|2)

)

−M2

(

vh0h0 +
∑

i

vSi
Si

)

− h2M√
2MB

(

U−1
L21t̄

m
L + U−1

L22χ̄
m
L + U−1

L23ρ̄
m
L

) (

U−1
R11t

m
R + U−1

R12χ
m
R + U−1

R13ρ̄
m
R

)

h0

− h2M√
2MB

(

U−1
L21t̄

m
L + U−1

L22χ̄
m
L + U−1

L23ρ̄
m
L

) (

U−1
R31t

m
R + U−1

R32χ
m
R + U−1

R33ρ̄
m
R

)

S2

− h2M√
2MB

(

U−1
L31t̄

m
L + U−1

L32χ̄
m
L + U−1

L33ρ̄
m
L

) (

U−1
R31t

m
R + U−1

R32χ
m
R + U−1

R33ρ̄
m
R

)

S3. (3.20)
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After we integrate out the heavy fields χm, ρm, we obtain the low energy effective theory

Lµ = −λ1t̄
m
L tmR +

h2M√
2MB

U−1
L21t̄

m
LU−1

R11t
m
Rh0 +

h2M√
2MB

U−1
L21t̄

m
LU−1

R31t
m
R S̃2

+
h2M√
2MB

U−1
L31t̄

m
LU−1

R31t
m
R S̃3 +

1

2
Zh0(∂µh0)

2 +
1

2

∑

i

ZSi
(∂µSi)

2 +
∑

i

Z∆i
|∂µ∆i|2

−1

2

(

M2
h0
h20 +

∑

i

M2
Si
S2
i

)

−
∑

i

M2
∆i
|∆2

i |2 −
∑

i

Mi0Sih0

−M̃23S2S3 −M23∆2∆3 − V (h0, Si,∆i)−∆Th0h0 −
∑

i

∆TSi
Si, (3.21)

The tadpole cancelation condition is

Z
1/2
h ∆Th0 = Z

−1/2
h vh0M

2 + δT̃h0 = 0, (3.22)

with δT̃ the one-loop tadpole contributions. Through the tadpole cancelation condition we

can obtain the exact gap equation

µ =
h22M

2Nc

8π2M2
B

[

3
∑

i=1

2ℜ(U−1∗
L2i U

−1
R1i)

(

λi −
λ3
i

M2
ln

(

M2 + λ2
i

λ2
i

))

]

, (3.23)

with the fact that µ = Z
−1/2
h h2Mvh0/

√
2MB . Such form is consistent with the previous

large Nc expansion approach with mass insertion.

From the wave function renormalization of the composite Higgs fields, we can get the

precise form of the Pagels-Stokar formula

v2h0
=

µ2M2Nc

8π2M2
B

[

3
∑

i=1

2
∣

∣U−1∗
L2i U

−1
R1i

∣

∣

2
log

(

M2 + λ2
i

λ2
i

)

+

3
∑

i=1

3
∑

j=1;i<j

(
∣

∣

∣U−1∗
L2i U

−1
R1j

∣

∣

∣

2
+
∣

∣

∣U−1
L2jU

−1∗
R1i

∣

∣

∣

2
) log

(

M2 + λ2
j

λ2
j

)

]

, (3.24)

with other possible Higgs VEVs from bottom sector v2hi
(i 6= 0)

∑

i

v2hi
= v2EW . (3.25)

The VEV of S3 breaks the U(1)1 gauge symmetry completely due to its non-vanishing

U(1)1 quantum number. The expression of S3 will be given in subsequent Section. Due to

the mixing in the Higgs sector, the physical Higgs fields can be obtained by diagonalizing

the relevant mass matrix. We will discuss the complete Higgs sector after we include the

bottom-type quarks.

Similar setting can be seen for the bottom quark. We rewrite the relevant terms for

bottom quarks

bcL ∼ (1, 3̄, 1)(−2/3,0) , ω̃L ∼ (1, 3, 1)(0,−2/3) , σ̃L ∼ (3, 1, 1)(−1/3,−1/3) ,

ω̃c
L ∼ (3̄, 1, 1)(1/3,1/3) , σ̃c

L ∼ (1, 3̄, 1)(0,2/3) ,H1 ∼ (1, 1, 2)(−1,0) ,

H2 ∼ (1, 1, 2)(1,0) , (3.26)
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and the induced interactions

W ⊇ hω̃c
LΦ1ω̃L + hσ̃c

LΦ2σ̃L + h

(

tL
bL

)

H1ω̃
c
L + h

(

χc
L

ωc
L

)

H2σ̃L + hω̃Lσ̃
c
LSa . (3.27)

We can see from the identification that the most general bottom quark mass matrix is

(bL, ωL, σL, ω̃L, σ̃L)















0 s1 M1 0 0

µ̃ M2 µ1 0 µ3

0 0 µ2 0 µ4

µ5 0 µ6 M1 µ7 + sa
0 0 0 0 M2





























bcL
ωc
L

σc
L

ω̃c
L

σ̃c
L















. (3.28)

Similarly, we can diagonalize the mass matrix and obtain the relevant eigenvalues. We note

that the determinant of the mass matrix is

detMb = s1µ̃µ2M1M2 , (3.29)

which is important to determine the lightest bottom-type quark masses. For M2 = M1 &

s1 ≫ µi, we have the eigenvalues of various mass eigenstate in order

λ̃2
2 ≡ m̃2

ωm
∼ M2

1 , λ̃2
3 ≡ m̃2

σm
∼ 2M2

1 , λ̃4 ≡ m̃2
ω̃m

∼ M2
2 /2,

λ̃2
5 ≡ m̃2

σ̃m
∼ M2

2 /2, λ̃2
1 ≡ m̃2

bm ∼ s21µ̃
2µ2

2

M2
1M

2
2

. (3.30)

Here the expression for the lightest bottom-type quark mass is not precise. This formula

is used to determine the order of the physical bottom mass. We can also parameterize the

mixings in the bottom sector as

(bmL , ωm
L , σm

L , ω̃m
L , σ̃m

L ) = ZL
ij(bL, ωL, σL, ω̃L, σ̃L),

(bmR , ωm
R , σm

R , ω̃m
R , σ̃m

R ) = ZR
ij (bR, ωR, σR, ω̃R, σ̃R) . (3.31)

We can introduce auxiliary fields in symmetry breaking phase to obtain the precise gap

equations

Lb
Λ = −λ̃1b̄

m
L bmR − λ̃2ω̄

m
L ωm

R − λ̃3σ̄
m
L σm

R − λ̃3
¯̃ωm
L ω̃m

R − λ̃5
¯̃σm
L σ̃m

R − h2M

MB
X̄LbRH̃1

− h2M√
2MB

X̄LPR(∆2 + S2 + vS2)−
h2M√
2MB

P̄LPR(∆3 + S3 + vS3)−
h2M

MB

¯̃ωLbRS̃4

−h2M

MB

¯̃ωLPRH̃2 −
h2M

MB
X̄Lσ̃RH̃3 −

h2M

MB
P̄Lσ̃RH̃4 −

h2M√
2MB

¯̃ωLσ̃RS̃5

−h2M

MB

¯̃σLσ̃RS̃6 −M2

(

4
∑

i=1

|H̃i|2 +
6
∑

i=2

|S̃i|2 +
3
∑

i=2

|∆i|2
)

. (3.32)
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Again we can integrate out the heavy modes and obtain the low energy effective interactions

Lb
µ = −λ̃1b̄

m
L bmR − h2M√

2MB

Z−1
L21Z

−1
R11b̄

m
L bmR (h1 + vh1)−

h2M√
2MB

[

Z−1
L21Z

−1
R31b̄

m
L bmR (∆2,0 + S2 + vS2)

+ Z−1
L31Z

−1
R31b̄

m
L bmR (∆3,0 + S3 + vS3)

]

− h2M√
2MB

{

Z−1
L41Z

−1
R11

[

b̄mbm(S4 + vS4) + b̄mγ5bmπ̃0
S4

]

+ Z−1
L41Z

−1
R31

[

b̄mbm(h2 + vh2) + ib̄mγ5bmπ0
b2

]

+ Z−1
L21Z

−1
R51

[

b̄mbm(h3 + vh3) + ib̄mγ5bmπ0
b3

]

+ Z−1
L31Z

−1
R51

[

b̄mbm(h4 + vh4) + ib̄mγ5bmπ0
b4

]

+ Z−1
L41Z

−1
R51

[

b̄mbm(S5 + vS5) + b̄mγ5bmπ̃0
S5

]

− Z−1
L51Z

−1
R51

[

b̄mbm(S6 + vS6) + b̄mγ5bmπ̃0
S6

]

}

+
1

2

4
∑

i=1

Zhi
(∂µhi)

2 +
1

2

6
∑

i=2

ZSi
(∂µSi)

2

− Z∆i
|∂µ∆i|2 +

1

2

∑

i

ZSi
(∂µSi)

2 − 1

2
Zh0(∂µh0)

2 +
1

2

∑

i

ZSi
(∂µSi)

2 +
∑

i

Z∆i
|∂µ∆i|2

− 1

2

(

4
∑

i=1

M2
hi
h2i +

6
∑

i=2

M2
Si
S2
i

)

+

3
∑

i=2

M2
∆i
|∆i|2 −

6
∑

i=2

4
∑

j=1

MSh
ij Sihj −

6
∑

i=2

6
∑

j=2

MSS
ij SiSj

−
4
∑

i=1

4
∑

j=1

Mhh
ij hihj −M23∆2∆3 − V (hi, Si,∆i)−

4
∑

i=1

∆Thi
hi −

6
∑

i=2

∆TSi
Si, (3.33)

where we use the parameterization

H̃i(i = 1, 2, 3, 4) ∼
(

π+

bi

1√
2
(hi + π0

bi
+ vhi

)

)

, S̃i(i = 4, 5, 6) ∼ 1√
2
(Si + π̃0

Si
+ vSi

) (3.34)

The tadpole cancelation conditions

Z
1/2
hi

∆Thi
= Z

−1/2
hi

vhi
M2 + δT̃hi

= 0, (3.35)

Z
1/2
Si

∆TSi
= Z

−1/2
Si

vSi
M2 + δT̃Si

= 0, (3.36)

determine the exact gap equations

µH1 = GB
21, µH2 = GB

43, µH3 = GB
25, µH4 = GB

35, µS4 = GB
41, µS5 = GB

45, µS6 = GB
55 (3.37)

while µS2 and µS3 are

µS2 = GB
23 +GT

23 , µS3 = GB
23 +GT

33 . (3.38)

Here we use the notation

µH1 ≡ µ̃, µS2 ≡ µ1, µS3 ≡ µ2, µH3≡µ3, µH4 ≡ µ4, µS4 ≡ µ5, µH2 ≡ µ6, µS5 ≡ µ7,

and define

GB
ab ≡ h22M

2Nc

8π2M2
B

[

5
∑

i=1

2ℜ(Z−1∗
Lai Z

−1
Rbi)

(

λ̃i −
λ̃3
i

M2
ln

(

M2 + λ̃2
i

λ̃2
i

))]

, (3.39)

GT
ab ≡ h22M

2Nc

8π2M2
B

[

3
∑

i=1

2ℜ(U−1∗
Lai U

−1
Rbi)

(

λi −
λ3
i

M2
ln

(

M2 + λ2
i

λ2
i

))

]

. (3.40)
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From the wave function normalization, we can get the Pagels-Stokar formula in the bottom

sector

v2h1
= µ2

H1
PB
21 , v2h2

= µ2
H2

PB
43 , v2h3

= µ2
H3

PB
25 , v2h4

= µ2
H4

PB
35 , (3.41)

with the relation
4
∑

i=0
v2hi

= v2EW as well as the Pagels-Stokar formula for Si

v2S2
= µ2

S2

(

PB
23 + P T

23

)

, v2S3
= µ2

S3

(

PB
33 + P T

33

)

,

v2S4
= µ2

S4
PB
41, v2S5

= µ2
S5
PB
45, v2S6

= µ2
S6
PB
55, (3.42)

with v2S3
the U(1)2 breaking scale and the fact µS3 = Z

−1/2
S3

h2MvS3/
√
2MB . Here, we

define

PB
ab ≡ M2Nc

8π2M2
B

[

5
∑

i=1

2
∣

∣Z−1∗
Lai Z

−1
Rbi

∣

∣

2
log

(

M2 + λ̃2
i

λ̃2
i

)

+
5
∑

i=1

5
∑

i,j=1;i<j

(
∣

∣

∣
Z−1∗
Lai Z

−1
Rbj

∣

∣

∣

2
+
∣

∣

∣
Z−1
LajZ

−1∗
Rbi

∣

∣

∣

2
) log

(

M2 + λ̃2
j

λ̃2
j

)

]

,

P T
ab ≡ M2Nc

8π2M2
B





3
∑

j=1

2
∣

∣U−1∗
Lai U

−1
Rbi

∣

∣

2
log

(

M2 + λ2
j

λ2
j

)

+
3
∑

j=1

3
∑

k=1;j<k

(
∣

∣

∣
U−1∗
Lai U

−1
Rbj

∣

∣

∣

2
+
∣

∣

∣
U−1
LajU

−1∗
Rbi

∣

∣

∣

2
) log

(

M2 + λ2
j

λ2
j

)

]

. (3.43)

The physical Higgs fields can be obtained by diagonalizing the 10× 10 mixing mass matrix

between hi(i = 0, · · · , 4) and Sj(j = 2, · · · , 6). Each entry can be calculated by the one-

loop diagrams in the large Nc fermion bubble approximation. Detailed expressions can be

found in appendix B.

One combination of π0,±
t and π0,±

bi will act as “would be” Goldstone bosons which will

be eaten by W± and Z0. The remaining π±
t,bi will combine into multiple charged Higgs

fields H±
i while the other combinations of π0

bi and π0
t will be the CP-odd Higgs fields A0

i .

The mixings between triplet Higgs fields will give two mass eigenstates ∆̃2 and ∆̃3. There

is enough parameter space to tune the lightest Higgs field to be at 125 GeV. We note that

the non-minimal nature is crucial for Higgs mixing and the appearance of light Higgs field.

Quarks of the first two generations transform as SU(3)2 fundamental representations

and also carry U(1)1 charges. As SU(3)2 will become strongly coupled, additional U(1)1
interactions can prevent the condensation between the first two generations. This is similar

to that of the flavor-universal topcolor model [14].

The most important electroweak precision constraints on top seesaw comes from the

electroweak oblique parameters S and T [15]. Minimal Top seesaw model can non-trivially

satisfy the S − T bounds. We know that the oblique parameter S can be thought of

as the measure of the total size of the new sector while T is the measure of the weak-

isospin breaking induced by it. Just as ordinary extended Top Seesaw model with bottom

– 13 –



seesaw, the contributions to the oblique parameters are rather complicate. Detailed analytic

expressions for new contributions to S, T parameters can be seen in appendix C. Although

the precise values need the detailed numerical studies, we note that the contributions to

the S parameter should be very similar to that of the minimal top seesaw model because

most new particle contents are vector-like.

The contributions from the multiple Higgs doublets needs the Higgs spectrum as well as

the knowledge of the mixings among different Higgs doublets. In general, they should drive

the T parameter negative which however being compensated by isospin violating quark

sector contributions. We will left the detailed numerical results to subsequence studies. We

just anticipate that there are enough parameter space to make our model compatible with

S − T bounds.

There are additional constraints from Z − bL − bL coupling. The mixing within the

bottom seesaw sector change the vertex by

δgbL =
e

2 sin θ cos θ

(

5
∑

i=4

|Z1j |2
)

. (3.44)

We can see that Γ(Z → b̄b) will decrease with respect to the SM predictions. The updated

data on Rb will constrain the mixings within the bottom sector.

We can properly choose the parameter M1 = M2 = 20 TeV so that the physical top

quark mass is given by

λ2
1 ≈

µ2µ2
2s

2
1

M2
1M

2
2

≈ (170GeV)2 . (3.45)

The gap equation depends implicitly on µ and µ2 on the r.h.s and we checked that the

following parameters

s1 ≃ 18 TeV, µ2 ≃ 5.02 TeV, µ ≃ 0.76 TeV (3.46)

can satisfy approximately the gap equation

µ

µ2
≈ U−1∗

L33 U
−1
R33

U−1
L23U

−1
R13

. (3.47)

The mixing matrices can be obtained by diagonalizing the mass matrices






tmL
χm
L

ρmL






=







−0.2475 0.4940 −0.8335

0.2225 −0.8083 −0.5451

0.9430 0.3204 −0.0902













tL
χL

ρL






, (3.48)







tmR
χm
R

ρmR






=







0.9988 −0.0475 −0.0132

−0.03766 −0.5623 −0.8261

0.03180 0.8256 −0.5634













tR
χR

ρR






, (3.49)

with the eigenvalues

λ1 ≃ 0.172 TeV, λ2 ≃ 13 TeV , λ3 ≃ 31.36 TeV . (3.50)
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The unitary nature of the mixing matrix indicates that the inverse mixing matrix is the

form

U−1
L =







−0.2475 0.2225 0.9430

0.4940 −0.8083 0.3204

−0.8335 −0.5451 −0.0902






, U−1

R =







0.9988 −0.03766 0.03180

−0.0475 −0.5623 0.8256

−0.0132 −0.8261 −0.5634






(3.51)

From the Pagels-Stokar formula and setting v2t ≃ (200GeV)2 and Nc = 3, we obtain the

cut-off scale

M ≃ 40 TeV . (3.52)

The coloron mass scale is MB ≃
√
2M1 ≈ 30 TeV if we assume h2 ∼ O(1). The bottom

quark sector can be similarly obtained. The lightest bottom-type quark mass is given

approximately by

λ̃1 ≈
µ̃s1µ2

M1M2
= 4.2 GeV , (3.53)

which is related to the top quark sector through the relation µ/µ̃≡ tan β1 ≈ 40.

As indicated in section 2, most superpartners obtain their masses via gauge mediation.

For proper chosen M with
√
FM/M ∼ O(1), the dominant gauge mediated contributions to

sfermion masses come from the nearly strong U(1)1 and SU(3)2 gauge interactions. Then

from the gauge mediated supersymmetry breaking formula, we can easily set the soft mass

parameters to lie near
√
F ∼ 20 TeV. Thus, below

√
F after we integrate out the sfermion

fields, the low energy effective theory reduce to NJL type top seesaw interactions.

While the superpartners are lighter than the coloron, their contribution to the four-

fermion interactions are subdominant because of the R-parity. Possible four-fermion interac-

tions contributed from superpartners in the low energy can be only generated by sparticle

loops which thus amount to the suppression scale of the operators to be 4π × 20TeV ∼
200TeV.

In general, the scalar type bound state of the NJL-type condensation has a mass of

order 2µ with µ the corresponding dynamical mass in the gap equation. In our scenario,

the lightest scalar states are mixing between various condensation bound states with the

lightest bound state as light as 2µ̃ ∼ O(10 GeV), and then can be as light as O(100 GeV).

We should note that quite a bit fine tuning is necessary in our scenario. By introducing

the auxiliary fields, dynamical Higgs field will reappear after renormalization group equation

running down to a lower scale. Thus fine tuning problem that is plaguing the ordinary Higgs

models will also show up here as long as the cut off scale is not too low. In our scenario,

the cut off scale of the NJL type interaction is 40 TeV, thus leads to fine tuning of order

(

Λ

4πmh

)2

∼ 600. (3.54)

As there are much parameter space remaining in our scenario, it may be possible to ame-

liorate such fine tuning by other choices of parameters. We leave the detailed numerical

discussions in our subsequent papers.
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We would like to give a brief comment on the status of this model in the LHC era. In

the previous choice of the parameter, new fermions will acquire masses of order M2
1 and

M2
2 [∼ O(10TeV)] thus cannot be discovered by LHC. In the low energy, our theory will

look like a two Higgs-doublet model with the mixings between top-Higgs and bottom-higgs

to give the 125 GeV scalar that was discovered by LHC. The light scalar in our scenario is

standard model-like with its couplings to W,Z gauge bosons and photons resembling that

of the standard model Higgs field. While the detailed mass paramters of the additional

Higgs fields depending on the concrete values of the mixing and Renormalization Group

Equation running, a coarse estimation on the tree-level mass of the CP-odd Higgs field is

that MA0 ≈ 350GeV; the charged Higgs H± have masses MH± ≈
√

M2
A +m2

W ∼ 359GeV;

the heavy CP-even higgs H0 acquires a mass mH0 ∼ MA0 . Our predictions on the Higgs

masses are not very sensitive to the UV physics, so it is testable on the LHC. Inspired by

this work, a phenomenological low energy top-bottom seesaw model which can explain the

LHC discoveries is being studied in our new paper.

4 Conclusions

The recent discovery of a 125 GeV Higgs-like particle at the LHC pushes us to ask the

interesting question whether such scalar is composite or fundamental. On the other hand,

top quark, which is much heavier than all the other SM fermions, indicates that it couples

more strongly to electroweak symmetry breaking sector. Thus, it is possible that the top

sector plays a key role in electroweak symmetry breaking mechanism and related intimately

to the intrinsic nature of the Higgs field. Ordinary top seesaw model predicts too heavy

Higgs mass and requires new matter contents and interactions that are put in by hand. We

propose a typical non-minimal extended top seesaw model (with also bottom seesaw) and

accommodate a light composite Higgs field. The non-minimal nature is crucial for Higgs

mixing and the appearance of light Higgs field. Besides, supersymmetric strong dynamics

can lead to almost composite top and bottom quark as well as new emergent topcolor gauge

interactions. At the same time, supersymmetry breaking condition also leads to topcolor

breaking as well. The low energy QCD coupling is partially emergent. This theory also

acts as an AdS/CFT dual to a Randall-Sundrum [16] type model which will be given in

subsequent studies.
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Figure 1. The gap equations for quark condensations in the top sector. The red, blue and green

crosses denote the t̄′χ′, t̄′t′ and t̄′ρ′ condensations, respectively. While black crosses denote all the

previous three condensations.

5 Appendix A: Gap Equation

There are several ways to obtain the mass gap of the dynamical condensations. The con-

densations can be calculated from the gap equations which are large-Nc Dyson-Schwinger

equations expanded up to O(m3
χt) for the NJL Lagrangian. The relevant diagrams are

shown in fig(1). Tedious calculations give the expression for χ̄′
Lt

′
R condensation
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(
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(
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(
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(5.1)
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From this expression, we can easily deduce the analytic expression for the form of effective

critical coupling. Similarly, we can get the other condensations

< t̄′Lρ
′
R >,< χ̄′

Lρ
′
R >,< ρ̄′ρ′R >, · · · (5.2)

to give < X̄LPR > and < P̄LPR >.

6 Appendix B: Mixing In the Higgs Sector

The CP-even Higgs fields in our scenario are obtained by diagonalize the 10 × 10 mass

matrix. In the fermion bubble approximation, the diagonal entry can be calculated to be

m2
h0

=
MT

21

Zh0

, m2
h1

=
MB

21

Zh1

, m2
h2

=
MB

43

Zh2

, m2
h3

=
MB

25

Zh3

, m2
h4

=
MB

35

Zh4

,

m2
S2

=
MT

23 +MB
23 −M2

ZS2

, m2
S3

=
MT

33 +MB
33 −M2

ZS3

,

m2
S4

=
MB

41

ZS4

,m2
S5

=
MB

45

ZS5

,m2
S6

=
MB

55

ZS6

, (6.1)

where the wave function renormalizations are

Zh0 =
h22
2
P T
21, Zh1 =

h22
2
PB
21, Zh2 =

h22
2
PB
43, Zh3 =

h2

2
PB
25, Zh4 =

h22
2
PB
35, ,

ZS2 =
h22
2

(

PB
23 + P T

23

)

, ZS3 =
h22
2

(

PB
33 + P T

33

)

,

ZS4 =
h22
2
PB
41 , ZS5 =

h22
2
PB
45 , ZS6 =

h22
2
PB
55 , (6.2)

and the definitions for MT
ab and MB

ab are

MT
ab ≡

{

(1− h22M
2Nc

8π2M2
B

)M2 +
h22M

2Nc

8π2M2
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∑
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,
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{

(1− h22M
2Nc

8π2M2
B

)M2 +
h22M

2Nc

8π2M2
B

[

4
3
∑

i=1

(

ℜ(Z−1∗
Lai Z

−1
Rbi)

)2
λ̃2
i ln

(

M2

λ̃2
i

)

+
5
∑

i,j=1;i>j

2ℜ[(Z−1∗
Lai Z

−1
Rbj)(Z

−1∗
Laj Z

−1
Rbi)]

λ̃iλ̃j

(λ̃2
i − λ̃2

j

[λ̃2
i ln

M2

λ̃2
i

− λ̃2
j ln

M2

λ̃2
j

]

+

5
∑

i,j=1;i>j

[

∣

∣

∣
Z−1∗
Lai Z

−1
Rbj

∣

∣

∣

2
+
∣

∣

∣
Z−1∗
Laj Z

−1
Rbi

∣

∣

∣

2
]

1

λ̃2
i − λ̃2

j

[λ̃4
i ln

M2

λ̃2
i

− λ̃4
j ln

M2

λ̃2
j

]
] }

.

(6.3)
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The mixings between the Higgs fields can be calculated accordingly. For simplicity, we

can define

FBB
ab,cd ≡ −h22M

2Nc

8π2M2
B

M2 +
h22M
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8π2M2
B

[

5
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4ℜ
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ℜ
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∑
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, (6.4)
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ab,cd ≡ −h22M
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, (6.5)

where the mixing terms between hi and hj are

Mhh
12 =

FBB
21,43

√
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√
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√
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the mixing terms within Si are
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, (6.7)
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the hi and Sj mixing terms are
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√
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, (6.8)

and the relations are

MhS
ij =

F TT,BB
ab,cd

√

Zhi
ZSj

, MhS
ji =

F TT,BB
cd,ab

√

ZSi
Zhj

. (6.9)

7 Appendix C: Oblique Parameters

The most important constraints of out model is the oblique parameters. New contributions

to the T parameter

T =
4π

sin2 θ cos2 θM2
Z

[

Π11

∣

∣

q2=0 −Π33

∣

∣

q2=0

]

, (7.1)
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from the quark sector are

δT =
4π
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here we define
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New contributions to the oblique S parameter
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from the quark sector are
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Rib

U−1
Ria

+ 4U−1∗
R1b UR1a

)

+

(

3
∑

i=2

U−1∗
Ria

U−1
Rib

)(

3
∑

i=1

U−1∗
Lib

U−1
Lia

)]

2λaλbQ(λa, λb) . (7.5)

with the definition

P (a, b) =

1
∫

0

x(x− 1) ln[(a− b)x+ b]dx ,

Q(a, b) =

1
∫

0

x(x− 1)

(a− b)x+ b
dx , (7.6)

which we will not give their tedious analytic expressions.
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