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Abstract
The use of large-scale microarray expression profiling to identify predictors of disease
class has become of major interest. Beyond their impact in the clinical setting (i.e.
improving diagnosis and treatment), these markers are also likely to provide clues on
the molecular mechanisms underlining the diseases. In this paper we describe a new
method for the identification of multiple gene predictors of disease class. The method
is applied to the classification of two forms of arthritis that have a similar clinical
endpoint but different underlying molecular mechanisms: rheumatoid arthritis (RA)
and osteoarthritis (OA). We aim at both the classification of samples and the location
of genes characterizing the different classes. We achieve both goals simultaneously by
combining a binary probit model for classification with Bayesian variable selection
methods to identify important genes. We find very small sets of genes that lead to good
classification results. Some of the selected genes are clearly correlated with known
aspects of the biology of arthritis and, in some cases, reflect already known differences
between RA and OA. Copyright  2003 John Wiley & Sons, Ltd.
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Introduction

Diagnostics and clinical classification is tradition-
ally based on the integrated use of clinical, his-
tological and biochemical information. Molecular
markers that are informative of a disease are the
result of years of clinical research and often pre-
suppose understanding of the molecular pathology
of the disease. Recently, microarray technology has
provided clinical researchers with a powerful tool
that allows the screening of thousands of genes in
single experiments. This unprecedented amount of
information has made possible a detailed analysis
of the transcriptional state of a diseased tissue. Such
screenings may not require previous hypotheses,
since appropriate statistical methods can be applied

to discover associations between the expression of
informative genes and disease status. These asso-
ciations can generate hypotheses on the molecu-
lar mechanisms behind the different diseases. This
approach has already been very successful. Cluster-
ing (Eisen et al., 1998; Alizadeh et al., 2000), clas-
sical regression techniques (Nguyen et al., 2002),
neural networks (Khan et al., 2001) and other
methods (Golub et al., 1999; Dopazo et al., 2001)
have been successfully applied to microarray data
for classification purposes. Although the field is
clearly very promising, the classification of clin-
ical samples by microarrays is far from being a
standard procedure. The problem is particularly
challenging for statisticians, in that microarray data
usually consist of many correlated variables (gene
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expression measurements) and relatively few sam-
ples. The large number of genes measured in every
experiment makes the selection of the really infor-
mative variables a difficult task. Models that are
highly predictive but use too many variables may
be impractical in clinical practice and may be dif-
ficult to interpret. Moreover, some of the available
methods (e.g. based on simple correlation or dis-
tance measures) tend to include highly correlated
genes in the model. These models can lead to good
predictors but they may not fully represent the bio-
logical complexity of the disease, hence the need
to optimize both accuracy and complexity of the
models. Here we describe a method that specifi-
cally addresses this issue. We model the expression
data through a binary probit model for classifi-
cation and use Bayesian variable selection meth-
ods (Brown, Vannucci and Fearn, 1998) to select
important genes. Our model assigns a posterior
probability to every possible subset of the genes
and then proceeds by searching for those subsets
that have high posterior probability. This results
in the location of multiple genes that characterize
the different classes. Marginal posterior probabili-
ties of single genes are also computed. The readers
are referred to Shoemaker et al. (1999) for a gentle
introduction to Bayesian methods in genetics.

We apply our methodology to a problem of
immunological interest: the classification of two
clinically distinct forms of arthritis, rheumatoid
arthritis (RA) and osteoarthritis (OA). Although
the two forms of the disease reach the same clin-
ical endpoint of joint destruction, the aetiology
and pathogenesis of the diseases are quite distinct
(Konig et al., 2000). RA is a systemic disease char-
acterized by an aggressive infiltration of the syn-
ovium by activated leucocytes and the production
of an invasive cell mass (pannus), which degrades
cartilage and bone. OA, on the other hand, does not
display these histological features, but degradative
proteases are nevertheless produced in the syn-
ovium. Because of the inflammatory component
that characterizes RA, the discrimination between
established RA and OA is an ideal scenario to
assess the significance of classification methods.
Our method is able to locate small sets of genes
that lead to good classification results. When com-
pared with other methods, our approach performs
well and identifies highly informative sets of genes.
Some of the selected genes indeed reflect known
differences in the biology of the diseases (i.e.

inflammation and proliferation); some others may
be linked to previously uncharacterized aspects of
the disease.

Materials and methods

Rheumatoid arthritis and osteoarthritis:
experimental study

The study was conducted on synovial tissue sam-
ples obtained from 24 RA and seven OA patients.
The patients were undergoing treatment at the
Norfolk and Norwich Hospital using comparable
multi-agent drug therapies before being sched-
uled for joint arthroplasty. Synovial tissue samples
were surgically removed during the joint replace-
ment surgery and immediately frozen in dry ice.
Total RNA was extracted from snap-frozen indi-
vidual tissue samples using RN AzolB (Biogen-
esis, Bournemouth, UK). The mRNA was purified
from total RNA using Oligotex mRNA Mini kit
(Qiagen, Crawley, UK), according to the manu-
facturers instructions. Radiolabelled cDNA probes
were synthesized from mRNA derived from syn-
ovial tissue samples and hybridized to nylon high-
density arrays. The array was constructed in-house
using 1050 cDNA clones from the publicly avail-
able IMAGE collection (Lennon et al., 1996). The
selected clones (representing 500–1000 bp from
the 3′ end of the mRNA) were chosen to repre-
sent 755 genes of known function. The selection
of these genes was not based on their involvement
with the disease mechanism, but rather to represent
the majority of relevant functions in the physiol-
ogy of the cell. Some redundancy was introduced
into this collection to control for clone-to-clone
variability. Typically, 98% of the clones represent-
ing the same gene were highly correlated when
expression profiles were compared (r > 0.9). Bac-
terial clones were isolated from individual colonies,
grown in selection media, and the cDNA inserts
PCR amplified. The quality of the amplification
products was assessed by agarose gel electrophore-
sis and the identity of the clones verified by 3′
end sequencing. Each PCR product was then spot-
ted four times on nylon arrays using a Qbot robot
(Genetix, UK) and the filters processed. Every tis-
sue sample was hybridized on an individual array.
After hybridization, the arrays were scanned using
a phosphorus imager and the resulting images were
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processed using a proprietary image analysis pack-
age. Data were processed as follows: the mean of
the logs of the four replications was derived and
the value was corrected for the patient mean. The
number of B lymphocytes in the tissue of the RA
and OA patients was determined after staining for
a B cell marker (using an anti-CD20 antibody).

Binary probit models with latent variables

We model the expression data using a binary probit
model. Let (Z , X ) indicate the observed data, with
Xn×p being the predictor matrix and Zn×1 being
a binary response vector, coded as 0.1. In our
experiment xij is the expression level of gene j
as measured in the i th sample, while zi is the class
label of the sample. Each outcome zi is associated
with the probability pi ,0 (and consequently pi ,1 =
1 − pi ,0) that the i th sample falls into the first
category. A possible approach to inference in a
probit model is via latent variables, transforming
the model into a normal linear model on the latent
responses. The key to this approach is to assume
the existence of a continuous unobserved or latent
variable underlying the observed categorical. When
the latent variable crosses a threshold, the observed
category changes.

Bayesian framework for variable selection
and posterior inference

Bayesian approaches to statistical inference impose
prior distributions on the unknown parameters.
We incorporate in the model a variable selection
mechanism to select important genes by utilizing
Bayesian mixture priors for the regression coeffi-
cients to perform the selection (Brown, Vannucci
and Fearn, 1998). The key idea of the selection is
to impose a mixture prior on the regression coeffi-
cients of the model that depends on a latent binary
p-vector γ . The j th element of γ , γj , may be either
1 or 0, according to whether the j th variable (gene)
is or is not included in the model. With p genes
there are 2p possible models, i.e. subsets of genes.
A priori we assume that the probability of each
model is Bernoulli π(γ ) = wpγ (1 − w)p−pγ , where
pγ indicates the number of chosen genes, i.e. the
number of ones in γ .

Having set the prior distributions, a Bayesian
analysis proceeds by updating the prior beliefs
with the information that comes from the data.

Our interest is in the posterior distribution of the
vector γ , given the data. Vector values with high
probability will, in fact, identify important sets of
genes. Given the large number of possible vector
values, i.e. 2p with p = 755, we employ stochastic
search techniques to look for subsets of genes
that have high posterior probability. In brief, our
method visits a sequence of models that differ
successively in one or two variables (genes) by
adding or deleting one variable or swapping two
variables at a time. At each step the new candidate
model is accepted with a probability that depends
on the ratio of the relative posterior probability of
the candidate model vs. the previous visited model.
Details of the statistical a posteriori inference can
be found in Sha et al. (2002).

Classification of future samples

Our method allows us not only to locate sets
of genes that help in characterizing the different
classes but also to classify future samples. The
stochastic search algorithm previously described
gives us, in fact, a list of visited subsets, as well as a
sample of values on the latent variable underlying
the categorical variables that determine the class
label of a sample. We compute conditional poste-
rior probabilities of all distinct visited γ s. Marginal
probabilities of inclusion of single genes P(γj = 1),
j = 1, . . . , p, can be computed from the posterior
probabilities of the visited models. Various predic-
tion methods are then possible. In the experimental
study described here we found good error rates by
computing least squares and Bayes predictions with
single models, typically the model with the high-
est posterior probability or the models including
variables with marginal probability greater than a
certain threshold. Having obtained a prediction on
the latent variable, the corresponding predicted cat-
egorical value was computed.

Analysis of the predictors and comparison
with other methods

Cluster analysis was performed using an aver-
age linkage algorithm (UPGMA) on a correlation
matrix obtained using the Pearson correlation coef-
ficient. The analysis was done using the software
J-express (Dysvik and Jonassen, 2001). PCA- and
PLS-based discriminant analyses were performed
on the training data. Both linear discriminant anal-
ysis (LDA) and quadratic discriminant analysis
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(QDA) were then applied, retaining the first com-
ponents. The shrunken centroid method (Tibshirani
et al., 2002) was chosen as an example of an effi-
cient method based on gene selection. The analysis
with this method has been performed using the
software made available by the authors. An anal-
ysis of variance (ANOVA) was performed on the
genes selected in the various models to determine
whether they were differentially expressed in the
two classes.

Results

Setting up the analysis

We chose the Bernoulli prior distribution of our
model (see Materials and methods) to have an
expectation of 10. This means that we expect
models with very few genes to perform well. We
randomly split the whole data set into training and
validation sets with (5,17) and (2,7) observations
for the OA and RA patients, respectively. The size
of the test set is roughly one-third of the original
data. The chosen design allows reasonable relative
sample sizes for the different classes. We fitted
our model to the training data. The model assigns
a posterior probability to every possible subset
of the genes and then proceeds by searching for
those subsets that have high posterior probability.
When exploring the space of possible models, i.e.
subsets, we used six parallel searches with 100 000
iterations and very different starting vectors (see
Materials and methods). We discarded the first
40 000 iterations to eliminate dependence from
the starting points. Starting vectors were with
1, 10, 50, 100, 150 and 300 randomly selected
included genes. Each search resulted in a list
of visited models with corresponding posterior
probabilities. Marginal probabilities of inclusion of
single genes were also computed. All methods have
been implemented in Matlab and the code will be
made available on the web.

Gene selection

Figure 1 shows marginal probabilities of inclusion
of single genes for the six different runs, while
Figure 2 reports the marginal probabilities, recom-
puted by considering the union of the distinct γ s
visited by the six chains. Spikes correspond to
genes that have high posterior probability and that

should therefore be relevant to arthritis classifica-
tion. Notice how plots of Figure 1 appear overall
fairly similar, despite the widely different starting
values. There are also clear differences, with genes
showing up in some of the plots but not in others.
With so many mutually correlated variables, there
are of course many good predictor sets. Our strat-
egy can be considered satisfactory when it leads
to the identification of some of these competing
models.

Marginal plots like that in Figure 2 allow us to
locate sets of genes that can be of interest for fur-
ther investigation, simply by considering the genes
with marginal posterior probability greater than a
certain value. Interesting sets can be also found
by exploring those models visited by the different
searches that have the highest values of the poste-
rior probability. Figure 3B (columns 1–9) provide
a graphical summary of the genes that appeared
to be relevant to arthritis classification. Column 1
shows the genes with marginal probability greater
than 0.08. Columns 2–7 represent the single six
best models found by the six different searches.
Column 8 reports the overall best model, i.e. the
subset with the highest posterior probability among
the pooled set of distinct visited models, and in
column 9 we see the genes included in the best
10 models among the pooled visited. The best 10
models accounted for 60% of the total visited prob-
ability and included 13 genes. As is to be expected,
some of the genes appear to be common to more
than one set in Figure 3B. In particular, selection
on marginal probabilities gives a very similar set
to that obtained by inspecting the best visited mod-
els. The expression profiles (heat maps) and the
names of genes in the selected subsets are reported
in Figure 4. The selected sets achieved very good
classification results when used to predict the class
label of an independent set of samples. In particu-
lar, all sets of genes that we located, displayed in
Figure 3B (columns 1–9) and Figure 4, achieved a
misclassification rate of 11%; this means that only
1 observation out of 9 was misclassified in the val-
idation set. The same best error rate was found
when we repeated the analysis with different splits
of the data, keeping the validation set size fixed.

Biological findings
A remarkable feature of all marginal plots in
Figure 1 and in Figure 2 is the spike that cor-
responds to the gene with index number 290.
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Figure 1. Marginal posterior probabilities of single genes for the six different runs

This is coding for a B lymphocyte-specific gene,
immunoglobulin κ heavy chain. This finding cor-
relates well with the fact that the number of lym-
phocytes is on average higher in the synovial tissue
of RA than in OA patients. Using an appropriate
marker, we counted the number of B cells in the
tissues of the two groups of patients. As expected,
the number of B lymphocytes was significantly
higher in RA then in OA patients (data not shown).
The majority of the genes in our selected models
correlate well with the disease pathology. Every
predictor contains genes linked to inflammation and
genes associated to other relevant pathological pro-
cesses (Schett et al., 2001). Examples are genes
involved in proliferation (CAK, DNA replication
licensing factor, proliferating cell nucleolar protein,
p120), oncogenes (c-myb RHOA), adhesion (pax-
illin, integrin α 2, cytohesin, CD66), degradation
(human RNA for cysteine protease, L-cathepsin)
and stress response (heat shock protein 1). Selected
models also contain genes linked to more specific
aspects of the disease pathology, like CD47 and

thrombomodulin. The first gene is associated with
mechanisms of T lymphocyte activation that are
particularly important in the synovial tissue of RA
patients, where a large proportions of T lympho-
cytes are lacking CD28, a canonical co-stimulatory
molecule (Vallejo et al., 2000). Thrombomodulin
has already been proposed as a marker for dis-
criminating between subsets of RA patients with
different disease severity (Hanyu et al., 1999). Also
of interest is the inclusion of the gene NRF-1. This
gene encodes a transcriptional repressor involved in
silencing the IFN-β gene. It has been demonstrated
that IFN-β has immunomodulatory effects on the
rheumatoid synovium cell infiltrate, altering the
cytokine profile and the expression of metallopro-
teinase genes. It is not unreasonable to hypothesize
that the NRF-silencing activity may be one of the
factors contributing to the differences we observe
between the two diseases. It is important to remem-
ber that further experimentation is required in order
to validate these models and verify the involvement
of the genes in the disease mechanisms.
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Figure 2. Renormalized marginal posterior probabilities of single genes computed by considering the union of the distinct
subsets visited by the six chains

Comparison with other classification methods

Our method identifies accurate predictors, but in
order to assess the general validity of our approach
we performed a comparison with other methods.
First, we wondered whether cluster analysis would
be sufficient to identify RA and OA samples as
individual classes. Figure 5 represents the result of
cluster analysis, with an average linkage algorithm
on a similarity matrix generated by using the Pear-
son correlation coefficient and performed on the
entire dataset. OA samples clearly tend to associate
on the dendrogram but they fail to form a dis-
tinct cluster. We then tested two classical statistical
techniques that use principal component analysis

(PCA) to reduce the dimension of the problem.
Linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA) were applied after
PCA, retaining the first principal components. The
best results were obtained with QDA with the first
five principal components and LDA with the first
13–16 components. The misclassification test error
rate achieved was 22% (two out of nine) for both
cases. The same error rate was found when using
partial least squares (PLS) methods to reduce the
dimension and retaining the first seven factors for
LDA and QDA. The accuracy of these predic-
tors is comparable with our models. Comparable
classification accuracy was also obtained with a

Figure 3. Comparison of the selected genes in the predictive models. Panel A represents the result of the two-dimensional
clustering of the arthritis datasets. The dendrogram on the left side of the gene expression map represents the clustered
genes whereas the dendrogram in the upper position shows the result of clustering the samples (RA patients are
represented by a blue line, OA patients are represented by a red line). Genes selected in the different models are mapped
on the dendrogram in panel B. Columns 1–9 represent the models derived from our approach whereas column 10 reports
the position of the genes selected in the shrunken centroid model
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gene selection based method recently developed
by Robert Tisbshirani at the University of Stan-
ford (Tibshirani et al., 2002). The method is named
‘shrunken centroid’ and uses a ranking strategy
for gene selection that assigns a higher score to
genes whose expression is stable within samples
of the same class. The selection of the genes to
be included in the model is performed by a sim-
ple soft thresholding strategy. The large majority of
the genes are eliminated from the predictors as the
value of the threshold increases. In their approach,
the authors estimate the optimal value of the param-
eter by cross-validation. We analysed the arthritis
dataset using the programs that the authors made
available. The best predictor we were able to iden-
tify was based on 12 genes (Figure 3B, column 10,
and Figure 4). Its classification error was 16% (i.e.
five cases out of 31 were misclassified). Notice,
however, that this rate is not directly comparable
with the error given by our method, achieved by
splitting the data. A comparison between the genes
included in our models and the 12 genes selected
in the most accurate model for the shrunken cen-
troid highlights the fact that the only feature in
common is the inclusion of the gene encoding for
the immunoglobulin k heavy chain. All other genes
seem to differ. Interestingly, most of the genes
in the shrunken centroid model are highly corre-
lated with each other (nine out of 12), whereas
the genes selected by our approach do not seem to
share this property (Figure 3). Figure 4 displays the
heat maps for the genes selected in the models and
reports the result of an ANOVA to identify genes
that are differentially expressed between the two
disease classes. The results of the ANOVA prove
that 11 out of 12 genes selected in the shrunken
centroid method are also differentially expressed
(p < 0.01), whereas among the genes selected in
the other models it is mainly the immunoglobulin
k heavy chain gene (present in all models) to be
differentially regulated.

Discussion

We have exploited a method for variable selec-
tion in classification with binary probit models. The
method uses latent variables to specialize the model
to a regression setting, and Bayesian mixture priors
to perform the variable selection. It also employs
stochastic search algorithms for posterior inference.
We have shown how the method can be used to
locate small sets of genes that lead to good classi-
fication errors and that are relevant for biologists to
study relationships and functions. The method has
been applied to the classification of two forms of
arthritis that have similar clinical endpoints but dif-
ferent underlying molecular mechanisms: RA and
OA. Selected genes that contribute to the best pre-
dictors correlate well with known aspects of the
disease pathology. The most evident correlation is
with the presence in RA of diseased tissues of an
extensive inflammatory infiltrate, but other aspects
of the pathologies also seem to be well represented.
The analysis of the predictors we identified and
the comparison with the model developed using
the shrunken centroid approach revealed interest-
ing properties of our method. All of the genes in
the best models we identified are not correlated
with each other, whereas the majority of the genes
in the shrunken centroid predictor are correlated to
the profile of the immunoglobulin k heavy chain
gene. A possible interpretation for this observation
is that the model derived from the centroid method
represents a well-defined biological aspect of the
disease, possibly related to the high abundance of
B cells in the site of inflammation in the RA tissues.
Our models definitively represent this characteris-
tic of the disease but, also, they may model other
features of the pathologies, as indicated by the
inclusion of genes representing a larger spectrum
of the processes involved in these pathologies (e.g.
apoptosis, etc.). Another interesting property of our
approach is the relatively low frequency of genes
that display a differential expression between the
two classes. Our strategy clearly produces models

Figure 4. Heat maps of the genes selected in the predictive models. Panel A displays the genes selected in the overall
best model. Panels B–G display the six models obtained in the six different searches. Panel H represents the genes with
marginal probability greater than 0.08 and Panel I displays the genes identified by the shrunken centroid method. A heat
map represents the expression levels of each gene across the samples. On the left of the yellow line the map displays the
profiles of the RA patients whereas the OA samples are on the right end side. The figure also reports the result of an
ANOVA to identify genes significantly up-regulated in one of the classes. Genes marked in red are up-regulated in RA
patients, genes marked in blue are up-regulated in OA patients. A threshold of p < 0.01 was used
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Figure 5. Cluster analysis of the arthritis samples.
The dendrogram describes the relationships among the
disease tissues. Cluster analysis was performed using an
average linkage algorithm (UPGMA) on a correlation matrix
obtained by using the Pearson correlation coefficient. The
analysis was done using the software J-express (Dysvik and
Jonassen, 2001)

with similar predictive power to conventional tech-
niques. Interestingly, the models do not include
correlated genes or a high percentage of differ-
entially expressed genes. Extensive experimental
investigation will be required to assess the biolog-
ical significance of the models we described. We
believe that our method is effective in linking gene
expression profiles with aspects of disease pathol-
ogy. The classification of subgroups of RA patients
with different ability to respond to drug treatment,
or at a different disease stage, will definitively be
an interesting application. Such predictors would
be invaluable tools in the clinic, for both prognosic
and diagnostic purposes.
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