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Abstract

Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in
pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno-
compromised mice infected with a DhsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the
wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung,
and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most
important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen’s dissemination
within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10-
seconandrost-1,3,5(10)-triene-9,17-dione; kcat/Km = 14.460.5 mM21 s21), and was inactivated by a halogenated substrate
analogue (partition coefficient,50). Remarkably, cholesterol caused loss of viability in the DhsaC mutant, consistent with
catechol toxicity. Structures of HsaC:DHSA binary complexes at 2.1 Å revealed two catechol-binding modes: bidentate
binding to the active site iron, as has been reported in similar enzymes, and, unexpectedly, monodentate binding. The
position of the bicyclo-alkanone moiety of DHSA was very similar in the two binding modes, suggesting that this interaction
is a determinant in the initial substrate-binding event. These data provide insights into the binding of catechols by extradiol
dioxygenases and facilitate inhibitor design.
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Introduction

Mycobacterium tuberculosis, the leading cause of mortality among

bacterial pathogens, infects one-third of the human population

and is responsible for approximately 2 million deaths annually.

The global threat of TB has risen alarmingly due to two factors:

the bacterium’s deadly synergy with HIV [1] and the emergence

of multidrug-resistant strains, including extensively drug-resistant

strains (XDR-TB) that are virtually untreatable with current

chemotherapies [2]. An important factor that contributes to the

disease’s prevalence is the pathogen’s unusual ability to survive for

long periods of time, and even to replicate, in the macrophage [1].

The mechanisms by which M. tuberculosis persists in the

macrophage remain largely unknown, but such mechanisms are

good targets for novel therapeutic agents.

A suite of genes critical for survival of M. tuberculosis in the

macrophage [3] was recently discovered to be involved in cholesterol

degradation [4]. As in the aerobic bacterial degradation of other

steroids, the core 4-ringed structure is degraded via opening of ring B

with concomitant aromatization of ring A. The resulting phenolic

metabolite is hydroxylated, yielding a catechol, 3,4-dihydroxy-9,10-

seco-nandrost-1,3,5(10)-triene-9,17-dione (DHSA). HsaC catalyzes

the meta-cleavage of DHSA to produce 4,9-DSHA (4,5-9,10-diseco-

3-hydroxy-5,9,17-trioxoandrosta-1(10),2-diene-4-oic acid; Figure 1).

Recent work by Pandey and Sassetti [5] indicates that in vitro, the

pathogen uses different parts of the cholesterol molecule for energy

and the biosynthesis of phthiocerol dimycocerosate (PDIM), a

virulence-associated lipid, respectively. Using a mutant defective in

the mce4-encoded cholesterol transporter [6], Pandey and Sassetti

further demonstrated that cholesterol uptake is essential for
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persistence in the lungs of chronically infected mice and for growth

in IFN-c-activated macrophages that predominate during the

chronic phase of the illness. However, this deletion impaired in vitro

growth on cholesterol only modestly.

HsaC shares ,40% amino acid sequence identity with BphC

(EC 1.13.11.39), a well-characterized type I extradiol dioxygenase

that cleaves 2,3-dihydroxybiphenyl (DHB) and that is potently

inhibited by 29,69-diCl DHB [7], a polychlorinated biphenyl

metabolite (Figure 1). Extradiol dioxygenases typically utilize Fe(II)

in a 2-His 1-carboxylate facial triad coordination environment to

catalyze the cleavage of catechols and their analogues. In the

proposed mechanism, based on biochemical, spectroscopic, kinetic

and structural studies [8,9,10], the catecholic substrate binds first

to the enzyme’s Fe(II) center in a bidentate manner, displacing two

solvent ligands. Thus activated, the ferrous center binds O2,

leading to the formation of an Fe(II)–bound alkylperoxo

intermediate. The latter undergoes heterolytic O-O bond cleavage

and Criegee rearrangement involving 1,2-alkenyl migration to

produce a lactone intermediate. Hydrolysis of the latter affords the

ring-cleaved product. Several of the proposed intermediates were

recently substantiated in structural studies of homoprotocatechu-

ate 2,3-dioxygenase (HPCD) and a slow substrate, 4-nitrocatechol

[11]. Nevertheless, some steps of the catalytic cycle remain

unclear, including the multi-step binding of the catecholic

substrate [12].

We report herein studies of HsaC from M. tuberculosis H37Rv.

An hsaC-null gene deletion mutant was generated and tested in

liquid culture and in animal models to assess the role of HsaC in

cholesterol degradation and pathogenicity. The specificity of the

enzyme was investigated, and crystal structures of HsaC were

obtained in its substrate-free form and in complex with the steroid

metabolite, DHSA. The results provide insights into the binding of

catechols to extradiol dioxygenases and the role of cholesterol

metabolism in pathogenesis.

Figure 1. The role of HsaC in the cholesterol degradation pathway. Cholesterol is transformed to DHSA (3,4-dihydroxy-9,10-seconandrost-
1,3,5(10)-triene-9,17-dione) via multiple enzymatic steps. HsaC catalyzes the extradiol ring-cleavage of DHSA to DSHA (4,5-9,10-diseco-3-hydroxy-
5,9,17-trioxoandrosta-1(10),2-diene-4-oic acid).
doi:10.1371/journal.ppat.1000344.g001

Author Summary

Mycobacterium tuberculosis, the etiological agent of TB, is
the most devastating infectious agent of mortality
worldwide: it is carried by one-third of all humans and
kills nearly two million people annually. Recent work has
established that the pathogen metabolizes cholesterol,
although the role of this metabolism in pathogenesis
remains unclear. In the current study, we demonstrate that
HsaC is a key enzyme in the cholesterol catabolic pathway
and that it can be inactivated by compounds that
resemble its substrate. Using molecular genetic approach-
es, we demonstrated that the enzyme is essential for the
growth of M. tuberculosis on cholesterol and that a lack of
this enzyme impairs the survival of the pathogen in each
of two animal models. These studies provide definitive
evidence that M. tuberculosis metabolizes cholesterol
during infection and that this metabolism occurs during
the early stages of infection. The oxygen-utilizing enzymes
of the cholesterol catabolic pathway, of which HsaC is but
one example, are intriguing potential chemotherapeutic
targets, as their inhibition can lead to toxic metabolites,
including reactive oxygen species. Overall, our study
combines a variety of approaches to provide novel insights
into a disease of global importance and into the
mechanism of an interesting class of enzymes.

HsaC and Cholesterol Metabolism in Mtb
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Results

Substrate preference and inactivation of HsaC
To characterize HsaC from M. tuberculosis H37Rv, we

anaerobically purified the enzyme to .99% apparent homogene-

ity from a recombinant E. coli strain. Purified enzyme contained

0.92 equivalents of iron. To stabilize HsaC for steady state kinetic

assays, the enzyme was diluted in 20 mM HEPES, 80 mM NaCl,

pH 7.5 supplemented with 5% t-butanol, 2 mM dithiothreitol,

0.1 mg/ml bovine serum albumin and stored on ice under an inert

atmosphere. Due to the oxidative inactivation of both the enzyme

and DHSA in air-saturated buffer, kinetic studies were performed

using buffer equilibrated with 5% oxygen in nitrogen to obtain

better quality data.

Steady-state kinetic studies revealed that HsaC has 90-times

greater specificity for the steroid metabolite, DHSA, over DHB,

the preferred substrate of BphC (Table 1). To facilitate further

kinetic characterization of HsaC, we designed a substrate

analogue, DHDS (Figure 1), which incorporated potentially

important features of DHSA including the methyl group on the

catecholic ring and a saturated 2-carbon bridge between the two

ring systems. The specificity of HsaC for DHSA was 10-times

greater than for DHDS. 29,69-diCl DHB, a PCB metabolite that

potently inhibits (761 nM) and oxidatively inactivates BphC [7],

and 4-Cl DHDS, a chlorinated substrate analogue were cleaved

very slowly by HsaC (partition ratios,50). While the Km values of

HsaC for the PCB metabolite and the chlorinated steroid

metabolite were ,1,000-fold greater than those of BphC, both

compounds have clear potential as competitive inhibitors of the

mycobacterial dioxygenase. The steady-state utilization of O2 by

HsaC was evaluated in the presence of DHDS due to the ease of

preparation of this compound. We anticipate that the reactivity of

the enzyme with O2 will be very similar in the presence of DHDS

and DHSA as the two compounds have similarly substituted

catecholic rings. The apparent KmO2 of HsaC was 90620 mM: 13-

fold less than that of BphC [13] and nearly 3-times less than the

concentration of O2 in air-saturated buffer. Nevertheless, the

specificity of HsaC for O2 is only 5-times less than that of BphC

(0.2060.01 mM21 s21 vs. 1.060.1 mM21 s21).

Extradiol dioxygenases are subject to oxidative inactivation

during catalytic turnover [14]. Accordingly, we investigated the

susceptibility of HsaC to inactivation during the steady-state

cleavage of each of the catecholic substrates using the partition

ratio, the amount of substrate consumed per mole of enzyme

inactivated. As reported for BphC, HsaC was more susceptible to

inactivation by poorer substrates (Table 1). Nevertheless, the

observed partition ratios are more than 2 orders of magnitude less

than what has been reported for other extradiol dioxygenases for

their preferred substrates [14,15]. Finally, 29,69-diCl DHB inacti-

vated HsaC with a partition ratio similar to that in BphC (,50).

Structures of HsaC in complex with DHSA
Crystal structures of HsaC were obtained in its substrate-free

form and in complex with DHSA at resolutions of 2.0 and 2.2 Å,

respectively. The asymmetric unit of the crystals contains two well-

ordered molecules. Crystallographic four-fold symmetry of the two

molecules in the asymmetric unit indicates the enzyme is

octameric, like BphC. Crystallographic statistics are summarized

in Table 2. The overall fold of HsaC is that of a two-domain type I

extradiol dioxygenase, with the structure most closely resembling

that of BphC [16] (rmsd of 1.16 Å for the 275 common Ca atoms;

Figure 2). The active site is located within the central cavity of the

slightly larger C-terminal domain, with the catalytically essential

mononuclear Fe2+ ligated by His145, His215 and Glu266. In the

resting state enzyme, the coordination sphere is completed by two

solvent molecules (wat1 and wat2) such that the metal ion’s

coordination geometry is square pyramidal. The metal-ligand

Table 1. Steady-state kinetic and inactivation parameters of
HsaC for various catecholic substrates.

Compound Km (mM) kcat (s21)
kcat/Km

(mM21 s21)
Partition
Ratio

DHB 10 (2) 1.6 (0.1) 0.16 (0.02) 1,060 (10)

DHDS 4.8 (0.6) 6.7 (0.2) 1.4 (0.1) 2,300 (300)

DHSA 1.1 (0.2) 15.9 (0.6) 15 (2) 1,900 (200)

29,69-diCl DHB 6.7 (0.7) 6.6 (0.3)61023 0.99 (0.04)61023 30 (10)

4-Cl DHDS 3.2 (0.3) 277 (9)61023 85 (6)61023 44 (4)

Experiments were performed using 20 mM HEPES, 80 mM NaCl, pH 7.0 (I = 0.1)
equilibrated with 5% O2 at 25uC. Values in parentheses are standard errors.
doi:10.1371/journal.ppat.1000344.t001

Table 2. Crystallographic properties, X-ray diffraction data,
and refinement statistics for HsaC.

Diffraction Data HsaC (substrate free) HsaC:DHSA

X-ray source Cu-Ka ALS 8.2.2

Wavelength (Å) 1.542 1.000

Space group P4212 P4212

Unit cell (Å) a = b = 123.7, c = 106.7 a = b = 124.3, c = 106.3

Resolution (Å) 2.0 2.2

Highest shell (Å) 2.0–2.2 2.32–2.20

Total observations 791,882 (109,166) 384,012 (55,996)

Unique reflections 56,454 (8,105) 42,904 (6,156)

I/sI 28.9 (7.1) 26.0 (6.1)

Rsym(%){ 9.1 (44.1) 8.1 (38.9)

Completeness (%) 99.9 (99.9) 100 (100)

Refined Model

Resolution range (Å) 20–2.0 20–2.2

No. Reflections 53,536 40,622

Rfree/Rfactor (%){ 22/18 26/19

No. atoms:

Total 5,364 5,224

Protein 4,677 4,692

Solvent 712 485

Mean B values (Å2):

Protein 19.4 25.1

Fe 14.8 20.3

DHSA - 45.5

R.m.s. deviations:

Bond lengths (Å) 0.015 0.024

Bond angles (deg) 1.67 2.42

{Rsym =ShSi I(hkl)2ÆI(hkl)æ/ShSiI(hkl).
{Rwork =S||Fobs|2|Fcalc||/S|Fobs|. Rfree is the Rwork value for 5% of the reflections
excluded from the refinement. Data for the highest resolution shell are given in
parentheses.

doi:10.1371/journal.ppat.1000344.t002

HsaC and Cholesterol Metabolism in Mtb
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distances (Table S1) and ligand-metal-ligand angles (Table S2) are

within experimental error of those observed in BphC [16].

The two most significant structural differences between HsaC

and BphC appear to be associated with the larger substrate-

binding pocket of the former (550 Å3 in HsaC versus 420 Å3 in

BphC, as calculated by VOIDOO [17]). First, the loop-helix-loop

segment comprising residues 172–190 in HsaC, which contributes

to the external wall of the substrate-binding pocket, angles

outwards and contains a 6-residue insertion with respect to BphC,

increasing the opening of the substrate-binding pocket by up to

10 Å. Second, the distal portion of the substrate-binding pocket,

which accommodates the non-catecholic portion of the substrate,

is lined with fewer bulky residues in HsaC. For example Met175,

Phe202, His209 in BphC (PDB 1HAN) are Leu174, Met207 and

Val214 in HsaC. Both the insertion and the smaller residues occur

in other steroid-degrading extradiol dioxygenases [4].

In crystals of HsaC soaked anaerobically with DHSA, the active

site cavity of each molecule in the asymmetric unit contained

additional electron density that corresponds to the steroid

metabolite, DHSA (Figure 3). The structure of the protein in the

two molecules is essentially identical to that of the substrate-free

enzyme (rmsd of 0.39 Å for the 597 common Ca atoms) except as

noted below. However, in both molecules, the iron is hexacoordi-

nate with a distorted octahedral geometry instead of being

pentacoordinate with square pyramidal geometry as in the resting

state enzyme. Remarkably, DHSA binds in different modes in

each of the molecules, with the catecholic ring coordinating the Fe

in bidentate and monodentate manners in molecules A and B,

respectively (Table 3). The sites appear to be relatively well

ordered in each molecule. This interpretation is supported by

ligand-omit and Fo2Fc difference maps calculated using phases

derived from the model in the absence of any ligands. These maps

indicate that the electron density was compatible with the active

sites of molecules A and B being fully occupied with DHSA (Figure

S1), although the latter is slightly less ordered in molecule B. To

further rule out alternate interpretations of the electron density in

molecule B, the density was also fit using DHSA in a second

orientation (rotated 180 degrees upon the substrate’s orthogonal

axis) and the product, DSHA. After refinement, these trials yielded

strong positive residual density in proximity to the iron and very

high temperature factors around the catechol ring, indicating that

the current refined models are correct.

Figure 3. The binding modes of DHSA in HsaC. (A) DHSA in molecule A. (B) DHSA in molecule B. The (2Fo2Fc) electron density (blue, contour
level = 1s) was calculated without ligand to remove bias. (C) Stereo view of a structural superposition of DHSA in the two molecules in the
asymmetric unit. HsaC:DHSA in molecule A is colored in dark green/yellow. HsaC:DHSA in molecule B is colored in light green/orange.
doi:10.1371/journal.ppat.1000344.g003

Figure 2. The structural fold of HsaC, molecule A (DHSA
bidentate bound). The Ca traces of the structurally similar N- and C-
terminal domains are colored in silver and dark green, respectively. As
in other two-domain type I extradiol dioxygenases, the active site is
located in the C-terminal domain. The iron ion is colored orange. The C
and O atoms of the bound DHSA are grey and red, respectively.
doi:10.1371/journal.ppat.1000344.g002

HsaC and Cholesterol Metabolism in Mtb
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The asymmetric, bidentate binding of the catecholic moiety in

molecule A (Figure 3) corresponds to that which has been reported

in other extradiol dioxygenase:substrate complexes [11,15].

Briefly, the proximal hydroxyl (O4) of the catecholic ring binds

the Fe in the site trans to His145 and the distal hydroxyl (O3) binds

trans to His215, displacing the two water molecules in the resting

state enzyme (Figure 3A). The coordination sphere is completed

by a solvent species (wat267) trans to Glu266, presumed to occupy

the O2-binding site. The catecholic moiety is bound asymmetri-

cally to the iron in the sense that the O3-Fe distance is longer than

that of O4-Fe, consistent with the monoanionic nature of catechol,

as observed in BphC and homoprotocatechuate 2,3-dioxygenase

(HPCD). Other hydrogen bonds involving the catecholic hydrox-

yls reported in BphC are conserved in HsaC.

In molecule B, the catecholic ring is bound to the iron in a

monodentate manner via the 4-hydroxyl (proximal) group with an

O4-Fe distance of 2.8 Å (Figure 3B). The 3-hydroxyl group forms

a long hydrogen bond with Asn249 (3.0 Å) and a water molecule

that is coordinated to the metal instead of with Asp250 as in the

bidentate binding mode. With respect to its conformation in

molecule A, the catecholic moiety of DHSA is rotated 60u clock-

wise around the ligand’s C6–C7 bond such that the O3 hydroxyl is

3.7 Å away from the Fe. The DHSA has greater temperature

factors (mean 51 Å2) in molecule B than in molecule A (mean

35 Å2), consistent with a greater degree of disorder and lesser

binding affinity of the monodentate-bound catechol versus the

bidentate-bound molecule.

In contrast to the different binding modes of the catecholic ring

in the two molecules, the bicycloalkanone moiety of the bound

DHSA occupies strikingly similar conformations in the two

complexes, suggesting that this moiety is a major determinant in

the binding of the substrate. More precisely, the bicycloalkanone

moiety occupies a largely hydrophobic portion of the substrate-

binding site, contacting Leu174, Leu190, Leu205, Val 214, and

Phe294 (Figure 3C). These five residues are conserved in extradiol

dioxygenases known or thought to preferentially cleave DHSA [4].

In both molecules, the carbonyl oxygen at C9 is orientated

towards the iron ligand His215 (O9) while that at C17 interacts

with up to three ordered water molecules (O17). In the case of

molecule A, the protein’s C-terminus forms part of the substrate-

binding pocket, sequestering the binding site from bulk solvent. In

molecule B, the C-terminus is partially disordered. A similar

partial disorder at the C-terminus was also observed in the

structure of ligand-free HsaC, suggesting that crystal contacts may

favor a more ordered conformation of the three C terminal

residues (residue 298–300) in molecule A.

Role of HsaC in cholesterol catabolism
To assess the role of HsaC in cholesterol catabolism, we

generated a precise null deletion mutant of hsaC in M. tuberculosis

H37Rv by specialized transduction (Figure 4A and 4B). Growth

on cholesterol and other organic substrates was tested using a

minimal medium. This medium supported some background

growth in the absence of added substrate. However, growth of

wild-type H37Rv was measurably enhanced in the presence of

cholesterol (Figure 5A), confirming that M. tuberculosis can utilize

this steroid as a growth substrate. In contrast, the DhsaC mutant

completely failed to grow on cholesterol while growth on glycerol

was not impaired. Indeed, the DhsaC mutant displayed two notable

phenotypes. First, the DhsaC mutant developed a pink color in the

medium (Figure 5B), indicating the accumulation of catechols and

their non-enzymatic oxidation to o-benzoquinones and condensa-

tion products, as observed in the DhsaC mutant of R. jostii RHA1

[4]. Second, the mutant lost viability in the presence of cholesterol,

displaying a ten-fold decrease in CFU over 14-day growth

experiment (Figure 5A).

Role of cholesterol metabolism in pathogenesis
To evaluate the role of cholesterol metabolism in pathogenesis,

we tested the DhsaC mutant in two animal models: immuno-

compromised SCID mice and guinea pigs. Mice intravenously

infected with 105 CFU of the DhsaC mutant (median survival time

33.5 days60.5 SD) survived substantially longer (p,0.0001, log-

rank test) than those infected with wild-type H37Rv (median

survival time 22.4 days60.9 SD) or the complemented mutant

DhsaC attBL5::pMV361::hsaC (median survival time 26.9 days61.4

SD) (Figure 5C). These data corroborate the predicted importance

of cholesterol catabolism for virulence of M. tuberculosis and

emphasize the critical role of HsaC within this pathway. They

further suggest that M. tuberculosis utilizes cholesterol early during

infection, prior to the onset of adaptive immunity.

Guinea pigs infected via aerosol with ,102 CFU of the DhsaC

mutant had similar bacillary loads in the lungs at 4 weeks post-

infection as compared to both H37Rv and the complemented

mutant strain. However at week 8, there were significantly fewer

(p,0.01, two-way ANOVA) DhsaC organisms in the lung

compared to either wild-type or complemented strains

(Figure 6A). The spleens from the DhsaC-infected animals showed

Table 3. Histopathology scores of lung tissue of guinea pigs infected with DhsaC mutant.

Strain Week # granulomas #fields #granulomas/field Scorea

H37Rv 4 1868b 2.2560.4 862.5 1.760.4

8 2763 2.2561.8 12611.8 1.860.4

DhsaC 4 1.562*** 160 1.562.1 0.460.2

8 2.561*** 1.560.4 1.860.9** 0.360.1

DhsaC Comp 4 10.561{ 260 5.360.4 1.860

8 28.562{{{ 1.7560.4 16.562.1{{ 2.560.7

aScale of 0–4 ([39]).
bMean6sd of 2 guinea pigs per time point (*p,0.05, **p,0.01, ***p,0.001 DhsaC compared to H37Rv).
{p,0.05.
{{p,0.01.
{{{p,0.001 DhsaC-Comp compared to DhsaC.
doi:10.1371/journal.ppat.1000344.t003

HsaC and Cholesterol Metabolism in Mtb
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Figure 5. Growth of a DhsaC mutant of M. tuberculosis on cholesterol and in mice. (A) Growth of H37Rv strains in minimal media containing
0.1% (v/v) glycerol, 0.8% (v/v) isopropanol (solvent control), 0.02% (w/v) cholesterol with 0.8% (v/v) isopropanol, or no added carbon source. The
plotted values represent the means of triplicates, with error bars indicating standard deviation. (B) Accumulation of a colored metabolite during
cholesterol utilization by the DhsaC mutant. (C) Survival of SCID mice after intravenous infection with 105 CFU of wild-type H37Rv, the DhsaC mutant
or the complemented DhsaC mutant, respectively (n = 10 mice per group).
doi:10.1371/journal.ppat.1000344.g005

Figure 4. The design of a DhsaC mutant of M. tuberculosis. (A) Genetic organization of the hsaC locus in wild-type H37Rv and the DhsaC mutant.
The size of the XhoI fragments as well as the location of the probe relevant for Southern analysis are indicated. cdres, res-sites of the cd-resolvase; hyg,
hygromycin resistance gene. (B) Southern analysis of XhoI digested genomic DNA from wild-type H37Rv and three independent DhsaC mutant
clones. Gene deletion was confirmed employing a [a-32P]dCTP-labeled probe hybridizing to the position indicated in A.
doi:10.1371/journal.ppat.1000344.g004

HsaC and Cholesterol Metabolism in Mtb
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significantly (p,0.05) lower bacterial loads 4 weeks post-infection,

suggesting an impaired dissemination to the organ. While

implantation of the DhsaC mutant was slightly lower than the

groups challenged with the wild-type and complemented strain

(day 1), the differences were not statistically significant. In

accordance with the CFU data, there were more grossly visible

tubercles in lungs of animals infected with the wild-type or

complemented strain compared to the mutant (Figure 6B).

Microscopically, there were fewer lung granulomas (Table 3) at

both week 4 (p,0.001) and week 8 (p,0.001) in mutant-infected

guinea pigs (Figure 6C). Moreover, those in the DhsaC-infected

guinea pig lungs were smaller and had less necrosis.

Discussion

The phenotype of the DhsaC H37Rv mutant in cholesterol-

containing medium, SCID mice and guinea pigs provides clear

evidence that cholesterol metabolism contributes to the survival of

M. tuberculosis in the host. The high specificity (kcat/Km) of HsaC for

DHSA and the occupation of the enzyme’s large, hydrophobic

substrate-binding pocket with the bicyclo-alkanone moiety of the

cholesterol metabolite are consistent with the enzyme’s role in

cholesterol metabolism, corroborating our previous demonstration

that deletion of hsaC blocked growth on cholesterol in the related

actinomycete, R. jostii RHA1 [4]. The first evidence for the role of

cholesterol metabolism during pathogenesis was derived from

genome-wide insertional mutagenesis studies [3] and the up-

regulation of cholesterol catabolic genes during infection of

macrophages [18]. Most recently, co-infection studies of mice

using a mutant defective in cholesterol uptake indicated that

cholesterol catabolism plays an important role in the chronic

phases of infection [5].

The in vitro growth of M. tuberculosis on cholesterol and the loss of

viability of the DhsaC mutant in the presence of cholesterol indicate

that the attenuation of this mutant in the animal models is due to

two factors: blockage of a catabolic pathway and the toxicity of

catechols and/or quinones. The cytotoxicity of the latter

compounds can arise from at least two mechanisms: (a) redox

cycling between quinones and catechols to generate reactive

oxygen species and (b) covalent modification of cellular compo-

nents by the electrophilic o-benzoquinone [19]. This toxicity might

be mitigated in the animal models by the fact that M. tuberculosis

utilizes multiple growth substrates in vivo. Regardless of the precise

mechanism of attenuation in the DhsaC mutant, the current data

unambiguously establish that M. tuberculosis metabolizes cholesterol

during infection. Moreover, the DhsaC mutant effectively provides

a sensitive probe of the conditions under which cholesterol

catabolism occurs, even when the latter is not essential.

The most striking result of the animal studies was the reduction

in granulomas in guinea pigs infected with the DhsaC mutant. This

is consistent with the conclusion of Pandey and Sassetti [5], and

correlates with the recent finding of tubercule bacilli in close

association with lipid droplets and crystalline cholesterol in a

mouse model of caseating granulomas [20]. Indeed, histopathol-

ogy studies have reported the progressive accumulation of

cholesterol-rich lipid in alveolar macrophages leading to caseating

granulomas in humans [21,22]. Nevertheless, the current studies

further indicate that cholesterol metabolism by M. tuberculosis

contributes to bacillary multiplication during earlier stages of

infection and to the dissemination of the pathogen in the host. The

DhsaC mutant likely enabled detection of this effect due to the

accumulation of a toxic metabolite. However, another difference

between the studies is that the mce4 permease mutant did not

completely block growth on, nor metabolism of, cholesterol.

Curiously, a different mce4 mutant was much less attenuated [23].

Finally, the phenomenon of comparable bacillary counts accom-

panied by reduced lung pathology has been described for some

sigma factors mutants and a whiB3 mutant [24]. Nevertheless, it is

unclear whether HsaC or an HsaC-dependent product is required

for an inflammatory response in animal lungs while being

dispensable for growth.

HsaC appears to be significantly more susceptible to oxidative

inactivation during catalytic turnover than other characterized

extradiol dioxygenases. For example, the partition ratios of HsaC

for each of DHSA and DHDS are 50-fold less than that of BphC

for its preferred substrate, DHB [13]. Some meta-cleavage

pathways, such as the xylene catabolic pathway of Pseudomonas

putida mt-2, have recruited a ferredoxin that reduces the

catalytically essential iron of extradiol dioxygenases that is

adventitiously oxidized during catalytic turnover, enabling the

growth of the organism on a broader range of compounds [15].

BLAST searches indicate that the M. tuberculosis genome does not

encode such a ferredoxin. This does not preclude the possibility

that another reductase or electron-transfer protein plays this

physiological role.

The susceptibility of HsaC to oxidative inactivation could reflect

relatively low levels of O2 in M. tuberculosis-infected lungs.

Tuberculous granulomas in lungs of guinea pigs, rabbits and

non-human primates were found to be positive for the hypoxia

marker pimonidazole hydrochloride (PIMO) [25] and the oxygen

tension in small pulmonary lesions in infected rabbits were about

3% that of uninfected lungs and below the KmO2 of HsaC.

Interestingly, hypoxic conditions have been shown to upregulate a

number of genes in M. tuberculosis, including fadD19, an acyl CoA

synthetase in the cholesterol metabolism pathway [26]. Although

transposon mutagenesis studies have identified many cholesterol

metabolic genes as essential for survival in activated macrophages

[3], there is almost no correlation between the up-regulation of

genes in response to low O2 and macrophage activation [18]. An

intriguing possibility is that M. tuberculosis sequesters O2 for HsaC

and other oxygenases of the pathway to improve the degradation

of steroids in certain cellular environments. Indeed, trHbO, one of

two truncated hemoglobins harbored by the pathogen and

encoded by glbO, has been proposed to increase the availability

of O2 for respiration [27]. Moreover, the heterologous expression

of related hemoglobins increased the rate of the microbial

degradation of aromatic compounds by dioxygenase-dependent

pathways [28]. In a recent study, glbO was found to be most

strongly up-regulated by hypoxia, and was also up-regulated late

during infection of macrophages [29]. Nevertheless, the KmO2 of

HsaC is almost two orders of magnitude greater than that of some

extradiol dioxygenases isolated from hypoxic soil environments

[30], suggesting that this enzyme, and by extension the cholesterol

catabolic pathway of M. tuberculosis, has not evolved to function in

extremely hypoxic environments.

The structure of the monodentate-bound HsaC:DHSA complex

was unexpected, but potentially provides insights into the initial

substrate-binding steps of extradiol dioxygenases. Observation of

this species is reminiscent of the trapping of three catalytic

intermediates in different protein molecules of a single crystal of

HPCD [11], another extradiol dioxygenase. In that case,

stabilization of different intermediates at different active sites was

ascribed in part to crystal packing forces. In the current studies,

the different packing forces affecting molecules A and B, reflected

in the greater disorder of the C-terminal residues of molecule B,

may contribute to stabilization of the different ligand binding

mode. Irrespective of how the monodentate-bound catechol was

stabilized, this species was proposed to occur by Groce et al., who
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described the binding reaction of 4-nitrocatechol (4-NC) to HPCD

as proceeding via three observable steps in addition to an

unobserved initial rapid association step [12]. 4NC is a poor

substrate for HPCD, binding to the active site as a dianion instead

of as a monoanion observed for physiological substrates.

Nevertheless, the initial binding of the catechol to the iron was

Figure 6. Growth of DhsaC mutant in the guinea pig model of tuberculosis. (A) Growth kinetics in the lung and spleen of guinea pigs
aerosol-infected with H37Rv, DhsaC mutant, or the complemented DhsaC mutant (n = 15 guinea pigs per group). Asterisks indicate significant
(*p,0.05) or highly significant (**p,0.01) differences found between guinea pigs infected with the H37Rv wild-type and DhsaC mutant strain. (B)
Gross pathology of guinea pig lungs infected with wild-type, mutant, and complemented strains at week 4 and week 8. (C) Histopathological
appearance of same lung specimens as those depicted in (B).
doi:10.1371/journal.ppat.1000344.g006
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proposed to be monodentate via the hydroxyl group attached to

the ring carbon that is eventually subject to nucleophilic attack by

the activated oxygen intermediate, consistent with the current

structural data. Finally, the observation of the bicycloalkanone

moiety of the DHSA in essentially identical positions

(rmsd = 0.25 Å) in the bidentate and monodentate complexes

suggests that this moiety is a determinant in the initial complex

that is proposed to form reversibly between extradiol dioxygenases

and their substrates.

Although 29,69-diCl DHB and 4-Cl DHDS efficiently inacti-

vated HsaC during catalytic turnover, their respective modes of

action likely differ, reflecting steric and electronic considerations,

respectively. 29,69-DiCl DHB strongly inhibits BphC

(Kic = 761 nM) due to partial occlusion of the likely O2-binding

site by one of the chloro substituents [7]. The O2-binding site,

defined by Val148, Phe187 and Ala198 is conserved in HsaC

(Val147, Phe192 and Ala203). 29,69-diCl DHB does not inhibit

HsaC as effectively as BphC, likely due to the poorer fit of the non-

hydroxylated phenyl ring into the active site (Figure S2). By

contrast, 4-Cl DHDS likely inactivates HsaC due to the electron-

withdrawing group on the catecholic ring. This basis of

inactivation has been reported in a range of extradiol enzymes,

including BphC [14] and human 3-hydroxy-anthranilate-3,4-

dioxygenase [31], an enzyme essential to the biosynthesis of

quinolinate from tryptophan. While the precise role of cholesterol

metabolism by Mtb in human patients remains to be determined,

particularly considering the limitations of the various animal

models, the presented structural and kinetic data should facilitate

the design of more potent inhibitors of HsaC.

Materials and Methods

Chemicals, strains, and growth
DHB and 29,69-diCl DHB were synthesized according to

established procedures [32]. DHDS (6; Figure 7) was prepared

starting from commercially available 2-methoxy-5-methylphenol

(1) which was converted into an intermediate MOM derivative

allowing a directed ortho metalation (DoM) and iodination reaction

sequence to form the corresponding aryl iodide 2. Compound 2
was subjected to Heck coupling conditions, as precedented [33], to

afford the stilbene 3 which was reduced (4) and deprotected (5) to

give the requisite catechol 6. The latter was purified by silica gel

chromatography and its identity was confirmed by 1H and 13C

NMR. 1H NMR of DHDS (400 MHz, CDCl3) d/ppm: 7.37 (d,

J = 7.1 Hz, 1H), 7.24–7.13 (m, 3H), 6.65 (d, J = 8.1 Hz, 1H), 6.60

(d, J = 8.1 Hz, 1H), 5.20 (s, 1H), 4.86 (br s, 1H), 2.93 (s, 4H), 2.23

(s, 1H). 13C NMR of DHDS (100 MHz, CDCl3) d/ppm: 142.2,

141.0, 139.4, 133.8, 130.6, 129.5, 129.4, 127.5, 126.9, 126.4,

121.4, 112.6, 32.9, 27.1, 18.8. 1H NMR of 4-Cl DHDS

(400 MHz, CDCl3) d/ppm: 7.38–7.36 (m, 1 H), 7.20–7.16 (m, 3

H), 6.70 (s, 1 H), 5.52 (br s, 1 H), 5.35 (br s, 1 H), 2.96–2.94 (m, 4

H), 2.18 (s, 3 H). Full experimental details of the synthesis and

characterization data of DHDS and related compounds will be

presented in a future publication (J-X. Wang, L.D. Eltis, and V.

Snieckus, unpublished results).

DHSA was generated by incubating a culture of the DhsaC

mutant of Rhodococcus jostii RHA1 [4] with cholesterol. Briefly,

several colonies were used to inoculate 100 ml W minimal salt

medium [34] containing 20 mM pyruvate. At mid-log phase

(OD600 of 1.0), 50 ml of preculture was used to inoculate 5 litres

W media containing 20 mM pyruvate and 0.5 mM cholesterol.

Cells are harvested at OD600 of 1.5 and pellet was resuspended

in 0.5 litres W media containing 0.5 mM cholesterol in a 2-litre

baffled flask. Production of metabolites in culture supernatant

was monitored using HPLC. At highest DHSA production, the

culture supernatant was collected by centrifugation, acidified

using 0.5% orthophosphoric acid to ,pH 6, and then extracted

twice with 0.5 volumes of ethyl acetate. The ethyl acetate

fractions were pooled, dried with anhydrous magnesium sulfate,

and evaporated to dryness with a rotary evaporator. The residue

was dissolved in a 44:56 mixture of methanol/water containing

0.5% phosphoric acid and purified using a Waters model 2695

HPLC (Milford, MA) equipped with a Prodigy 10-mm ODS-

Prep column (4.66250 mm; Phenomenex, Torrance, CA).

Figure 7. Preparation of 2,3-dihydroxy-6-methyl-7,8-dihydro-10-Cl-stilbene (DHDS) via directed ortho metalation.
doi:10.1371/journal.ppat.1000344.g007
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Metabolites were eluted using the same methanol/water solvent

at a flow rate of 1 ml/min. The eluate was monitored at

280 nm. Fractions containing DHSA (tR,35 min) were pooled,

added to 10 volumes of water, and extracted as described above.

All other chemicals were of analytical grade or higher. HsaC

from M. tuberculosis H37Rv was produced in Escherichia coli, as

previously described [4]. M. tuberculosis H37Rv strains were

grown in a minimal medium (KH2PO4 1 g/l, Na2HPO4 2.5 g/l,

asparagine 0.5 g/l, ferric ammonium citrate 50 mg/l,

MgSO467 H2O 0.5 g/l, CaCl2 0.5 mg/l, ZnSO4 0.1 mg/l,

Tyloxapol 0.05%, v/v) containing 0.1% (v/v) glycerol or 0.02%

(w/v) cholesterol. Cholesterol was added from a 25 mg/ml stock

solution dissolved in isopropanol. Minimal medium containing

0.8% (v/v) isopropanol was used as a control. Growth was

monitored by measuring colony forming units (CFU) by plating

serial dilutions of cultures onto Middlebrook 7H10 agar

supplemented with 10% (v/v) OADC enrichment (Becton

Dickinson Microbiology Systems, Spark, MD) and 0.5% (v/v)

glycerol.

Generation of gene-deletion mutant
For generating an allelic exchange construct designed to replace

the hsaC gene (Rv3568c) with a cdres-sacB-hyg-cdres cassette

comprising the sacB and hygromycin resistance genes flanked by

res-sites of the cd-resolvase, upstream and downstream flanking

DNA regions of hsaC were amplified by PCR employing the

oligonucleotide pair Rv3568c-LL (59-TTTTTTTTCCA-

TAAATTGGTCCGCTGGTGGGCAAC TCGTT-39) and

Rv3568c-LR (59-TTTTTTTTCCATTTCTTGGCCTTCGG-

CATTCGCGCATC-39) introducing Van91I restriction sites

(underlined) for amplification of the upstream flanking region

Rv3568c-L, and the oligonucleotide pair Rv3568c-RL (59-

TTTTTTTTGCATAGATTGC AGCCGAGTGGTCAGCCCG-

TAT-39) and Rv3568c-RR (59-TTTTTTTTGCATCTTTTGC-

TAA CGGCGGTTCCAACGACA-39) introducing BstAPI re-

striction sites (underlined) for amplification of the downstream

flanking region Rv3568c-R. Subsequently, Rv3568c-L and

Rv3568c-R were digested with Van91I or BstAPI, respectively,

and ligated with Van91I-digested p0004S vector arms (T. Hsu and

W.R. Jacobs Jr., unpublished results), resulting in the knock-out

construct pRv3568cS which was then linearized with PacI and

cloned and packaged into the temperature-sensitive phage

phAE159 (J. Kriakov and W.R. Jacobs Jr., unpublished results)

as described [35], yielding the knock-out phage phRv3568cS.

Allelic exchange in M. tuberculosis H37Rv using the phage

phRv3568cS was achieved by specialized transduction as reported

previously [35], resulting in deletion of nucleotides 220–375 of the

hsaC gene (903 bp) and replacement by the cdres-sacB-hyg-cdres

cassette (Figure 4A). The obtained mutants were verified by

Southern analysis of XhoI-digested genomic DNA isolated from

independent mutant clones as well as the wild-type using

radiolabeled Rv3568c-R as probe (Figure 4B).

For complementation of the DhsaC mutant, the hsaC gene was

amplified by PCR using the oligonucleotides 59-TTTT-

TTCAGCTGCAATGAGCATCCGGTCGCTGGGC-39 (59

primer) and 59-TTTTTTAAGCTTCTAGCCGCGAGCGCC-

TACGGTG-39 (39 primer) and cloned via the primer-introduced

restriction sites (underlined) as a PvuII-HindIII fragment down-

stream of the constitutive hsp60 promoter into plasmid

pMV361KanR, which allows single copy integration into the

genome of M. tuberculosis [36] and complementation in trans,

resulting in complemented mutant strain DhsaC

attBL5::pMV361::hsaC.

Animal infection studies
SCID/NCr (BALB/c background) mice (4- to 6-week-old

females) were infected intravenously through the lateral tail vein

with 105 CFU of various M. tuberculosis H37Rv strains suspended

in 200 ml PBS containing 0.05% Tween 80. Ten mice per group

were infected and survival of mice was monitored.

Specific pathogen-free outbred Hartley strain guinea pigs (250–

300 g; Charles River Breeding Laboratories, Inc. (Wilmington,

MA)) were infected via the respiratory route in an aerosol chamber

(University of Wisconsin Engineering Shops (Madison, WI)) with a

nebulizer concentration of 26107 CFU/ml of the three strains of

M. tuberculosis H37Rv [37] (n = 15 guinea pigs per group). Animals

were euthanized on day 1, 4 weeks and 8 weeks post-infection.

The right lower lung lobe and half of the spleen was homogenized

in sterile saline and appropriate 10-fold dilutions were inoculated

on M7H10 agar plates [38]. The lower left lung lobe and half of

the spleen were taken for histopathology. Following 3 weeks of

incubation at 37uC, the colonies were counted and the data were

transformed in log10 values for statistical analysis. Mouse and

guinea pig infection protocols were approved by the Animal Care

and Use Committee at Albert Einstein College of Medicine and at

Texas A&M University, respectively.

Histopathology
The number of low power (206) fields was counted for each

specimen. Within each field, the number of granulomas was also

tabulated permitting the calculation of the number of granulomas

per low-power microscopic field. Because the size and extent of

necrosis of each granuloma varies, a subjective determination on a

scale of 1–4 of disease severity was also assessed so that both

quantitative and qualitative measures could be used to describe the

extent of tissue damage in a manner similar to a recently described

method [39].

Purification and kinetic characterization of HsaC
HsaC was purified anaerobically using a two-column protocol

derived from that used to purify BphC [13]. Briefly, cells from

3 litres of culture were resuspended in 30 ml of 10 mM TRIS,

pH 7.5 containing 1 mM MgCl2, 1 mM CaCl2 and 0.1 mg/ml

Dnase I and disrupted using a French Press operated at

20,000 psi. The cell debris was removed by ultracentrifugation

(120,000g645 min). The clear supernatant fluid (,40 ml) was

decanted, referred to as the raw extract, and divided into two

equal portions. Each portion was loaded onto a column packed

with Source15 Phenyl resin (269 cm) and equilibrated with

10 mM TRIS, pH 7.5 containing 1 M ammonium sulphate. The

column was operated at a flow rate of 5 ml/min. The enzyme

activity was eluted with a linear gradient of 1 to 0 M ammonium

sulphate over 8 column volumes. Fractions (10 ml) containing

activity from the two runs were concentrated to 10 ml with a

stirred cell concentrator equipped with a YM10 membrane

(Amicon, Oakville, Ontario) and loaded onto a Mono Q anion

exchange column (168 cm) equilibrated with 10 mM TRIS,

pH 7.5 containing 5% t-butanol, 2 mM dithiothreitol (DTT) and

0.25 mM ferrous ammonium sulphate. The column was operated

at a flow rate of 2 ml/min. The enzyme activity was eluted with a

linear gradient of 0.2 to 0.4 M NaCl over 20 column volumes.

Fractions exhibiting activity were combined, exchanged into the

column equilibration buffer, concentrated to 20–25 mg/ml protein,

and flash frozen as beads in liquid N2. Purified HsaC was stored at

280uC for several months without significant loss of activity.

Aliquots of HsaC were thawed immediately before use and

exchanged into 20 mM HEPES, 80 mM NaCl (I = 0.1), pH 7.0

containing 5% t-butanol using a desalting column. Samples of HsaC
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were further diluted for enzyme kinetics using the same buffer

containing 0.1 mg/ml BSA and 2 mM DTT, except in the

inactivation experiments. For the latter, enzyme was diluted in the

same buffer without DTT and were used within two hours. HsaC

activity was verified at the beginning and end of each set of

experiments. Protein and iron concentrations were evaluated

colorimetrically using the Bradford method [40] and Ferene S

[41], respectively.

Enzyme activity was routinely measured by following the

consumption of O2 using a Clark-type polarographic electrode as

described previously [13] unless otherwise stated. Experiments were

performed in a total volume of 1.3 ml 20 mM HEPES, 80 mM

NaCl, pH 7.0, 25.060.1uC equilibrated with 5% O2 in N2

(10363 mM dissolved O2). Reaction buffers containing different

concentrations of dissolved O2 were prepared by bubbling them with

mixtures of O2 and N2 gases and transferring them to the reaction

chamber as described previously [13]. The amount of active HsaC

was defined by the iron content of the sample. Steady-state kinetic

parameters were calculated using LEONORA [42].

Cleavage of 2969-diCl DHB and was measured by following the

rate of appearance of the ring-cleaved product using a Cary 5000

spectrophotometer equipped with a thermojacketed cuvette holder

(Varian, Walnut Creek, CA). Initial velocities were determined

from a least-squares analysis of the linear portion of the progress

curves. Partition ratios expressing the number of substrate

molecules consumed per enzyme molecule inactivated were

determined spectrophotometrically for DHB, 29,69-diCl DHB,

DHDS, and DHSA by following the appearance of the ring-

cleaved products at 434 nm (e= 23.4 mM21 cm21), 391 nm

(e= 36.5 mM21 cm21), 396 nm (e= 6.3 mM21 cm21), and

392 nm (e= 7.6 mM21 cm21), respectively. The partition ratio

for 4-Cl DHDS was determined by oxygraph electrode due to a

very low extinction coefficient. Partition ratios were determined

under saturating substrate conditions ([S]&Km).

Crystallization and preparation of complex
Crystals of substrate-free HsaC were grown anaerobically at

room temperature using the hanging drop method (protein

15 mg/ml, crystallization solution: 12–15% PEG 3350, 0.2 M

ammonium tartrate, 25% ethylene glycol). Single crystals

appeared in 2–5 days and grew to their full size (200 mm6200 mm)

in two weeks. The crystals were frozen anaerobically in liquid N2

prior to diffraction experiments. The complex with DHSA was

formed by adding 0.2–0.5 ml of crude extract containing DHSA

dissolved in t-butanol directly to the drop containing the crystal

and incubating for up to 2 hr (anaerobically) at room temperature.

The HsaC:DHSA crystals were flash frozen in liquid N2.

Diffraction experiments and structure analysis
X-ray data collections were performed under cryogenic condi-

tions using an in-house rotating anode X-ray generator (CuKa
radiation, l= 1.542 Å) and at the Advanced Light Source (ALS,

Beamline 8.2.2). Data were processed using HKL2000 [43].

Molecular replacement was performed using PHASER [44] and

the structure of substrate-free BphC (PDB accession code 1HAN)

with Fe and waters deleted as a search model. The highest scoring

solution placed a dimer in the asymmetric unit, which was used as a

starting model for re-building and structure refinement, which was

performed using CNS [45] (simulated annealing) and REFMAC

[46] in alternation with manual rebuilding using COOT [47].

For the HsaC:DHSA complexes, difference Fourier electron

density maps revealed additional density within the active site

consistent with a bound DHSA. The diffraction data and

properties of the refined model are characterized in Table 2. A

model for the substrate was established using the PRODRG

server. Electron density maps were calculated with the CCP4 suite

(FFT function). Structural figures and graphical rendering were

made by using PYMOL [48]. The final model of HsaC:DHSA

contains a dimer of HsaC covering 299/298 residues of each

chain, two DHSA molecules, and 485 water molecules. The final

model of substrate-free HsaC contains a dimer of HsaC covering

295 residues (2–296) of each chain, one tartrate and 712 water

molecules. The coordinates for HsaC:DHSA and HsaC alone

were deposited in the Protein Data Bank (www.pdb.org) with

accession codes 2ZI8 and 2ZYQ, respectively.

Supporting Information

Figure S1 Electron density corresponding to the two binding

modes of DHSA in HsaC. (A) DHSA bidentate bound. (B) DHSA

monodentate bound. The upper and middle panels show simple

electron density omit-maps (black) calculated using phases derived

from the HsaC model without ligands. For clarity purposes the

ligand (in ball-and-stick) was included in the upper panel figure.

The omit-maps are contoured at 0.7 s; roughly half of the mean

electron density level of the surrounding protein structure. The

bottom panel shows a Fo2Fc electron density from restrained

refinement (black, contour level = 3 s), performed without ligands

in the model.

Found at: doi:10.1371/journal.ppat.1000344.s001 (2.01 MB PDF)

Figure S2 Structural superposition of HsaC:DHSA and

BphC:DHB. The respective catecholic rings of DHSA (C atoms

colored yellow) and DHB (C atoms colored dark grey) bind in

similar positions, while the remaining part of the substrates assume

different orientations. Residues of HsaC (C atoms colored green)

are labeled. Residues stabilizing the bicycloalkanone moiety of

DHSA (Leu174, Leu190, Leu205, Val214 and Phe294) are

conserved in extradiol dioxygenases known or thought to

preferentially cleave DHSA.

Found at: doi:10.1371/journal.ppat.1000344.s002 (0.12 MB PDF)

Table S1 Fe-Ligand distances for the HsaC:DHSA monodenta-

teB and bidentateA complexes as well as in the ligand-free form.

Found at: doi:10.1371/journal.ppat.1000344.s003 (0.03 MB

DOC)

Table S2 Ligand-Fe-Ligand angles for the HsaC:DHSA mono-

dentate and bidentate complexes as well as in the ligand-free form.

Found at: doi:10.1371/journal.ppat.1000344.s004 (0.04 MB

DOC)
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