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A General Method for Approximating Improper Integral- ....... .. 

by

H. L. Gray and Suojin Wang t
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Abstract. In this paper a new transformation referred to as the G n)-transform is introduced for

the purpose of increasing the ,rate of convergence of a sequence to its limit. In particular if the

sequence is a sequence of partial integrals, F(x), then G n)[F(x)] is shown to converge super fast to

F(oo) under very general conditions. The G(m)-transform is shown to be closely related to Levin and

Sidi's D-transform and the Bn-transform introduced by Gray, et al. Several examples are given.

Key words, convergence acceleration, G .- transform, tail probability
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1. Introduction

In [2] Gray, Atchinson and McWilliams introduced the Gm-transform. They showed the

transform to be of value in evaluating improper integrals, especially in the case of integrals in which

the integrand decayed like an exponential function.

The results of Gray, et al were significantly extended by Levin and Sidi [6] to a much more

generai - wbich no longer required the exponential behavior of the integrand in the limit to be

This research was partially supported by DARPA/AFGL Contract No. F19628-88-K-0042.
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effective. This was accomplished by introducing what they referred to as the D-transformation. Given

a sequence of values of a function, the D-transformation is a very effective tool for increasing the rate

of convergence of the sequence to its limit in most cases. In fact, to date, the D-transformation (or its

discrete counterpart, the d-transformation) is probably the most effective general method for increasing

the rate of convergence of a sequence available. For some cases its effectiveness has been further

improved recently by a slight extension by Gray and Wang [41.

Since the original paper by Levin and Sidi a number of papers have been written on the Levin

and Sidi transformation and Ford and Sidi [1] have shown that the generalized Richardson

extrapolation procedure (GREP) can be used to calculate the D- and d-transformations. One aspect of

the D-transformation that has not been investigated very closely is the behavior of the transformation

as the step size between an equally spaced sequence of points, where the functional values are taken,

approaches zero. In the particular case where the sequence is a sequence of improper integral

approximations and the integrand is given at equally spaced points, i.e., at x0 + kh, h fixed and k = 0,

1, 2, . . . , N, this phenomonon was investigated, [2], for the Gm-transform. In particular it was

demonstrated that in the case of the Gm-transformation, it is often the case that the approximation

improved as h--0. Investigating this property then led to a new transformation referred to as the Bm -

transformation [3]. To be specific let

F(x) = f(u) du , (1)
a

where F(x) - S < cao as x -* oo. Then lir Gm [F(x+kh)] = Bm[(F(x)]. The Bin-transformationh_0

was then shown to be of value in its own right, particularly in the area of producing functional

approximations to tail probabilities (see [3]). The fundamental difference between Gm and Bm -

transformations is that the former requires values of the function being transformed at several points

while the Bm requires values of the function and its derivatives at a single point. In the case of tail
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probabilities this distinction allows one to replace the problem of integration completely by

differentiation.

>/ In this paper we introduce a new transformation, referred to as the Gn -transformation, which is

in fact the limit of the Levin and Sidi D-transformation when applied to a function evaluated at

(in)equally spaced points. Thus the Gn -transformation can be viewed as the extension of the Bm -

transformation analogous to the Levin-Sidi generalization of the Gm-transformation. In fact, as we

shall see, Bm - G(m) . 'The Levin-Sidi generalization has been clearly shown to be a powerful tool for

evaluating improper integrals when the integrand is given at a sequence of points; it should be

(in)expected, therefore that the Gn -transformation will be useful when the integrand and its derivations

are given at a single point. This is shown to be the cae in both teoiand practice. In particular,

under very general conditions, Gn [F(x)] is shown to converge to S faster than F(x) at a rate

proportional to x- n. Several examples are given. --. ( .

2. Background and Definitions

Let F(x) and S be defined as in equation (1) and let

00

C(x) = S - F(x) f(u) du. (2)
x

Further let

k(x) = x c~k 00(3

where ctk,1 0 and ek is an integer with k < k. Also suppose m is the smallest integer such that

c(x) satisfies the differential equation

Urn(x) y(m) m (m-i) + ... + Ul(X ) y'-y = 0, (4)

for some set of Uk's. For motivational purposes suppose
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olii =" 2 ,i .. m,i = 0

when i > n. Then

n em l()n 9 -+

Im'i X (in + + cj x + c'(x)-f(x)=0.

Thuq

F(x) =S + or ai X 1  f(x) +. + (k a'i X"m i+ (X)(5

and

fa) 1l' jx f(x)j(~l + + m~ i=1-i a1 fI~m (~ , (6)

k=0,1,...,N-1, N=mn. Nowlet

Zi Z2  . . z~

all a1 2 ... al,k+1 7

Hk+l(zi ; aij)=

a ki ak,2  akk+l

and define

G[F (x), f(x), f(N- ) (x) ;ajij(x) = N+Ii: a..)()

where cl =1c 2 = c3 =~ 0c~ 0, zi= FQ0 1 (x), and for j = 1, 2,., mn +1,

L 
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[ei-i+1 f(x)]

aid(x) = f 2 f'(x)] i = n+..... , 2n,

[Xeimxi+(m1,)n+l fm-1)(x)]I1) i = (m-1)n+l, . . . , mn.

From equations (5) and (6) it follows from Kramer's rule, if HN+I(Cj ; aij) $ 0, that

GIF(x), f(x),..., f(N 1)(x); ai(x)] = S I f(u)du (9)
a

Now suppose f(x) satisfies (4), i.e.,

f(x) = Uk(X) f(k)(x), (10)
k=1

where Uk(x) is defined by (3) and we no longer assume that the series in (3) is of finite length but

rather that it converges for all x > a. Suppose further that

lim Uk( i - l ) (x) fk-i) (x) = 0, (11)

for k=i, i+1, m, i=I, m. Then Levin and Sidi [6] have shown that there exists a set of a*k,i

such that

U n)(X) Im(x) + Um 1 (X) (m-) (x) +... + U*(x) E'(x)-c(x) = rn(x) , (12)

where
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n * Xek-- (13)
U k*(x) ki-1

and

m -~-) 01-i+l _Ox n

rn(x) E f(k-l)() E o k i0 (x ) (14)Z k~<i x- o(-lEX)
k=1 i=n+l

m snk k-*1)(th
sn c  1 x (). The notation "" implies that if p(x) - q(x) then p(x)/q(x) - 1,
k=1k1

as x -* oo. From (12) we have

m f(k-1)()

F(x) = S + E Uk(x) + rn(x), (15)
k=1

and therefore for j = 1, 2 .... , inn, we have

i -)e + )sn t- l 1) (j) (j)
= f(x) +' + 0" • x W + rn (x) .(16)

___ i=l m'I

From these observations and equation (9) it is clear that as x and n become large G[F(x), f(x), .

$(mn- 1)(x); ai (x)] approaches S and one would think it would approach S more rapidly than F(x).

This leads us to the following definition, which is essentially just an economy of notation over our

previous remarks.

Definition 1. Suppose for x > a, that f(mn+m- 1) (x) exists, and Hmn+i(cj , aij(x)) :A 0, then we

define the Gn -transformation by

Gin) F(x); ai,1 = G[F(x), f(x), ... f(mn -)(x); ai (x . (17)

The Gn -transform defined by (17) is in fact the limiting case of the D-transformation which we

spoke of in the introduction. In fact, had we generated the system of equations defined by equation

(15) by incrementing x, i.e., using F(x+kh), instead of differentiating, we would have been led to the
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D-transformation of Levin and Sidi. This was shown in [6]. To obtain Gn directly as a limit of the

D-transformation one begins with the D-transform and takes the limit as h-0 after several row and

column manipulations. The procedure is exactly analogous to the method used in [2] to obtain the

Bm-transform as the limit of the Gm-transform. It follows by definition that G(m) = Bm

3. Ma Results

In this section we prove rigorously the fundamental properties of the Gn -transformation

suggested by our previous discussion. The first theorem needs no proof and is really just a restatement

of our previous remark but we choose to state it formally for emphasis.

Theorem 1. If c(x) satisfies equation (4) with al i = a2i = . = am,i = 0 when i>n, and

Hmn+i(cj; aij) :A 0, then for x > a

Gn[~) i]Efof(u)du .(18)

a

(in)The value of a transformation such as Gn does not lie in a theorem such as Theorem 1, even though

such theorems are of interest. However it is the next theorem which justifies our interest in the G(n )-

transformation.

Theorem 2. Suppose that Gn)[F(x); aid] is defined, and that for all x > a, f(x) satisfies equation (4),

and that m > 0 is the smallest integer for which this is true. Suppose further that F(x) - S < oo as x

oo, and that equation (11) holds. Then

S-G(m)[F(x); aij]n Ox-n, . (19)
S-F(x)
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Note that not only does (19) imply that Gn m)[F(x); ai ] converge to S, but that :t does so more

rapidly at a rate proportional to x - n as x-0 .

Proof. Due to the length and detail required to prove the results we shall divide the proof into two

parts. First, we will show the results in some detail for m=l. Following that we will only sketch the

proof for m > 1.

Case I: m = 1.

We first show that the denominator in (8)

Hn 1 (c.; ai,j) Anfn(x) (20)n~(x (nI) n ,(0

for some An 0. Let Pn(x) = Hn+l(cj; aij) and g(x) = x f(x), denoted simply by g. Then

a1 2 (x) a1 3 (x) . . al,n+(X)

a22(x) a23(x) ... a2,n+l(X)

Pn(x) =

an,2(x) an, 3 (x) ... ann+l(x)
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9l 9 9g(n)

I.,_/ h, fl, n /n lP()g(n-j

g+( 1 )g I gtI+2( I)fg,+( I ... __(

x x x xj=O

'4...-. j g -g " + - Lx.-. Ig'+ -1--lg)( -

By elementary row and column operations we obtain

hI  h2  •.. hn

( )" i ... ( )(n)

Pn(x) = gn-1 (21)

where

hi =g

h2 = g"-2gh1 /g

(n) 1 J

j=l

From (16) we note that f(x) - alL x lf(x), which implies that
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f)(x) - dj x - j e l f(x), (22)

and

) _ j - el 9, (23)

for some constants dj and df, j = 1, 2. Note that d1 = 1/a*l, where a*, j 0 by assumption . It

then follows that

h. - cf(x)/x 0 (24)

for some constants cj, j = 1, 2, ... , n.

(i). If 1 < 0, then it is easily derived from (16) that

d. = d! = dj1  , ,j , 1~ ,2 ..

Then

cj= (-I j 1,  n

Therefore

() x(1)(n- 1)

Pn(x) gn- hn

() 1 
1)(n 1)

gn-hn bn -gn-1 cnf(x) bn An fn(X)
- (n-1)n  x (n-l)l x(n-l)n x (n-1)n ,  (25)

where An cnbn and bn is a constant. It is seen from elementary theory of differential equations that

bn i 0, which implies that An A 0.

(ii). Now we suppose that 91 = 1. Then one can show that
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d! = (d1+1) d1(dj-1) ... (d 1-j+2), j 1 1, 2,

and thus

cj= (-I1-i(d 1 +l) (d1 +2) ... (dl+j), j = 1 ..... n

We then have

C2  Cn
C1  -" xn-i

()' ((")(n)

Pn(x)g- lf(x)

__n xn1 1" (Xn1

=An gn-lf(x) 1 -A f (x)
x(n-1)(n+l) n (n-l)n

n

where An = n  ' (di-i+2) for some bn # 0, and thus An : 0 since it is easily shown that
i=1

-1<ot*l<O. We have therefore proved (20).

We now consider the numerator of S-Gn [F(x); aij] . Denoting the numerator by Qn(x), we

have

rnrhI()x) ... rn(X)

a l l (x) al 2 (x) . . al,n+l(x)

Qn(x) = a21(x) a22(x) . .. a2,n+l(x)

an,I (X) an,2(x) •... an,n+l(X)



h0  h1  .hn

(1, .. (1)(fl)g

where h0 = g, v0 = rn(x) and vj's correspond to hj's when g is replaced by rn(x). From (14) and (22)

we know that

n(j) = 0 X- -jel( , .... n .

Thus, by (23),

vo= rn(x) = ( ncx

Vi_-(r ) - O(x -ne,

v2 rfi(x)-2g'vl/g = ( X-n-291 (X))

vn =n (x) v. g /g = C(X)

We then have

12



0 Mk" (1)(nl)I

Qn(x) =v 0 Pn(x)-vl 9n- +

o (n)

o ' . (,)(n-1)

0oX . ()(f)(n

0 oXfl e(x) P0 (x) + O vi gnlh 0 (n.I~i~

gn-1I ho 1 +O0vn f-lh I

O(X-nc(X))Pn(x) + 0 ( - n+(n- 1)(e 1  IE1)x)
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+ 0 (X -n+(n-2)(tel1) E(x)Pfl(x)) + .+ O(X-n E(X)Pn(x))

=o(X-nc(x) )Pn(x) - (26)

Hence by (25) and (26), we obtain

S-GL' [F(X); aij] = Qn(x) / Pn(x)=OxEx)

and

S-F(x)

which completes the proof for m=1.

Case 11: m > 2.

Because the proof is quite lengthy and its scheme is similar to Case 1, we only sketch it. From

(10), we can asymptotically express f m)(x) in terms of f(x), f'(x),. . ., m-1(x) as follows:

f m) rn-i1 rk, f k) () ,(27)

(x) - E )k,O X
k=1

where 13kO are nonzero constants, rkO = e-'MI, 0 = 0. Because the relative error of f m) to the

right hand side of (27) is a linear combination of negative powers, we have the following lemma whose

proof is straightforward.

Lemm 1. For q =1, 2,

f(mrr Wx - ' 6 kq x) (28)

k=0
14



where Ok,q and rkq are constants, and rkq > rk,q_ 1 - 1.

From equation (2), f(m+q)(x) can be asymptotically expressed in terms of f(x), fe(x),

f(m-1)(x). Moreover, one can show that there exists an integer i0 < 1 such that f(q+l)(x) and

x0f(q) (x) have the same order when x---oo, for q = 1, 2, . To be specific, suppose m=2. Let gk(x)

x kfk-1) 10, ij)
(kl),( and denote it by gk' k=l, 2 . Then g and x , have the same order, forj =

1, 2, . Using the same notation as Case I, we have the denominator

9 9 9(2n)

a22(x) a23(x) a2,2n+l(x)

an,2(x) an, 3 (x) ... an,2n+l(X)

fn it (2n)
Pn(x) = ... 2

an+2,2 an+2,3(x) . an+2,2n+(x)

a2n,2(x) a2 n,3 (x) a2n,2n+l(x)

There are (2n)!/(n!) 2 minors of order n obtained from the first n rows. Multiply each of these minors

by its complementary minor and by a proper sign factor. The sum of all such products is Pn(x) by the

15



Lapalace expansion. We can prove that each product is at most of order fn-l(x) (fe(x)) n +l

-n(n-l+(n+l)i 0 -e 1 -e 2 ) In fact, ignoring the sign factor, the first such product is

(n) (n+I) 9(2n)
gg 1  g2 2

•... a 2 ,n+(x) an+2,n+2(x) .. .

an, 2 (x) ... an,n+l(X) a2n,n+2(x) ... a2n,2n+l(x)

(n)(o g1  n-i (g( ____

( n x-1)iO g (n 1)n/2) 10(n-)n/2

- b1 fn-(x)(ff(x)) n + l -n(n-l+(n+l)io-1 1 -9 2 )

where b0 and b, are constants, by employing the technique used in the proof of case I. Thus, omitting

the detailed tedious arguments, we have

Pn(x) - An fn-l(x) (fe(x))n + l -n(n-l+(n+l)d-e 9- 2)

where An is a nonzero constant. Similarly to the proof in case I, we can also show that

Qn(x) = O(x-ne(x)) Pn(x).

16



The case of m=2 is then proved. The proof for the case of m>2 is directly analogous to the case m=2.

It is however extremely laborious and we do not include it here.

Corollary 1. Assume the general conditions in Theorem 2. If max ,h

<k<m k,n+l 0, then

n [F(x) a ] 0 (1) , n =1,2, (29)

(in) (in)
In other words G+i) converges to S faster than Gn at a rate proportional to 1/x.

The proof is straightforward from the proof of Theorem 1.

4. ADvlications

(in)-
In Section 3 we have established the fast convergence rate of Gn -transformation. We now

consider some examples to show the numerical accuracy of the transformation.

Example 1. We know that
00

r(a+l)=f xt e - x dx, a> -1.

0

The integrand f(x) = xae- x satisfies

f(x) -" (x) • (30)

Equation (30) implies that m=1 and l=O. Rewriting (30) as

xf(x) = (a-x) f(x)

17



and taking the r-th derivative on both sides leads to

$r+l)) - _ ) f~r)(x) ~- 1 (x k (31)

Using (31), the Gn -transform can be carried out for any n. To be specific, let a = . Then r(a+l1)
2

- -{- = 3.3233509704478 .... Table 1 lists the comparison of the Gn -transform and Levin and

Sidi's Dn)-transform. Adopting their notations the D(l)-transform in Table 1 uses the information of

F(x) and f(x) at x=1, 2, ... , n+1 while the Gn uses F(x) at x = n+1 and the derivatives at the same

point. The Gn -transform apparently gives better approximations in this case.

Example 2. In the second example we follow Example 4.4 in [6]. The goal is to approximate the

integral

I log-x dx = 1.460362116753119547...

0 1+sx
2  -

The integrand f(x) satisfies the differential equation

5x2+4x+l f- (x +1)(x+1) el
2(2x+1) 2(2x+1)

Therefore m=2, e1 = 1, e2 = 2. Rewriting the above equation as

(4x+2)f(x) = -(5x 2 +4x+l)fe(x) - (x3 +x 2 +x+l) f"(x)

and taking r-th derivative on both sides, we obtain, after simplification,

r+2) (X) = {[(3r+5)x2 + (2r+4) x+r+i] fr+l) () + [(3r2+7r±4 ) x+r2+3r+2] fr)(X)

18



+ r(r+1) 2 f(r-1)(} / (x 3 +x 2 +x+1)

Thus all the derivations can be calculated iteratively.
Table 2 compares the G(n2)transform with the Dntransform, where Dn use F(x), f(x) and

0.20-1)  (2) 1(~l

f'(x) at x = xj = e j=1, , 2n+l and G uses F(x), f(x), fe(x), ... f(2 n l(x) at x =

X2n+l , the largest value of x*'s. Again Gn is far better than D.n2  Note that the order of the

determinants involved in the calculations is 2n+1.

An important application of the G(nm)-transform is to approximate tail probabilities. In this

case, calculations of the transform need not require any integration. The transformation is therefore

useful for determining approximation functions for tail probabilities. Now suppose that f(x) is a

probability density function (PDF) and we wish to approximate the tail probability

00

P(a) = J f(u)du.
a

(Mn)If we let a=x in (1) then F(x) = 0, so that it is clear that Gn in (17) depends only on f(x), f'(x),

f(n m)(x), producing an approximation function for P(a). We use the notation Gnm)[f(x)] to

indicate this specific case. This method has been shown in [5] to be highly accurate even with small

values of order n (n=l, 2, 3) in approximating tail probabilities. In such lower order transformations,

we can usually express the resulting approximations in very simple forms so that the calculations of the

determinants are not needed and a hand calculator is sufficient to compute the approximations.

Example .. To give a specific example we now consider an application first given in [5]. That is,

G(nm)-transform to the Pearson family which include such well known PDF's as the normal, X2,

student t, F and others (see [5]). For the Pearson family of PDFs

19



fix) b0 + bx + b.x 2

-( X-a (X)

Clearly, m=1. The tail probabilities of all these distributions may therefore be well approximated by

G(1)[f(x); aij(x)]. For those distributions with finite support, the method can still be employed simply

by transformating the data to a distribution with infinite support.

For larger values of m and n the form of the G n -transform given by equation (17) is a

convenient one, and one which is easy to calculate on a micro-computer. However for m=1 and n < 3

the transform can be simplified to the extent that it is easily computed on a hand calculator.

Specifically we have

G(1)[f(x)]I = -x f2 (x)
x fe(x) + elf(x)

GM 1(x)1 = x f2(x) A(x)
an )2 ) =x 2B(x)-j(9-1)f2 (x)_xf'(x)A(x)

and

G(1)[f(x) = xf2(x) C(x)
x 3 D(x) + 3(e,-2)x2f(x)LB(x)-(if(x))J+ (i-1)(9 -2)f 2(x)E(x)

where A(x) = xf'(x) + 2(11-1)f(x)

B(x) = f(x) f(x) - (e(x)) 2

C(x) = 3( 1-2) f(x)[xe(x)+(,-,)f(x)] - x-2B(x) - (e(x))2]

D(x) = -f 2 (x) (3)(x) + 6f'(x) B(x)

E(x) = -3xf4(x) - etf(x).

20



To demonstrate the precision of these approximations, we consider the standard normal case.

Finding a proper functional approximation to the tail of a normal distribution is a problem which has

a rich history in statistics and many approximations have been proposed. In some applications one

requires a tail probability that is accurate in the extreme tails as well as at the usual nominal

significance levels. This problems has recently been addressed by Hawkes [7] who employed an ad hoc

approach to obtain a specialized approximation which is accurate in the very extreme tails. If f is a

standard normal density function, i.e.,

f(x) e _X
2 /2

then

f(x) =- f(x)

and clearly 91 = -1. Furthermore

f(r)(x) = -x(r-1)(x) + (I-k)f(r-2)(x) r > 2,

(1))

so that G(1)[f(x)I is easy to calculate for any n. Moreover it is easily derived from the definition that

Gl)[f(x)] = x f(x),
X2+1

Gl[f(x)] = x(x2 4) f x)(x2+1)(x2+4)-2

and

G l)[f(x)] x(x 2 2)(x2 91 f(x).x2 (x2 +3)(x 2 +9)+6

(1) (1) (1)Table 3 compares G 1 ) , G2  and G3 with the approximations QL2 and QH2 given in [7I; see [71 for

(1) (n1G)
details. Note that G2 )f(x)] is essentially as good as the best of QL2 and QH2and G3 [f(x)] is better.
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In fact, these new approximations are exact to many more significant digits than those shown in Table

(1) (1) 2
3 in the extreme tails. For example, when x=8, the absolute errors of G() andG 3  are3.4 X10

and 2.5 X 10-23 respectively while those of QL2 and QH2 are 7.8 X 10 - 19 and 2.5 X 10 - 19

respectively. Notice that all 2[f(x)], G~l)[f(x)] and G3l)[f(x)] are a rational function times the

density function. This is true for all other distributions considered in [5].

5. Concluding Remarks

In this paper we have extended the Bn-transformation in manner exactly analogous to the Levin-

Sidi generalization of the Gn-transformation. As in the case of the Levin-Sidi Lesults, the consequences

of such an extension are substantial, s was demonstrated by Theorem 2 and the examples. It should

be noted that the examples given are monotonic for large x. This is certainly not necessary for the

G(m)-transform to be effective. However as might be expected from our motivation of the Gn(me )n

transform, these are the types of functions for which the G n -transform would be expected to perform

the best. For example, the G( n)transform can be used to accelerate the convergence of the integral

ssit t D(2)_
t dt but is not as effective as Levin and Sidi's D transform.

0

REFERENCES

[1] W. F. Ford and A. Sidi, An algorithm for a generalization of the Richardson extrapolation

process, SIAM J. Numer. Anal., 24 (1987), pp. 1212-1232.

[2] H. L. Gray, T. A. Atchison and G. V. McWilliams, Higher order G-transformations, SIAM J.

Numerical Anal., 8 (1971), pp. 365-381.

22



[3] H. L. Gray and T. 0. Lewis, Approximation of tail probabilities by means of the

Bn-transformation, J. Amer. Statist. Assoc. 66 (1971), pp. 897-899.

[4] H. L. Gray and S. Wang, An extension of the Levin-Sidi class of nonlinear transf-rmations for

accelerating convergence of infinite integrals and series, Appl. Math. Comp. 17 (1989),

pp. 75-87.

[5] H. L. Gray and S. Wang, A general method for approximating tail probabilities, Technical report,

Dept. uf Statistical Science, Southern Methodist U., June, 1989.

[6] D. Levin and A. Sidi, Two new classes of nonlinear transformations for accelerating the

convergence of infinite integrals and series, Appl. Math. Comp., 9 (1981), pp. 175-215.

[71 A.G. Hawkes, Approximating the normal tail, TLe Statistician, 31 (1982), pp. 231-236.

23



Table 1

Errors of the Approximations G 1) and D to

2(Z I J 5/ e-x dx = 3.32335097044784227..

0

n G(1)[F(n+l); aij ] - r(7/2) I I D [F(1); r] (7/2)

4 1.7X10- 3  5.7XI0-2

6 1.7X10- 6  2.6X0 - 4

8 3.1X10- 9  2.4X10- 6

10 7.3X10 - 12  2.8X10 - 8

12 1.9X10-14  3.6X10- 10

14 2.9X10 - 16  5.1X1O- 12
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Table 2

Errors of the Approximations G()and D (2 ) t

S f fLo-gx dx = 1.460362116753119547...

nGn 2 [F(x2n+1 ); a..] - S Dn I [2 IF(x.)]

2 8.1X10- 3  3.2X101

3 7.6X10- 4  8.2X10- 3

4 3.6X10 -5 s.OXlo-4

5 5.0X10- 7  3.9X10- 4

6 3.6X10- 11  6.X10- 5

7 1.7X10- 1 2  2.9X.0- 6

8 1.1X10 1 5  3.4X 10 -8
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Table 3. Approximations to the upper tail of the normal distribution.

x true tail L2 (H21)  G( 1 )  G 1)

L2H21 23

1.2 .11507 .11737 .11402 .09550 .11244 .11504

1.6 .05480 .05589 .05465 .04985 .06452 .05486

2.0 .02275 .02314 .02274 .02160 .02273 .02276

2.4 .008198 .008312 .008197 .007951 .008199 .008200

3.0 .001350 .001364 .001350 .001330 .001350 .001350

4.5 3.398x0 - 6  3.414xi0 - 6  3.396x10- 6  3.385x10- 6  3.398xi0- 6  3.398x10- 6

6.0 9.866x10 1- 0  9.891x10- I 0  9.861x0 - 10  9.853x10- 1 0  9.866xI0- 0  9.866x10- 0

8.0 6.221xI0 - 16  6.229xIO - 16  6.218xI0 - 16  6.218xi0- 16  6.221xI0- 16  6.221xi0-16

10.0 7.620xI0 - 2 4  7.625xI0 - 2 4  7.618xI0 - 2 4  7.618x0- 2 4  7.620x0- 2 4  7.620x10- 2 4

14.0 7.794xI0 - 4 5  7.796x10 - 4 5  7.793x10 - 4 5  7.793x10-45 7.794x0-45 7.794xi0-45

18.0 9.741x0 - 7 3  9.742x10- 7 3  9.741x0 - 7 3  9.741xI0- 7 3  9.741x0-73  9.741x0-73
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