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Previous reports suggested that culture as 3D aggregates or as
spheroids can increase the therapeutic potential of the adult
stem/progenitor cells referred to as mesenchymal stem cells or
multipotent mesenchymal stromal cells (MSCs). Here we used
a hanging drop protocol to prepare human MSCs (hMSCs) as
spheroids that maximally expressed TNFα stimulated gene/protein
6 (TSG-6), the antiinflammatory protein that was expressed at
high levels by hMSCs trapped in the lung after i.v. infusion and
that largely explained the beneficial effects of hMSCs in mice with
myocardial infarcts. The properties of spheroid hMSCs were found
to depend critically on the culture conditions. Under optimal con-
ditions for expression of TSG-6, the hMSCs also expressed high
levels of stanniocalcin-1, a protein with both antiinflammatory
and antiapoptotic properties. In addition, they expressed high lev-
els of three anticancer proteins: IL-24, TNFα-related apoptosis in-
ducing ligand, and CD82. The spheroid hMSCs were more effective
than hMSCs from adherent monolayer cultures in suppressing in-
flammatory responses in a coculture system with LPS-activated
macrophages and in a mouse model for peritonitis. In addition,
the spheroid hMSCs were about one-fourth the volume of hMSCs
from adherent cultures. Apparently as a result, larger numbers of
the cells trafficked through the lung after i.v. infusion and were
recovered in spleen, liver, kidney, and heart. The data suggest
that spheroid hMSCs may be more effective than hMSCs from
adherent cultures in therapies for diseases characterized by sterile
tissue injury and unresolved inflammation and for some cancers
that are sensitive to antiinflammatory agents.
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There has been considerable interest in the therapeutic po-
tentials of the cells from bone marrow referred to initially

as colony forming units-fibroblastic, then as marrow stromal
cells, subsequently as mesechymal stem cells, and most recently
as multipotent mesenchymal stromal cells (MSCs) (1–6). The
cells are relatively easy to isolate from human donors or patients,
expand rapidly for 30 or more population doublings in culture,
and differentiate into several cellular phenotypes in vitro and in
vivo. These and related properties prompted testing the thera-
peutic potential of the cells in animal models and in clinical
trials for a large number of diseases (see www.clinicaltrials.gov).
The initial assumption in exploring the therapeutic benefits of
MSCs was that they might engraft and differentiate to replace
injured cells. Engraftment and differentiation was observed in
rapidly grown embryos, with extreme tissue injury, or after local
administrations of large concentrations of the cells. Frequently,
however, therapeutic benefits were observed without evidence of
engraftment. Instead, the cells enhanced tissue repair or limited
tissue destruction by paracrine secretions or cell-to-cell contacts
that modulated inflammatory or immune reactions (3, 6–8). The
potential paracrine effects of the cells was suggested by the
observations that the cells in culture secrete a large number of
cytokines (9, 10). Recent reports, however, have demonstrated

that MSCs are activated by cross-talk with injured cells to express
high levels of a large number of additional genes (9, 11–15).
We previously observed (14) that i.v.-infused human MSCs

(hMSCs) improved cardiac function and decreased scarring in
a mouse model of myocardial infarction in part because the cells
that were trapped in the lung as microemboli were activated to se-
crete the antiinflammatory protein TNFα stimulated gene/protein
6 (TSG-6) (16). The TSG-6 decreased the inflammatory reactions
in the heart and thereby limited deterioration of the cardiac tissue.
However, the hMSCs did not express TSG-6 until 12–24 h after
they created microemboli in lungs and until about half the hMSCs
had undergone destruction through apoptosis and necrosis.We also
observed that standard cultures of hMSCs did not express TSG-6
but were activated to express the protein if incubated for 24 h or
longer with the inflammatory cytokine TNFα (14).
The observations suggested that appropriate manipulation of

hMSCs in culture before in vivo administration might enhance
their therapeutic benefits by eliminating the lag period for acti-
vation on the cells by signals from injured tissues.
Recently there has been a series of publications on aggregation

of MSCs either as a procedure for enhancing chrondrogenic dif-
ferentiation of the cells (17–19) or to increase their therapeutic
potential (20–23). Because aggregated hMSCs were detected in
the pulmonary microemboli observed after i.v. infusion of the cells
(14, 24), we tested the hypothesis that aggregation of hMSCs in
culture may provide an effective procedure to preactivate the cells
to express TSG-6, and thereby, enhance their antiinflammatory
effects through a reduction in the lag period for expression of the
gene in vivo.

Results
Aggregation of hMSCs in Hanging Drops into Spheroids. To aggre-
gate hMSCs, we used a hanging drop protocol. Time-lapse mi-
croscopy demonstrated that hMSCs cultured in hanging drops
first formed a loose network and then numerous small aggregates
that gradually coalesced into a single central spheroid along the
lower surface of the drop (Fig. 1A). Once assembled, the spheroid
did not increase in size but progressively compacted between 48
and 96 h. H&E staining of sections revealed the spheroids were
solid throughout with small round cells evenly distributed and
embedded in matrix (Fig. 1B). The surface of the spheroid had
a layer of epithelium-like cells that were more elongated and
flatter. As expected, the sizes of the spheroids were dependent on
the number of hMSCs suspended in the hanging drops (Fig. 1E).
hMSC spheroids of all sizes expressed and secreted very high
levels of the antiinflammatory molecule TSG-6 compared with
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either low or high density monolayer cultures, but spheroids of
25,000 cells (Sph 25k) showed the highest expression and secre-
tion of TSG-6 (Fig. 1 C and D). Moreover, TSG-6 expression
increased in a time dependent manner with spheroids of 25,000
hMSCs and was consistently much higher than in standard cul-
tures of adherent hMSCs (Fig. 1F).

Viability of hMSCs in Spheroids. Because hMSCs in spheroids may
have less access to nutrients, it was of interest to establish whether
the cells remained viable. In 3-d cultures of spheroids of 10,000
or 25,000 hMSCs, almost 90% of the harvested cells were viable
as assayed by propidium iodide (PI) uptake and labeling with
annexin V-FITC (Fig. 2A). The number of apoptotic or necrotic
cells was greater in spheroids prepared with 100,000 or 250,000
hMSCs (Fig. 2A). Also, the number of apoptotic or necrotic cells
increased slightly when the incubation period was extended from
3 d to 4 d (Fig. 2B).

Analysis of Spheroid hMSC Size in Vitro and Relative Tissue Distribution
After i.v. Infusion. As suggested by histological sections (Fig. 1B),
hMSCs in spheroids appeared smaller than hMSCs from standard
monolayer cultures. The cells released from spheroids by trypsini-

zation were nearly half the diameter and approximately one-fourth
the volume of hMSCs derived from adherent monolayers as shown
by flow cytometry (Fig. 3A and Fig. S1) and microscopy (Fig. 3B).
To test if the smaller size of the hMSCs dissociated from sphe-

roids would allow the cells to traffic through the lung microvascu-
lature and therefore distribute more efficiently into other tissues,
both monolayer and spheroid hMSCs were injected i.v. into the tail
vein of NOD/scid mice. Real-time PCR for human Alu sequences
in the lungs collected 15 min after hMSC infusion suggested that
the number of trapped cells decreased by about 25% with spheroid-
derived hMSCs compared with monolayer hMSCs, At the same
time, a larger fraction of infused spheroid hMSCs were recovered
in the liver, spleen, kidney, and heart (Fig. 3C).

hMSCs Dissociated from Spheroids Retain the Properties of Adherent
hMSCs. hMSCs dissociated from spheroids retained the ability to
differentiate into mineralizing cells and adipocytes (Fig. 4 A and B).
The dissociated cells expanded more slowly during an initial pas-
sage and then more rapidly than adherent hMSCs through four
passages before reaching senescence at about the same number of
population doublings (Fig. 4C and Fig. S2A). In addition, the dis-
sociated cells readily generated colonies (CFUs) when plated at

Fig. 1. The expression of TSG-6 was increased as hMSCs
aggregated into spheroids in hanging drops. (A) Phase
contrast microscopy showing the time course of the
aggregation of 25,000 hMSCs into a spheroid in
a hanging drop. (Scale bar, 500 μm.) (B) H&E staining of
hMSC spheroid sections from 3-d hanging drop cultures.
Surface (Top), and center (Middle and Bottom) of
a spheroid. (Scale bar, 50 μm.) (C) Real-time RT PCR
measurements of TSG-6 expression in hMSCs shown as
relative to Adh Low sample (n = 3). (D) ELISA meas-
urements of TSG-6 secretion over 24 h from hMSCs
grown for 3 d at high density or as hanging drops at
different cell densities (n = 4). (E) Sizes of spheroids
generated by hMSCs from two donors grown in hang-
ing drops for 3 d. Sizes were measured from captured
images of transferred spheroids (n = 7–13). (F) Real-time
RT PCR measurements of TSG-6 expression in
hMSCs grown at high density or in hanging drops at
25,000 cells/drop for 1–4 d shown as relative to hMSCs
grown at low density (n = 3). Values are mean ± SD.
Abbreviations: RQ, relative quantity; Adh Low, hMSCs
plated at 100 cells/cm2 for 7–8 d until about 70% con-
fluent; Adh High, hMSCs harvested from same Adh Low
cultures, plated at 5,000 cells/cm2 and incubated for 3 d;
Sph 10k-250k, hMSCs harvested from same Adh Low
cultures and incubated for 3 d in hanging drops at
10,000-250,000 cells/drop.
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clonal densities (Fig. 4D and Fig. S2B). Consistent with the data on
rates of propagation (Fig. 4C), the number of CFUs from spheroid
cells was initially less than the number of CFUs from adherent
cultures but was greater in later passages (Fig. 4D and Fig. S2B).
The surface epitopes of the hMSCS dissociated from spheroids
were similar to the surface epitopes of hMSCs from adherent mo-
nolayers when dissociated under the same conditions with trypsin
(10 min at 37 °C): the dissociated cells were negative for hemato-
poietic markers, and they were slightly less positive for CD73,
CD90, and CD105, apparently because of the smaller size of the
cells (Fig. 4E, Figs. S3–S6, and Table S1).

Transcriptome Changes in the Spheroid hMSCs. Surveys with micro-
array assays demonstrated that 236 genes were up-regulated and
230 genes were down-regulated in a comparison of spheroid cells
with hMSCs from adherent monolayers (Fig. 5A and Table S2).
There were increases in genes with ontologies for extracellular
region, regulation of cell adhesion, receptor binding, cell com-
munication, extracellular matrix, and negative regulation of cell
proliferation (Fig. 5A). Also, there were parallel decreases
in genes with ontologies for cytoskeleton organization and bio-
genesis, mitosis, cell cycle, and extracellular matrix (Fig. 5A). Of
special interest was the increase in genes with ontologies for
response to wounding and inflammatory response (Fig. 5A).
Real time RT PCR assays (Fig. 6A) demonstrated marked in-
creases in the expression of TSG-6; stanniocalcin-1 (STC-1), an
antiinflammatory/antiapoptotic protein; leukemia inhibitory fac-
tor (LIF), a cytokine for growth and development; IL-24, a tumor
suppressor protein; TNFα-related apoptosis inducing ligand
(TRAIL), a protein with selectivity for killing certain cancer cells;
and CXC chemokine receptor 4 (CXCR4), a receptor involved in
MSC homing. As expected from its stimulatory effect of MSC
proliferation (25), there was decreased expression of dickkopf 1
(DKK1), an inhibitor of Wnt signaling (Fig. 6A).

Changes in Cell Surface Protein Expression and Cell Cycle Distribution
in hMSC Spheroids. Assays by flow cytometry demonstrated de-
creased expression of podocalyxin-like protein (PODXL), an
anticell-adhesion protein; and α4-integrin (CD49d), an integrin
subunit associated with lymphocyte homing (Figs. S3–S6). There
was partial down-regulation of the melanoma cell adhesion mol-
ecule (MCAM or CD146) that is used as a marker for endothe-
lial cells and pericytes, and of ALCAM (CD166), a cell adhesion
molecule (Fig. 5B). At the same time, there was increased ex-

pression of an integrin subunit for cell adhesion (α2-integrin of
CD49b), and a protein associated with suppression of metastases
(CD82) (Fig. 5B). As expected from microarray results, assays by
flow cytometry also demonstrated a decrease of spheroid hMSCs
in S-phase compared with monolayer hMSCs (Fig. S7 A–D).

Spheroid hMSCs Secrete Antiinflammatory Proteins. Spheroids of
hMSCs plated on adherent culture surfaces gradually generated
spindle-shaped cells that migrated away from the spheroids (Fig.
6B). No migration was seen with spheroids plated on nonadher-
ent surfaces (Fig. 6B). ELISAs demonstrated that hMSCs either
in spheroids or dissociated from spheroids continued to secrete
TSG-6, STC-1, and LIF when plated on culture dishes for 24 h (Fig.
6 C–E). The levels of all three factors were much higher than with
adherent monolayer hMSCs. About the same levels of STC-1 and
LIFwere observed in spheroids cultured directly either on adherent
or nonadherent plates, but spheroids cultured on nonadherent
dishes secreted more TSG-6 (Fig. 6 C–E). The levels of TSG-6,
STC-1, and LIF decreased when the hMSCs were dissociated from
spheroids and cultured on adherent plates but the levels remained
much higher than with adherent monolayers (Fig. 6 C–E).

Spheroid hMSCs Decrease Activation of Macrophages in Vitro and
Inflammation in Vivo. The increased secretion of antiinflammatory
molecules TSG-6 and STC-1 by the spheroid hMSCs suggested
that the cells would be more effective than adherent monolayer
cultures of hMSCs in reducing inflammatory responses. To test
this prediction, mouse macrophages were preactivated with LPS
in the upper chamber of a transwell, followed by a transfer of the
chamber to a test well (Fig. 7A). Under the conditions of the
experiment, the presence in the test well of hMSCs from ad-
herent monolayers had no significant effect on the expression or
secretion of TNFα by the stimulated macrophages (Fig. 7B and
Fig. S8A). In contrast, TNFα expression and secretion was de-
creased significantly by the presence in the test well of intact
spheroids or hMSCs dissociated from spheroids (Fig. 7B and Fig.
S8A). The results indicated therefore that the spheroid derived
hMSCs secreted more effective antiinflammatory factors.
To test the effects of spheroid hMSCs on inflammation in vivo,

a mouse model of zymosan-induced peritonitis was used (26). Six
hours after i.p. administration of monolayer, spheroid, or spher-
oid derived hMSCs, inflammatory exudates were collected and
used in estimating the level of inflammation. hMSC spheroids
significantly decreased the protein content of the lavage fluid (Fig.
S8B) and the volume (Fig. S8C), neutrophil activity, as assayed by
secreted myeloperoxidase (MPO) (Fig. 7D), and levels of the
proinflammatory molecules TNFα (Fig. 7C), IL-1β (Fig. S8D),
CXCL2/MIP-2 (Fig. S8E), and PGE2 (Fig. 7E). In addition, serum
levels of plasmin activity, an inflammation associated protease
that is inhibited by TSG-6 (16), were decreased significantly by
hMSC spheroids (Fig. 7F). Serum plasmin activity was reduced
approximately to the levels of noninflammatory control animals
24 h after spheroid injection (Fig. 7F). Spheroid-derived hMSCs
also substantially decreased levels of the inflammatory markers
assayed, although to a lesser extent than intact spheroids (Fig. 7
C–F and Fig. S8 B–E). Moreover, hMSC spheroids were signifi-
cantly more effective than adherent monolayer hMSC in sup-
pressing inflammation (Fig. 7 C–F and Fig. S8B).

Discussion
Classically hMSCs were isolated and expanded as adherent mo-
nolayer cultures, but it was soon recognized that centrifugation of
the cells to form micropellets or large aggregates greatly enhanced
their chondrogenic differentiation that slowly occurred over seve-
ral weeks (18, 27). However, several recent publications demon-
strated that culture of MSCs in 3D or as spheroids for shorter
periods of time improved their therapeutic potential by increased
expression of genes such as CXCR4 to promote adhesion to en-
dothelial cells or of IL-24 that has tumor suppressing properties
(20, 22, 23). The experiments presented here were designed to
prepare hMSCs as spheroids that maximally expressed TSG-6, the
antiinflammatory protein that produced beneficial effects in mice

Fig. 2. Viability of hMSCs in spheroids. (A and B) Viability of hMSCs as de-
termined byflow cytometrymeasuring PI uptake and annexinV-FITC labeling.
Spheroids were dissociatedwith trypsin/EDTA. Representative log fluorescent
dot plots and summary of the data are shown. Values are mean ± SD (n = 3).
Abbreviations: As in Fig. 1 with 1d to 4d indicating days of incubation.
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with myocardial infarcts because it was expressed at high levels
after i.v.-infused hMSCs were trapped in the lung (14).
The results demonstrated that the properties of hMSCs cul-

tured as spheroids depend critically on the experimental con-
ditions. In hanging drops, the cells first formed a network and
then most of the cells coalesced into a single spheroid. Optimal
levels of TSG-6 expression were observed with spheroids ap-
proximately 500 μm in diameter and incubated for 3 d. Expres-
sion levels remained high but were lower in larger spheroids, and
more of the cells became apoptotic or necrotic in the larger
spheroids. Also, more of the cells became apoptotic or necrotic
with longer times of incubation. The cells in spheroids retained
most of the surface epitopes of hMSCs from adherent cultures.
Also, hMSCs dissociated from spheroids retained the potential
to differentiate into mineralizing cells and adipocytes. They also
expanded at a similar rate as hMSCs from adherent monolayer
cultures after a delay through one passage. In addition, spheroid-
dissociated hMSCs remained highly clonogenic.
As was observed previously with large hMSC spheroids (28)

and hMSCs in 3D culture (22), surveys with mRNA/cDNA
microarrays demonstrated marked differences in the tran-
scriptomes compared with hMSCs from adherent cultures.
Quantitative assays confirmed some of the important differences.
As expected, there was amarked decrease in the anticell-adhesion
protein PODXL (24) and a decrease in cell cycling. Of special
note was that several of the differences had important implica-
tions for the potential therapeutic uses of hMSCs. There were
higher levels of expression of the antiinflammatory protein TSG-6
than previously observed by preincubation of hMSCs with TNFα
(14). Also, there was a high level of expression of STC-1, a protein
with both antiinflammatory and antiapoptotic effects (13, 29).
The high levels of expression of both TSG-6 and STC-1 were
maintained for at least 1 d after the cells were dissociated from the
spheroids. Therefore the results suggested that both spheroids
and spheroid derived hMSCs may be more effective than hMSCs
from adherent cultures in modulating inflammatory reactions.
The suggestion was confirmed by the demonstration that the
spheroids and spheroid derived hMSCs were more effective in
suppressing TNFα production by LPS stimulated macrophages in

culture. In addition, they were more effective in suppressing in-
flammation in an in vivo model for zymosan induced peritonitis.
Also of special interest was that the spheroid hMSCs expressed
high levels of transcripts for the tumor suppressor protein IL-24,
an observation made previously with 3D cultures of hMSCs pre-
pared using spinner flasks and a rotating wall vessel bioreactor
(22). In addition, the spheroid hMSCs prepared under the con-
ditions optimized to express TSG-6 also expressed high levels of
transcripts for TRAIL that is selective for killing certain cancer
cells (30, 31) and for CD82 that suppresses some metastases (32).
Therefore, spheroids and spheroid derived hMSCs may be par-
ticularly effective as an adjunct therapy for some types of cancers,
particularly for therapy of cancers sensitive to antiinflammatory
agents such as aspirin or steroids (33). A further advantage of the
spheroid hMSCs was that they were less than one-fourth the
volume of hMSCs from adherent cultures. Therefore a signifi-
cantly smaller number was trapped in the lung after i.v. infusion
and thus larger numbers were found in many tissues (14, 24).
The molecular forces that increase expression of antiinflam-

matory and antitumorigenic genes in hMSCs assembled into
spheroids are intriguing but unclear. Cells in spheroids are in

Fig. 3. Size analysis and i.v. infusion of spheroid hMSCs. (A) Assays of cell
size by flow cytometry (n = 3). hMSC sizes were estimated from forward
scatter (FS) (Inset) properties of the viable population (calcein AM+/7AAD−)
relative to beads with known diameters (3, 7, 15, and 25 μm). (B) Cell size
assayed by microscopy. (C) Relative tissue distribution of i.v. infused hMSCs.
NOD/scid mice were infused i.v. with 106 monolayer or spheroid derived
hMSCs. After 15 min, tissues were harvested for genomic DNA and tissue
distribution of hMSCs was determined with real-time PCR for human Alu and
GAPDH (n = 4–5) and shown as relative to Adh High sample. *P < 0.05, **P <
0.01, and ***P < 0.001. Values are mean ± SD. Abbreviations: as in Fig. 1.

Fig. 4. Spheroid hMSCs retain the properties of hMSCs from adherent
cultures. (A) Differentiation of hMSCs in osteogenic medium (Osteo Dif) and
control medium (Osteo Con). Cultures were stained with Alizarin Red after
14 d. (Scale bar, 200 μm.) (B) Differentiation of hMSCs in adipogenic medium
(Adipo Dif) and control medium (Adipo Con). Cultures were stained with Oil
Red O after 14 d. (Scale bar, 200 μm.) (C) Growth of hMSCs (donor 2) as
monolayers from high density and hanging drop cultures plated at low
density (5,500 cells/plate) and passaged every 7 d (n = 4). Cumulative pop-
ulation doublings (PDs) after each passage are shown (Inset). (D) CFU-F
assays of hMSCs (donor 2) plated at 83 cells/plate and incubated for 14 d
(n = 4). Representative plates at passage 1 and passage 2 after transfer.
Values are mean ± SD. (E) Flow cytometry of surface protein expression on
hMSCs. Abbreviations: as in Fig. 1 with P1 to P10 indicating passage number.
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close association with each other and probably signal cues to
each other much easier than in monolayer cultures, where only
a very small part of the cell can touch another cell and secreted
molecules must be present in high amounts to ensure commu-
nication. The changes in the hMSCs as they form spheroids are
probably the result of the nonadherent culture conditions, high
degree of confluency, nutrient deprivation, air-liquid interface,
and “microgravity” of hanging drops. More detailed studies of
each of these and other possible factors must be conducted to
have a better understanding of the changes hMSCs accrue when
they aggregate into spheroids.
The results presented here indicated that hMSCs can be ac-

tivated nonchemically in hanging drops to secrete substantial
quantities of potent antiinflammatory proteins and express anti-
tumorigenic molecules. Therefore spheroid hMSCs may have
advantages for many therapeutic applications. In addition, hMSCs
dissociated from spheroids provide extremely small activated cells
that could have major advantages for i.v. administration.

Materials and Methods
More detailed methods are presented in the SI Materials and Methods.

hMSC Cell Culture. Frozen vials of passage 1 hMSCs from bone marrow were
obtained from the Center for the Preparation and Distribution of Adult Stem
Cells (http://medicine.tamhsc.edu/irm/msc-distribution.html). After 24-h re-
covery, hMSCs were seeded at low density (100 cells/cm2), and incubated in
complete culture medium (CCM) containing 17% FBS for 7–8 d until approxi-
mately 70% confluent. hMSCs were passed under the same conditions through
no more than three passages before being used for assays.

Spheroid Generation and Dissociation. hMSCs were plated in hanging drops in
35 μL of CCM containing 10,000–250,000 cells/drop for up to 4 d. To obtain
spheroid derived cells, spheroids were incubated with trypsin/EDTA for 5–30
min (depending on the size of the spheroid) while pipetting every 2–3 min.

Intravenous Infusion of hMSCs and Alu PCR. Male NOD/scid mice were infused
with 106 monolayer or spheroid derived hMSCs i.v. followed by collection of
tissues 15 min later. Genomic DNA was isolated and used to determine the
relative quantity of human DNA in each tissue with real-time PCR for human
Alu and GAPDH and mouse GAPDH (14, 24, 34).

Mouse Model of Peritonitis and Measurements of Inflammation. To induce in-
flammation in male C57BL/6J mice, zymosan solution was administered i.p.,
followed by i.p. injection of either 1.5 × 106 monolayer hMSCs, 1.5 × 106

spheroid derived cells, or 60 spheroids 15 min later. After 6 h, inflammatory
exudates were collected by peritoneal lavage and the cell-free supernatant
was used to measure total protein, neutrophil activity (secreted mMPO), and
levels of the proinflammatory molecules mTNFα, mIL-1β, mCXCL2/MIP-2, and
PGE2. Twenty-four hours after cell injection, blood was collected from the right
ventricle and the mouse plasmin activity was measured from the serum.
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Fig. 5. Microarray assays of hMSCs from two donors. (A) Hierarchical clus-
tering of differentially expressed genes. Genes that were either up- (236
genes) or down-regulated (230 genes) in spheroids (Sph 25k) at least twofold
compared with their adherent culture counterparts (Adh Low and Adh
High), were used in hierarchical clustering. The most significant Gene On-
tology terms for up-regulated genes (red) and down-regulated genes (blue)
are shown next to the heat map. (B) Flow cytometry of differentially
expressed surface epitopes on hMSCs. Abbreviations: as in Fig. 1.

Fig. 6. Spheroid hMSCs express high levels of antiinflammatory and anti-
tumorigenic molecules. (A) Real-time RT PCR measurements for antiin-
flammatory genes (TSG-6, STC-1, and LIF), antitumorigenic genes (IL-24 and
TRAIL), gene for an MSC homing receptor (CXCR4), and gene for the Wnt
signaling inhibitor (DKK1) for two donors. Values are mean RQ ± 95%
confidence interval from triplicate assays compared with Adh Low sample.
(B) Images of high density monolayer (Adh High), spheroids (Sph 25k), and
spheroid derived hMSCs (Sph 25k DC) 24 h after transfer onto adherent
(Adh) or nonadherent (Non adh) surfaces. Cultures were in six-well plates
containing 1.5 mL CCM and either 200,000 hMSCs from high density cultures,
eight spheroids, or 200,000 hMSCs dissociated from spheroids. After 24 h,
medium was recovered for ELISAs and cells lyzed for protein assays. (Scale
bar, 200 μm.) TSG-6 (C), STC-1 (D), and LIF (E) ELISAs on medium, normalized
to total cellular protein. Values are mean ± SD (n = 3). Abbreviations: as in
Fig. 1 with ND indicating not detectable and Sph 25k DC-Adh indicating
hMSCs dissociated from Sph 25k and plated on cell adherent surfaces.
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Fig. 7. hMSC spheroids exhibit enhanced antiinflammatory
effects in vitro and in vivo. (A) Schematic of the mouse mac-
rophage (mMΦ) assay. mMΦs were seeded in the upper
chamber of a transwell, stimulated with LPS for 90 min, the LPS
was removed, and the chamber transferred to a six-well dish
plated with monolayer (Adh), spheroid (Sph), or spheroid-
derived hMSCs (Sph DC) at the same cell density. MΦ:hMSC
(2:1). After 5 h, medium was collected for ELISAs. (B) ELISA for
mTNFα in medium from cocultures (n = 3). (C–F) Antiinflam-
matory activity of hMSCs in a mouse model of peritonitis.
C57BL/6 mice were injected i.p. with zymosan to induce in-
flammation. After 15 min, the mice were injected i.p. with
1.5 × 106 monolayer hMSCs, 60 spheroids, or 1.5 × 106 spheroid
derived cells. After 6 h, peritoneal lavage was collected and
mTNFα (C), mMPO (D), and PGE2 (E) levels were determined
with ELISAs. Total amounts of the specific molecules in the
lavage are shown (n = 4–8). After 24 h, blood was collected and
plasmin activity was measured from serum (n = 3–6). Values are
mean ± SD. Not significant (NS) P ≥ 0.05, *P < 0.05, **P < 0.01,
and ***P < 0.001. Abbreviations: as in Figs. 1 and 6.
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