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Abstract: This paper reports an experiment comparing three stag hunt
games that have the same best-response correspondence and the same
expected payoff from the mixed equilibrium, but differ in the incentive to
play a best response rather than an inferior response. In each game, risk
dominance conflicts with payoff dominance and selects an inefficient pure
strategy equilibrium. We find statistically and economically significant
evidence that the differences in the incentive to optimize help explain
observed behavior.
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1 Hillas (1990) introduces a reformulation of Kohlberg and Mertens’ (1986) strategic stability
that makes the exclusive reliance on the best-response correspondence particularly obvious.
Among theories that make an equilibrium selection in the stag hunt game, Carlsson and van
Damme (1993) and Harsanyi (1995) choose the risk-dominant equilibrium, while Anderlini
(1999) and Harsanyi and Selten (1988) choose the payoff-dominant equilibrium.
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Figure 1: Game 2R

X Y

X 45,45 0,40

Y 40,0 20,20

Figure 2: Game R

1 INTRODUCTION
The specification of the feasible strategies and preferences that define

a strategic-form game, together with the assumption that players are
substantively rational, provides a powerful framework for analyzing
strategic behavior. This framework in turn can be summarized by the
game’s best-response correspondence. For example, one need only know
the best-response correspondence of a strategic-form game to identify its
Nash equilibria. The classical approach to games typically either exploits
only the information contained in a the best-response correspondence, or
augments this information with risk-dominance and payoff-dominance
considerations in order to choose between strict Nash equilibria.1

This paper reports an experimental investigation of three stag hunt
games. The three games have identical best-response correspondences as
well as similar payoff magnitudes, but produce different behavior. 

Games 2R, R, and 0.6R, shown in Figures 1, 2, and 3, were used in the
experiment. In each game, strategy X is a strict best response to any mixture
that attaches a probability greater than q* to X, where q* = 0.8, while Y is
a strict best-response to any mixture attaching a lower probability to X.
Each game has two pure-strategy equilibria, where (X,X) is payoff dominant
and (Y,Y) is risk dominant,  as well as a mixed equilibrium in which X is
played with probability q*.

Our analysis of games 2R, R, and 0.6R is motivated by the observation
that the pecuniary incentive to select a best-response to an opponent’s
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X 45,45 0,42

Y 42,0 12,12

Figure 3: Game 0.6R 
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strategy is twice as large in game 2R as it is in game R and six tenths as
large in game 0.6R as it is in game R. We call this incentive, given by the
difference between the payoff of the best response to an opponent’s
strategy and the inferior response, the optimization premium. The
optimization premium may be irrelevant to substantively rational agents,
but we expect people to more readily learn to play a best response when the
optimization premium is large, and expect the differing optimization premia
of games 2R, R, and 0.6R to induce systematically different play in
laboratory experiments.

To the extent possible, games 2R, R, and 0.6R involve payoffs of
similar magnitudes. In particular, the expected payoff from the mixed
equilibrium is 36 for all three games. One can think of the optimization
premium as describing the steepness, rather than the level, of the payoff
function near an equilibrium. A larger optimization premium implies that
the penalty for inferior play is larger.

Our experimental results provide evidence that changing the
optimization premium influences behavior. The sensitivity of individual
subjects to the history of opponents’ play is greater in games with a larger
optimization premium.  Behavior converges more quickly in game 2R than
in R, and more quickly in game R than in game 0.6R. The payoff-dominant
equilibrium is more likely to emerge the smaller is the optimization
premium.

2 EXPERIMENTAL DESIGN
The experiment consists of three treatments. Each treatment consists

of eight cohorts. Eight subjects participated in each cohort. Each cohort
plays one of the three games, either 2R, R, or 0.6R, seventy-five times. We
used a single-population random matching protocol to pair subjects within
a cohort. The subjects were informed that they were being randomly paired.

The subjects had common and complete information about both their
own and everybody else's earnings table.  Actions were labeled 1 and 2, and
each subject chose one such action in each period. After their choices were
made, the subjects were randomly paired with an anonymous opponent to
determine an outcome for each pair. Since outcomes were reported
privately, subjects could not use common information about the outcomes
in previous periods to coordinate on an equilibrium.

Cell entries in Figures 1, 2, and 3 denote the number of cents earned by
a subject pair for each action combination in each round. Earnings were
presented in matrix form and subjects were instructed on how to derive the
other participant's earnings from the earnings table.

No preplay communication was allowed. Messages were sent



2The instructions for the experiment are available on the web at “erl.tamu.edu” or
“www.ssc.wisc.edu\~larrysam”.
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r2R(q) ' 2R(X,q) & 2R(Y,q) ' 50(q&q () ' 2R(q&q ()

rR(q) ' R(X,q) & R(Y,q) ' 25(q&q () ' R(q&q ()

r0.6R(q) ' 0.6R(X,q)& 0.6R(Y,q) ' 15(q&q () ' 0.6R(q&q (),

p(q, , j) '
exp( j(X,q))

exp( j(X,q)) % exp( j(Y,q))
,

electronically on a PC-network.
The subjects were recruited from undergraduate economics classes at

Texas A&M University in the spring of 1996, fall of 1997, and spring of
1998. A total of 192 subjects participated in the experiment: eight cohorts
of eight subjects in three treatments. After reading the instructions, but
before the session began, the subjects filled out a questionnaire to
determine that they understood how to read earnings tables.2 A session
lasted about two hours. Repeated play of the payoff-dominant equilibrium
for seventy-five periods results in a subject earning $33.75. 

3 OPTIMIZATION INCENTIVES
Games 2R, R, and 0.6R differ in the penalty attached to not playing a

best-response or, more optimistically, in the premium for playing a best-
response. We refer to this incentive as the optimization premium. Let

denote the expected payoff to a player in game j who plays Xj (X,q)
and expects his opponent to play X with probability q.  Let bej (Y,q)
similarly defined for Y. Then the optimization premium for game j is the
function given by rj(q):[0,1]6ß

where j is the optimization premium parameter. Hence, for any opponent’s
strategy q, the optimization premium is twice as large in game 2R as it is in
game R and six tenths as large in game 0.6R as it is in game R. 

Our intuition is that the process attracting players to choose best-
responses will be more effective in games in which the optimization
premium is larger. To make this precise, consider the following
probabilistic choice model that can be derived axiomatically (see Luce
1959) or from a random utility framework (see Maddalla 1983 and
Anderson, de Palma and Thisse 1992):



3A growing literature examines models of behavior in games. Rather than a complete model
of adaptive behavior, our goal is to answer the question, “Does the optimization premium
matter?”, which is most effectively answered within the context of the logit response function.

4Crawford (1995) examines an alternative belief-based dynamic.  Borgers and Sarin (1997),
Binmore and Samuelson (1997), Binmore, Gale and Samuelson (1995), Erev and Roth (1998)
and Roth and Erev (1995) model current actions as functions of previous experience, with
favorable experiences reinforcing the tendency to take an action.  In practice, beliefs are
typically estimated as a function of previous outcomes, bringing the two types of model closer
together (see Hopkins 1999). More general models include Camerer and Ho’s (1999)
experience-weighted attraction model and Stahl’s (1996, 1999) rule-learning models.
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p(q, , j) '
exp( j(q&q ())

1 % exp( j(q&q ()
.

0q ' p(q, ; j) & q,

where p(q, ,j) is the probability that X is chosen, given q and , in game j,
and  is a precision parameter. We can solve for the logistic-response
function

If  equals 0, players mix equally over all strategies, while  sufficiently
large gives essentially best-response behavior. Holding  constant, subjects’
behavior will be more responsive to q in game 2R than in game R and in
game R than in game 0.6R, since a larger optimization parameter j gives
a logistic-response function closer to the best-response function:3 

Hypothesis 1: Subjects’ behavior will be more responsive to beliefs the
larger is the optimization premium parameter.

Following Fudenberg and Levine (1998), we can use the logistic-
response function to define a single-population continuous-time logistic-
response dynamic,

where q is reinterpreted as the frequency of action X in the population and
it is assumed that the population is sufficiently large as to allow the random
individual choices to be captured by a deterministic population equation.4

Figure 4 illustrates this dynamic for the case of λ=1.  For any finite
λ>0, the magnitude of the change in the population state q, and hence the
speed of convergence, differs by optimization premia.



5 This observation is a consequence of the way the logit equilibrium close to the mixed
equilibrium changes as players become imprecise in their responses (Fudenberg and Levine
1998).
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Hypothesis 2: Behavior will converge to an equilibrium more quickly the
larger is the optimization premium.

This result is typical of noisy belief-based models in which players react
more vigorously to beliefs when payoff differences are larger. Common
models of population behavior based on deterministic or stochastic
generalizations of the replicator dynamic similarly assume that rates of
adjustment are increasing in the current difference in payoffs between
strategies (for example, Binmore, Gale and Samuelson 1995, Borgers and
Sarin 1997 or Weibull 1995).

Fixing λ, a logit equilibrium is a fixed point of the two players’
logistic-response functions (McKelvely and Palfrey 1995).  The stationary
states of the single-population logistic-response dynamic correspond to
symmetric logit equilibria.

Figure 4 graphs the logistic-response dynamic for the case of λ=1. For
comparison, it also graphs the single-population continuous-time best-
response dynamic, which is the same for all three games. Games 2R and R
have three logit equilibria that are close to the best-response equilibria, with
the “risk-dominant” equilibrium having a larger basin of attraction in the
case of game R than game 2R, and with both basins of attraction being
larger than in the case of the best-response dynamic.5 Game 0.6R has a
single logit equilibrium (given λ=1), which is close to the risk-dominant
equilibrium, and whose basin of attraction comprises the entire state space.

For any finte λ>0, the basin of attraction of the logit equilibrium
closest to the risk dominant equilibrium expands as the optimization
premium falls, until a sufficiently low optimization premium is reached that
there is a single logit equilibrium, closer to the risk-dominant than the
payoff-dominant equilibrium.  If we think of some fixed distribution
governing the initial condition of the dynamic, then the effect of
probabilistic choice is to make the payoff-dominant equilibrium less likely
than in the case of best-response dynamics, and less likely as the
optimization premium is smaller.

This result is somewhat counterintuitive.  Learning is likely to be noisy.
We would expect a smaller optimization premium to increase the likelihood
that noisy learning induces the population to enter the basin of attraction of



6When the optimization premium is smaller, we expect considerations other than expected-
payoff calculations to become more important in shaping behavior.  Analysis is likely to give
way to behavioral rules and payoff consequences are likely to be assessed not by calculation
but by experimentation, in the form of simply playing a strategy to see what happens.
Learning thus becomes noisier.    

7 Similar considerations appear in  the heterogeneous-payoff model of Myatt and Wallace
(1997). In contrast, Kandori, Mailath and Rob (1993) and Young (1993) use evolutionary
arguments based on the best-response function to select the risk-dominant equilibrium of a
stag hunt game, regardless of the optimization premium, while Robson and Vega-Redondo
(1996) use a similar model to select the payoff-dominant equilibrium. Friedman (1996)
suggests that a population may be more likely to move away from the risk-dominant
equilibrium as a result of subjects’ efforts to “teach” others that the payoff-dominant
equilibrium would be better, though this intuition contrasts with the theoretical results of
Ellison (1997). See also Camerer, Ho, and Chong (2000).
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the payoff-dominant equilibrium (X,X).6  A variety of forces may be behind
this result, one of which is captured by the aspiration-and-imitation model
of Binmore and Samuelson (1997). In their model, players are more likely
to revise their strategies whenever their payoffs fall below an aspiration
level.  Learning is thus noisier when payoffs are smaller, and the population
is more likely to stumble away from the neighborhood of an equilibrium if
the latter involves relatively low payoffs.  Hence, whenever the risk-
dominant and payoff-dominant equilibria differ, the learning process is
more likely to cause the proportion of the population playing strategy X to
move away from the relatively low-payoff risk-dominant equilibrium than
from the payoff-dominant equilibrium, and this difference is more
pronounced the smaller is the optimization premium.7  This leads to a
prediction that is not made by best-response,  logistic-response, or
replicator dynamics:
  

Hypothesis 3: Behavior is more likely to converge to the payoff-
dominant equilibrium the smaller is the optimization premium. 

4 EXPERIMENTAL RESULTS

4.1 TREATMENT BEHAVIOR
In period 1, 63 percent of the subjects play  X,  the payoff-dominant

action. Risk dominance is thus not a salient deductive selection principle,
though not enough subjects focus on payoff dominance to make playing the
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Contingency Table 1
Treatment by Period 1 Subject Choice

X Y Total

0.6R 41 (0.64) 23 (0.36) 64 (1.00)

R 45 (0.70) 19 (0.30) 64 (1.00)

2R 34 (0.53) 30 (0.47) 64 (1.00)

Total 120 (0.63) 72 (0.37) 192 (1.00)

payoff-dominant action a best-response, since 0.63 is less than q*.
The following contingency table, crossing treatment and subject choice

in period 1, can be used to test the hypothesis that initial behavior did not
vary  by treatment. The Chi-square statistic is 4.1 which, given 2 degrees
of freedom, has a p-value of 0.13. Hence, subjects’ slight tendency to
initially play the payoff-dominant action more frequently when the
optimization premium is smaller is not statistically significant at
conventional levels.

 The insignificant difference in initial behavior across treatments grows
to a large treatment effect by the end of the session. Contingency table 2
shows that in period 75, only 5 percent of subjects in treatment 2R play
action X, while 44 percent of subjects in treatment 0.6R are still playing
action X. The payoff-dominant action is thus more prevalent in games with
smaller optimization premia.
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Contingency Table 2
Treatment by Period 75 Subject Choice

X Y Total

0.6R 28 (0.44) 36 (0.56) 64 (1.00)

R 16 (0.25) 48 (0.75) 64 (1.00)

2R 3 (0.05) 61 (0.95) 64 (1.00)

Total 47 (0.24) 145 (0.76) 192 (1.00)

To gain some insight into the dynamics behind these outcomes, let state
x denote the number of subjects choosing action X in a cohort in a period.
It ranges from 0 to 8. Table 3 reports the average of the change in x,
denoted by ∆x, for each state and treatment.  For every x in the interval
{2,3,4,5}, larger optimization premia are associated with average changes
whose absolute values are larger, though two of the changes appear to go
in the wrong direction in the case of state 3.  In contrast, for states near the
risk-dominant equilibrium, the largest average changes are attached to the
0.6R treatment, which exhibits a strong tendency to move away from the
risk-dominant equilibrium.  This suggests that something beyond the
considerations captured by the logistic choice model, such as an aspiration-
based desire to avoid exceptionally low payoffs, is at work, pushing the
population toward the payoff-dominant equilibrium when the optimization
premium is small.  

Figure 5 supplements Table 3 by reporting the count for each value of
∆x that goes into the average change in x. The figure is truncated at ±4,
because no value of x ever changed by more than ±3 from one period to the
next. Figure 5 shows that no value of x is perfectly absorbing.  However,
in treatment 0.6R, the state with the largest count for ∆x=0 was state x=8,
the payoff-dominant equilibrium, while for the other two games the largest
count for ∆x=0 was at state x=0, the risk-dominant equilibrium. This
pattern remains if we normalize the counts by dividing through by the



8 if we examine states near the best-response separatrix in Figure 5, that is, states x=6 and
x=7, we do not find that movements toward the payoff dominant equilibrium (upward) are
especially likely when the optimization premium is small (compare the 0.6R and R cases).
Because our games have identical mixed-equilibrium payoffs, differences in the behavior
predictions of the aspiration and imitation model, across optimization premia, disappear as
the population approaches the separatrix.     
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number of times each state x arose in a treatment.8  

4.2 COHORT BEHAVIOR
Our analysis of the results by treatment suggests that initial behavior

varies little across treatments, but experience teaches subjects to play the
risk-dominant action more effectively the larger the optimization premium.
In this section, we examine the data by cohort to develop an understanding
of how this happens.

Table 4 reports the initial and terminal outcome by cohort. All 24 of the
cohorts start in the basin of attraction of the risk-dominant equilibrium
(Y,Y). Three 0.6R cohorts, four R cohorts, and five 2R cohorts implement
an equilibrium in period 75. This observation is consistent with hypothesis
2: cohorts with a larger optimization premium were more likely to have
converged to an equilibrium by the end of the session. 

Which equilibrium emerges? Table 4 indicates that, by the terminal
outcome, one of the 0.6R cohorts (8), three of the R cohorts (10,12, and 14),
and five of the 2R cohorts (18,19,20,21, and 23) converged to the risk-
dominant equilibrium. Conversely, two 0.6R cohorts (2 and 3 respectively)
and one R cohort (15) converged to the payoff-dominant equilibrium, while
none of the 2R cohorts converged to the payoff-dominant equilibrium.
Notice that, given the observed initial conditions, a cohort must cross the
(best-response) separatrix to converge to the payoff-dominant equilibrium.
Cohorts were less likely to escape from the risk dominant equilibrium’s
best-response basin of attraction the larger the optimization premium. Our
results are thus consistent with hypothesis 3: the payoff-dominant
equilibrium emerged less frequently in treatments with a larger
optimization premium. 

A non-parametric rank sum test reveals that the observed difference in
behavior was statistically significant.  In particular, Table 4 ranks the
cohorts by the overall frequency of the payoff-dominant action X. The
cohort with the lowest X frequency is 19 and it receives a rank of 1. The
cohort with the highest X frequency is 15 and it receives a rank of 24. A
quick inspection of the rankings reveal that the 2R cohorts tend to receive
single digit rankings and the 0.6R cohorts all receive double digit rankings.
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These rankings can be used to perform the Kruskal-Wallis multiple
comparisons test, which is based on the sum of the ranks by treatment
(Conover 1980, p.231).  The rank sum for the 0.6R cohorts is 48, for the R
cohorts is 111, and for the 2R cohorts is 141. The null hypothesis is no
treatment difference. The test statistic is 11.3, which is approximately Chi-
square. The probability value of 0.0036 rejects the null hypothesis under all
conventional levels of statistical significance. 

Given  the alternative hypothesis of treatment differences, we proceed
to determine which pairs of treatments differed. Dividing the rank sum by
the number of observations, 8, gives the normalized rank sum. The absolute
value of the difference in the normalized rank sum between the 0.6R and R
treatments is 7.9 and between 0.6R and 2R is 11.6. Both of these values
exceed the critical value of 7.5 at the 1 percent level of statistical
significance. Hence, we conclude behavior in the 0.6R treatment was
different than in the other two treatments. The absolute value of the
normalized rank sum difference between the R and 2R treatments is 3.75,
which is not statistically significant.

Figures 6 reports the five-period mean frequency of the payoff-
dominant action by cohort. The three horizontal reference lines denote the
frequencies with which X is played in the risk-dominant equilibrium (0.0),
the mixed equilibrium (0.8), and the payoff-dominant equilibrium (1.0).
The figure illustrates two results already derived from table 4: Cohorts with
a larger optimization premium were more likely to have converged to an
equilibrium by the end of the session, and the payoff-dominant equilibrium
emerged less frequently in treatments with a larger optimization premium.

As seen in figure 6, it takes a long time to converge to a mutually
consistent outcome. Amongst cohorts that converged to the risk-dominant
equilibrium, it takes longer for R cohorts to reach the risk-dominant
equilibrium than it does for 2R cohorts. If we examine the first (five period)
state in which every subject in a cohort plays the risk-dominant action
(excluding the R cohorts that never converge to the risk-dominant
equilibrium), we find that the remaining six R cohorts take an average of
50 periods for all subjects to reach the risk-dominant equilibrium, while the
eight 2R cohorts take an average of 26 periods. (Only one 0.6R cohort
converges to the risk-dominant equilibrium state. It took 58 periods.) The
evidence is thus consistent with the hypothesis that reducing the
optimization premium reduces the speed of convergence to the inefficient
risk-dominant equilibrium.

The results reported in Figure 6 reflect the qualitative features of our
last two hypotheses. Convergence is more rapid when the optimization
premium is larger. The risk-dominant equilibrium emerges as the customary



11

qit '
q0d

t&1 % Ii1d
t&2 % ... % Iit&2d % Iit&1

d t&1 % d t&2 % ... % 1

pit '
exp( j% j (qit & q())

1 % exp( j % j(qit & q()
,

way to play in all of the 2R cohorts and in six out of eight R cohorts. The
risk-dominant equilibrium emerged only once in the eight 0.6R cohorts.
Conversely, the payoff-dominant equilibrium emerges as the customary
way to play in two 0.6R cohorts and one R cohort. 

The last column of table 4, reporting average per capita earnings by
cohort, provides insight into the economic significance of these findings.
The average subject in cohort 15 earned  $31.44, which was the highest
average. Cohort 3 is a close second, earning $31.31. The average subject
in cohort 6 earned $12.59, which was the least. A failure to coordinate on
the payoff-dominant equilibrium was thus very costly to subjects in the
0.6R treatments in both absolute terms, about a $19 difference, and in
percentage terms, as cohort 6 earns only 40 percent of cohort 3’s earnings.
In contrast, cohorts in the 2R treatments lost much less as a result of the
observed coordination failures.

4.3  INDIVIDUAL BEHAVIOR
Our examination of individual behavior begins with an estimation of

the relationship between subjects’ strategy choices and their experience.
We first suppose the probability that subject i attaches to her opponent
playing strategy X, at time t, denoted by qit, is given by

where q0 is the prior probability, Iiτ equals one if i’s opponent played X at
time τ and zero otherwise, and d is the discount factor. If d=1, then this
model yields fictitious play beliefs, and if d=0, then we have Cournot
beliefs. If we remove the prior, we get Cheung and Friedman’s (1997)
formulation.

We assume that the probability that subject i chooses strategy X at time
t, denoted by pit, is given by

where j0{ 2R, R, 0.6R} indexes the games. When j = 0 and j = j, this is
the logistic response function discussed above, where  is the precision
parameter and j is the optimization premium parameter.  The constant term

j  is included to capture a possible tendency to move away from low



9We obtain analogous results if we impose the restriction that αj=0 and hence work with the
logistic response function.

10 The aspiration and imitation model lying behind hypothesis three suggests that strategy
choices should be noisier when payoffs are small, and hence should be noisier near the payoff-
dominant than the risk dominant equilibrium, with this difference most pronounced when the
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payoffs, suggested by the data in Table 3. Maximum likelihood estimates,
computed using Gauss, are shown in Table 4.

Table 4: Estimated Logistic Response Model.
Mean log-likelihood -0.3637

Number of Cases 14400
Standard Errors in Parentheses

Treatment j q0 j dj j j

0.6R 0.64
(0.05)

0.85
(0.01)

1.30
(0.06)

4.49
(0.15)

R 0.68
(0.04)

0.84
(0.02)

1.50
(0.07)

5.98
(0.16)

2R 0.65
(0.04)

0.89
(0.01)

1.28
(0.12)

6.95
(0.27)

The estimated  have the expected ordering and are statistically
different from each other: 0.6R < R < 2R.  Individual subjects are more
sensitive to the history of opponents’ in games with a larger optimization
premium.9

Because j= j, the estimated j reveal that the precision parameter 
is not constant across treatments. If it were, then not only would 0.6R < R

< 2R , but 0.6R  would equal 0.6 R, or 3.59, and 2R would equal 2 R , or
11.96.  Both 0.6R and R are more than two standard errors away from the
estimated values, allowing us to reject the hypothesis of a stable precision
parameter across treatments.  The sensitivity of actions to the optimization
premium appears to exhibit decreasing returns.

The estimated priors are remarkably close to the observed frequencies.
The memory discount parameter estimates are plausible, but are closer to
fictitious play than we expected.

The constant αj is significantly positive in all three treatments,
indicating a bias in favor of the payoff-dominant action. The bias does not
appear to vary systematically with the payoff tables.10 The logistic response



optimization premium is small.  Translating these differing noise levels into differences in the
trend j would require a richer specification, capturing such features of the aspiration and
imitation model as the importance of an agent’s previous choice and the current population
state, though the ability of noisy choice to translate into an increased likelihood of absorption
at the payoff dominant equilibrium suggests that j may  be positive and decreasing in the
optimization premium.
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model cannot accommodate the observed bias, as the logistic response
function forces players to be indifferent between actions X and Y whenever
they attach a probability of 0.8 to their opponent’s playing X (see Figure 4),
while the experimental subjects are significantly more likely to play X
under such circumstances. Our individual results are thus consistent with
the first two hypotheses generated by the logistic choice model, but also
suggest that the model fails to capture important aspects of observed
behavior. More theoretical and experimental work is required to assess
whether individual behavior matches the predictions of the aspiration and
imitation model.

4.4 LITERATURE DISCUSSION
Experiments involving sequences of stag hunt games have been

conducted by Clark, Kay and Sefton (1996), Cooper, DeJong, Forsythe, and
Ross (1992), Friedman (1996), Schmidt, Shupp, Walker and Ostrom
(1997), and  Straub (1995).  As is the case with our results, play typically
converges to the equilibrium whose best-response basin of attraction
contains the initial outcome, with this equilibrium more likely to be the
risk-dominant equilibrium the larger is the latter’s basin of attraction.
However, Schmidt, et al. observe three cases in which play begins in the
risk-dominant basin of attraction but crosses the separatrix to converge to
the payoff-dominant equilibrium.  

Rankin, Van Huyck and Battalio (1999) report an experiment in which
subjects play a sequence of similar games in which payoffs, action labels,
and game forms are constantly changing, forcing subjects to focus on
abstract similarities between games. Payoff dominance emerges as an
equilibrium selection principle even when the risk-dominant equilibrium
has an extremely large basin of attraction, with values of q* as large as
0.97. 

5 CONCLUSION
Our results provide evidence that more than the best-response

correspondence matters when predicting human behavior in laboratory
experiments. We have focused on the optimization premium-- the expected
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earnings difference between the two actions--in three stag hunt games that
have the same best-response correspondence, the same mixed strategy
equilibrium, and the same expected payoff at this mixed strategy
equilibrium, but different pecuniary incentives to play a best-response. 

We find statistically and economically significant evidence that the
optimization premium helps explain observed behavior. The sensitivity of
individual subjects to the history of opponents’ play is greater in games
with a larger optimization premium. Behavior converges more quickly the
larger the optimization premium. The risk-dominant equilibrium is more
likely to emerge the larger is the optimization premium. 
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Table 3: The average change in x given x

x: The number of subjects choosing X

Treatment 0 1 2 3 4 5 6 7 8

0.6R 0.55 0.38 0.10 -0.078 -0.27 -0.03 -0.34 -0.20 -0.16

R 0.23 -0.18 -0.22 0.14 -0.40 -0.37 -0.15 0.19 -0.32

2R 0.07 -0.26 -0.46 0.16 -0.50 -0.57 -0.38 -1.75 .
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Table 4: Ranking Overall frequency of X by Cohort

Game Cohort Initial
Outcome

Terminal
Outcome

Overall
Frequency

of X

Rank Average Per
Capita Earnings

0.6R 1 0.500 0.375 0.540 20 $19.67

0.6R 2 0.750 1.000* 0.803 21 $27.35

0.6R 3 0.750 1.000* 0.930 23 $31.31

0.6R 4 0.750 0.250 0.397 17 $16.31

0.6R 5 0.750 0.125 0.508 19 $19.39

0.6R 6 0.500 0.375 0.218 13 $12.59

0.6R 7 0.625 0.375 0.343 16 $14.76

0.6R 8 0.500 0.000 0.213 12 $12.86

R 9 0.750 0.125 0.145 7 $15.88

R 10 0.625 0.000 0.203 11 $16.12

R 11 0.750 0.625 0.920 22 $31.00

R 12 0.750 0.000 0.255 15 $17.06

R 13 0.750 0.125 0.418 18 $19.44

R 14 0.500 0.000 0.160 9 $15.63

R 15 0.750 1.000* 0.937 24 $31.44

R 16 0.750 0.125 0.098 5 $15.38

2R 17 0.625 0.125 0.242 14 $27.22

2R 18 0.500 0.000 0.048 3 $28.99

2R 19 0.375 0.000 0.017 1 $29.44

2R 20 0.625 0.000 0.152 8 $27.01

2R 21 0.375 0.000 0.107 6 $28.03

2R 22 0.500 0.125 0.035 2 $29.19

2R 23 0.750 0.000 0.055 4 $28.51

2R 24 0.500 0.125 0.185 10 $26.63

* - Separatrix crossing between initial and terminal outcome.
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Figure 4: One population continuous time best-response and logistic-response dynamics ( =1).
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Figure 5: Change in x, x, as a function of x all periods by treatment.
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Figure 6: Five period mean frequency of X by cohort.


