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A standard method to obtain information on a quantum state
is to measure marginal distributions along many different axes
in phase space, which forms a basis of quantum-state tomogra-
phy. We theoretically propose and experimentally demonstrate a
general framework to manifest nonclassicality by observing a sin-
gle marginal distribution only, which provides a unique insight
into nonclassicality and a practical applicability to various quan-
tum systems. Our approach maps the 1D marginal distribution
into a factorized 2D distribution by multiplying the measured dis-
tribution or the vacuum-state distribution along an orthogonal
axis. The resulting fictitious Wigner function becomes unphys-
ical only for a nonclassical state; thus the negativity of the
corresponding density operator provides evidence of nonclassical-
ity. Furthermore, the negativity measured this way yields a lower
bound for entanglement potential—a measure of entanglement
generated using a nonclassical state with a beam-splitter set-
ting that is a prototypical model to produce continuous-variable
(CV) entangled states. Our approach detects both Gaussian and
non-Gaussian nonclassical states in a reliable and efficient man-
ner. Remarkably, it works regardless of measurement axis for
all non-Gaussian states in finite-dimensional Fock space of any
size, also extending to infinite-dimensional states of experimen-
tal relevance for CV quantum informatics. We experimentally
illustrate the power of our criterion for motional states of a
trapped ion, confirming their nonclassicality in a measurement-
axis–independent manner. We also address an extension of our
approach combined with phase-shift operations, which leads to a
stronger test of nonclassicality, that is, detection of genuine non-
Gaussianity under a CV measurement.
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Nonclassicality is a fundamentally profound concept to iden-
tify quantum phenomena inaccessible from classical physics.

It also provides a practically useful resource, for example, entan-
glement, making possible a lot of applications in quantum infor-
mation processing beyond classical counterparts (1–3). A wide
range of quantum systems, for example, field amplitudes of light,
collective spins of atomic ensembles, motional modes of trapped
ions, and Bose–Einstein condensate and mechanical oscillators,
can be used for quantum information processing based on con-
tinuous variables (CVs) (2). It is of crucial importance to estab-
lish efficient and reliable criteria of nonclassicality for CV sys-
tems, desirably testable with fewer experimental resources, for
example, fewer measurement settings (4–8) and with the capabil-
ity of detecting a broad class of nonclassical states. In this paper,
in view of the Glauber–Sudarshan P function (9, 10), those states
that cannot be represented as a convex mixture of coherent states
are referred to as nonclassical.

A standard method to obtain information on a CV quantum
state is to measure marginal distributions along many different
axes in phase space constituting quantum-state tomography (11).

This tomographic reconstruction may reveal nonclassicality to
some extent, for example, negativity of Wigner function mak-
ing only a subset of whole nonclassicality conditions. However, it
typically suffers from a legitimacy problem; that is, the measured
distributions do not yield a physical state when directly used due
to finite data and finite binning size (11, 12). Much efforts was
made to use estimation methods finding a most probable quan-
tum state closest to the obtained data (13–16). There were also
numerous studies to directly detect nonclassicality, for exam-
ple, an increasingly large number of hierarchical conditions (4)
requiring information on two or more marginal distributions or
measurement of many higher-order moments (17–19). An excep-
tion would be the case of Gaussian states, with its nonclassical
squeezing demonstrated by the variance of distribution along a
squeezed axis.

Here we theoretically propose and experimentally demon-
strate a simple, powerful, method to directly manifest nonclas-
sicality by observing a single marginal distribution applicable to
a wide range of nonclassical states. Our approach makes use
of a phase-space map that transforms the marginal distribution
(obtained from measurement) to a factorized Wigner distribu-
tion by multiplying the same distribution or the vacuum-state
distribution along an orthogonal axis. We refer to those mathe-
matical procedures as demarginalization maps (DMs), because a
one-dimensional marginal distribution is converted to a fictitious
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2D Wigner function. The same method can be applied equally
to the characteristic function as well as the Wigner function. We
show that a classical state, that is, a mixture of coherent states,
must yield a physical state under our DMs. That is, the unphys-
icality emerging under DMs is a clear signature of nonclassical-
ity. Remarkably, for all non-Gaussian states in finite-dimensional
space, our test works for an arbitrary single marginal distribution
thus experimentally favorable. (For Gaussian states, our method,
if directly applied, works only for the squeezed axes not covering
the whole range of quadrature axis. As we show in SI Appendix,
however, a phase randomization, which does not create non-
classicality, modifies a Gaussian state to a non-Gaussian state
for which nonclassicality can be detected regardless of quadra-
ture axis.) It also extends to non-Gaussian states in infinite
dimension, particularly those without squeezing effect. We intro-
duce a quantitative measure of nonclassicality using our DMs,
which provides a lower bound of entanglement potential (20)—
an entanglement measure under a beam-splitter setting versa-
tile for CV entanglement generation (20–23). Along this way,
our method makes a rigorous connection between single-mode
nonclassicality and negative partial transpose (NPT) entangle-
ment (24–33), which bears on entanglement distillation (34) and
nonlocality (35–42).

As the measurement of a marginal distribution is highly effi-
cient in various quantum systems, for example, homodyne detec-
tion in quantum optics, our proposed approach can provide a
practically useful and reliable tool in a wide range of investi-
gations for CV quantum physics. We here experimentally illus-
trate the power of our approach by manifesting nonclassicality
of motional states in a trapped-ion system. Specifically, we con-
firm the nonclassicality regardless of measured quadrature axis
by introducing a simple faithful test using only a subset of data
points, not requiring data manipulation under numerical meth-
ods, unlike the case of state reconstruction. We also extend our
approach combined with phase randomization to obtain a crite-
rion on genuine non-Gaussianity.

DMs and Nonclassicality Measure
Nonclassicality Test via DMs. We first introduce our main tools,
that is, DMs,

D1 : Wρ(q , p) 7→ Mρ(x )Mρ(y) ≡W DM1
ρ (x , y), [1]

D2 : Wρ(q , p) 7→ Mρ(x )M|0〉〈0|(y) ≡W DM2
ρ (x , y), [2]

where (x , y)T =R(θ)(q , p)T is a pair of orthogonal
quadratures rotated from position q and momentum p

withR(θ) =

(
cos θ sin θ
− sin θ cos θ

)
. Mρ(x ) =

∫
dyWρ(x , y) is a mar-

ginal distribution of the Wigner function Wρ(q , p) =
2
π

tr[ρD̂(α)(−1)n̂D̂†(α)], where D̂(α) = eαâ
†−α∗â is a displace-

ment operator with α= q + ip (43, 44).
Our DM methods proceed as follows. Given a state with its

Wigner function Wρ(q , p), we measure a marginal distribution
Mρ(x ) along a certain axis, x = q cos θ + p sin θ. We then con-
struct a fictitious, factorized, Wigner function W DM

ρ (x , y) either
by replicating the obtained distribution as Mρ(x )Mρ(y) (DM1)
or by multiplying the marginal distribution of a vacuum state as

Mρ(x )M|0〉〈0|(y) (DM2), with M|0〉〈0|(y) =
√

2
π
e−2y2

(Fig. 1).

We test whether W DM
ρ (x , y) is a legitimate Wigner function to

represent a physical state.
Nonclassicality criteria. The constructed functions in Eqs. 1 and 2
are both in factorized forms, so judging their legitimacy is related
to the problem of what quantum states can possess a factorized
Wigner function. (Note also that a factorized Wigner function
must be everywhere nonnegative as each term in it represents its
marginal distribution so is nonnegative.) Every coherent state |β〉

Fig. 1. DMs. (A) original Wigner function Wρ(x, y) of |Ψ〉= 1√
2

(|0〉+ |2〉),

with its marginal Mρ(x) =
∫

dyWρ(x, y) in the backdrop. (B) A ficti-
tious Wigner function WDM1(x, y)≡Mρ(x)Mρ(y), with the same distri-
bution Mρ(y) replicated along the orthogonal axis (red solid curve).
(C) WDM2(x, y)≡Mρ(x)M|0〉〈0|(y), with the vacuum-state distribution
M|0〉〈0|(y) used (red solid curve). A–C, Bottom show the corresponding den-
sity matrix elements. WDM1(x, y) and WDM2(x, y) in B and C do not represent
any physical states, confirming the nonclassicality of |Ψ〉.

has a factorized Wigner function against all pairs of orthogonal
quadratures, W|β〉〈β|(x , y) = 2

π
e−2(x−βx )2e−2(y−βy )2 (7). Owing

to this factorizability, the maps D1 and D2 transform a classical
state into another classical one. A mixture of coherent states has
a Wigner function

Wρcl(x , y) =

∫
d2βP(βx , βy)W|β〉〈β|(x , y), [3]

with the probability density P(βx , βy) for a coherent state |β〉
(β=βx + iβy). Applying each DM leads to

Dj [Wρcl(q , p)] =

∫
d2βQ1(βx )Qj (βy)W|β〉〈β|(x , y) [4]

(j = 1, 2), where Q1(βx ) =
∫
dβyP(βx , βy) and Q2(βx ) = δ(βx )

are nonnegative. The resulting distributions in Eq. 4 also rep-
resent a certain mixture of coherent states and hence a physical
state. Therefore, if an unphysical Wigner function emerges under
our DMs, the input state must be nonclassical.
Gaussian states. Let us first consider a Gaussian state σ that
has a squeezed quadrature x̂ with Vx ≡∆2x̂ < 1

4
. Taking the

squeezed marginal Mσ(x ) = 1√
2πVx

e
− (x−〈x̂〉)2

2Vx yields

D1[Wσ(q , p)] =
1

2πVx
e
− (x−〈x̂〉)2

2Vx e
− (y−〈x̂〉)2

2Vx ,

D2[Wσ(q , p)] =
1

π
√
Vx

e
− (x−〈x̂〉)2

2Vx e−2y2

, [5]

both of which violate the uncertainty relation ∆x̂∆ŷ ≥ 1
4

. Thus,
the squeezed state turns into an unphysical state under our
DMs. This method, of course, succeeds only when the observed
marginal distribution is along a squeezed axis that generally
extends to a finite range of angles, if not the whole range of
angles (SI Appendix). We can further make the test successful
regardless of quadrature axis by introducing a random phase
rotation on a Gaussian state (SI Appendix). Note that a mix-
ture of phase rotations, which transforms a Gaussian to a non-
Gaussian state, does not create nonclassicality, so the nonclassi-
cality detected after phase rotations is attributed to that of the
original state.
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Non-Gaussian states. More importantly, we now address non-
Gaussian states. Every finite-dimensional state (FDS) in Fock
basis, that is, ρ=

∑N
j ,k=0 ρjk |j 〉〈k |, is nonclassical, because all

coherent states (except vacuum), and their mixtures as well, have
an extension to infinite Fock states. It is nontrivial to demon-
strate the nonclassicality of FDS when one has access to limited
information; for example, a noisy state f |0〉〈0|+ (1 − f )|1〉〈1|
for f ≥ 1

2
has no simple signatures of nonclassicality like squeez-

ing and negativity of Wigner function. We prove that our DMs
are able to detect all non-Gaussian states in finite dimension of
any size, with details in SI Appendix, section S4. The essence of
our proof is that there always exists a submatrix of the density
operator corresponding to DMs, which is not positive definite.
Remarkably, this nonpositivity emerges for a marginal distribu-
tion along an arbitrary direction, which means that the nonclas-
sicality of FDS is confirmed regardless of the quadrature axis
measured, just like the phase-randomized Gaussian states intro-
duced in SI Appendix. This makes our DM test experimentally
favorable, whereas the degree of negativity may well depend on
the quadrature axis except in rotationally symmetric states. Our
criteria can further be extended to non-Gaussian states in infi-
nite dimension, particularly those without squeezing effect (SI
Appendix).

As an illustration, we show the case of a FDS |Ψ〉=
1√
2

(|0〉+ |2〉), whose original Wigner function and matrix ele-
ments are displayed in Fig. 1A. Our DM methods yield matrix
elements as shown in Fig. 1B and C. The nonpositivity of
the density operator is then demonstrated by, for example,
〈0|ρ|0〉〈8|ρ|8〉 − |〈0|ρ|8〉|2 < 0 under DM1 and 〈0|ρ|0〉〈4|ρ|4〉 −
|〈0|ρ|4〉|2 < 0 under DM2, respectively.

Nonclassicality Measure and Entanglement Potential. We may
define a measure of nonclassicality using our DMs as

NDM(ρ)≡ max
θ∈(0,π)

||ρθDM||1 − 1

2
, [6]

where || · ||1 is a trace norm and ρθDM a density matrix under
DM, using a marginal distribution at angle θ. Our DM
negativity possesses the following properties appropriate
as a nonclassicality measure, with details in SI Appendix:
(i) NDM = 0 for a classical state; (ii) convex, that is, non-
increasing via mixing states, NDM(

∑
j pjρj )≤

∑
j pjNDM(ρj );

and (iii) invariant under a classicality-preserving unitary opera-
tion,NDM(ÛcρÛ

†
c ) =NDM(ρ), where Ûc refers to displacement

or phase rotation. Combining ii and iii, we also deduce the prop-
erty that (iv) NDM does not increase under generic classicality-
preserving operations (mixture of unitary operations).

Our nonclassicality measure also makes a significant connec-
tion to entanglement potential as follows. A prototypical scheme
to generate a CV entangled state is to inject a single-mode non-
classical state into a beam splitter (BS) (20–23). It is important
to know the property of those entangled states under partial
transposition (PT), which bears on the distillibility of the output
to achieve higher entanglement. Our formalism makes a con-
nection between nonclassicality of single-mode resources and
NPT of output entangled states. The effect of PT in phase
space is to change the sign of momentum, Wρ12(q1, p1, q2, p2)→
Wρ12(q1, p1, q2,−p2). If the resulting Wigner function is unphys-
ical, the state ρ12 is NPT. We first show that all nonclassical states
detected under our DMs can generate NPT entanglement via a
BS setting.

We inject a single-mode state ρ and its rotated version
ρ= e i π

2
n̂ρe−i π

2
n̂ into a 50:50 BS, described as

Wρ(q1, p1)Wρ(q2, p2)

BS−−→Wρ

(
q1 + q2√

2
,
p1 + p2√

2

)
Wρ

(
q1 − q2√

2
,
p1 − p2√

2

)
. [7]

Applying PT on mode 2 and injecting the state again into a
50:50 BS, we have

Wρ

(
q1 + q2√

2
,
p1 − p2√

2

)
Wρ

(
q1 − q2√

2
,
p1 + p2√

2

)
BS−−→Wρ(q1, p2)Wρ(q2, p1) =Wρ(q1, p2)Wρ(p1, q2). [8]

Integrating over q2 and p2, the marginal Wigner function for
mode 1 is given by Mρ(q1)Mρ(p1), which is identical to DM1
of the state ρ in Eq. 1. The other DM2 in Eq. 2 emerges when
replacing the second input state ρ by a vacuum ρ= |0〉〈0|. There-
fore, if the original state ρ is nonclassical under our DMs, the
output entangled state via the BS scheme must be NPT.

In ref. 20, single-mode nonclassicality is characterized by
entanglement potential via a BS setting, where a vacuum is used
as an ancillary input to BS to generate entanglement. We may
take negativity, instead of logarithmic negativity in ref. 20, as a
measure of entanglement potential; that is,

Pent[ρ] ≡ ||[ÛBS(ρ1 ⊗ |0〉〈0|2)Û †BS]PT||1 − 1

2
, [9]

where ÛBS and [·]PT represent 50:50 BS operation and partial
transpose on mode 2, respectively. We then prove in SI Appendix
that our DM2 measure provides a lower bound for the entangle-
ment potential as

NDM2[ρ] ≤ Pent[ρ]. [10]

Thus, the nonclassicality measured under our framework indi-
cates the degree of entanglement achievable via BS setting.

Experiment
We experimentally illustrate the power of our approach by
detecting nonclassicality of several motional states of a trapped
171Yb+ ion. For the manipulation of motional state, the single
phonon-mode â along the X direction in 3D harmonic poten-
tial with trap frequencies (ωX, ωY, ωZ) = 2π (2.8, 3.2, 0.6) MHz
is coupled to two internal levels of the S1/2 ground-state mani-
fold, |F = 1,mF = 0〉≡ | ↑ 〉 and |F = 0,mF = 0〉≡ | ↓ 〉 with tran-
sition frequency ωHF = (2π) 12.642821 GHz. We implement
the anti-Jaynes–Cummings interaction HaJC = ηΩ

2
â†σ̂+ + h.c.

and the Jaynes–Cummings interaction HJC = ηΩ
2
âσ̂+ + h.c. with

σ+ = | ↑ 〉〈 ↓ |. HaJC is realized by two counterpropagating laser
beams with beat frequency near ωHF +ωX and HJC with fre-
quency near ωHF − ωX (7). η = ∆k

√
}/2MωX is the Lamb–

Dicke parameter, Ω the Rabi frequency of internal transition,
∆k the net wave vector of the Raman laser beams, and M the
ion mass.

For our test, we generate the Fock states |n = 1〉 and |n = 2〉,
together with the ground state |n = 0〉. First, we prepare the
ground state by applying the standard Doppler cooling and the
Raman sideband cooling. Then we produce the Fock states by
a successive application of the π pulse of HaJC, transferring the
state | ↓,n〉 to | ↑,n + 1〉, and the π pulse for internal state tran-
sition | ↑,n + 1〉 to | ↓,n + 1〉. We also generate a superposition
state 1√

2
(|0〉 + |2〉) by applying the π/2 pulse of HaJC and then

the π pulse of HJC.

Nonclassicality Test. We measure a characteristic function
Cρ(kθ)≡〈e−2ikx̂θ 〉 with x̂θ = x̂ cos θ+ p̂ sin θ, by first making
the evolution Û = e−ikx̂θ σ̂x (simultaneously applying HaJC and
HJC with proper phases) and then measuring internal state
σ̂z = | ↑ 〉〈 ↑ |− | ↓ 〉〈 ↓ | at times ti (k = ηΩt) (45, 46). Using
Û †σ̂z Û = cos(2k x̂θ)σ̂z + sin(2k x̂θ)σ̂y , we obtain 〈cos(2k x̂θ)〉
and 〈sin(2k x̂θ)〉, with the internal state initially prepared in
the eigenstates |+ 〉z and |+ 〉y of σz and σy , respectively.
The Fourier transform of Cρ(kθ) gives the marginal distribu-
tion of x̂θ (45, 46). In contrast, we directly use it without
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the Fourier transform, for which our DMs work equally well
as for the Wigner function. We test CDM1≡Cρ(kx )Cρ(ky)

or CDM2≡Cρ(kx )C|0〉〈0|(ky) =Cρ(kx )e
− 1

2
λ2
ky , with its density

operator ρ= 1
π

∫
dkxdkyC (kx , ky)D̂†(kx , ky) unphysical for a

nonclassical state.
To set a benchmark (noise level) for classical states, we

prepared the motional ground state |n = 0〉 and obtained its
marginal distributions along six axes with 1,000 repetitions for
each time ti . It yielded the negativity NDM2 = 0.019± 0.02 rep-
resented by gray shading in Fig. 2 (SI Appendix). On the other
hand, the Fock states |n = 1〉 and |n = 2〉 clearly manifest non-
classicality for each marginal distribution taken at three differ-
ent angles θ in Fig. 2A, at much higher negativity with error bars
considering finite data of 1,000. To further show that our method
works regardless of measured axis, we also tested a superposition
state 1√

2
(|0〉+ |2〉) not rotationally symmetric in phase space. As

shown in Fig. 2B, its nonclassicality is well demonstrated for all
measured angles individually whereas the degree of negativity
varies with the measured axis.

Compared with our DM, one might look into nonclassicality
directly via deconvolution, that is, examine whether a marginal
distribution P(x ) can be written as a sum of coherent-state dis-

tributions as P(x ) =
√

2
π

∫
dx̃ P̃(x̃ )e−2(x−x̃)2 , where P̃(x̃ ) must

be positive definite for classical states. P̃(x̃ ) is nothing but
the marginal of Glauber–Sudarshan P function and thus typi-
cally ill-behaved. One can test the positivity of P̃(x̃ ) alterna-
tively using an n ×n-moment matrix with elements Mij ≡〈x̃ i+j 〉
(i , j = 0, . . . ,n − 1) (47). Fig. 2 C and D shows the results under
deconvolution, using the same experimental data as in Fig. 2
A and B. To confirm nonclassicality, the degree of negativity
must be large enough to beat that of the vacuum state, including
the statistical errors. Although those states produce negativity
under deconvolution, their statistical errors substantially over-
lap with that of the vacuum state, providing much weaker evi-
dence of nonclassicality than our DM. Full details are given in SI
Appendix.

Instead of using an entire characteristic function, we can
also test our criterion by examining a subset of data using the

A B

C D

Fig. 2. (A and B) DM2 negativity against θ of the measured distribution
〈e−2ikx̂θ 〉 for (A) Fock states |1〉 and |2〉 and (B) a superposition 1√

2
(|0〉+|2〉).

Dashed lines, theoretical value; bullets with error bars, experiment; gray
shading, noise level for classical states. (C and D) Negativity under decon-
volution test for Fock states |1〉 (blue), |2〉 (brown), and 1√

2
(|0〉+ |2〉) (red),

together with |0〉 (gray), using a 5× 5-moment matrix.

A

C D

E F

B

Fig. 3. KLM test under DM2 using a matrix of 3× 3 (A–D) and 5× 5
(E and F) lattice points, respectively, with λmin the lowest eigenvalue for
each lattice size d (SI Appendix). Negative λmin manifests the nonclassical-
ity of the considered state. Solid (pure-state |Ψ〉) and dashed (mixed-state
f|0〉〈0|+ (1− f)|Ψ〉〈Ψ|) curves represent theoretical predictions and bullets
with error bars represent experimental data. (A) motional ground state |0〉.
(B–D) |Ψ〉= 1√

2
(|0〉+ |2〉) for the measured angles at θ= π

3 , π
2 , and 2π

3 ,
respectively. (E) Fock state |1〉. (F) Fock state |2〉. For mixed states (dashed
curves), we use f = 0.66 in B–D and f = 0.5 in E and F, respectively.

Kastler–Loupias–Miracle–Sole (KLM) condition (48–51). This
simple test provides clear evidence of nonclassicality against
experimental imperfections, for example, coarse graining and
finite-data acquisition in other experimental platforms as well.
The KLM condition states that the characteristic function
Cρ(ξ)≡ tr[ρD̂(ξ)] for a legitimate quantum state must yield an
n ×n positive matrixM> 0 with matrix elements

Mjk =C (ξj − ξk )e
1
2

(ξj ξ
∗
k−ξ

∗
j ξk ), [11]

for an arbitrary set of complex variables {ξ1, ξ2, ..., ξn}. In our
case, we test the positivity of a matrix (n = 9) constructed using
3× 3 points of rectangular lattice of size d for the character-
istic function under DM2 (SI Appendix). As shown in Fig. 3A,
the ground state |0〉 shows nonnegativity (and thus the mixture
of coherent states as well due to convexity of our method) for
all values of d , whereas a nonclassical state |Ψ〉= 1√

2
(|0〉+ |2〉)

Fig. 4. DM negativity of f|0〉〈0|+ (1 − f)|2〉〈2| (bullets with error bars)
from experimental data. Maximum Gaussian negativity under N = 6 (blue
dotted line), N = 12 (brown dotted-dashed line), and N→∞ (black dashed
horizontal line) phase rotations is given against energy n, the negativity
above which confirms genuine non-Gaussianity.
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manifests negativity in a certain range of d , confirming nonclas-
sicality for each measured distribution at θ= π

3
, π

2
, and 2π

3
(red

solid curves) in Fig. 3 B–D, respectively. Furthermore, note that
a mixture of the vacuum and the nonclassical state, f |0〉〈0| +
(1 − f )|Ψ〉〈Ψ|, possesses a positive-definite Wigner function for
f ≥ 0.66, so even a full tomography may not directly show its non-
classicality via negativity. In contrast, our simple method man-
ifests nonclassicality for f = 0.66, shown by blue dashed curves
in Fig. 3 B–D. For Fock states, we consider the matrix test
using 5× 5 lattice points, which confirms negativity at the mix-
ing f = 0.5 with vacuum giving a nonnegative Wigner function
for both states |1〉 and |2〉 in Fig. 3 E and F.

Genuine Non-Gaussianity. We further extend our approach com-
bined with phase randomization to derive a criterion on genuine
non-Gaussianity. Notably there exist quantum tasks that cannot
be achieved by Gaussian resources, for example, universal quan-
tum computation (52), CV nonlocality test (53, 54), entangle-
ment distillation (55–57), and error correction (58). It is a topic
of growing interest to detect genuine non-Gaussianity that can-
not be addressed by a mixture of Gaussian states. Previous
approaches all address particle nature like the photon-number
distribution (59–61) and the number parity in phase space (7, 62,
63) for this purpose. Here we propose a method to examine gen-
uine CV characteristics of marginal distributions. Our criterion
can be particularly useful to test a class of non-Gaussian states
diagonal in the Fock basis, ρ =

∑
pn |n〉〈n|, and thus rotation-

ally symmetric in phase space. For this class, one may detect non-
classicality using photon-number moments (18), which can be
experimentally addressed efficiently by phase-averaged quadra-
ture measurements (64, 65). Lvovsky and Shapiro experimen-
tally demonstrated the nonclassicality of a noisy single-photon
state f |0〉〈0|+ (1 − f )|1〉〈1| for an arbitrary f (66), using the
Vogel criterion (67). In contrast, we look into the genuine non-
Gaussianity of non-Gaussian states as follows.

For a Gaussian state ρG, the phase randomization gives
σ≡ 1

N

∑N−1
k=0 e−iθk n̂ρGe

iθk n̂ with θk ≡ k
N
π. As the number N

of phase rotations grows, the DM negativity of Gaussian states
decreases. With N → ∞ (full phase randomization), we obtain
the Gaussian bound BG ≈ 0.0887 (SI Appendix). Thus, if a state
manifests a larger DM negativity as N >BG, it confirms gen-
uine non-Gaussianity. We plot the Gaussian bounds for finite
rotations N = 6 and N = 12 with BG≈ 0.0887 against energy
n in Fig. 4. Our data for the state |2〉, which shows negativ-
ity insensitive to measured angles in Fig. 2, indicate genuine
non-Gaussianity for the mixed states f |0〉〈0|+ (1− f )|2〉〈2| with
f = 1 − n

2
. For example, the N = 12 case (Fig. 4, brown dotted-

dashed line) as well as the full phase randomization (Fig. 4, black
dashed horizontal line) confirms quantum non-Gaussianity at
f = 1

2
, corresponding to a positive Wigner function.

Conclusion and Remarks
Measuring marginal distributions along different axes in phase
space forms a basis of quantum-state tomography with a wide
range of applications. A marginal distribution is readily obtained

in many different experimental platforms, for example, by an effi-
cient homodyne detection in quantum optical systems (11, 68–
71) and by other quadrature measurements in trapped-ion (45,
46, 72), atomic ensembles (73), optomechanics (74, 75), and cir-
cuit quantum electrodynamics (QED) systems (76, 77). We here
demonstrated that only a single marginal distribution can man-
ifest nonclassicality by using our DMs. Our DM methods are
powerful to detect a wide range of nonclassical states, particu-
larly non-Gaussian states. They provide a practical merit with
less experimental effort and make a stronger test of nonclassi-
cality by analyzing data without numerical manipulation unlike
state tomography.

Remarkably, nonclassicality can be demonstrated regardless
of measured quadrature axis for all FDSs, which was also exper-
imentally confirmed using a trapped-ion system. We clearly
showed that the proposed method provides a reliable nonclas-
sicality test by directly using a finite number of data, which
can be further extended to other CV systems. In addition to
the KLM test used here, we can manifest nonclassicality by
looking into single marginal distributions under other forms,
for example, functional (33) and entropic (78, 79) inequali-
ties. We also extended our approach to introduce a criterion
on genuine non-Gaussianity, using marginal distributions com-
bined with a phase-randomization process. Our nonclassicality
and non-Gaussianity tests were experimentally shown to suc-
cessfully detect non-Gaussian states even with positive-definite
Wigner functions whose nonclassicality is thus not immediately
evident by the tomographic construction of Wigner function. As
a remark for those nonclassical states with positive Wigner func-
tions, one may use generalized quasi-probability distributions
like a filtered P function (80–82). For example, the experiment
in ref. 83 introduced a nonclassicality filter to construct a gener-
alized P function that yields a regularized distribution with neg-
ativity as a signature of nonclassicality for the case of photon-
added thermal states. On the other hand, our DM method does
not require a tomographic construction and provides a faithful
test that is reliable against experimental imperfections like finite
data and coarse graining.

Moreover, we established the connection between single-
mode nonclassicality and NPT entanglement via a BS setting—a
prototypical model of producing CV entanglement. The negativ-
ity under our DM framework provides a quantitative measure of
a useful resource by identifying the minimum level of entangle-
ment achievable in Eq. 10 (as shown in SI Appendix, the relation
in Eq. 10 holds regardless of the measured axis). Nonclassical-
ity and non-Gaussianity are important resources, making a lot of
quantum tasks possible far beyond their classical counterparts.
We thus hope our proposed method could provide a valuable
experimental tool and a fundamental insight for future studies of
CV quantum physics by critically addressing them.
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16. Teo YS, Zhu H, Englert B-G, Řeháček J, Hradil Z (2011) Quantum-state reconstruction
by maximizing likelihood and entropy. Phys Rev Lett 107:020404.

17. Shchukin E, Richter Th, Vogel W (2005) Nonclassicality criteria in terms of moments.
Phys Rev A 71:011802(R).

18. Shchukin EV, Vogel W (2005) Nonclassical moments and their measurement. Phys Rev
A 72:043808.

19. Bednorz A, Belzig W (2011) Fourth moments reveal the negativity of the Wigner
function. Phys Rev A 83:052113.
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71. Cooper M, Wright LJ, Söller C, Smith BJ (2013) Experimental generation of multi-
photon Fock states. Opt Express 21:5309–5317.

72. Wallentowitz S, Vogel W (1995) Reconstruction of the quantum mechanical state of
a trapped ion. Phys Rev Lett 75:2932–2935.

73. Fernholz T, et al. (2008) Spin squeezing of atomic ensembles via nuclear-electronic
spin entanglement. Phys Rev Lett 101:073601.

74. Hertzberg JB, et al. (2010) Back-action-evading measurements of nanomechanical
motion. Nat Phys 6:213–217.

75. Vanner MR, Hofer J, Cole GD, Aspelmeyer M (2013) Cooling-by-measurement
and mechanical state tomography via pulsed optomechanics. Nat Commun
4:2295.

76. Mallet F, et al. (2011) Quantum state tomography of an itinerant squeezed microwave
field. Phys Rev Lett 106:220502.

77. Eichler C, et al. (2011) Experimental state tomography of itinerant single microwave
photons. Phys Rev Lett 106:220503.

78. Bialynicki-Birula I, Mycielski J (1975) Uncertainty relations for information entropy in
wave mechanics. Commun Math Phys 44:129–132.

79. Bialynicki-Birula I (2006) Formulation of the uncertainty relations in terms of the
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