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Abstract 25 

 Somatic mutations in the estrogen receptor alpha (ERα) gene (ESR1), especially Y537S and 26 

D538G, have been linked to acquired resistance to endocrine therapies. Cell based studies demonstrated 27 

that these mutants confer ERα constitutive activity and antiestrogen resistance and suggest that ligand-28 

binding domain dysfunction leads to endocrine therapy resistance. Here, we integrate biophysical and 29 

structural biology data to reveal how these mutations lead to a constitutively active and antiestrogen 30 

resistant ERα. We show that these mutant ERs recruit coactivator in the absence of hormone while their 31 

affinities for estrogen agonist (estradiol) and antagonist (4-hydroxytamoxifen) are reduced. Further, they 32 

confer antiestrogen resistance by altering the conformational dynamics of the loop connecting Helix 11 33 

and Helix 12 in the ligand-binding domain of ERα, which leads to a stabilized agonist state and an altered 34 

antagonist state that resists inhibition. 35 
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Introduction 37 

The estrogen receptor α (ERα) is a ligand-activated nuclear hormone receptor and a major regulator 38 

of cell growth, survival and metastasis in a large fraction of breast cancers. Inhibiting the action of ERα 39 

with selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs), 40 

or reducing endogenous estrogen levels with aromatase inhibitors (AI), are effective treatments for many 41 

of these breast cancers (Strasser-Weippl and Goss, 2005). Due to their efficacy and broad therapeutic 42 

indices, antiestrogens can be administered sequentially for progressive disease over the course of several 43 

years (Toy et al., 2013). Unfortunately, despite continued expression of ERα, the majority of metastatic 44 

breast cancers that initially respond to endocrine therapies become refractory. 45 

Recently, somatic mutations in the ERα gene (ESR1) were linked to acquired resistance to endocrine 46 

therapies of breast cancer (Toy et al., 2013; Merenbakh-Lamin et al., 2013; Robinson et al., 2013; Li et 47 

al., 2014; Jeselsohn et al., 2014). Approximately 25% of patients who previously received 48 

SERM/SERD/AI treatments for an average of 5 years presented with conserved somatic mutations that 49 

were not identified in primary (untreated) tumors. The most prevalent ERα point mutations were Y537S 50 

and D538G, while several others were identified at significantly reduced frequencies. Importantly, breast 51 

cancer cell based studies revealed that the Y537S and D538G mutations conferred hormone-independent 52 

activation of ERα and reduced the inhibitory potency and efficacy of clinically prescribed SERMs and 53 

SERDs (Toy et al., 2013; Merenbakh-Lamin et al., 2013; Robinson et al., 2013; Li et al., 2014; Jeselsohn 54 

et al., 2014; Carlson et al., 1997). Notably, the constitutive activity and antagonist resistance of the 55 

Y537S and E380Q mutations were first described in cell models in 1996 (Weis et al.,1996), and shortly 56 

thereafter the Y537N mutation was found in a clinical sample of metastatic breast cancer (Zhang et al., 57 

1997). However, no clinical follow up studies were reported until 2013. 58 

The Y537S and D538G mutations are especially interesting because they occur at the N-terminus of 59 

Helix 12 (H12) in the ERα ligand-binding domain (LBD). Structurally, ERα LBD is an α-helical bundle, 60 

with the C-terminal helix, H12, functioning as a key structural component of the activating function-2 61 
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(AF-2) cleft that governs the agonist or antagonist state of the receptor. In the agonist conformation (e.g., 62 

estradiol (E2)-bound), H12 covers the ligand binding pocket, docking between Helices 3 (H3) and 11 63 

(H11), thereby facilitating coactivator recruitment to the AF-2 cleft via canonical LXXLL coactivator 64 

sequence motifs. In contrast, in the antagonist state (e.g., SERM-bound), H12 occupies the AF-2 cleft 65 

using its own LXXML sequence, thereby blocking coactivator recruitment and ERα action. 66 

In this study, biophysical assays reveal the impact of the Y537S and D538G mutations on ERα LBD 67 

ligand and co-regulator binding affinity. Additionally, x-ray crystal structures and atomistic molecular 68 

dynamics (MD) simulations uncover altered conformations adopted by the mutant receptors in the 69 

absence and presence of agonists and antagonists. Together, these findings present a molecular 70 

explanation for how the Y537S and D538G mutations elevate the basal or constitutive activity of ERα 71 

and confer resistance to the beneficial effects of the SERM, SERD, and AI therapies. A comprehensive 72 

understanding of how these and other gain-of-function mutations alter the structure and function of ERα 73 

is crucial to development of more efficacious and potent inhibitors to target these mutant receptors in the 74 

clinic. 75 

Results 76 

Y537S and D538G Promote Constitutive Coactivator Binding to ERα 77 

An established time-resolved Förster Resonance Energy Transfer (tr-FRET) assay that determines the 78 

affinity of the steroid receptor coactivator 3 nuclear receptor domain (SRC3 NRD) for the ERs was used 79 

to investigate differences among the WT, Y537S, and D538G (Tamrazi et al., 2005, Jeyakumar et al., 80 

2011). SRC3 was chosen because of its abundance in breast cancer cells and high affinity for ERα (Liao 81 

et al., 2002). Table 1 summarizes all SRC3 coactivator binding affinities. SRC3 NRD bound to the E2-82 

saturated WT ERα LBD with high affinity (Kd = 2.67 ± 0.5 nM) while no binding was detected in the 83 

absence of E2 or in the presence of the SERM 4-hydroxytamoxifen (TOT; the active metabolite of 84 

tamoxifen) (Figure 1). In contrast, the SRC3 NRD bound to Y537S and D538G ERα in the absence of 85 

E2, with affinities of 13.6 ± 2.0 nM and 151 ± 20 nM, respectively, and the binding curves reached 86 
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approximately 60% of the maximum (Figure 1). When Y537S and D538G were pre-saturated with E2, 87 

the SRC3 binding curves reached the same maximum as WT with E2, with the coactivator binding 88 

affinity for the mutants being comparable or slightly higher than WT (WT EC50 = 2.67 ± 0.5 nM; Y537S 89 

= 0.59 ± 0.1 nM; D538G = 3.65 ± 0.4 nM) (Figure 1). Neither the WT nor the mutants bound coactivator 90 

when pre-incubated with saturating concentrations TOT (Figure 1). 91 

To determine the potency of ligands to affect coactivator binding to the ER, ligand was titrated into a 92 

constant amount of SRC3 and ER and measured by tr-FRET. Addition of E2 resulted in increased 93 

coactivator affinity to the Y537S (EC50 = 1.6 ± 1.2 nM) and D538G (EC50 = 2.2 ± 0.1 nM) ERα LBD. 94 

Interestingly, the EC50 value was somewhat reduced for WT (EC50 = 13.8 ± 0.9 nM) (Figure 1-figure 95 

supplement 1). TOT abolished basal Y537S and D538G SRC3 binding in the absence of agonist. To 96 

mimic this reversal in WT, which does not bind SRC3 NRD without ligand, a low concentration of E2 97 

was added to WT-ER to recruit SRC3 NRD to about 50% of maximal (data not shown). As expected, 98 

titration of TOT reversed the binding of SRC3 NRD by the mutant ER and E2-primed WT. The EC50 99 

values for suppressing SRC3 binding of the mutant (done in the absence of agonist) were comparable to 100 

the Ki values for WT. The Ki of TOT was 1.82 ± 0.30 nM for WT, 6.7 ± 0.40 nM for Y537S, and 0.79 ± 101 

0.04 nM for D538G.  102 

The Y537S and D538G Mutants Bind Ligands with Reduced Affinity  103 

Our earlier work demonstrated that SERMs were less potent in inhibiting the transcriptional activity 104 

of the ERα Y537S and D538G mutants compared to WT in breast cancer cells (Toy et al., 2013). The 105 

binding affinities of E2 with the WT and mutant ERα LBDs were measured using radioligand-binding 106 

assays (Carlson et al., 1997). The affinity of E2 for WT-ER (Kd = 0.26 ± 0.13 nM) is approximately 5-107 

fold greater than for the mutants, Y537S (Kd = 1.43 ± 0.55 nM) and D538G (Kd = 1.30 ± 0.63 nM) 108 

(Figure 2). Table 2 summarizes all ligand binding affinities for the WT and mutant ERα LBDs. 109 

A competitive radioligand-binding assay with 3H-E2 as tracer was used to measure the relative 110 

competitive binding affinities (RBAs) of TOT for WT and the mutant-ERs (Katzenellenbogen et al., 111 
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1973; Carlson et al., 1997). The Ki of TOT binding to WT was 0.337 ± 0.018 nM, whereas it was 2.61 ± 112 

0.60 nM and 3.42 ± 0.5 nM for the Y537S and D538G mutants, respectively. Comparing the Ki values, it 113 

is notable that the affinity of TOT for the Y537S and D538G mutants is impaired approximately 8- and 114 

10-fold relative to WT (Table 2). This reduced binding affinity is consistent with the published lower 115 

inhibitory potency of TOT on the mutants in breast cancer cells (Toy et al., 2013). Figure 3 shows 116 

representative radiometric competitive binding measurements. 117 

Biophysical Basis for Aberrant Coregulator Recruitment by Y537S and D538G ERα LBD Mutants 118 

Proteolytic Susceptibility – An established trypsin digestion assay was used to determine whether the 119 

conformational dynamics of the LBD H11-12 loop and H12 are altered as a result of the Y537S and 120 

D538G mutations (Tamrazi et al. 2003). The measured half-life for H11-12 loop and H12 cleavage (t1/2) 121 

of the unliganded (apo) WT ERα LBD was 2 minutes, indicating that this region is highly mobile (Figure 122 

4A). In contrast, the H11-12 loop and H12 region displayed significantly reduced proteolysis for apo 123 

D538G, with a t1/2 of 19 minutes. A further reduction was observed for the H11-12 loop and H12 for apo 124 

Y537S with a t1/2 = 87 minutes. When incubated with saturating concentrations of E2, each of the LBDs 125 

displayed increased stability of the H11-12 loop and H12 with t1/2 = 5 minutes for the WT, 140 minutes 126 

for Y537S, and no detectible cleavage for D538G (Figure 4A). This lack of proteolysis for the D538G-E2 127 

complex suggests that the H11-12 loop and H12 are stabilized and in a conformation that resists trypsin 128 

proteolysis. Importantly, the trend of H11-12 loop and H12 mobility observed for apo LBDs correlates 129 

with the relative coactivator binding affinities for apo WT and mutant LBDs as the Y537S mutant is the 130 

least dynamic and has the highest affinity for the coregulator.  131 

Hydrogen/Deuterium Exchange Mass Spectrometry – Hydrogen/deuterium exchange mass 132 

spectrometry (HDX-MS) was used to further dissect the consequences of Y537S and D538G ERα LBD 133 

mutations on the conformational mobility of the H11-12 loop and H12. Perturbation in time-dependent 134 

deuterium uptake profiles (measured as protection to number of exchanged amide hydrogens with solvent 135 
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deuterium between two states) is indicative of conformational alterations due to rearrangement of amide 136 

hydrogen bonds (Horn et al. 2006). Differential amide HDX experiments were performed to compare the 137 

conformational dynamics of liganded and unliganded (apo) receptors. H11, the H11-12 loop, and H12 138 

were all protected from solvent exchange for WT, D538G and Y537S ERα LBD in the presence of E2 as 139 

compared to apo receptor (solvent exchange was lower for peptides containing these structural elements 140 

in the presence of ligand as compared to unliganded receptor), indicating the adoption of a more stable 141 

agonist-bound conformation matching that observed in x-ray co-crystal structures (Figure 4B, 4C, and 142 

Figure 4-figure supplements 1-3). For the unliganded states, the H12 of Y537S and D538G exhibited 143 

increased solvent exchange (deprotection indicative of increased conformational dynamics) compared to 144 

WT ERα, suggesting that the mutant receptors adopt an alternative H12 conformation in the absence of 145 

E2.  Figure 4B-C shows differential deuterium incorporation for the WT versus mutant ERα LBD in the 146 

apo states focusing on the H11-12 loop and H12 regions. Figure 4-figure supplements 4 and 5 show the 147 

complete differential HDX perturbation maps comparing the apo WT versus apo Y537S and D538G ERα 148 

LBD, respectively. Interestingly, residues close in space to or within the AF-2 cleft (positions 310-325, 149 

344-349, 370-380, and 405-410) of the apo Y537S also showed statistically significant increase in solvent 150 

exchange compared to apo WT. Similar deprotection was observed in residues 310-325 of the apo 151 

D538G.   Together, the HDX data suggests that the Y537S and D538G mutants enables H12 to sample a 152 

suite of conformations that expose the AF-2 cleft at a greater frequency thereby facilitating coregulator 153 

recruitment in the absence of hormone. Furthermore, these data suggest that the Y537S mutant possesses 154 

a higher affinity for SRC3 as compared to D538G as it samples more frequently AF-2-cleft conformers 155 

that facilitate coregulator binding, in agreement with our in vitro SRC3 NRD binding experiments. 156 

In order to test our hypothesis that the increased deuterium uptake in the H12 region of the mutants 157 

was due to a rearrangement of amide hydrogen bonds that could facilitate coactivator recruitment, we 158 

performed differential HDX analysis for the WT, Y537S and D538G ERα LBDs in the presence of SRC3 159 

NRD, in the presence and absence of E2. Few statistically significant differences in solvent exchange 160 
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were observed in the C-terminus of LBD when the WT ERα LBD was incubated with saturating 161 

concentrations of SRC3 NRD, with the exception of H11 (Figure 4-figure supplement 6). In contrast, 162 

the H11-12 loop showed statistically significant protection from exchange in the Y537S-SRC3 NRD 163 

complex, indicating that the region in the Y537S mutant was further stabilized by the inclusion of 164 

coregulator (Figure 4-figure supplement 7). These results suggest that H12 in the apo mutant receptor is 165 

in a more favorable conformation promoting co-activator binding when compared to apo WT. The 166 

magnitude of protection from solvent exchange observed in the AF-2 cleft in Y537S with SRC3 NRD 167 

was further increased upon addition of E2 indicating a more stable Y537S-SRC3-E2 complex (Figure 4-168 

figure supplement 10). In contrast to Y537S, the H11-12 loop and H12 in the D538G mutant did not 169 

show a statistically significant difference in deuterium incorporation in the presence of SRC3 NRD alone, 170 

but did show increased protection from solvent exchange in these regions in the presence of E2 (Figure 171 

4-figure supplements 8 and 10). This finding could be attributed to the low intrinsic SRC3 NRD binding 172 

affinity of apo D538G as compared to Y537S (Table 1). Together, these data, along with the SRC3 NRD 173 

recruitment and trypsin susceptibility, suggest that the increased solvent exchange in H12 and AF-2 cleft 174 

residues for the apo Y537S is due to an altered conformation of H12 that promotes coactivator 175 

recruitment. This observation is apparent in the x-ray crystal structure of the apo Y537S. When compared 176 

to the WT-E2 complex (PDB: 1GWR), the serine at residue 537 in the apo Y537S (PDB: 2B23) replaces 177 

the phenolic side chain of WT Y537, exposing a solvent channel between the H11-12 loop and H3. 178 

Further, H12 is slightly displaced away from the ligand binding pocket towards solvent (Figure 4-figure 179 

supplement 12). It is important to note that the HDX MS studies provide novel insight into the 180 

conformational mobility of the WT H12, in that this helix does not reach maximum structural stability 181 

until both hormone and coregulator are bound. 182 

Structural Basis for H12 Mutant Hormone-Independent Activity 183 

X-ray Crystallographic Analysis of the D538G Agonist States - High resolution x-ray crystal 184 

structures of the apo and agonist-bound states of the Y537S, obtained earlier, revealed near identical H12 185 
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conformations, in which S537 formed a hydrogen bond with D351 to adopt a stable agonist state in the 186 

absence of hormone (Nettles et al., 2008). In this study, we obtained x-ray crystal structures for the 187 

D538G mutant bound to E2, without added ligand (apo), and bound to a SERM (4-hydroxytamoxifen). 188 

D538G Mutation Induces Pronounced Conformational Changes in the Agonist Binding Mode – 189 

The D538G-E2 complex structure was solved to 1.90 Å resolution by molecular replacement, with one 190 

dimer in the asymmetric unit (ASU). All crystallographic statistics are reported in Table 3. Overall, the 191 

structure presents a canonical ERα LBD-agonist binding state where H12 covers the ligand-binding 192 

pocket situated between H3 and H11, and the GRIP peptide occupies the AF-2 cleft. The E2 ligand, GRIP 193 

peptide, and H12 (until residue L549) are well resolved in the map (Figure 5-figure supplement 1). No 194 

differences are observed in the residues comprising the ligand-binding pocket between the D538G-E2 and 195 

WT-E2 structures (Gangloff et al., 2001; Eiler et al., 2001; Phillips et al., 2011). 196 

Pronounced conformational changes are observed in the loop connecting H11 and H12 (H11-12 loop, 197 

residues 531-537) in both monomers in the ASU for the D538G-E2 structure compared to the WT-E2 198 

structure, although no appreciable changes are observed in most of H12. The H11-12 loop is displaced 199 

away from H3 and towards H11, accompanied by conformational changes in Y537 (Figure 5). In the 200 

WT-E2 structure, Y537 forms a hydrogen bond with N348 on H3, packing the H11-12 loop into the 201 

interior of the protein. In the D538G-E2 structure, however, the Y537 loses its hydrogen bond with N348, 202 

and its phenolic side chain is pointed towards bulk solvent. The space previously occupied by Y537 in 203 

WT is replaced by a well ordered water molecule in the mutant (observed in both monomers), which 204 

hydrogen bonds with the backbone amide of Y537 in between H3 and H12 (Figure 5-figure supplement 205 

2). While the side chain orientations are identical for residues 531-536 between both monomers in the 206 

ASU, the side chain of Y537 appears to adopt two different conformations, both facing solvent, while the 207 

main chain orientation of Y537 is identical in the two monomers. It should be noted that the phenolic 208 

oxygen of Y537 maintains the same hydrogen bond to N348 in every WT ERα LBD-agonist structure 209 

available in the PDB. Thus, this rotation of Y537 is unique to the D538G-E2 structure, and it brings the φ 210 
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and ψ angles of residues 537 and 538 out of the α-helix region and into the allowed, more sheet-like 211 

region around -120° and 60° (defined by φ/ψ angle regions in the Ramachandran plot) (Ramachandran et 212 

al., 1963). In the resulting conformation, the α-helix of H12 begins at position 539 for the D538G-E2 213 

structure rather than at 537 for the WT-agonist structures. 214 

Few differences are observed between the unliganded and E2-bound D538G (Cα r.m.s.d. = 0.327 Å). 215 

The greatest conformational discrepancy between the two structures lies at Y537, which, in the 216 

unliganded structure, adopts a more WT-E2 like conformation by orienting towards H3 in chain A, thus 217 

returning the φ and ψ angles of residues 537 and 538 into the α-helical region. Y537 of chain B, however, 218 

matches the solvent-exposed orientation of the D538G-E2 structure whereby the φ and ψ angles for 537 219 

and 538 are outside of the α-helical region. Based on this conformational asymmetry between the two 220 

monomers in apo-D538G ERα, Y537 can switch between the buried state observed in the WT-agonist 221 

structures and the solvent-exposed orientation of the D538G-E2 structure (Figure 5-figure supplement 222 

2A and B). Thus, apo D538G has lost some—but not all—of the conformational attributes of the E2-223 

bound mutant, which is consistent with its modest level of constitutive activity. Together, these structural 224 

features agree with our biophysical data showing that D538G can adopt an agonist state in the absence of 225 

hormone that recruits coregulator with a modest affinity. 226 

It is of interest that the electron density map of apo D538G revealed some density in the ligand 227 

binding pocket representing a non-specific small molecule likely acquired during the expression of the 228 

protein, which remained during crystallization (Figure 5-figure supplement 3). A similar electron 229 

density was observed in the published apo Y537S (Nettles et al., 2008). The unidentified ligand is not of 230 

sufficient size to be a hormone nor is it near enough to H11 and H12 to interact with them. We believe 231 

that the unidentified small molecule in the ligand binding site is an artifact of protein expression in 232 

bacteria, as reported earlier for the Y537S structure, and does not influence H11 and H12 nor the loop 233 

connecting them (Nettles et al., 2008). 234 
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The Dynamics of D538G-Mediated Alterations of the H11-12 Loop– The previously published apo 235 

Y537S structure showed that S537 forms a hydrogen bond with D351 to adopt the agonist state in the 236 

absence of hormone thereby providing a clear conformational explanation for its constitutive activity 237 

(Nettles et al., 2008). In contrast, the apo D538G structure shows that this mutant may use a subtler 238 

mechanism to adopt the agonist conformation in the absence of hormone. In order to gain a better 239 

understanding of how the D538G mutation stabilizes the ERα LBD agonist conformation, MD 240 

simulations were performed on this mutant in the absence of ligand, and for WT ER (Figure 6A) in both 241 

the presence and absence of ligand. As was noted earlier, it has not been possible to obtain crystal 242 

structures of apo WT ER. Thus, to gain insights into the apo WT ERα LBD, MD simulations were 243 

performed by removing E2 from the ER complex prior to the dynamics run.  244 

MD simulations of the WT and the D538G mutant showed an increased flexibility of the H11-12 loop 245 

as a result of the D538G mutation, inducing the Y537 side chain to rotate towards the bulk solvent 246 

(Figure 6B). This rotation shifts the backbone conformations of residues 535-537 (Figure 6E) to occupy 247 

regions of the Ramachandran plot that are similar to WT-E2 and distinct from apo-WT. These mutation-248 

induced changes allow the H11-12 loop to adopt conformations similar to WT-E2, despite the absence of 249 

ligand. Computing the density maps for the side chain atoms of hydrophobic residues V533, V534, P535, 250 

and L536 further confirmed this altered state in which the resulting backbone conformation also permits 251 

new side chain positions (Figure 6C, D). Analysis of the averaged atomic density for residues 533-536 in 252 

the WT simulations reveals that the removal of the ligand (WT-E2 vs. apo WT, Figure 6C) results in 253 

more exposed positions for the hydrophobic residues in the loop region, thus destabilizing the H11-12 254 

loop, while the D538G mutation allows the receptor to maintain side chain positions buried more deeply 255 

into the protein surface (WT-E2 vs. apo D538G, Figure 6D). Further, reduced fluctuations were exhibited 256 

in the WT-E2 and apo-D538G MD simulations, as observed from larger volumes for the given isosurface, 257 

thus indicating that the residues pack more favorably. The optimized packing of the hydrophobic loop 258 

residues was additionally quantified by the decreased solvent exposure for the WT-E2 and apo D538G 259 
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conformations compared to apo WT over the course of the entire simulation (Figure 6F). All of the 260 

changes that result from replacing D538 with glycine are consistent with increased stability of the H11-12 261 

loop in the mutant, which likely contributes to its constitutive activity.  262 

Structural and Biophysical Basis for Reduced SERM Potency 263 

Trypsin Susceptibility of the H12 Mutants with TOT – Trypsin susceptibility was used to determine 264 

whether the antagonist state dynamics of the H11-12 loop and H12 were altered as a result of Y537S or 265 

D538G mutation. Interestingly, these regions showed decreased dynamics (i.e., increased stability) for the 266 

Y537S and D538G mutants, which displayed t1/2 = 60 and 62 minutes respectively, whereas the t1/2 for the 267 

WT was 18 minutes (Figure 4A). These half-lives were higher than apo proteins alone suggesting that 268 

TOT binds and increases the overall stability of the protein (Figure 4A), though to a lesser extent than 269 

does E2.  270 

HDX MS of the WT and Mutants in Complex with TOT- HDX MS was employed to probe the 271 

sequence specific conformational mobility of the Y537S and D538G antagonist states compared to the 272 

WT. Comparison of HDX profiles for TOT-bound WT and mutants revealed that the mutant proteins 273 

adopt alternate conformations in H11/12 regions relative to the WT complex (Figure 7C-E). Figure 7-274 

figure supplements 1-3 show deuterium uptake plots for the WT and mutant ERα LBDs in complex with 275 

TOT for the full protein sequence. Additionally, Figure 7-figure supplements 4-6 show side-by-side 276 

comparisons for the WT, Y537S and D538G ERα LBD in complex with ligand and/or SRC3 NRD versus 277 

their individual apo states.  278 

Structure of the D538G-TOT Complex - To explore the structural basis for reduced SERM potency 279 

and efficacy, the D538G mutant ERα LBD was co-crystallized with TOT. We were unable to obtain 280 

diffraction-quality crystals for Y537S in complex with any SERM. However, the D538G-TOT structure 281 

was solved to 3.06 Å with 4 dimers in the ASU by molecular replacement. The TOT ligand and H12 are 282 

both well resolved in every monomer (Figure 5-figure supplement 1B). Significant conformational 283 

differences are observed between WT-TOT (PDB: 3ERT) and D538G-TOT structures, both in H12 and 284 
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the H11-12 loop regions. We believe that these differences help account for the reduced potency and 285 

efficacy of TOT towards the D538G mutant ERα in breast cancer reporter gene assays. 286 

As with the WT-TOT structure, H12 of the D538G-TOT structure lies in the AF-2 cleft; the 287 

conformation of H12 in the mutant structure, however, is altered compared to the WT (Figure 7A). In 288 

D538G-TOT, L536 is oriented towards solvent rather than docking into the well-defined leucine-binding 289 

pocket found in the WT-TOT structure, and P535 occupies the space previously occupied by the L536 of 290 

the WT (Figure 7A). The largest conformational change occurs in the H11-12 loop (residues 527-537). 291 

Instead of extruding towards solvent, the loop is packed towards the interior of the protein by 9.6 Å 292 

compared to the WT (V534 alpha carbon to alpha carbon) (Figure 7A). This conformational change 293 

likely explains why trypsin displayed a reduced ability to cleave at this region. Additionally, the tertiary 294 

amine at the terminus of the TOT ligand is observed in several conformations in the complex with D538G 295 

ER rather than the single conformation present in the WT-TOT structure. Together, these observations 296 

suggest that the flexibility of a glycine at position 538 reduces the ability of an antagonist to influence the 297 

H11-12 loop and H12. However, care must be taken when interpreting differences within this loop 298 

between the WT and the D538G mutant crystal structures. A crystal contact is formed in the WT-TOT 299 

structure between the backbone amide of K531 with the backbone carbonyl oxygen of K492 in a 300 

symmetry mate. Together, these data reveal that the D538G mutant adopts an altered antagonist 301 

conformation that resists antagonism relative to the WT-TOT complex. 302 

Modeled Structure of the Y537S-TOT Complex - MD simulation was used to model Y537S with 303 

TOT because we were unable to obtain diffraction quality crystals for the complex. During the 304 

simulation, H12 of Y537S was found to lie within the AF-2 cleft in a perturbed conformation compared 305 

to the WT-TOT crystal structure, similar to that seen in the D538G-TOT crystal structure. Specifically, 306 

L536 no longer packs well with the leucine binding site on H3 but reorients to face the solvent, and the 307 

rest of the motif is also pushed outward and even shifted towards the C-terminus along the axial direction 308 

of H12 by half a turn (Figure 7B). These findings suggest that Y537S stabilizes H12 inside the AF-2 309 
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through the formation of a newly formed hydrogen bond (Figure 7B) that is predicted to form between 310 

S537 and E380. Like the D538G-TOT complex, our data for the Y537S-TOT complex show that these 311 

conformational changes serve to reduce the inhibitory potency of the SERM relative to the WT ERα 312 

LBD. 313 

  314 
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Discussion 315 

Acquired resistance to endocrine therapies represents a substantial barrier towards obtaining 316 

prolonged remission of ER-dependent metastatic breast cancers for a significant population of patients. 317 

While somatic mutations in the androgen receptor are a known mechanism of acquired hormone therapy 318 

resistance in prostate cancer, somatic mutations in ESR1 have only recently been identified as an 319 

important mechanism of acquired endocrine therapy resistance in breast cancer. Subsequent studies have 320 

established Y537S and D538G as the two most common point mutations conferring hormone-321 

independent activation and reduced SERM/SERD/AI inhibitory potency and likely efficacy (Robinson et 322 

al., 2013; Toy et al., 2013; Jeselsohn et al., 2014). The clinical importance of these ESR1 mutations 323 

highlights the importance of understanding the mechanisms by which they influence ERα structure and 324 

function. 325 

Here, biochemical and biophysical techniques combined with x-ray crystal structures, and MD 326 

simulations provide a molecular explanation for how the Y537S and D538G point mutations in the ERα 327 

LBD alter the structure and function of the receptor. Coactivator binding assays show that these mutant 328 

LBDs recruit the SRC3 coactivator in the absence of hormone, while the unliganded WT LBD does not. 329 

Importantly, apo Y537S binds SRC3 NRD with a significantly increased affinity compared to D538G. 330 

This differential coactivator binding affinity likely accounts for the significantly increased constitutive 331 

transcriptional activity of Y537S vs. D538G in breast cancer cell line reporter gene assays (Toy et al., 332 

2013). Figure 8 shows a model for aberrant ERα activity as a result of Y537S and D538G mutations in 333 

the recurrent anti-estrogen resistant breast cancer cell. Ligand-binding assays demonstrate that both 334 

mutants possess a slightly reduced affinity for E2 and a significantly reduced affinity for TOT. 335 

Collectively, these data suggest that the combination of a recruitment of coactivator in the absence of 336 

hormone and a reduced TOT binding affinity underlie the hormone therapy resistance conferred by these 337 

H12 ERα mutations. 338 
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Comprehensive biophysical and structural investigations by proteolytic susceptibility assays, HDX-339 

MS, x-ray crystallography, and MD simulations reveal how the Y537S and D538G mutations affect ERα 340 

in the apo, agonist, and antagonist-bound states, thereby providing a detailed structural explanation for 341 

the hormone-resistance conferred to the ERα. The Y537S and D538G mutations are located at or near 342 

H12, a key molecular switch governing the ligand-regulated actions of ERα via AF-2. Previously 343 

published apo and agonist-bound Y537S structures showed that S537 promotes the agonist conformation 344 

in the absence of ligand by forming a hydrogen bond to D351 (Nettles et al., 2008), in the process 345 

facilitating a tighter packing of the H11-12 loop against the LBD. Similarly, our analysis of the agonist-346 

bound and apo D538G structures show that this mutation relaxes the helical character at the start of H12, 347 

thereby also relaxing the H11-12 loop and improving the packing of its hydrophobic side chains. 348 

Importantly, our data also show that binding of coregulator (SRC3) further stabilizes H12 in the agonist 349 

conformation. While the Y537S and D538G mutants may work through different mechanisms, both 350 

stabilize the agonist state in the absence of hormone. The D538G mutation, however, appears to be less 351 

stabilizing, as reflected by the lower constitutive activity of D538G ERα in both biochemical and cell-352 

based assays (Toy et al., 2013). 353 

Examination of the molecular basis for reduced SERM potency and efficacy for mutant ERα LBDs 354 

reveals that this likely evolves from structural changes to the H11-12 loop, resulting in a decreased 355 

binding affinity of antagonist ligands and an altered, stabilized, antagonist conformation of H12 in the 356 

AF-2 cleft. Our biophysical studies indicate that the H11-12 loop and H12 are both altered when TOT is 357 

bound in the Y537S and D538G mutants compared to the WT. Further, when compared to the WT-TOT 358 

structure, the D538G-TOT structure shows an altered conformation of the H11-12 loop and H12 359 

occupancy of the AF-2 cleft, and multiple conformations of the TOT ligand (indicative of reduced 360 

influence on the H11-12 loop). Additionally, MD simulation of the Y537S-TOT complex shows that 361 

S537 might form a hydrogen bond with E380 that alters the antagonist conformation. Therefore, the 362 
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reduced inhibitory potency of TOT stems from its reduced affinity for the Y537S and D538G mutants 363 

along with conformational changes to the antagonist state once it occupies the ligand-binding site.  364 

Taken together, these results suggest that the constitutive activity conferred by the Y537S and 365 

D538G mutations stems from the intrinsic ability of the mutant receptors to adopt a stable agonist 366 

conformation in the absence of hormone, thereby leading to enhanced recruitment of SRC3 coactivators 367 

and increased ERα transcriptional activity. This pre-organized agonist state contributes to a decreased 368 

affinity for hormone and especially for SERMs because the stabilized H12 agonist conformation restricts 369 

ligand access to the hormone-binding pocket. In addition to reduced ligand affinity, SERM action is 370 

further reduced by an altered antagonist state of H12. Thus, recruitment of coactivators in the breast 371 

cancer cell is not inhibited as efficiently for the Y537S and D538G mutants as for WT ERα. 372 

One caveat to the approach described in this study is that ERα is a multi-domain protein and only the 373 

LBD was used for structural studies. To gain deeper insight into how these mutations affect full length 374 

ERα, further studies on intact multi-domain protein will be necessary. In addition, the effect of these 375 

mutations on the other aspects of ERα action including other hormone/SERM/SERD binding affinities, 376 

homo dimer formation, DNA-binding, and stability (in vitro and in vivo) and whether these mutant 377 

receptors display a differential preference for a spectrum of coactivators must be investigated. 378 

Our findings suggest that SERMs and SERDs that are designed to specifically increase the dynamics 379 

of H12 might lead to drugs with increased potency. In this regard, our data show that the H11-12 loop 380 

plays an important and previously unrecognized role in regulating the behavior of H12, an essential 381 

molecular switch that is allosterically controlled by ligand, which determines the differential ability of the 382 

ERα AF-2 to recruit coactivators and corepressors. Therefore, antagonists with improved inhibitory 383 

potency will increase the dynamic character of mutant H12, an already appreciated aspect of SERD action 384 

(Pike et al., 2001). Additionally, our work provides a biophysical hypothesis for why fulvestrant (a 385 

SERD, known to disorder H12) was the only molecule which could completely ablate the transcriptional 386 
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activity of the Y537S and D538G mutants in breast cancer cells while TOT (a SERM) could not (Toy et 387 

al., 2013). Therefore, newly developed mixed SERM/SERDs and SERDs with improved 388 

pharmacokinetics and oral bioavailability over fulvestrant, such as AZ9496, bazedoxifene, GDC910, and 389 

RAD1901, should be particularly effective against cancers expressing the Y537S and D538G ESR1 390 

mutants (De Savi et al., 2015; Garner et al., 2015; Lai et al., 2015; Wardell et al., 2013). These 391 

compounds may prove invaluable for treating endocrine therapy-resistant ER+ breast cancers and also 392 

preventing or delaying the appearance of these somatic mutations in early-stage patients. 393 

 394 

Materials and Methods 395 

Time Resolved-FRET Assays 396 

Protein Preparation for TR-FRET: Site-directed mutagenesis was used to generate the Y537S and 397 

D538G mutations in the ligand binding domain (LBD) of the human estrogen receptor α (ERα amino 398 

acids 304-554). The WT and mutant ERα and the nuclear receptor domain (NRD) of human SRC3 399 

encompassing three NR boxes (amino acids 627-829) were expressed in E. coli, using methods reported 400 

previously (Jeyakumar et al., 2011; Carlson et al., 1997). ER LBDs of wild type, Y537S and D538G were 401 

prepared as 6×His fusion proteins, with a single reactive cysteine at C417. While bound to the Ni-NTA-402 

agarose resin (Qiagen Inc., Santa Clarita, CA), the ERs were labeled with MAL-dPEG4-biotin (Quanta 403 

BioDesign, Powell, OH), site-specifically at C417. The SRC3-NRD construct has 4 cysteines and was 404 

labeled non-specifically, also while on the resin, with 5-iodoacetamido fluorescein (Molecular Probes, 405 

Invitrogen, Eugene, OR). It was previously determined that an average of 1.8-2 fluorescein molecules are 406 

attached to the SRC3 NRD (Kim et al., 2005).  407 

SRC titration: SRC3 was titrated into a fixed amount of ERα-LBD-biotin mixed with SaTb 408 

(streptavidin-terbium, Invitrogen, Grand Island, NY), on 96-well black microplates (Molecular Devices, 409 

Sunnyvale, CA) following previously determined methods (Jeyakumar et al., 2011). The time-resolved 410 
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Förster resonance energy transfer (tr-FRET) measurements were performed with a Victor X5 plate reader 411 

(Perkin Elmer, Shelton, CT) with an excitation filter at 340/10 nm and emission filters for terbium and 412 

fluorescein at 495/20 and 520/25 nm, respectively, with a 100 µs delay. Diffusion-enhanced FRET was 413 

determined by a parallel incubation without biotinylated ER-LBD and subtracted as a background signal. 414 

The final concentrations of reagents were: 1 nM ERα-417, 0.25 nM streptavidin-terbium, 1 µM ligand, 415 

SRC3-F1 coactivator titrated from 3.2×10-7 to 3.2×10-12 M. The data, representing 2-3 replicate 416 

experiments, each with duplicate points, were analyzed using GraphPad Prism 4 and are expressed as the 417 

EC50 in nM. 418 

Ligand titration: Ligands were titrated into a constant amount of ER-LBD-biotin, SaTb, SRC3-F1. 419 

The final concentrations were 1 nM ER-LBD, 0.25 nM SaTb, 100 nM SRC3-fluorescein, and increasing 420 

ligand concentrations from 1×10-12
 to 1×10-6 M. Diffusion-enhanced FRET was determined by a parallel 421 

incubation without biotinylated ER-LBD and subtracted as a background signal. The tr-FRET was 422 

measured with a Victor X5 plate reader as outlined above. The data, representing 2-3 replicate 423 

experiments, each with duplicate points, was analyzed using GraphPad Prism 4, and are expressed as the 424 

EC50 in nM. 425 

Ligand Binding Assays 426 

Relative binding affinities (RBA) were determined by a competitive radiometric binding assay with 2 427 

nM [3H]-E2 as tracer, as a modification of methods previously described (Katzenellenbogen et al, 1973: 428 

Carlson et al., 1997). Incubations were at 0°C for 18-24 h. Hydroxyapatite was used to absorb the 429 

receptor-ligand complex, and unbound ligand was washed away. The determination of RBA values is 430 

reproducible in separate experiments with a CV of 0.3. The IC50 values for inhibition of [3H]-E2 were 431 

converted to Ki values using the Cheng-Prusoff equation (Ki = IC50/(1 + conc. tracer/Kd tracer))(Cheng 432 

and Prusoff 1973); this was necessary because the affinity of the [3H]-E2 tracer is different for WT and 433 

mutant ERs. The Kd of [3H]-E2 for the ERs was determined in a saturation binding assay, as 0.26 ± 0.13 434 

nM for the WT, 1.43 ± 0.55 nM for Y537S, and 1.30 ± 0.63 nM for D538G (Figure 2 ). For the saturation 435 



 
 

20 
 

ligand binding (Scatchard analysis), protein was diluted to 0.8 nM, in Tris-glycerol buffer (50 mM Tris 436 

pH 8.0, 10% glycerol, with 0.01 M 2-mercaptoethanol and 0.3 mg/mL ovalbumin added) and incubated 437 

with various concentrations of [3H]-E2 (Perkin-Elmer, Waltham, MA) in the absence or presence of a 438 

100-fold excess of unlabeled ligand for 3-4 hours, at 0°C. Aliquots of the incubation solution were used to 439 

determine the total [3H]-E2 in the sample. The incubation solutions were then assayed by adsorption onto 440 

HAP (hydroxyapatite, BioRad, Hercules, CA) and the free estradiol was washed away. Data were 441 

processed by GraphPad Prism 4 according to the method of Scatchard (Scatchard, 1949; Hurth et al., 442 

2004). 443 

Trypsin Proteolysis 444 

Protein was prepared and labeled as described above for the trFRET assays. It was incubated in t/g 445 

buffer with or without 1 μM of ligand, at room temperature for 1 h. 1 μg trypsin per unit of protein was 446 

added for 10, 30, 60, and 300 minutes at room temperature according to previously established methods 447 

(Tamrazi et al., 2003). FRET signal was measured using a Victor X5 plate reader as outlined above. The 448 

data, representing 2-3 replicate experiments, were analyzed using GraphPad Prism 4, and are expressed as 449 

half-lives (t1/2). 450 

Hydrogen Deuterium Exchange 451 

Differential hydrogen/deuterium exchange (HDX) MS. Solution-phase amide HDX experiments were 452 

carried out using a fully automated system as described previously with slight modifications.(Chalmers et 453 

al., 2006) Prior to HDX, 10 µM of 6×-HIS-ERα-LBD (WT or mutants) were incubated with 100 µM of 454 

individual ligands for 1 h on ice for complex formation. Differential HDX experiments with ligands were 455 

initiated by mixing either 5 μl of the ERα LBD alone (apo) or the complex (1:10 molar mixture of ERα 456 

and ligands) with 20 μl of D2O-containing HDX buffer (20 mM Tris 8.0, 150 mM NaCl, and 3 mM DTT). 457 

For the differential HDX experiments with SRC3 NRD, 10 µM of WT or mutant ERα LBDs were mixed 458 

with 25µM of SRC3 NRD for 2 h on ice for complex formation and then subjected to HDX as described 459 

above. For the apo ERα comparisons, 10 µM of WT or mutant ERα LBDs were run in a similar 460 
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differential format comparing either Y537S or D538G directly with the WT. 25 μl aliquots were drawn 461 

after 0 s, 10 s, 30 s, 60 s, 900 s or 3,600 s of on-exchange at 4°C and the protein was denatured by the 462 

addition of 25 μl of a quench solution (1% v/v TFA in 5 M urea and 50 mM TCEP). Samples were then 463 

passed through an immobilized pepsin column at 50 μl min-1 (0.1% v/v TFA, 15°C) and the resulting 464 

peptides were trapped on a C8 trap column (Hypersil Gold, ThermoFisher, Grand Island, NY). The bound 465 

peptides were then gradient-eluted (5-50% CH3CN w/v and 0.3% w/v formic acid) across a 1 mm × 50 466 

mm C18 HPLC column (Hypersil Gold, ThermoFisher, Grand Island, NY) for 8 min at 4°C. The eluted 467 

peptides were then subjected to electrospray ionization directly coupled to a high resolution Orbitrap mass 468 

spectrometer (LTQ Orbitrap XL with ETD, Thermo Fisher).  469 

Peptide Identification and HDX data processing: MS/MS experiments were performed with a LTQ 470 

linear ion trap mass spectrometer (LTQ Orbitrap XL with ETD, Thermo Fisher) over a 70-min gradient. 471 

Product ion spectra were acquired in a data-dependent mode and the five most abundant ions were 472 

selected for the product ion analysis. The MS/MS *.raw data files were converted to *.mgf files and then 473 

submitted to Mascot (Matrix Science, London, UK) for peptide identification. Peptides included in the 474 

peptide set used for HDX detection had a MASCOT score of 20 or greater. The MS/MS MASCOT search 475 

was also performed against a decoy (reverse) sequence, and false positives were ruled out. The MS/MS 476 

spectra of all the peptide ions from the MASCOT search were further manually inspected, and only the 477 

unique charged ions with the highest MASCOT score were used in estimating the sequence coverage. The 478 

intensity-weighted average m/z value (centroid) of each peptide isotopic envelope was calculated with the 479 

latest version of our in-house software, HDX Workbench (Pascal et al., 2012). HDX data are presented as 480 

an average of three independent triplicates.  Deuterium uptake for each peptide is calculated as the 481 

average of % D2O for the 6 time points (10s, 30s, 60s, 300s, 900s and 3600s) and the difference 482 

in average % D2O values between the apo and liganded states is presented as a heat map with a color 483 

code given at the bottom of each figure (warm colors for deprotection and cool colors for protection) and 484 

colored only if they show a >5% difference (less or more protection) between the two states and if atleast 485 
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two time points show a statistically significant difference in a paired two-tailed student’s t-test (p<0.05). 486 

Grey color represents no significant change (0-5%) between the two states. The exchange at the first two 487 

residues for any given peptide is rapid and is ignored in the calculations. Each peptide bar in the heat map 488 

view displays the average Δ %D2O values with its associated standard deviation and the charge state 489 

shown in parentheses.  490 

 491 

X-ray Crystallographic Analysis of the D538G ERα LBD 492 

Generation and Production of the D538G ERα LBD Mutant: Quick Change Mutagenesis (New 493 

England Biolabs, Ipswitch, MA) was performed to change aspartate 538 to glycine on a pGM6 containing 494 

the gene for the 6×His-Tobacco etch virus (TEV)-ERα LBD. The following oligonucleotide primers were 495 

used to generate the mutant: 496 

Forward: (5’GGTGCCCCTCTACGGCCTGCTGCTGG3’) 497 

Reverse: (5’CCAGCAGCAGGCCGTAGAGGGGCACC3’) 498 

The sequence for the resulting ERα LBD D538G mutant was verified by DNA sequencing. 499 

Protein Expression for Crystal Generation: A 250 mL LB broth containing 100 μg/mL ampicillin 500 

was inoculated with a single colony of the E. coli expression strain BL21 (DE3) transformed with pGM6-501 

ERα LBD D538G mutant. Following overnight incubation at 37°C, 10×1L LB broth containing 100 502 

μg/mL ampicillin were each inoculated with 5 mL aliquots of the overnight culture. Cells grew at 37°C 503 

with shaking at 180 rpm until they reached mid-log phase growth (OD600 = 0.8) at which point expression 504 

of the protein was induced with 0.3 mM IPTG and incubation continued overnight with shaking at 20°C. 505 

Cells were harvested by centrifugation at 3,500 g for 30 minutes, and the pellet was frozen at -20°C. The 506 

pellet was resuspended in 200 mL BPER and 100 μg DNAse, protein inhibitor cocktail, and lysozyme 507 

were added to the lysate. Following 30 minutes of stirring at 4°C, the lysed cells were centrifuged at 508 

22,000 g for 30 minutes and the supernatant isolated. The soluble fraction was incubated with 2 mL of 509 
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pre-washed Ni-NTA resin (ThermoFisher, Grand Island, NY) then placed onto a column. The column 510 

was washed with 10 column volumes of buffer containing 20 mM Tris pH 8.0, 500 mM NaCl, 40 mM 511 

imidazole pH 8.0, 10% glycerol, and 15 mM 2-mercaptoethanol, and the protein was subsequently eluted 512 

from the column using a buffer containing 20 mM Tris pH 8.0, 500 mM NaCl, 500 mM imidazole pH 513 

8.0, 10% glycerol, and 15 mM 2-mercaptoethanol. The 6×His-TEV tag was removed using a 15:1 w/w 514 

ratio of LBD to TEV protease. The LBD was isolated from the tag by a pass over a column containing 2 515 

mL of washed Ni-NTA resin and the flow through, containing the LBD, was isolated. The protein was 516 

dialyzed overnight in a buffer containing 20 mM Tris pH 8.0, 20 mM NaCl, 10% glycerol and 15 mM 2-517 

mercaptoethanol then subjected to a final purification on a Resource Q ion exchange column 518 

(ThermoFisher, Grand Island, NY). A 100 mL linear gradient was used to elute the protein with a buffer 519 

containing 20 mM Tris pH 8.0, 500 mM NaCl, 10% glycerol and 15 mM 2-mercaptoethanol. A single 520 

peak corresponding to the ERα LBD D538G mutant was isolated and a single band was observed on a 521 

SDS-PAGE gel (BioRad, Hercules, CA). Lastly, the LBD was concentrated to 10 mg/mL using a spin 522 

concentrator, separated into 100 μL aliquots, flash frozen, and stored at -80 °C until use. 523 

Crystallization of the ERα LBD D538G Mutant: For the estradiol (E2) and 4-hydroxytamoxifen 524 

(TOT)-bound structures, the purified ERα LBD D538G mutant at 10 mg/mL was incubated for overnight 525 

with 1 mM ligand. For the apo D538G and E2 structures a 2.5-fold mol:mol (excess) of glucocorticoid 526 

receptor interacting protein NR box II peptide (GRIP) was incubated with the LBD for approximately 3 527 

hours. Hanging drop method was used for all crystals using VDX pre-greased plates (Hampton Research, 528 

Aliso Viejo, CA). For the apo D538G structure, 15 mM MgCl2 and 10 mM ATP were added to the 529 

protein prior to plating. A total of 1 μL of 5 mg/mL apo D538G was mixed with 1 μL of 30% PEG 3,350, 530 

200 mM MgCl2 and 100 mM Tris pH 8.5. For the E2-complex structure a total of 1 μL of 5 mg/mL 531 

protein was mixed with 1 μL of 25% PEG 3,350, 200 mM MgCl2, 100 mM Tris pH 8.5 and 1 mM 532 

phenylalanine. For the D538G-TOT complex structure, the protein/ligand was centrifuged at 19,000 g to 533 

remove precipitate then 2 μL at 10 mg/mL was mixed with 2 μL of 400 mM ammonium sulfate, 100 mM 534 
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Tris pH 8.0 and 10% glycerol. For the apo and E2-bound structures, clear triangular rods appeared after 3 535 

days. For the TOT-bound structure, clear rectangular rods appeared overnight. Paratone-N was used as 536 

the cryo-protectant for the apo and TOT-bound structures, whereas 25% glycerol was used as the cryo-537 

protectant for the E2-bound structure. All x-ray data sets were collected at the Advanced Photon Source at 538 

Argonne National Laboratories, Argonne, Illinois. The TOT-complex data set was collected at the SBC 539 

19-BM beamline (0.97 Å), the E2-bound structure at LS-CAT 21-ID-D (0.97 Å), and the apo structure at 540 

LS-CAT 21-ID-F (0.97 Å). 541 

X-ray Structure Solution: Data were indexed, scaled and merged using HKL-3000(Otwinowski and 542 

Minor, 1997). Phaser was used for all molecular replacements (McCoy et al., 2007). An existing structure 543 

of the WT ERα LBD in complex with TOT (PDB: 3ERT) was modified by removing all ligands and 544 

water molecules, and then used as the search molecule for the D538G-TOT structure (Shiau et al., 1998). 545 

For the WT and apo D538G structures, an existing WT ERα LBD-agonist structure (PDB: 2QXM) was 546 

modified by removing all ligands and water molecules, and then used as the search molecule (Nettles et 547 

al., 2008). For the apo and E2-bound structures, one dimer was found in the asymmetric unit (ASU), 548 

whereas four dimers were found for the TOT-bound structure. The CCP4i (Refmac) program suite was 549 

used for all refinement (Winn et al., 2011). The models were refined using iterative rounds of Refmac and 550 

Coot. Densities for the ligands were clearly visible after the first round of refinement for both the E2- and 551 

TOT-bound structures. Unresolved residues were not included in the structures deposited in the Protein 552 

Data Bank including the apo D538G (PDB: 4Q13), D538G-E2 complex (PDB: 4PXM), and D538G-553 

4OHT (PDB: 4Q50) structures. All x-ray crystal structure images were made using Pymol. 554 

Molecular Dynamics (MD) Simulations of D538G 555 

Structure Preparation: Atomistic molecular models of dimeric ERα were constructed in silico 556 

starting from an x-ray crystal structure of ERα in complex with E2 and a coactivator peptide (Wärnmark 557 

et al., 2002). Atomic coordinates were downloaded from the Protein Data Bank (PDB code: 1GWR) and 558 
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prepared using a combination of the MOE (Molecular Operating Environment, 2014) and VMD (Visual 559 

Molecular Dynamics; Humphrey et al., 1996). Using the Structure Preparation module within MOE, all 560 

missing loops were constructed, explicit hydrogen atoms added, a side chain rotamer search was 561 

performed, and protonation states were computed for all titratable residues. The resulting structure was 562 

loaded into VMD, where each protein monomer, coactivator peptide, and all crystallographic water 563 

molecules were written to separate PDB files; the E2 ligand coordinates were discarded for simulated apo 564 

structures. Each histidine residue was renamed according to the CHARMM naming convention to reflect 565 

the computed protonation states, as shown in Table 4. The dimeric ERα structure was then constructed 566 

from the separate PDB files using the PSFGEN plugin within VMD. The N- and C-termini were capped 567 

with neutral acetyl and N-methylamido groups, respectively. The protein complex was subsequently 568 

solvated using the SOLVATE plugin of VMD with a 20-Å padding thickness on all sides, and ions were 569 

added using the AUTOIONIZE plugin to neutralize the system and yield a final NaCl concentration of 0.1 570 

M. Ions were placed a minimum distance of 5 Å from the protein surface. The resulting fully solvated 571 

system contained ~101k atoms. The D538G mutant structure was constructed in an analogous manner, 572 

differing only in an additional “mutate” command in PSFGEN to create the D538G mutation. Additional 573 

steps to minimize and equilibrate the mutated region are discussed below. 574 

Simulations: All MD simulations were performed using the NAMD2 software package (Phillips et 575 

al., 2005). The CHARMM36 force field was used to describe the protein, solvent, and ions, and included 576 

CMAP backbone corrections and NBFIX terms for protein-ion interactions (Mackerell et al., 1998; 577 

Mackerell, 2004). The TIP3P water model was used to as the explicit solvent (Jorgensen et al., 1983). 578 

Ligand parameters for E2 were taken from the CHARMM General Force Field (CGenFF; 579 

Vanommesleaghe et al., 2010) as assigned by analogy using the ParamChem (Vanommeslaeghe and 580 

MacKerell, 2012a) webserver. Attempts to further refine torsion parameters with moderate penalty scores 581 

using the Force Field Toolkit (ffTk; Mayne et al., 2013) did not yield significant improvement of the 582 

potential energy surface. Simulations were performed under an NPT ensemble at 1.0 atm and 310 K, 583 
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employing a Nosé-Hoover thermostat and a Langevin piston with a period of 100 fs, decay of 50 fs, and 584 

damping coefficient of 0.5 ps-1 (Martyna et al., 1994; Feller et al., 1995). A simulation time step of 2 fs 585 

was used, and atomic coordinates were recorded every 500 steps (1 ps). The molecular system employed 586 

periodic boundary conditions, and non-bonded interactions were truncated using a switching function 587 

from 10.0 to 12.0 Å. Long range electrostatics were evaluated using the particle mesh Ewald (PME) 588 

method (Darden et al., 1993). Bonded and non-bonded forces were computed at every time step, while 589 

PME forces were computed every other time step. 590 

All molecular systems were first simulated to equilibrate “non-natural” components of the system by 591 

applying harmonic restraints (k = 1 kcal/mol/Å2) on heavy atoms present in the 1GWR x-ray crystal 592 

structure. Atoms belonging to added water, ions, missing loops (±2 residues), or mutated residues (±2 593 

residues) were left unrestrained. The system was subjected to a 10,000-step downhill minimization, 594 

followed by 1 ns of simulation. All restraints were then released and the system was simulated for an 595 

additional 100 ns of production simulation. 596 

MD Simulation Trajectory Analysis: All analyses were performed using VMD (Humphrey et al., 597 

1996). Simulation trajectories were first prepared by removing water molecules, concatenating sequential 598 

trajectory files, downsampling the framerate to 10 ps/frame, and rewrapping the periodic system to move 599 

the protein center of mass to the center of the periodic cell. Prior to analysis, all trajectories were aligned 600 

to the initial frame by fitting Cα atoms of the protein, excluding the coactivator peptides from the fit 601 

measurement. When a consistent reference frame was required for cross-trajectory comparisons, all 602 

frames were aligned to the 1GWR x-ray structure prior to analysis. With the exception of explicit time 603 

series measurements (i.e., SASA), all other analyses were performed for the last 50 ns of the 100-ns 604 

production simulation. 605 

Side chain conformations of residue Y537 were visualized by superimposing the position of the 606 

phenolic oxygen every 100 ps (n = 500) using the standard “points” representation of VMD. Density 607 
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maps of side chain and backbone atoms were computed using the VOLMAP plugin of VMD with a 608 

resolution of 1 Å and averaging the mass-weighted density over the trajectory. The volumetric maps for 609 

visualizing the side chain positions were set to the 0.75 isosurface, representing the volume containing 610 

atomic density for greater than 75% of the analyzed trajectory. Ramachandran analysis was performed by 611 

measuring the φ and ψ dihedral angles for each residue at a 10-ps interval (n = 5,000). The data were then 612 

converted to a two-dimensional histogram and plotted using the Matplotlib package of the python 613 

programming language (Hunter, 2007). A Gaussian filter was used to smooth the data (σ = 10.0), and the 614 

resulting bins were grouped into 10 contours. The lowest intensity contour (background, dark blue) was 615 

removed for clarity. The solvent accessible surface area (SASA) was computed for the side chains of 616 

hydrophobic residues 533-536 using the built-in “measure sasa” function of VMD. The default probe 617 

radius of 1.4 Å was used while taking the surrounding protein environment into account. SASA 618 

measurements were computed at 10-ps intervals (n = 10,000) over the entire production simulation and 619 

smoothed using a Gaussian-weighed running average (σ = 10.0). 620 

Molecular Dynamics Simulations of Y537S-TOT Complex 621 

A parameter set was constructed for TOT. Its structure was optimized quantum mechanically at the level 622 

of restricted Hartree-Fock (RHF) 6-31g* using the computer program Gaussian 03 (Gaussian 03, 623 

Revision C.02, Frisch et al., 2004). The partial atomic charges of TOT were then derived with Restrained 624 

ElectroStatic Potential (RESP) (Bayly et al., 1993; Cornell et al., 1993) fitting to the quantum mechanical 625 

RHF/6-31g* potential. The ideal geometry was defined as the optimized. The other molecular mechanical 626 

parameters were derived by assigning CHARMm22 atom types for TOT (Momany and Rone, 1992).  627 

 628 

The dimer with the least missing residues of the H11-H12 loop was selected from the D538G-TOT crystal 629 

structure and served as the template structure to model the Y537S-TOT dimer structure. The side chain 630 

atoms at positions 537 and 538 were removed, and then desired side chain atoms were placed with the 631 

other missing atoms using the default geometry parameters in CHARMm22. Hydrogen atoms were 632 
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placed with the hbuild module of the computer program CHARMM (Brünger and Karplus, 1988; 633 

Vanommeslaeghe and MacKerell, 2012b). Missing residues (loops) in the starting crystal structure were 634 

optimized in three rounds (100 steps of the steepest descent method followed by two rounds of 100 steps 635 

of the adopted New-Raphson method) with updated harmonic constraints on the other atoms. Then all 636 

newly-added atoms' positions were optimized in the same fashion.  637 

The resulting minimized structure was solvated with water molecules of 15 Å padding thickness from the 638 

molecular boundary and ionized to reach charge neutrality and the concentration of 0.145 M, both of 639 

which were done with VMD (Humphrey et al., 1996). The system was minimized for 5000 steps before a 640 

100-ns MD simulation using NAMD2 (Phillips et al., 2005) was performed.  641 
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Figure Legends 840 

 841 
Figure 1: Binding of the SRC3 coactivator to WT, Y537S, or D538G ERα LBD in the absence or 842 
presence of E2 or TOT.  843 
 844 
Figure 1-figure supplement 1: Binding of the SRC3 coactivator to WT, Y537S, or D538G mutant ERα 845 
LBD with increasing concentrations of E2 or TOT.  846 
 847 

Figure 2: Determination of Kd values of estradiol (E2) binding to wild type, Y537S, and D538G LBDs, 848 
by a direct binding assay.  All slopes had an r2 of 0.95 or better; shown is a representative experiment. For 849 
details, see Methods. 850 

Figure 3: Relative binding affinity assay of wild type, Y537S, and D538G LBDs, showing the TOT 851 
competition curves.  With all proteins, the E2 curve is set to 100% and is shown only once.  For details, 852 
see Methods. 853 

Figure 4: Conformational stability of WT and mutant ERα LBD H11-12 loop and H12. A) Proteolytic 854 
susceptibility of the WT, Y537S and D538G ERα LBD mutants in the apo, E2-bound, and TOT-bound 855 
states. B-C) Deuterium uptake plot for the c-terminus of H11 along with the H11-12 loop and H12 for the 856 
apo WT vs Y537S ERα LBD (B), apo WT vs D538G ERα LBD (C). All HDX MS data represent  an 857 
average of 3 replicates and are color coded from red to blue with warm colors representing increased 858 
conformational dynamics (red being the highest D2O uptake) and cool colors representing decreased 859 
conformational dynamics (blue being the lowest D2O uptake). All regions colored were determined to be 860 
statistically significant based on a paired two-tailed Students t-test. A legend is provided at the bottom. 861 
Grey indicates no statistically significant change between the two apo states.  862 
 863 
Figure 4-figure supplement 1: Complete differential amide HDX MS map of WT ERα LBD binding to 864 
E2. 865 
 866 
Figure 4-figure supplement 2: Complete differential amide HDX MS map of Y537S ERα LBD mutant 867 
binding to E2. 868 
 869 
Figure 4-figure supplement 3: Complete differential amide HDX MS map of D538G ERα LBD mutant 870 
binding to E2. 871 
 872 
Figure 4-figure supplement 4: Complete differential HDX perturbation maps comparing the apo WT 873 
versus apo Y537S ERα LBD. 874 
 875 
Figure 4-figure supplement 5: Complete differential HDX perturbation maps comparing the apo WT 876 
versus apo D538G ERα LBD. 877 
 878 
Figure 4-figure supplement 6: Complete differential HDX perturbation map of WT ERα LBD with 879 
SRC3-NRD. 880 
 881 
Figure 4-figure supplement 7: Complete differential HDX perturbation map of Y537S ERα LBD with 882 
SRC3-NRD. 883 
 884 
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Figure 4-figure supplement 8: Complete differential HDX perturbation map of D538G ERα LBD with 885 
SRC3-NRD. 886 
 887 
Figure 4-figure supplement 9: Complete differential HDX perturbation map of WT ERα LBD with E2 888 
and SRC3-NRD. 889 
 890 
Figure 4-figure supplement 10: Complete differential HDX perturbation map of Y537S ERα LBD with 891 
E2 and SRC3-NRD. 892 
 893 
Figure 4-figure supplement 11: Complete differential HDX perturbation map of D538G ERα LBD with 894 
E2 and SRC3-NRD. 895 
 896 
Figure 4-figure supplement 12: apo Y537S x-ray crystal structure (Yellow) (PDB: 2B23) superimposed 897 
with WT-E2 complex structure (White) (PDB: 1GWR).  898 
 899 
Figure 5: Stabilized D538G agonist state. Superposition stereo-view image of the residues comprising 900 
the H11-12 loop (531-537) of monomer A of the D538G-E2 (cyan) overlaid with monomer A of the WT-901 
E2 structure (PDB: 1GWR). E2 is represented as green sticks. Coactivator peptide is shown as light-902 
yellow ribbon.  903 
 904 
Figure 5-figure supplement 1: Simulated annealing composite omit maps for the E2 (A) and TOT (B)-905 
bound D538G ERα LBD crystal structures contoured to 1.5σ. E2 and TOT are shown as sticks, helix 12 906 
is highlighted in red, and electron density is shown as a blue cage  907 
 908 
Figure 5-figure supplement 2: A) Y537 of the D538G-E2 structure rotates towards solvent and is 909 
replaced by a well ordered water molecule (sphere), location of the ligand-binding site is shown with 910 
estradiol as green sticks, H11-12 loop and H12 shown as dark-blue. B) Y537 is buried towards Helix 3 in 911 
every WT structure, forming a hydrogen bond with N348 (PDB: 1GWR).  912 

Figure 5-figure supplement 3: Density of an unidentified small molecule in the ligand binding site of 913 
the apo D538G x-ray crystal structure. 914 

Figure 6: Visualization of H11-12 loop dynamics. A) H11-12 loop of WT ERα LBD-E2 complex. B) 915 
Superimposing the position of the phenolic oxygen of Y537 at 0.1-ns intervals for apo WT (red), WT-E2 916 
(blue), and apo D538G mutant (green). C) Mapping the mass density isosurface (0.75, i.e., 25th percentile) 917 
of the hydrophobic side chains in the linker region (V533, V534, P535, and L536). D) Side chain packing 918 
of the apo D538G structure compared to WT-E2. E) Ramachandran analysis of residues 534-538 for the 919 
apo WT, WT-E2, and apo D538G MD simulations. F) Time series of the solvent accessible surface area 920 
(SASA) for hydrophobic loop residues (533-536).  921 
 922 
 923 
Figure 7: Alterations to the D538G and Y537S antagonist conformational states. A) Superposition of 924 
monomer A for the 538G-TOT structure with the WT (3ERT). TOT and residues 530-550 of the WT 925 
(blue) (PDB: 3ERT), TOT of D538G (green), residues 531-550 (red). B) Predicted conformational 926 
alterations in H12 in the Y537S-TOT structure (red) compared to the WT-TOT (blue). C) HDX-MS of 927 
the WT-TOT complex for H11 through H12 regions. D) HDX-MS of Y537S-TOT complex for H11 928 
through H12 regions. E) HDX-MS of the D538G-TOT complex for H11 through H12 regions. HDX data 929 
is color coded as in 2C. See methods for more details on coloring scheme.  930 
 931 
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Figure 7-figure supplement 1: Complete differential amide HDX MS map of WT ERα LBD binding to 932 
TOT. 933 
 934 
Figure 7-figure supplement 2: Complete differential amide HDX MS map of Y537S ERα LBD mutant 935 
binding to TOT. 936 
 937 
Figure 7-figure supplement 3: Complete differential amide HDX MS map of D538G ERα LBD mutant 938 
binding to TOT. 939 
 940 

Figure 7-figure supplement 4:  Experiment comparison view comparing the differential HDX behavior 941 
of apo WT ERα LBD in the presence of various ligands or coactivator. 942 

Figure 7-figure supplement 5:  Experiment comparison view comparing the differential HDX behavior 943 
of apo Y537S ERα LBD in the presence of various ligands or coactivator. 944 

Figure 7-figure supplement 6:  Experiment comparison view comparing the differential HDX behavior 945 
of apo D538G ERα LBD in the presence of various ligands or coactivator. 946 

Figure 8: Model of Aberrent ERα Mutant Activity. Upon hormone binding (E2), WT ERα sheds heat-947 
shock/chaperone proteins (HSP), forms head-to-head homodimers, and recruits coactivator (CoA) to 948 
become active. By contrast, Y537S or D538G ERα mutants adopt the active conformation in the absence 949 
of hormone to recruit CoA and achieve constitutive activity. Additionally, E2 binding may further 950 
increase mutant activity. 951 

Table Legends  952 
 953 
Table 1: SRC3 NRD and ligand recruitment affinities for the WT and mutant ERα LBDs.   954 
 955 
Table 2: Ligand binding affinities. 956 
 957 
Table 3: Crystallographic data collection and refinement statistics. 958 

Table 4: Protonation states of histidines for the structure used in MD simulations. 959 
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Tables 970 

Table 1 971 

  SRC-3 NRD Kd (nM)
WT apo  No Recruitment  
Y537S apo  13.6 ± 2.0  
D538G apo  151 ± 20  
WT-E2  2.67 ± 0.5  
Y537S-E2  0.59 ± 0.1  
D538G-E2  3.65 ± 0.40  
 
 E2 EC50 (nM) 
WT  13.8 ± 0.9  
Y537S  1.6 ± 1.2  
D538G  2.2 ± 0.1  
 
 TOT Ki (nM)  
WT  1.82 ± 0.30  
Y537S  6.7 ± 0.40  
D538G  0.79 ± 0.04  
 972 

Table 2 973 

  Kd (nM) 
WT-E2  0.26 ± 0.13  
Y537S-E2  1.43 ± 0.55  
D537G-E2  1.30 ± 0.63  
 Ki (nM)  
WT-TOT  0.337 ± 0.018  
Y537S-TOT  2.61 ± 0.60  
D538G-TOT  3.42 ± 0.50  
 974 
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 982 

Table 3 983 

 ERα LBD D538G 
Apo 

ERα LBD D538G-
E2  

ERα LBD D538G-
4OHT  

Data Collection    
Space Group P21 P21 P212121 
a, b, c (Å) 56.14, 82.66, 59.11 56.08, 84.18, 58.37 104.65, 104.65, 

191.38 
α, β, γ (°) 90.00, 111.05, 

90.00 
90.00, 108.83, 90.00 90.00, 90.00, 90.00 

Resolution Range 55.17-2.24 Å 55.25-1.90 50.00-3.07 
Number of 
Reflections 

   

(all/unique) 91,607/24,107 169,519/40,361 60,232/9,874 
I/σ (highest 
resolution) 

2.37 2.36 1.70 

Rmerge 11.4 7.3 11.4 
Completeness (%) 98.9 99.3 96.7 
Redundancy 3.8 4.2 6.1 
Refinement    
Rwork/Rfree 19.8/24.9 17.9/21.4 21.6/28.3 
No.  Residues/Chain    
ERα LBD D538G 241 242 216 
GRIP Peptide 6 6 0 
Water 16 44 2 
Ligand  0 1 1 
RMSD    
Bond lengths (Å) 0.015 0.0170 0.0128 
Bond angles (°) 1.76 1.5441 1.5356 
Chiral volume 0.1117 0.1267 0.1036 
Ramachandran plot 
statistics 

   

Preferred number 
(%) 

428 (96.40%) 443 (98.88%) 1,563 (95.42%) 

Additional allowed 
(%) 

3.60 (3.6%) 5 (1.12 %) 75 (4.58%) 

Outliers (%) 0 0 0 
 984 
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Table 4 989 

HIS Residue Number Monomer A Monomer B
356 HSE HSD 
373 HSD HSE 
377 HSE HSD 
398 HSP HSP 
474 HSE HSE 
476 HSE HSE 
488 HSE HSE 
501 HSD HSE 
513 HSD HSD 
516 HSE HSE 
524 HSE HSE 
547 HSE HSE 
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