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Hic-5 mediates the initiation of endothelial sprouting by regulating

a key surface metalloproteinase

Jui M. Dave'’*, Colette A. Abbey'*, Camille L. Duran', Heewon Seo?, Gregory A. Johnson? and Kayla J. Bayless'-#

ABSTRACT

During angiogenesis, endothelial cells must coordinate matrix
proteolysis with migration. Here, we tested whether the focal
adhesion scaffold protein Hic-5 (also known as TGFB1I1) regulated
endothelial sprouting in three dimensions. Hic-5 silencing reduced
endothelial sprouting and lumen formation, and sprouting defects
were rescued by the return of Hic-5 expression. Pro-angiogenic
factors enhanced colocalization and complex formation between
membrane type-1 matrix metalloproteinase (MT1-MMP, also known
as MMP14) and Hic-5, but not between paxillin and MT1-MMP. The
LIM2 and LIM3 domains of Hic-5 were necessary and sufficient for
Hic-5 to form a complex with MT1-MMP. The degree of interaction
between MT1-MMP and Hic-5 and the localization of the complex
within detergent-resistant membrane fractions were enhanced during
endothelial sprouting, and Hic-5 depletion lowered the surface levels
of MT1-MMP. In addition, we observed that loss of Hic-5 partially
reduced complex formation between MT1-MMP and focal adhesion
kinase (FAK, also known as PTK2), suggesting that Hic-5 bridges
MT1-MMP and FAK. Finally, Hic-5 LIM2-LIM3 deletion mutants
reduced sprout initiation. Hic-5, MT1-MMP and FAK colocalized in
angiogenic vessels during porcine pregnancy, supporting that this
complex assembles during angiogenesis in vivo. Collectively, Hic-5
appears to enhance complex formation between MT1-MMP and FAK
in activated endothelial cells, which likely coordinates matrix
proteolysis and cell motility.

KEY WORDS: Collagen, Endothelial cell, Angiogenesis, Three-
dimensional, Cell migration, Matrix degradation, MT1-MMP, FAK,
S1P, LIM

INTRODUCTION

Angiogenesis is defined as new blood vessel growth from pre-
existing structures (Folkman and D’Amore, 1996; Carmeliet,
2003). During angiogenesis, quiescent endothelial cells are
activated in response to external pro-angiogenic cues to
proliferate, migrate, invade and form Ilumens within the
surrounding three-dimensional (3D) matrix (Adams and Alitalo,
2007; Iruela-Arispe and Davis, 2009). Loss of angiogenic
regulation is a common denominator in several human disorders,
including, but not limited to, cancer (Folkman, 1995), rheumatoid
arthritis (Azizi et al., 2014) and macular degeneration (Ambati and
Fowler, 2012). Thus, understanding the molecular signaling
pathways that regulate endothelial cell activation and sprouting is
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crucial to gain further insights into the events that regulate
angiogenesis.

In this study, we investigated whether the 55-kDa focal
adhesion scaffold protein, hydrogen-peroxide-inducible clone 5
(Hic-5, also known as TGFB111), regulated endothelial sprouting
events in 3D matrices. Hic-5 is expressed in endothelial cells
(Kim-Kaneyama, 2012) and, although Hic-5-knockout mice
appear to be normal and fertile, subsequent studies have
revealed defective recovery following vascular injury of the
femoral artery (Kim-Kaneyama et al., 2011). Hic-5 was originally
discovered by differential screening of a cDNA library of genes
induced by transforming growth factor B (TGFB) (Shibanuma
et al., 1994). Hic-5 is highly similar to paxillin and contains four
N-terminal Leu- and Asp-rich (LD) domains and four C-terminal
LIM domains. The N-terminal LD domains of Hic-5 interact with
focal adhesion kinase (FAK, also known as PTK2) (Fujita et al.,
1998) vinculin (Deakin et al., 2012), paxillin (Deakin et al.,
2012), c-Src kinase (Csk) (Thomas et al., 1999), protein tyrosine
kinase 2 B (PYK2, also known as PTK2B) (Matsuya et al., 1998)
and Arf GAP1 (GIT1) (Nishiya et al., 2002). The LIM domains at
the C-terminus of Hic-5 mediate binding to PTP-PEST (also
known as PTPN12) (Nishiya et al., 1999) and Hsp27 (also known
as HSPBI1) (Jia et al., 2001). Oxidative stress induces Hic-5
translocation into the nucleus, where it acts as a transcriptional co-
activator (Shibanuma et al., 2002, 2003, 2004). Thus, Hic-5 is a
mobile scaffold protein that interacts with several proteins at focal
adhesion sites and shuttles from the cytoplasm to the nucleus.

Recent studies have established a link between Hic-5 and
invadopodia, which were first identified as dot-shaped actin-rich
membrane protrusions that form in cells seeded on two-dimensional
substrates (Artym et al., 2006). Hic-5 localizes to pseudopodia in
bovine pulmonary artery endothelial cells (Avraamides et al., 2007)
and invadopodia of breast cancer cells (Pignatelli et al., 2012).
Studies in breast cancer cells have revealed that Hic-5 silencing
attenuates integrin-mediated adhesion, migration, invasion and
tumor cell metastasis (Deakin et al., 2012), and causes defective
matrix degradation (Pignatelli et al., 2012). In addition to Hic-5,
invadopodia also contain membrane type-1 matrix metalloproteinase
(MT1-MMP, also known as MMP14) (Egeblad and Werb, 2002).
MTI1-MMP is a member of the MMP family that contains a
transmembrane domain, which anchors it to the cell surface and
facilitates the proximal extracellular matrix (ECM) breakdown
needed for invasion into 3D matrices (Hotary et al., 2000; Yana and
Weiss, 2000; Uekita et al., 2001; Egeblad and Werb, 2002; Li et al.,
2008). Although multiple classes of MMPs have been implicated in
angiogenic events, MT1-MMP is essential for endothelial invasion
through a 3D ECM. Unlike mice null for MMP-2 or MMP-9,
neovessel formation and collagenolysis are completely inhibited in
MT1-MMP-null tissue explants and microvascular cells (Chun et al.,
2004), indicating that MT1-MMP is needed for endothelial cells to
remodel and invade the ECM. In vivo, MT1-MMP localizes to
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sprouting tip cells (Yana et al., 2007). MT1-MMP is also required for
Iumen formation in vitro. Overexpression of wild-type MT1-MMP
increases lumen formation, whereas MT1-MMP small interfering
RNA (siRNA) blocks invasion and lumen formation (Stratman et al.,
2009). Finally, MT1-MMP gene disruption causes abnormalities in
osteogenesis, FGF-induced angiogenesis and collagen turnover,
leading to reduced neovessel formation, dwarfism, arthritis and
premature death in knockout mice (Holmbeck et al., 1999; Zhou
et al., 2000). Taken together, these data support a crucial role for
MTI1-MMP in endothelial cell invasion of the ECM. Although
previous studies have suggested that Hic-5, as well as MT1-MMP,
regulates tumor cell migration, invasion, adhesion and matrix
degradation, Hic-5 has not been implicated in endothelial
sprouting responses in a 3D environment, nor has a link been
established between MT1-MMP and Hic-5. Here, we show for
the first time that Hic-5 participates in MTI1-MMP-dependent
endothelial sprout initiation by enhancing complex formation
between MT1-MMP and FAK in response to endothelial cell
activation.

RESULTS

Hic-5 silencing decreased S1P- and growth-factor-mediated
endothelial cell invasion and lumen formation in 3D matrices
To test the effect of Hic-5 depletion on endothelial sprouting,
non-transduced endothelial cells (wild type, WT), or endothelial
cells transduced with recombinant lentiviruses from individual
short hairpin RNA (shRNA) sequences directed against B2-
microglobulin (shB2M) or Hic-5 (shHic-5-1 and -2) were utilized
in an established model of endothelial cell invasion (Bayless
et al., 2009). To rule out off-target effects, mRNA and protein
levels were monitored for several molecules that are known to
regulate angiogenesis, and no major changes in any of the
molecules tested were observed (Fig. S1). Hic-5 silencing in
endothelial cells did not result in cell toxicity or adversely affect
cell morphology (data not shown). Images of invading cultures
illustrated that knockdown of Hic-5 with two individual shRNA
sequences interfered with endothelial cell invasion responses
(Fig. 1A). Western blot analyses of extracts collected from
invading cultures confirmed knockdown of Hic-5 and p2M by
their respective shRNAs (Fig. 1B). Quantification of invasion
density revealed a significantly decreased number of invading
cells with Hic-5 silencing compared to sh2M and WT controls
(Fig. 1C). In addition, the invasion distance from the cell
monolayer was significantly reduced with Hic-5 silencing
compared to both shp2M and WT controls (Fig. 1D). Side
view images of invading cultures illustrated that knockdown of
Hic-5 resulted in smaller lumens compared to WT or shpf2M
controls (Fig. 1E). Quantification of the lumen size revealed a
significant decrease in lumen diameter with Hic-5 knockdown
(Fig. 1F). In addition, the number of invading structures forming
lumens was decreased with Hic-5 silencing compared to WT and
shB2M controls (Fig. 1G). In rescue experiments, expression of
Hic-5 resulted in invasion responses resembling WT endothelial
cells (Fig. 1H). Protein expression of full-length Hic-5 was
confirmed by western blotting (Fig. 11), and GFP expression was
confirmed visually (data not shown). Quantification of invasion
responses revealed a significant improvement in invasion density
(Fig. 1J), invasion distance (Fig. 1K) and lumen formation
(Fig. 1L) upon Hic-5 rescue compared to GFP controls. These
results demonstrated that Hic-5 participates in endothelial
cell invasion and successful lumen formation in 3D collagen
matrices.
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Pro-angiogenic factors enhanced complex formation
between Hic-5 and MT1-MMP in endothelial cells

Fig. 1 shows that Hic-5 silencing interfered with sprout initiation
and lumen formation in endothelial cells stimulated with
sphingosine 1-phosphate (SI1P) and growth factors [40 ng/ml
VEGEF and basic FGF (bFGF)], which are both required to promote
robust endothelial cell invasion (Fig. S2A). Endothelial lumen
formation is a crucial aspect of endothelial morphogenesis and
tubulogenesis (Davis et al., 2011), and MT1-MMP is required for
both successful lumen formation and endothelial cell sprouting into
collagen matrices (Chun et al., 2004; Stratman et al., 2009;
Sacharidou et al., 2010). S1P has been shown to stimulate
phosphorylation of MT1-MMP at Y573 (Nyalendo et al., 2007).
Because a link between MT1-MMP and Hic-5 has not been
established, we first investigated whether Hic-5 colocalized with
phosphorylated MT1-MMP (pMT1-MMP Y573) in endothelial
cells in response to activating stimuli. Endothelial cells seeded on
coverslips were serum starved, treated with nothing (Control),
40 ng/ml of growth factors (GF), 1 uM S1P (S1P), or S1P and
growth factors (S1P+GF) for 1h and stained with antibodies
directed against Hic-5 or pMT1-MMP (Y573). Overlay images
indicated enhanced colocalization between Hic-5 and pMT1-MMP
in endothelial cells treated with S1P+GF (Fig. 2A), although S1P
and growth factor treatments alone induced slight colocalization.
These results suggest that SIP+GF stimulation promotes increased
Hic-5 and MTI1-MMP colocalization that coincides with the
maximal sprouting response (Fig. S2A). Importantly, western blot
analyses demonstrated that pMT1-MMP antibodies reacted with the
correct molecular mass (60 kDa) protein (Fig. S2B) and
immunoprecipitated MT1-MMP (Fig. S2C).

To confirm whether S1P+GF stimulated complex formation
between Hic-5 and MTI-MMP, immunoprecipitations were
performed with or without endothelial cell activation using MT1-
MMP-specific or control (IgG) antisera. We observed increased
Hic-5 and MTI1-MMP association with S1P+GF stimulation
(Fig. 2B). Because Hic-5 is closely related to paxillin, we also
tested whether paxillin might associate with MT1-MMP following
S1P+GF stimulation (Fig. 2C) or in the absence of Hic-5 (Fig. 2D).
Using identical conditions, we were unable to detect an association
between MTI-MMP and paxillin, indicating endothelial cell
activation with S1P+GF selectively enhanced complex formation
between MT1-MMP and Hic-5, but not paxillin.

The LIM2 and LIM3 domains of Hic-5 mediate its interaction
with MT1-MMP

The above data suggest that a complex forms between Hic-5 and
MTI-MMP in endothelial cells. We next determined which
domains within Hic-5 mediate the formation of this complex
(see Fig. 3A for constructs used). In initial experiments, MT1-MMP
was co-transfected with full-length (FL) Hic-5, N-terminal Hic-5
(N), C-terminal Hic-5 (C), or GFP in HEK-293 cells (Fig. 3B).
Immunoprecipitation experiments were performed by incubating
lysates with MT1-MMP-specific or control (IgG) antisera. Western
blot analyses revealed successful expression of MT1-MMP, GFP
and Hic-5 constructs (Input). We observed that MT1-MMP formed
complexes with full-length and C-terminal Hic-5 constructs, but not
the N-terminal Hic-5 construct (Fig. 3B), suggesting that the LIM
domains within the C-terminus of Hic-5 are involved in formation
of the complex with MT1-MMP. To identify the specific C-terminal
domain(s) involved in MT1-MMP complex formation, the LIM
domains of Hic-5 were either truncated or deleted, and the resulting
constructs were used in immunoprecipitation experiments. MT1-

()
Y
C
el
()
w
ko]
O
Y=
(©)
‘©
c
—
>
(®)
-



http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.170571/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.170571/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.170571/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.170571/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.170571/-/DC1

RESEARCH ARTICLE Journal of Cell Science (2016) 129, 743-756 doi:10.1242/jcs. 170571

— ~
A WT P c 160 -

= = o 140

WA a
\f " I 120

\ Al Hic-5 =3
f l *'/ ' 2 100
il _ Br asesessess )\t 280

[
shHic-5-1  ShHIC-5-2 55| Tubulin 5 jg

q y 34 > 5

w . t' i E SRR GAPDH @
s 7 . g

y f f 17 =
™ ‘ \ ‘ B2M °
shBZM sthc-—E 1 shHic- 5-—2

WT shp2Mm shHic-5-1 shHic-5-2

WT shB2M shHic-5-1 shHic-5-2

G s H

M
'S

- @ 40 .
€ 12 -
E g 35 & :
« 10 - = e}
% 2030
8 - = 25 -
.S E shHic-5 % J o Y
-g 6 - Ke) 20 /GFP rhﬂ \
@ 215 |
g 4 Y . —
3, glo
(=)
shHic-5 1 _
0 /ch-5 -'\\ \"* \::N
shBZM shHic-5-1 shHuc-s 2 shBZM shHic-5-1 shHic-5-2
. a
| P K 400 -
SN o 80 - _— v 50
G T c c
o \2‘ > 70 - % 1]
& £ S 60 b < 300 £
§ 8 2 50 = 2 30
55w Hic-5 g 40 7 200 - =
o - o 30 - h=] § 20
(= | =
£ 5.
55 - Flag b 0 o 100 2 .
= 10 - g g
= 0+ I .
£ P
\é‘ 5,\6 o,\é'& \\S\ "\é‘q é\(;’
& &
P & & &

Fig. 1. Hic-5 silencing decreases S1P- and growth-factor-mediated endothelial cell invasion and lumen formation in 3D matrices. (A) Non-transduced
endothelial cells (WT) and endothelial cells transduced with lentiviruses delivering shRNA directed against p2-microglobulin (shp2M) or Hic-5 (shHic-5-1 and
shHic-5-2) were tested in 3D invasion assays using S1P and growth factors. Invasion cultures were fixed at 20 h and imaged to illustrate the side view of invasion
responses. Scale bars: 75 um. (B) Cell lysates were analyzed by western blotting using Hic-5-, actin-, tubulin-, GAPDH-, and p2M-specific antisera to verify
B2M and Hic-5 protein suppression. Quantification of (C) invasion density and (D) invasion distance at 20 h of invasion. Data in C represent the meanzs.d. number
of invading cells per 1 mm? field (n=3 fields). Data in D represent the means.e.m. length of structures. (n>100 cells). **P<0.01; ***P<0.001 versus shp2M
(Student’s t-test). A representative experiment is shown (n=4 total). (E) Images of a side view of invading structures from non-transduced endothelial cells (WT) or
endothelial cells transduced with lentiviruses delivering shRNA directed against p2M (shp2M) or Hic-5 (shHic-5-1, and -2). Arrows indicate lumens. Scale bars:
75 pm. Quantification of (F) mean+s.e.m. lumen diameter (in microns) and (G) mean percentage of cells forming lumens (n>100 cells). ***P<0.001 versus shp2M
(Student’s t-test). Results in E-G are from one representative experiment (n=3). (H-L) A representative rescue experiment (n=4 total) quantified as in D, E
and F. (H) Images (side view) of the invasion responses of non-transduced endothelial cells (WT) or endothelial cells expressing Hic-5 shRNA and either GFP or
Flag-tagged full-length Hic-5 rescue constructs. Scale bars: 100 pm. (1) Western blot from cell extracts probed with Hic-5 and Flag-specific antisera. Quantification
of (J) meants.d. invasion density, (K) meants.d. invasion distance, and (L) the mean percentage of cells forming lumens. Statistical analyses in J and K were
performed using one-way ANOVA with Tukey’s multiple comparisons test. Different letters indicate statistically significant differences with the following multiplicity
adjusted P-values: (J) P<0.0001 for a versus b; P<0.01 for a versus c; P<0.05 for b versus c; and (K) P<0.0001 for all comparisons.
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Fig. 2. Hic-5, but not paxillin, forms a complex with MT1-MMP in response to activation. (A) Endothelial cells seeded overnight on collagen-coated
coverslips were serum starved for 2 h and left untreated (Control) or treated with 40 ng/ml VEGF and bFGF (GF), 1 uM S1P (S1P) or both (S1P+GF) for 1 h. Cells
were probed with antibodies directed against Hic-5 and phosphorylated MT1-MMP (pMT1-MMP Y573) followed by secondary antibodies conjugated to Alexa
Fluor 594 and 488, respectively, and counterstained with DAPI (blue). Image stacks were collected using confocal microscopy. Arrowheads show areas of
colocalization. Scale bars: 10 ym. (B,C) Endothelial cells cultured in 10-cm dishes were stimulated with nothing (CON) or 1 uM S1P+40 ng/ml growth factors (S1P
+GF) for 1 h. Immunoprecipitations (IP) were performed using polyclonal MT1-MMP antibodies or isotype (IgG) controls. Eluates were probed with (B) MT1-MMP-,
GAPDH-, and Hic-5-specific antisera or (C) MT1-MMP- and paxillin-specific antisera in western blot analyses. (D) Immunoprecipitations with MT1-MMP-specific
antibodies were performed with endothelial cells expressing shB2M or shHic-5 and treated with S1P+GF for 1 h. Eluates were probed with MT1-MMP-, paxillin-
and GAPDH-specific antisera in western blot analyses. All experiments were performed four times, and a representative experiment is shown.

MMP constructs were co-transfected with Hic-5 (FL), ALIM4,
ALIM3-4, ALIM2-4, ALIM2, ALIM3 or ALIM2-3 (Fig. 3A) in 293
cells. Lysates were incubated with MT1-MMP- specific or control
(IgG) antisera, and eluates were probed with MT1-MMP- and Flag-
specific antibodies. Western blot analyses revealed that there was a
substantial amount of MT1-MMP association with full-length Hic-5
and ALIM4, but the association was slightly decreased with the
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ALIM3-4, ALIM2 and ALIM3 constructs (Fig. 3C). MT1-MMP did
not form a complex with the ALIM2-4 or ALIM2-3 constructs,
supporting that the LIM2 and LIM3 domains within the
C-terminus of Hic-5 are essential for formation of the complex
with MT1-MMP. Based on results from these deletion constructs,
we generated a Hic-5 construct containing only the C-terminal
LIM2 and LIM3 domains (Hic-5 LIM2-3) to determine whether
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Fig. 3. The LIM2 and LIM3 domains of Hic-5 are required for MT1-MMP complex formation. (A) Schematic representation of Hic-5 expression constructs
containing N-terminal Flag epitopes. (B) HEK-293 cells were co-transfected with MT1-MMP—His and Flag-tagged full-length (FL), N-terminal (N), or C-terminal
(C) Hic-5 expression constructs, or a GFP control. Immunoprecipitation (IP) experiments were performed using polyclonal MT1-MMP antibodies or isotype (IgG)
controls. Eluates were probed with MT1-MMP-, GFP- and Flag-specific antisera in western blot analyses. (C) HEK-293 cells were co-transfected with
MT1-MMP—His and Flag-tagged Hic-5 FL, ALIM4, ALIM3-4, ALIM2-4, ALIM2, ALIM3 and ALIM2-3 expression constructs. Immunoprecipitation experiments were
performed using polyclonal anti-MT1-MMP antibodies or isotype (IgG) controls. Eluates were probed with MT1-MMP-, Flag- and GAPDH-specific antisera in
western blot analyses. (D) HEK-293 cells were co-transfected with MT1-MMP-His and Flag-tagged Hic-5 FL or Hic-5 LIM2-3 constructs. Immunoprecipitation
experiments were performed as in B and C. Representative experiments are shown (n=3).

expression of these domains was sufficient for it to form a complex
with MT1-MMP. Western blot analyses demonstrated that MT1-
MMP formed a complex with both the full-length and LIM2-3
constructs (Fig. 3D), indicating that the LIM2 and LIM3 domains
are both necessary and sufficient for Hic-5 to form a complex with
MT1-MMP.

Hic-5 and MT1-MMP colocalized in invading endothelial cells,
and complex formation is enhanced by pro-angiogenic
factors

Fig. 2 supports that Hic-5 and MT1-MMP form a complex in
activated endothelial cell monolayers. To examine the localization
of'these proteins in 3D sprouting structures, endothelial sprouts were
stained with Hic-5- and pMTI1-MMP-specific antisera. Although
both Hic-5 and pMT1-MMP were distributed throughout the entire
invading structure, we observed colocalization at punctate structures
within extended fine processes at the periphery, as well as at the
leading edge of sprouting structures (Fig. 4A; Fig. S4A). To

determine whether complex formation between Hic-5 and
MTI1-MMP was upregulated during endothelial sprouting,
immunoprecipitation experiments were performed with cultures
treated with or without S1P and growth factors. Lysates were
immunoprecipitated using MT1-MMP-specific antibodies and
probed for MT1-MMP and Hic-5 by western blotting (Fig. 4B).
Quantification of these experiments revealed a significant increase
in Hic-5 and MT1-MMP complex formation with S1P and growth
factor (S1P+GF) stimulation in invading compared to non-invading
(CON) endothelial cells (Fig. 4C). As a membrane-anchored
metalloproteinase, MT1-MMP is well-suited to accomplish ECM
proteolysis when present at the cell surface (Hiraoka et al., 1998;
Murphy and Gavrilovic, 1999). To determine whether MT1-MMP
and Hic-5 were localized within detergent-resistant membrane
(DRM) fractions during invasion, 3D cultures were stimulated with
or without SI1P and growth factors and extracted with increasing
concentrations of detergent prior to collection of the DRM fraction.
In agreement with a previous study (Kwak et al., 2012), we observed
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Fig. 4. Hic-5 and MT1-MMP interactions are enhanced during endothelial sprouting. (A) Frozen sections of endothelial sprouts in 3D collagen matrices were
stained with anti-Hic-5 and anti-pMT 1-MMP (Y573) antibodies followed by species-specific secondary antibodies conjugated to Alexa Fluor 488 and Alexa Fluor
594, respectively, and counterstained with DAPI (blue). Images were collected using confocal microscopy. The upper panel shows a full view of the sprout. The
lower panel shows a magnified view of selected area marked above. Arrowheads indicate areas of overlap between Hic-5 and pMT1-MMP in the fine processes of
the sprout. Scale bars: 5 um (upper panel); 2 um (lower panel). (B) 3D invasion cultures were established with no treatment (—) or with 1 yM S1P and 40 ng/ml
growth factors (GF, +) and allowed to invade collagen matrices for 4 h prior to detergent extraction. Immunoprecipitations (IP) were performed using polyclonal
antibodies directed against MT1-MMP or isotype (IgG) controls. Eluates were probed for Hic-5 and MT1-MMP in western blot analyses. (C) Quantification of co-
precipitated Hic-5 normalized to the amount of starting material from western blots using ImageJ software. The results represent meanz s.d. in arbitrary units (a.u.)
from three independent experiments. *P<0.05, compared to CON (Student’s t-test). (D) DRM fractions were isolated from invading cultures without () or with
1 uM S1P and 40 ng/ml growth factors (+). Starting material lysates, soluble lysates, and DRM fractions were analyzed by performing western blotting with
antibodies directed against MT1-MMP, Hic-5, FAK, vinculin, the B1 integrin subunit and actin. (E) Quantification of MT1-MMP, Hic-5, and FAK levels in DRM
normalized to the amount of starting material from western blots using ImagedJ software. The results represent meants.d. in arbitrary units from three independent
experiments. *P<0.05, compared to CON (Student’s t-test). (F) Surface biotinylation experiments comparing surface labeling on endothelial cells expressing
shp2M and shHic-5. Cells were treated with S1P for 0—-60 min, labeled and extracted. Biotinylated materials were captured with streptavidin—~Sepharose and
eluates were probed with antibodies directed against PECAM1, MT1-MMP, Hic-5 and GAPDH in western blot analyses. (G) Quantification of fold change in
MT1-MMP surface expression normalized to PECAM1 loading controls from western blots of surface biotinylation. Data from three experiments were averaged to
determine meants.d. values. (H) Quantification (meanzs.d.) of MT1-MMP activation at 6 h of invasion in wild-type (WT), shf2M and shHic-5 cells. One
representative experiment is shown (n=3).
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successful upregulation of MTI1-MMP in DRM fractions in
invading endothelial cells upon S1P and growth factor treatment
(Fig. 4D). We also observed increased levels of Hic-5 in DRM
fractions of sprouting endothelial cells. Although vinculin
levels remained unaffected by SIP and growth factor treatment,
the amount of the B1 integrin subunit was also increased in DRM
fractions of invading endothelial cells (Fig. 4D). Because Hic-5 and
the Bl integrin subunit were upregulated, we also analyzed the
levels of FAK, which is known to be associated with
integrins (Guan, 1997; Chen et al., 2000) and Hic-5 (Matsuya
et al.,, 1998). Interestingly, levels of FAK and actin remained
unchanged (Fig. 4D). Quantification of MT1-MMP, Hic-5 and FAK
levels in DRM fractions revealed an increased presence of Hic-5
and MT1-MMP in DRM fractions of invading compared to
non-invading cultures, but no significant change in FAK
localization (Fig. 4E).

To determine whether Hic-5 regulates plasma membrane
localization of MT1-MMP, surface biotinylation experiments
were conducted with endothelial cells expressing shRNA
directed against B2M (shp2M) or Hic-5 (shHic-5). Endothelial
cells were treated with S1P, which is known to promote MT1-
MMP translocation to the plasma membrane (Nyalendo et al.,
2007). Western blot analyses confirmed Hic-5 silencing and
enrichment of surface biotinylated molecules (determined using
anti-PECAM1 antibodies), and no contamination from
cytoplasmic proteins (by using GAPDH controls) (Fig. 4F).
Although S1P enhanced MT1-MMP on the surface in shf2M-
expressing cells, Hic-5 silencing resulted in a decrease in
MTI-MMP compared to shB2M-expressing cells (Fig. 4GQ).
Importantly, Hic-5 silencing did not alter MT1-MMP activity
levels (Fig. 4H). Taken together, these findings demonstrate that
complex formation between Hic-5 and MT1-MMP in sprouting
endothelial cells is enhanced with SI1P and growth factor
activation and occurs in DRM fractions. Furthermore, in the
absence of Hic-5, MT1-MMP does not properly localize to the
plasma membrane, explaining a decrease in endothelial cell
sprout initiation and lumen formation.

S$1P mediated rapid translocation of Hic-5 to focal adhesions
and enhanced MT1-MMP and FAK interactions

Because Hic-5 is a known focal adhesion scaffold protein that forms
a complex with FAK (Fuyjita et al., 1998), and the fine punctate
staining pattern within 3D sections (Fig. 4A) appears to be similar to
those reported for other focal adhesion proteins in 3D (Cukierman
et al., 2001; Petroll and Ma, 2003), we further investigated whether
Hic-5 colocalized with activated FAK. Endothelial cells seeded on
collagen-coated coverslips were treated with S1P and probed with
antisera specific for Hic-5 and FAK phosphorylated at Y397 (pFAK
Y397) (Fig. S3A). S1P increased Hic-5 and pFAK Y397 overlap,
suggesting that Hic-5 translocated to focal adhesion sites. Similar
results were seen with S1P+GF treatment (data not shown). Because
S1P+GF also enhanced Hic-5 colocalization with total and pMT1-
MMP (Fig. 2), we further investigated whether S1P enhanced
the interaction of MTI1-MMP with FAK. Endothelial cells
were treated without (CON) or with 1 uM SI1P, and lysates were
immunoprecipitated using FAK-specific or control (IgG) antisera.
We observed increased FAK and MT1-MMP association following
stimulation with S1P, while equivalent amounts of FAK were
immunoprecipitated in both conditions (Fig. 5A). Quantification of
these experiments revealed that S1P treatment significantly
increased the formation of complexes between FAK and MTI1-
MMP (Fig. S3B).

Focal adhesions have been implicated as potential sites for MT1-
MMP-dependent matrix degradation in tumor cells, and the
association between MT1-MMP and FAK is required for optimal
MT1-MMP activity and matrix degradation at these sites (Takino
et al., 2007; Wang and McNiven, 2012). Like other paxillin family
members, Hic-5 functions as a focal adhesion scaffold that mediates
multiple protein—protein interactions at adhesion sites through its
LD and LIM domains (Dawid et al., 1995; Shibanuma et al., 2012).
Our data suggest that a complex forms between MT1-MMP and
Hic-5 in endothelial cells following activation with S1P+GF
(Fig. 2), which is required to stimulate sprouting in endothelial
cells (Fig. S2A). In addition, we observed that FAK and MT1-MMP
formed a complex in invading endothelial cells (Fig. 5B). In
agreement with the immunoprecipitation results, FAK and pMT1-
MMP colocalized in invading endothelial cells at various sites
(Fig. 5C; Fig. S4B). Similarly, Hic-5 and pFAK also colocalized
within sprouting structures (Fig. 5D; Fig. S4C). Hic-5 knockdown
also decreased endothelial cell attachment to collagen in adhesion
assays (Fig. S2D). These results suggest that Hic-5, FAK, and MT1-
MMP are all part of a complex that controls endothelial cell sprout
outgrowth, and loss of Hic-5 results in reduced endothelial cell
adhesion to the ECM. Therefore, to test whether Hic-5 was required
to mediate MT1-MMP and FAK association, we performed MT1-
MMP immunoprecipitations in endothelial cells expressing shHic-5
and shf2M. Decreased Hic-5 expression resulted in a decrease in the
amount of FAK associated with MT1-MMP (Fig. SE). These data
support that, by complexing with MT1-MMP, Hic-5 enhanced the
association between MT1-MMP and FAK.

Hic-5 mutants interfered with endothelial cell sprout
initiation

Because the LIM2 and LIM3 domains of Hic-5 were needed for
Hic-5 to complex with MT1-MMP, we next determined whether
Hic-5 mutants lacking the LIM2 and LIM3 domains interfered with
endothelial cell sprouting by comparing endothelial cells expressing
GFP to those expressing Hic-5 ALIM2-3. Images illustrating
invasion responses are shown in Fig. 6A, where Hic-5 ALIM2-3
partially interfered with invasion responses. Expression of the Flag-
tagged ALIM2-3 construct was confirmed by western blotting
(Fig. 6B). GFP expression was confirmed visually (data not shown).
Quantification of invasion responses revealed that expression of
Hic-5 ALIM2-3 significantly reduced the number of invading cells
(Fig. 6C). Although a trend towards decreased lumen diameter, the
percentage of cells that formed lumens, and invasion distance was
observed (Fig. 6D-F), no significant differences were detected,
suggesting that the Hic-5 ALIM2-3 mutant was only able to interfere
with sprouting initiation, perhaps due to the presence of endogenous
Hic-5 in these experiments.

Hic-5, MT1-MMP and FAK are co-expressed in developing
blood vessels during porcine pregnancy in vivo

Our results demonstrate that Hic-5 might act as a molecular scaffold
to mediate complex formation between MT1-MMP and FAK. To
determine whether these molecules are present and colocalize
during angiogenesis in vivo, we analyzed an early stage of porcine
pregnancy. Successful implantation results in close apposition of
fetal (chorionic) and maternal (luminal) epithelium that is supported
by a well-defined sub-epithelial layer of angiogenic vessels that
facilitate nutrient exchange between maternal and fetal tissues
(Senger, 2011). To determine whether Hic-5, MT1-MMP and FAK
were expressed in developing endothelium, we co-stained with VE-
cadherin to label areas of subepithelial angiogenesis (Fig. 7A—C).
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Fig. 5. MT1-MMP and FAK interactions occur during sprouting and are mediated in part through Hic-5. (A) Endothelial cells cultured in 10-cm dishes were
stimulated with nothing (CON) or 1 uM S1P for 1 h. Immunoprecipitations (IP) were performed using monoclonal FAK antibodies or isotype (IgG) controls. Eluates
were probed with MT1-MMP- and FAK-specific antisera in western blot analyses. (B) Invasion cultures were established with no treatment (CON) or with S1P and
growth factor (S1P+GF) and allowed to invade collagen matrices for 6 h prior to performing immunoprecipitations with polyclonal antibodies directed to FAK or
isotype (IgG) controls. Eluates were probed for FAK, MT1-MMP and GAPDH in western blot analyses. Frozen sections of endothelial sprouts in 3D collagen
matrices were stained with (C) anti-FAK and anti-pMT1-MMP (Y573) antibodies or (D) Hic-5 and pFAK (Y397) antisera. Arrowheads show areas of colocalization.
Scale bars: 10 um. (E) Endothelial cell monolayers in 10-cm dishes expressing shp2M and shHic-5 were treated with S1P+GF for 1 h prior to detergent extraction.
Immunoprecipitations were performed using polyclonal antibodies directed against MT1-MMP or isotype (IgG) controls. Eluates were probed for FAK, MT1-MMP
and GAPDH in western blot analyses. A representative experiment is shown (n=3 total).

We observed that VE-cadherin-positive endothelium expressed
Hic-5, MT1-MMP and FAK, indicating that these proteins were
expressed in angiogenic blood vessels during pregnancy.
Furthermore, we observed colocalization of pMT1-MMP (Y573)
and Hic-5 (Fig. 7D), pMT1-MMP (Y573) and FAK (Fig. 7E), and
pFAK (Y397) and Hic-5 (Fig. 7F) in sub-epithelial blood vessels.
Taken together, these data support that Hic-5, MT1-MMP and FAK
are present in angiogenic endothelium and, thus, are available to
participate in angiogenic events during pregnancy in vivo.

DISCUSSION

This study reveals a new regulatory role for the focal adhesion
scaffold protein Hic-5 during sprouting angiogenesis in 3D collagen
matrices. Our results suggest that Hic-5 formed a complex with
MT1-MMP, regulated MT1-MMP plasma membrane translocation,
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and mediated FAK and MTI-MMP interactions to promote
endothelial invasion of 3D collagen matrices. These data support
the possibility that Hic-5, through interactions with MT1-MMP and
FAK, coordinates matrix proteolysis events with cell migration
during endothelial invasion.

The complex formation between Hic-5 and MT1-MMP has
important implications for cell invasion in 3D. MT1-MMP is a
membrane-anchored metalloproteinase that cleaves matrix proteins
in close proximity to the cell surface, thus maintaining overall
matrix integrity to support invading structures (Werb, 1997,
Hiraoka et al., 1998; Murphy and Gavrilovic, 1999; Hotary et al.,
2000). MT1-MMP has been shown to direct endothelial sprouting
and lumen formation, as well as tumor cell invasion (Hiraoka et al.,
1998; Yana and Seiki, 2003; Chun et al., 2004; Stratman et al.,
2009). Following translation, the pro-domain of MTI-MMP is

Q
Y
C
el
()
v
ko]
O
Y=
(©)
©
c
—
>
(®)
-




RESEARCH ARTICLE

Journal of Cell Science (2016) 129, 743-756 doi:10.1242/jcs. 170571

A

GFP B

10 - w 2
1= c

2 g g 40 -
- =

2 ‘w30 -
g 67 £

.© 4 EZD*
2 £
(%]

£ 2 = 10 -
3 (]

0 - X o

GFP  ALIM2-3

GFP ALIM2-3

C

[y
N P [=)] o o
o o o o o
1 1 1 1 J

Invading cells (20X HPF)

o
|

GFP

ALImM2-3

350 4
300 4
250 4
200 4
150 A
100 -+

Invasion distance (um)

GFP ALIM2-3
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**P<0.01 versus GFP control (Student’s t-test). Quantification was performed by an observer blinded to experimental treatment groups. Results shown are from

one representative experiment (n=3).

removed by furins, generating the active form of MT1-MMP (Yana
and Weiss, 2000; Osenkowski et al., 2004). Once activated, MT1-
MMP translocates to the surface where it can cleave ECM proteins
(Remacle et al., 2006). In addition, active MT1-MMP undergoes
endocytosis and can be recycled from the cell surface to early and
late endosomes (Remacle et al., 2003). The activity assays
performed were conducted on total cell lysates and cannot
distinguish between surface-associated and internalized MT1-
MMP, explaining why no gross differences were observed in
MTI1-MMP activity. For this reason, we performed surface
biotinylation assays, which demonstrated decreased surface
expression of MT1-MMP that correlated with decreased invasion
responses in the absence of Hic-5. Thus, Hic-5 silencing did not
alter overall MT1-MMP activity levels, supporting that surface
localization of MT1-MMP, rather than overall activity, is a key
indicator of invasive behavior (Hotary et al., 2000; Yana and Weiss,
2000; Uekita et al., 2001; Egeblad and Werb, 2002; Li et al., 2008;
Kwak et al., 2012). The observation that Hic-5 depletion decreased
S1P-mediated MTI1-MMP plasma membrane translocation in
surface biotinylation assays, suggests that Hic-5 can function as a
molecular adaptor to transport activated MT1-MMP to the plasma
membrane for successful sprouting responses. Another possibility,
not ruled out here, is that the absence of Hic-5 might accelerate
internalization of MTI-MMP. Nevertheless, we observed
colocalization of Hic-5 with pMT1-MMP in 3D endothelial
sprouts, and MT1-MMP and Hic-5 levels were enhanced in DRM
fractions of invading endothelial cells, indicative of membrane
localization during endothelial sprouting responses. We further
observed an increase in Hic-5 and MTI-MMP interactions when
comparing invading to non-invading endothelial cells, suggesting

that the Hic-5 and MT1-MMP complex is associated with the
membrane compartment and contributes, at least in part, to
successful endothelial sprouting responses in 3D matrices.

Our findings show that FAK is part of the Hic-5 and MT1-MMP
complex that assembles in response to pro-angiogenic factors.
These molecules colocalized in angiogenic vessels in vivo, and
displayed a punctate staining pattern in invading endothelial cells
in vitro, similar to other focal adhesion proteins in 3D (Cukierman
et al., 2001; Petroll and Ma, 2003). Because Hic-5 is known to
function as an adaptor protein, we tested whether Hic-5 might
facilitate MT1-MMP and FAK interactions. We found that loss of
Hic-5 decreased the formation of the complex between MT1-MMP
and FAK, supporting that Hic-5 bridges MT1-MMP and FAK.
Hic-5 is well-suited for this role as an adaptor protein given that the
N-terminal LD domain of Hic-5 binds FAK (Fujita et al., 1998), and
the C-terminal LIM2 and LIM3 domains are required for interaction
with MT1-MMP (shown here). Hic-5 is known to localize to
integrin-mediated sites of adhesion, where it coordinates cell
migration in 2D (Brown and Turner, 2004; Tumbarello and Turner,
2007; Deakin and Turner, 2008). The placement of Hic-5 in close
proximity to the plasma membrane and in detergent-resistant
fractions (shown here) renders Hic-5 perfectly poised to participate
in a complex with both MT1-MMP and FAK.

Collectively, these results suggest that Hic-5 participates in
assembly of a complex at the endothelial cell surface that is needed
for motility and matrix proteolysis during invasion. Others have
shown that Hic-5 silencing decreases endothelial cell migration (Wu
et al., 2005a; Avraamides et al., 2007), and we find that depletion of
Hic-5 results in reduced sprout initiation and decreased invasion
distance. In MDA-MB-253 cells, Hic-5 depletion decreases the
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X

Overlay

Fig. 7. Hic-5, MT1-MMP and FAK are co-expressed in developing blood vessels during porcine pregnancy in vivo. Frozen sections of porcine uterus at day
24 of pregnancy were fixed in methanol and probed with the antibodies indicated in each panel. Panels in the left column show overlay images from middle
and right columns, as well as DAPI stain (blue). The indicated antibodies were detected with secondary antibodies conjugated to Alexa Fluor 488 (middle panels)
and Alexa Fluor 594 (right panels). Image stacks were collected using confocal microscopy. Arrowheads indicate areas of overlap in capillary structures. Scale
bars: 10 um. Representative images are shown from a single animal of three analyzed in total.

number of vinculin-positive focal adhesions and motility in 3D
(Deakin and Turner, 2011). Although a specific proteinase was not
identified, Hic-5 depletion has been connected to decreased matrix
degradation and filopodia formation (Pignatelli et al., 2012). Wang
and McNiven have previously implicated focal adhesions as sites
for MT1-MMP-dependent matrix degradation in tumor cells (Wang
and McNiven, 2012), and others have suggested the importance
of MT1-MMP and focal adhesion crosstalk during cell migration
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(Wu et al., 2005b; Takino et al., 2006, 2007; Gingras et al., 2008).
Importantly, expression of the Hic-5 ALIM2-3 mutants that did not
interact with MT1-MMP partially reduced invasion, despite the
presence of endogenous Hic-5. The LIM2 and LIM3 domains of
paxillin, which are closely related to Hic-5, target paxillin to focal
adhesions in fibroblasts (Brown et al., 1996). Collectively, the
observations that the LIM2 and LIM3 domains in Hic-5 are needed
to complex with MT1-MMP, and the ability of Hic-5 LIM2-3
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mutants to interfere with endothelial cell sprout initiation, support
the idea that coupling MTI1-MMP (which facilitates matrix
proteolysis) to FAK (which provides cell traction) is conducive
for invasion into 3D matrices. Although we cannot detect paxillin as
part of a complex with MTI-MMP, this is not completely
unexpected because paxillin and Hic-5 have been demonstrated to
play distinct roles in various systems (Kim-Kaneyama et al., 2005;
Deakin et al.,, 2012). Taken together, the data presented here
reinforce that, by recruiting a complex containing MT1-MMP and
FAK, Hic-5 contributes to endothelial cell invasion in 3D collagen
matrices.

Consideration of previous evidence suggests that Hic-5, MT1-
MMP and FAK are part of a larger signaling complex that assembles
in response to endothelial cell activation by pro-angiogenic factors.
Previously, p130Cas (also known as BCAR1) has been shown to
facilitate the interaction between MT1-MMP and FAK in tumor cells
(Wang and McNiven, 2012). S1P enhances the interaction between
p130Cas and pMT1-MMP Y573 in endothelial cells, although this
interaction is predicted to be indirect because the cytoplasmic tail of
MT1-MMP lacks binding motifs for SH2 or SH3 domains to facilitate
interactions with tyrosine-phosphorylated proteins (Gingras et al.,
2008). The present study suggests that pro-angiogenic factors
enhance the formation of the complex between Hic-5 and MT1-
MMP. Thus, it is tempting to speculate that S1P stimulation enhances
interactions between Hic-5 and p130Cas in endothelial cells. Other
potential interacting partners for Hic-5 include vimentin, which
complexes with p130Cas (Wang et al., 2007), MT1-MMP (Kwak
et al., 2012), caveolin (Labrecque et al., 2004), the o2p1 integrin
(Sacharidou et al., 2010) and RACK1, which itself complexes with
vimentin and FAK in invading endothelial cells (Dave et al., 2013).
Taken together, these data suggest that Hic-5 might be a part of
a larger signaling network involving other key molecules, whose
assembly is initiated with endothelial cell activation. Additional
studies will be necessary to definitively determine these interactions.

The data presented here add to a growing list of reports indicating
that a link between matrix proteolysis and cell motility must be
established for successful cell invasion in 3D. Our results indicate
that Hic-5 contributes to these events in endothelial cells by
bridging MT1-MMP and FAK. FAK is a well-known regulator of
angiogenesis (Peng et al., 2004; Shen et al., 2005), as is MT1-MMP
(Zhou et al., 2000; Chun et al., 2004; Stratman et al., 2009). Thus,
defining molecular events that coordinate and regulate the activities
of these key proteins will further refine our understanding of new
blood vessel growth.

MATERIALS AND METHODS

Endothelial cell culture and invasion

Certified single-donor human umbilical vein endothelial cells (HUVECs;
Lonza, Allendale, NJ) at passages 3—6 were cultured as described previously
(Bayless et al., 2009). 3D invasion experiments were established using
2.5 mg/ml collagen matrices containing 1 pM S1P (Sigma, St Louis, MO).
Confluent endothelial cell monolayers were seeded in M199 with 40 ng/ml
VEGF and bFGF (R&D Systems, Minneapolis, MN).

Imaging and quantification of invasion density, distance and
lumen size

Side views of invading endothelial cells were captured using an Olympus
CKX41 microscope equipped with a Q color 3 camera (Shinjuku, Tokyo,
Japan). Invasion densities were quantified using at least three random fields
to manually count the number of invading cells per field. For quantification
of invasion distance, side-view cultures at 4% magnification were used to
measure the distance the tip of each invading sprout traveled from the
original monolayer using Image-Pro Analyzer 7.0. Approximately 100 cells

per treatment group were included in all analyses. For quantification of
lumen size, side-view images of cultures at 20x magnification were
analyzed using Image-Pro Analyzer 7.0. At least 100 structures per
treatment group were included in each analysis.

Hic-5 and MT1-MMP cloning

Flag-tagged Hic-5 constructs were generated in the pFlag-CMV2 vector
(Sigma). HUVEC RNA was isolated using an RNeasy MiniKit (Qiagen,
Valencia, CA), and cDNA was generated with the SuperScript III First-
Strand Synthesis System (Invitrogen, Grand Island, NY) using 1 pg of
RNA. A PCR reaction was performed using 3 ul of cDNA template with
AccuPrime Taq HIFI Polymerase (2.5 units, Invitrogen) in a 50-ul reaction
volume. The Hic-5 amplicons were cleaned with the Qiagen QIAquick PCR
Purification Kit, digested with HindIIl and Xbal (NEB, Ipswich, MA) along
with the pFlag-CMV2 vector at 37°C overnight, gel purified with the Qiagen
QIAquick Gel Extraction Kit, and ligated overnight at 14°C. Primers used
for this study were: Flag-FL-Hic-5, 5'-AGCAAAGCTTGAGGACCTGG-
ATGCCCTG-3’ and 5'-AGCATCTAGATCAGCCGAAGAGCTTCAGG-
3’; Flag-N-Hic-5, 5-AGCAAAGCTTGAGGACCTGGATGCCCTG-3’
and 5’-AGCATCTAGACCGGCGGCTGAGGTCGGAC-3’; Flag-C-Hic-
5, 5'-AGCAAAGCTTGGT-GTTCCCACCCAGGCC-3" and 5'-AGCAT-
CTAGATCAGCCGAAGAGCTTCAGG-3'; Flag-ALIM4, 5'-AGCAAA-
GCTTGAGGACCTGGATGCCCTG-3’ and 5'-AGCATCTAGATCAGT-
GGAAGTGGTTCTCGCAC-3'; Flag-ALIM3-4, 5'-AGCAAAGCTTGA-
GGACCTGGATGCCCTG-3" and 5'-AGCATCTAGATCAGAAGTCCC-
GGCGGCAGTAG-3’; Flag-ALIM2-4, 5'-AGCAAAGCTTGAGGACCT-
GGATGCCCTG-3" and 5'-AGCATCTAGATCAAAAGTAGCACTCGG-
GGCAG-3’; and Flag-LIM2-3 Hic-5, 5~ AGCAAAGCTTTTCTCGCCA-
AGATGTGGC-3" and 5'-AGCATCTAGATCAGTGGAAGTGGTTCTC-
GCAC-3'. For deletion constructs, a PCR was performed using Flag full-
length Hic-5 template with AccuPrime Taq HIFI Polymerase (Invitrogen),
and 0.4 uM of forward and reverse primers containing a Pacl (NEB)
restriction site in a 50-ul reaction volume. PCR products were treated with
1 ul Dpnl (NEB) for 1 h at 37°C, cleaned with the Qiagen QIAquick PCR
purification kit, digested with Pacl, gel purified using Qiagen QIAquick Gel
Extraction Kit, and ligated overnight at 14°C. Primers used were: Flag
ALIM2, 5'-CGCTTCTCGCCAAGATTAATTAAGTGTGGCTTCTGCA-
AC-3’ and 5'-GGCGAACAGCTGCAGTTAATTAAGAAGTCCCGG-C-
GGCAG-3’; Flag-ALIM3, 5'-CTGTTCGCCCCGCGCTTAATTAAGTG-
CCAG-GGCTGCCAG-3" and 5'-CGAGCCGCGTCGTGCTTAATTAA-
GTGGAAGTGGTTCTC-3’; and Flag-ALIM 2-3, 5'-GAGAACCACTTC-
CACTTAATTAAGGCACGACGCGGCTCG-3’ and 5'-GTTGCAGAAG-
CCACATTAATTAAGTCTTGGCGAGAAGCG-3'. Positive clones were
verified by sequencing and cloned into the pENTR4 vector; inserts, which
were sequence verified for full-length Hic-5, ALIM2 Hic-5, ALIM3 Hic-5,
and ALIM2-3 Hic-5, in the pFlag-CMV2 vector were used as a template for
amplification with primers 5'-AGCAGGATCCGCCACCATGGACTAC-
AAAGACGATGAC-3" and 5'-AGCACTCGAGTCAGCCGAAGAGCT-
TCAGG -3’. The amplicons were cleaned and digested with BamH1 and
Xhol along with the pPENTR4 vector at 37°C overnight. Positive clones were
verified by sequencing before being recombined with pLenti6/V5-DEST
vector. Rescue constructs for full-length Hic-5 were amplified from
full-length Hic-5 respectively, in the lenti backbone with the primers
5'-GTGAGCTAGATCGCTTGCTCCA-GGAACTCAATGCCACTCAG-3’
and 5-CTGAGTGGCATTGAGTTCCTGGAGCAAGCG-ATCTAGCTC-
AC-3" using the QuikChange Lightning Site-Directed Mutagenesis Kit
(Stratgene) as per the manufacturer’s instructions.

Human MT1-MMP was amplified from HUVEC cDNA using primers
5'-GATCGAATTCGCCACCATGTCTCCCGCCCCAAG-3’ and 5'-CAT-
GAAGCTTGACCTTGTCCAGCAGGG-3’ and digested using EcoRI and
Hindlll restriction enzymes. Digested amplicons were ligated into the
pET28b vector (Novagen), generating a C-terminal 6% His tag. Positive
clones were verified by sequencing. MT1-MMP-His was amplified from
the pET28b vector using primers 5'-CTAGGGTACCGCCACCATGTCT-
CCCGCCCCAAG-3’ and 5'-GTACGATATCCTAGTGGTGGTGGTGG-
TGGTGGTGGTGCTCGAG-3', creating an 8% His tag. Amplicons were
digested using Acc651 and EcoRV restriction enzymes and ligated into
the pENTR4 vector. Positive clones were tested by sequencing and
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subsequently recombined with the pLenti6/V5-DEST vector in Stbl3 cells
(Invitrogen). Clones were verified by sequencing.

Endothelial cell transduction using lentiviral vectors

Short hairpin RNA (shRNA) backbone vectors specific for Hic-5 (#SHCL
NG-NMO015927; shHic-5-1 TRCN0000281350; shHic-5-2 TRCN000028
1352) and P2M (#SHCLNG-NMO004048 TRCN0000057254) were
purchased from Sigma-Aldrich. Lentiviral particles were generated by
transfecting 1.25 pg of backbone shRNA plasmid with 3.75 pg of
VIRAPOWER packaging mix (Invitrogen) into confluent HEK-293 cells
(Invitrogen) using Lipofectamine 2000 (Invitrogen) in T25 flasks. Viral
supernatants were harvested at 60 h, centrifuged at 1000 g for 10 min and
filtered through a 0.45 um filter (Millipore, Rockland, MA). T25 flasks
(Corning, Corning, NY) of HUVECs (25-30% confluent) were transduced
with 2 ml viral supernatant, 3 ml endothelial growth medium and polybrene
(12 pg/ml; Sigma) for 5 h. HUVECs were cultured for 4 days prior to use in
experiments.

In overexpression studies, lentiviruses were made for Hic-5 full-length,
Hic-5 ALIM2-3, and GFP control using 2.5 pg each of backbone and 7.5 pg
of VIRAPOWER packaging mix as described above. After 16 h, cells were
fed with 6 ml of growth medium, and lentiviruses were collected at 5672 h
post-transfection. Supernatants were spun at 1000 g for 10 min at room
temperature and concentrated with Lenti-X-concentrator (Clontech) as per
the manufacturer’s instructions. HUVECs were treated with lentiviral
particles for 72-96 h with 12 pg/ml polybrene. At 5 days following
transduction, HUVECs were used in invasion assays as described above.
Constructs expressing EGFP controls were generated as previously
described (Lee et al., 2009), and protein extracts were collected to verify
protein expression by performing western blotting.

Generation of stable cell lines using rescue constructs
Lenitviruses for shHic-5-1 and rescue constructs for FL-Hic-5, ALIM2-3-
Hic-5 and GFP were generated as described above. HUVECs were
transduced with shHic-5-1 for 5h. After 30 h, lentiviruses delivering
rescue constructs to FL-Hic-5, ALIM2-3 Hic-5 or GFP control were added.
HUVECs were treated with lentiviral particles for 72-96 h with 12 pg/ml
polybrene. Cells were used in invasion assays 5 days later.

Immunoblotting

Protein samples were resolved using 8.5-14% SDS-PAGE gels, transferred
onto Immobilon PVDF membranes (Millipore), blocked with 5% non-fat
dried milk or 5% BSA (Sigma), washed, and probed with primary antibodies
overnight at 4°C. Membranes were incubated with HRP-conjugated
secondary antibodies (Dako, Carpinteria, CA), washed, and developed
with Immobilon Western Chemiluminescent HRP Substrate (Millipore) and
HyBlot CL autoradiography film (Denville Scientific, South Plainfield, NJ).
The antibodies used were directed against Hic-5 (611164, BD Transduction
Laboratories, San Jose, CA; 1:1000 dilution), MT1-MMP (MAB3328,
Millipore; 1:2000 dilution), MT1-MMP phospho-tyrosine 573 (custom
antisera, 21st Century Biologicals; 1:500 dilution) (Nyalendo et al., 2007),
pFAK (ab4803, Abcam, Cambridge, MA; 1:1000 dilution), FAK (05-537,
Millipore; 1:1000 dilution), B2M (M8523, Sigma; 1:500 dilution), actin
(CPO1, Millipore; 1:5000 dilution), o-tubulin (T6199, Sigma; 1:10,000
dilution), GAPDH (ab8245, Abcam; 1:10,000 dilution), Flag (ab18230,
Abcam or F7425, Sigma; 1:1000 dilution), integrin Bl (610467, BD
Transduction Laboratories; 1:1000 dilution), vinculin (V9131, Sigma;
1:1000 dilution), PECAMI1 (sc1505, Santa Cruz Biotechnology, Temecula,
CA; 1:5000 dilution), VE-cadherin (sc52751, Santa Cruz Biotechnology;
1:2000 dilution), RACKI1 (sc17754, Santa Cruz Biotechnology; 1:1000
dilution), vimentin (sc5565, Santa Cruz Biotechnology; 1:1000 dilution),
paxillin (s¢365059, Santa Cruz Biotechnology; 1:1000 dilution), zyxin
(Cell Signaling, 3553; 1:1000 dilution), and filaminA (Bethyl, A301-134A,;
1:1000 dilution).

Immunoprecipitation
Endothelial cells (3x10° cells) cultured in 10-cm dishes were serum starved
for 4 h and treated with 1 uM SIP and 40 ng/ml VEGF and bFGF for
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30 min. Cells were placed on ice, washed twice with 10-ml cold PBS with
cations (1.5 mM Mg*" and Ca®"), lysed in 700 pl cold lysis buffer
containing 0.5% NP-40 in PBS with cations, 1x protease inhibitor cocktail
(Roche, Mannheim, Baden-Wiirttemberg, Germany) and 100x HALT
phosphatase inhibitor (Thermo Scientific, Ashville, NC), and incubated for
10 min on ice with occasional mixing. Lysates were centrifuged at 16,000 g
for 15 min at 4°C. Supernatants were collected and precleared with protein-
G-conjugated magnetic beads (Invitrogen) (5ul) for 1h at 4°C with
agitation. Supernatants were incubated with 2 pg antisera directed against
MTI-MMP (ab38971, Abcam) or FAK (ab40794, Abcam) or species-
specific IgG control for 18 h at 4°C with agitation. Protein-G-conjugated
magnetic beads (10 ul) were added for 2 h at 4°C. Beads were washed five
times with 1 ml lysis buffer without protease inhibitors, eluted in 1% SDS
and analyzed by performing western blotting.

Immunofluorescence

Endothelial cells were seeded on collagen-coated coverslips (50 pg/ml)
overnight. Cells were washed twice with M199 and serum starved for 2 h.
Cells were treated with 1 pM S1P or 40 ng/ml growth factors (or both), fixed
in 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA),
rinsed three times in Tris-glycine buffer (0.3% Tris and 1.5% glycine), and
permeabilized with 0.5% Triton X-100 (Sigma) for 20 min with gentle
agitation before adding blocking buffer (0.5% Triton X-100, 1% BSA and 1%
serum) overnight at 4°C. Primary antibodies were added in blocking buffer
(1:100) for 3 h at room temperature, washed, and incubated with Alexa-Fluor-
488- or 594-conjugated secondary antibodies (Molecular Probes, Grand
Island, NY, USA) (1:300) in blocking buffer for 1h. After washing,
coverslips were mounted and imaged using a Nikon TT A 1R inverted confocal
microscope (Yurakucho, Tokyo, Japan). Primary antibodies used for staining
were directed against Hic-5 (611164, BD Transduction Laboratories), pFAK
(Tyr397, ab4803, Abcam) and VE-cadherin (sc9989, Santa Cruz
Biotechnology). Antibodies recognizing phosphorylated MT1-MMP
(Tyr573) and pre-immune serum were obtained from 21st Century
Biochemicals (Marlborough, MA), as previously described (Langlois et al.,
2004). Cross sections of invading cultures were generated by allowing
endothelial cells to invade collagen matrices for 72 h prior to fixing in 4%
paraformaldehyde. Invasion cultures were embedded in Tissue-Tek OCT
compound (Sakura Finetek, Torrance, CA) frozen in liquid nitrogen, and
stored at —80°C. Frozen sections (20 um) were fixed with methanol at —20°C
for 15 min, and then washed three times for 5 min in PBS at room temperature.
These sections were blocked in 10% goat serum (Invitrogen) for 2 h at room
temperature. For double-staining, primary antibodies (4 pg/ml) were added
and incubated overnight at 4°C in a humidified chamber. The primary
antibodies used for this study were: Hic-5 (611164, BD Transduction
Laboratories), MTI-MMP (MAB3328, Millipore), pMT1-MMP (21st
Century Biochemicals), FAK (ab40794, Abcam), pFAK (Tyr397, ab4803,
Abcam), and VE-cadherin (ALX-210-232-C100, Enzo Life Sciences,
Farmingdale, NY). Tissue sections were washed five times for 20 min in
PBS. The goat anti-rabbit-IgG conjugated to Alexa Fluor 488 and goat anti-
mouse-IgG conjugated to Alexa Fluor 594 (Molecular Probes) were added
and incubated for 1 h at room temperature and washed six times for 20 min in
PBS. Slides were counterstained with Prolong Gold Antifade reagent with
DAPI (Life Technologies, Grand Island, NY; 1:500) and coverslips were
added. For in vivo studies, samples were used from a previously conducted
study (Song et al., 2010). Sexually mature gilts of similar age, weight and
genetic background (F1 crosses of Yorkshire X Landrace sows and Duroc X
Hampshire boars) were observed daily for estrus (day 0) and exhibited at least
two estrus cycles of normal duration (18 to 21 days) before being used in these
studies. All experimental and surgical procedures were in compliance with the
Guide for Care and Use of Agricultural Animals in Teaching and Research and
approved by the Institutional Animal Care and Use Committee of Texas A&M
University (AUP 2006-114). Gilts were ovariohysterectomized on day 24 of
pregnancy, and several sections (~0.5 cm) from the middle of each uterine
horn were embedded in Paraplast-Plus (Oxford Laboratory, St Louis, MO).
Frozen sections (10 um) were prepared from three randomly selected animals
and stained as described above. All image stacks were collected using Nikon
Al confocal laser microscopy.
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Isolation of DRM fractions from endothelial cells

Endothelial cells (30,000 cells/well) were allowed to invade for 6 h before
collagen matrices were washed three times with 200 ul cold PBS with
cations. Starting material was collected by solubilizing collagen matrices
from each treatment group into boiling 1.5x sample buffer (50 ul/gel). 100 pl
of CSK buffer [10 mM HEPES, 250 mM sucrose, 150 mM KCl, 3 mM
MgCl,, 1 mM EGTA, 1x protease inhibitor cocktail (Roche), 100x HALT
phosphatase inhibitor] containing 0.05%, 0.1% or 0.5% Triton X-100 was
added consecutively to each collagen matrix and allowed to incubate on ice
for 10 min with continuous, gentle agitation. Soluble fractions were
collected after each incubation. After the final wash, DRM fractions were
collected by solubilizing the remaining material in 1.5% boiling sample
buffer (30 ul/gel). Starting material, detergent soluble fractions, and DRM
fractions were analyzed by performing western blotting.

Surface biotinylation assays

Three days after lentiviral transduction with shRNA directed against f2M or
Hic-5, cells were seeded into six-well plates coated with 50 pg/ml collagen.
The next day, cells were serum starved for 30 min and treated with 1 pM S1P
for 0, 15 or 60 min. The plate was placed on ice and each well washed
two times with ice-cold PBS with cations. 1 ml cell-impermeable biotin
(EZ-Link sulfo-NHS-LC-LC-biotin, Sigma) at 0.5 mg/ml in PBS with
cations was added to each well and the plate was rotated on ice for 30 min.
After rinsing wells two times with ice-cold PBS with cations, wells were
rinsed with 100 mM glycine (Sigma) in PBS with cations. Cells were
lysed in 450 pl buffer containing 1% NP-40, 0.5% sodium deoxycholate,
1x protease inhibitors (Roche) and 1x Halt phosphatase inhibitor in TBS.
Lysates were collected and centrifuged at 10,000 g for 10 min, at 4°C. Equal
amounts of lysate from each treatment group were added to 30 ul high-
capacity Neutravidin resin beads (Thermo Scientific, Waltham, MA) and
incubated, rotating at 4°C for 16 h. Beads were washed four times with PBS,
and bound proteins were eluted in boiling sample buffer. After western
blotting, the MT1-MMP band intensity values were determined using
Imagel software and normalized to the PECAM1 band intensity for each
respective sample. MT1-MMP fold change expression at cell surface
relative to no S1P treatment was calculated from normalized MT1-MMP
band intensities. Three independent experiments were combined and
quantified.

MT1-MMP activity assays

MTI1-MMP activity assays (AS-72025, Sensolyte) were performed by using
invading endothelial cells that had been stimulated for 6 h with S1P and
growth factors. Wells were washed with 100 ul PBS with cations. Collagen
matrices were added to 50 ul Component D with 0.1% Triton X-100 for
10 min, vortexing every 3 min. Cleared supernatants were added to black
96-well plates and incubated with conditioned medium collected from
TIMP-1-transfected HEK-293 cells to inhibit soluble MMPs, as previously
described (Kwak et al., 2012). The MT1-MMP-sensitive substrate was
added to the wells, mixed briefly and incubated at 37°C for 30 min.
Fluorescence intensity was measured at an excitation of 490 nm and
emission of 520 nm using a Victor X3 Multilabel Reader 2030. Relative
fluorescence units (RFUs) were calculated by subtracting the control reading
(no cell lysate) from each sample, and normalizing the total protein content
between samples. Values were averaged to generate the RFU for each
treatment group.
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