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Applying No-Scale Supergravity boundary conditions at a heavy unification scale to the Flipped
SU(5) grand unified theory with extra TeV-scale vector-like multiplets, i.e. No-Scale F-SU(5),
we express the Z-boson mass MZ as an explicit function of the boundary gaugino mass M1/2,

M2

Z = M2

Z(M
2

1/2), with implicit dependence upon a dimensionless ratio c of the supersymmetric
Higgs mixing parameter µ and M1/2. Setting the top Yukawa coupling consistent with mt = 174.3
GeV at MZ = 91.2 GeV, the value of c naturally tends toward c ≃ 1, which indirectly suggests
underlying action of the Giudice-Masiero mechanism. Proportional dependence of all model scales
upon the unified gaugino massM1/2 in the No-Scale F-SU(5) model suggests one possible mechanism
of confronting the electroweak fine tuning problem.

PACS numbers: 11.10.Kk, 11.25.Mj, 11.25.-w, 12.60.Jv

INTRODUCTION

Supersymmetry (SUSY) represents a solution to the
big gauge hierarchy problem, logarithmically sequestering
the reference to ultra-heavy (Grand Unification, Planck,
String) scales of new physics. However, there is a resid-
ual little hierarchy problem, implicit in the gap separat-
ing TeV-scale collider bounds on (strong production of)
yet elusive colored superpartner fields from the observa-
tion of a 125 GeV light CP-even Higgs; indeed, this same
heaviness of the SUSY scale appears equally requisite to
sufficient elevation of loop contributions to the physical
Higgs mass itself. One possible mechanism for reconcila-
tion of these considerations without an unnatural invoca-
tion of fine tuning, vis-à-vis unmotivated cancellation of
more than (say) a few parts per centum between contri-
butions to physics at the electroweak (EW) scale, could
be the providence of a unified framework wherein the en-
tire physical spectrum (Standard Model + SUSY) may
be expressed as functions of a single parameter.

The SUSY framework naturally provides for interplay
between quartic and quadratic field strength terms in
the scalar potential of the type essential to spontaneous
destabilization of the null vacuum, the former emerging
with dimensionless gauge-squared coupling coefficients
from the D-term, and the latter with dimensionful mass-
squared coefficients referencing the bilinear Higgs mix-
ing scale µ from the chiral F -term. Crucially though,
this radiative electroweak symmetry breaking (EWSB)
event, as driven by largeness of the top-quark Yukawa

coupling, is not realizable without the supplementary in-
clusion of soft mass terms mHu,d

and the analog Bµ of
µ, which herald first the breaking of SUSY itself. In a
supergravity (SUGRA) context, these terms may be ex-
pected to appear in proportion to the order parameter
of SUSY breaking in the visible sector, as gravitation-
ally suppressed from higher scale effects in an appro-
priately configured hidden sector, namely the gravitino
mass M3/2. The gravitino mass may itself be exponen-
tially radiatively suppressed relative to the high scale,
plausibly and naturally taking a value in the TeV range.
The Giudice-Masiero (GM) mechanism may be invoked
to address the parallel “µ problem”, suggesting that this
SUSY-preserving coupling may likewise be of the same
order, and likewise generated as a consequence of SUSY
breaking, as evaluated at the high scale.

Minimization of the Higgs scalar potential with respect
to the Hu and Hd field directions yields two conditions on
the pair of resulting vacuum expectation values (VEVs)
(vu, vd). The overall scale (v2u + v2d)

1/2, in product with

the gauge coefficients (g2L + g′
2
Y)

1/2/2, is usually traded
for the physical Z-boson mass MZ , whereas the relative
VEV strengths are parameterized (tanβ ≡ vu/vd) by an
angle β. This allows one to solve for µ and Bµ at the elec-
troweak scale in terms of MZ , tanβ, and the soft masses
mHu,d

. When addressing the question of fine tuning, the
solution for µ2 is typically inverted as follows in Eq. (1),
and an argument is made regarding the permissible frac-
tion of cancellation between terms on the right-hand side,
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whose individual scales may substantially exceed M2
Z .

M2
Z

2
=

m2
Hd

− tan2 β m2
Hu

tan2 β − 1
− µ2 (1)

For moderately large tanβ, Eq. (1) reduces to

M2
Z

2
≃ −m2

Hu
− µ2 . (2)

At the outset, it must be noted that some level of can-
cellation should here be permitted, and indeed expected,
within Eq. (2) as an unavoidably natural consequence
of the EWSB event itself. Specifically, destabilization of
the symmetric vacuum occurs in conjunction with (the
falsely tachyonic) negation of the quadratic H2

u field co-
efficient, provided by m2

Hu
+ µ2 ≃ −M2

Z/2, which is dy-
namically driven to vanish and then flow negative under
the renormalization group. However, the proverbial devil
may lurk in the details, an element of which are loop-level
radiative corrections Veff ⇒ Vtree+V1−loop to the effective
scalar potential, and likewise via derivatives of V1−loop to
the minimization condition expressed in Eq. (1), which
is recast with m2

Hu
⇒ m2

Hu
+Σu

u, and m2
Hd

⇒ m2
Hd

+Σd
d.

VARIOUS MEASURES OF FINE-TUNING

Several approaches to quantifying the amount of fine
tuning implicit in Eq. (1) have been suggested, one
of the oldest being that ∆EENZ [1, 2] first prescribed
some 30 years ago by Ellis, Enqvist, Nanopoulos, and
Zwirner (EENZ), consisting of the maximal logarithmic
MZ derivative with respect to all fundamental parame-
ters ϕi, evaluating at some high unification scale Λ as
is fitting for gravity-mediated SUSY breaking. In this
treatment, low fine-tuning mandates that heavy mass
scales only weakly influence MZ , whereas strongly corre-
lated scales should be light.

∆EENZ = Max

{ ∣

∣

∣

∣

∂ ln(Mn
Z)

∂ ln(ϕn
i )

∣

∣

∣

∣

≡

∣

∣

∣

∣

ϕi

MZ

∂ MZ

∂ ϕi

∣

∣

∣

∣

}

Λ

(3)

Lately, a prescription ∆EW emphasizing evaluation di-
rectly at the electroweak scale [3, 4] has attracted atten-
tion, isolating contributions to the (loop-modified) right-
hand side of Eq. (1) as a ratio with the left.

∆EW = Max

{ ∣

∣

∣

∣

m2
Hd

tan2 β − 1
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,
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∣
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d
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∣
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∣

∣

,

∣

∣

∣

∣

m2
Hu

tan2 β

tan2 β − 1

∣
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∣

,

∣

∣

∣

∣

Σu
u tan

2 β

tan2 β − 1

∣

∣

∣

∣

, µ2

}

EW

÷
M2

Z

2
(4)

More strictly [3], individual contributions to Σu,d
u,d may

be compared to M2
Z/2 in isolation, without allowance for

cancellation even within the internal summation.
A variation [4, 5] of the prior, dubbed ∆HS, would fur-

ther split the electroweak evaluation of the soft masses

and µ-term into the sum of their corresponding val-
ues at the high scale (HS) Λ plus a logarithmic correc-
tion from the renormalization group running, specifically
m2

Hu,d
⇒ m2

Hu,d
(Λ) + δm2

Hu,d
, and µ2 ⇒ µ2(Λ) + δµ2.

∆HS = Max

{
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∣

∣

∣

∣

, µ2 , δµ2

}

Λ

÷
M2

Z

2
(5)

The scale Λ referenced in Eq. (5) is not necessarily
of GUT or Planck order, but may rather contextu-
ally refer to a SUSY breaking messenger as low as
some tens of TeV [6], although this somewhat blurs

distinction from the Σu,d
u,d terms comprising Eq. 4. In

any event, leading top-stop loops generate corrections
δm2

Hu
∼ m2

t̃1
× ln(mt̃1/Λ) that have been used [3, 6] to

infer naturalness bounds on the light stop mass (thereby
also limiting vital parallel contributions to the Higgs
mass), and similarly on the gluino mass. It has been sug-
gested [3, 6, 7] that a large negative trilinear soft term
At, which may be generated radiatively at the interme-
diate scale, may engender cancellations in the light stop
t̃1 tuning contribution while simultaneously lifting mh.

IMPACT OF DYNAMICS ON TUNING

In the SUGRA context, M2
Z is generically bound to

dimensionful inputs ϕi at the high scale Λ via a bilinear
functional, as shown following. The parameters ϕi may
include scalar and gaugino soft SUSY breaking masses
(whether universal or not), the bi- and tri-linear soft
terms Bµ and Ai, as well as the µ-term. The coeffi-
cients Ci and Cij are calculable, in principle, under the
renormalization group dynamics.

M2
Z =

∑

i

Ciϕ
2
i (Λ) +

∑

ij

Cijϕi(Λ)ϕj(Λ) (6)

Applying the Eq. (3) prescription, a typical contribution
to the fine tuning takes the subsequent form.

∂ ln(M2
Z)

∂ ln(ϕi)
=

ϕi

M2
Z

×

{

2Ciϕi +
∑

j

Cijϕj

}

(7)

Comparing with Eq. (6), each individual term in the
Eq. (7) sum is observed, modulo a possible factor of 2,
to be simply the ratio of one contribution to the unified
M2

Z mass, divided by M2
Z/2. The structural similarity of

the ∆EENZ and ∆HS prescriptions is therefore clear.
Differing conclusions drawn with respect to the sup-

posed naturalness of a given SUSY model construction
by the various fine tuning measures described are im-
plicit within underlying assumptions that each makes re-
garding what may constitute a natural cancellation. For
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example, Eq. (3) permits two types of dynamic cancel-
lation that are not recognized by Eq. (5). The first of
these is between multiple Eq. (6) terms in which a sin-
gle parameter ϕi may appear. The second is between
each high-scale parameter and its running correction, for
example between µ2(Λ) and δµ2, as represented by, and
absorbed into, the numerical coefficients Ci and Cij . ∆HS

is therefore a harsher metric of tuning than ∆EENZ. It is
sometimes argued [4, 8] that ∆EW, which adopts a per-
fectly a priori view of only the low energy particle spec-
trum, sets an absolute lower bound on fine tuning via
holistic recombination of high scale mass parameters and
their potentially large running logarithms. Proponents
of this opinion acknowledge [4] that the suggested bound
is only as strong as an assumption that the SUSY break-
ing soft masses m2

Hu,d
and the SUSY preserving µ-term

harken from wholly disparate origins, such that cancella-
tions amongst the two classes are inherently unnatural.
The positions of the authors in the current work are

that (i) precisely the prior mode of cancellation is made

natural by its essential role in promoting the electroweak
symmetry breaking event, and that (ii) solid theoret-
ical motivation exists (GM mechanism) for suspecting
the SUSY preserving µ scale to have yet likewise been
forged in the supersymmetry breaking event. If the for-
mer precept is granted, then the limit offered by ∆EW is
potentially spurious. If the latter precept is additionally
granted, then the very notion of electroweak fine-tuning
may be moot.

TUNING IN NO-SCALE F-SU(5)

Bottom up support for the prior opinions is provided
here by consideration of a specific model of low en-
ergy physics named F -SU(5) (see Ref. [9] and refer-
ences therein), which combines (i) field content of the
Flipped SU(5) grand unified theory (GUT), with (ii) a
pair of hypothetical TeV-scale vector-like supermultiplets
(“flippons”) of mass MV derivable within local F-Theory
model building, and (iii) the boundary conditions of No-
Scale Supergravity (SUGRA). The latter amount to van-
ishing of the scalar soft masses and the tri-/bi-linear soft
couplings M0 = A0 = Bµ = 0 at the ultimate F -SU(5)
gauge unification scale MF ≃ MPl, and are enforced
dynamically by invocation of a minimal Kähler poten-
tial [10, 11]. Non-zero boundary values may be applied
solely to the universal gaugino mass M1/2, as necessarily
implied by SUSY breaking, and to the µ-parameter. In
this perspective, the value of µ is actually that evolved up

from the scale dynamically established in EWSB; its ret-
rospective similarity to (and proportional scaling with)
M1/2 is interpreted as a deeply suggestive accident. The
model is highly constrained by the need to likewise dy-
namically tether (via the Renormalization Group Equa-
tions (RGEs)) the value of Bµ generated in EWSB to

its mandated vanishing at MF ; in fact, this releases the
constraint typically exhausted by the fixing of Bµ to in-
stead determine tanβ ≃ 20, which incidentally supports
the approximation adopted by Eq. (2), while not being so
large that impact of the bottom quark Yukawa coupling
is substantially heightened.

The consequence (at fixed Z-boson MZ and top-quark
mt masses) is an effectively one-parameter model, with
all leading dynamics established by just the single de-
gree of freedom allocated to M1/2. Inclusion of the flip-
pon multiplets provides a vital modification to the β-
function RGE coefficients, most notably resulting in nul-
lification of the color-charge running (b3 = 0) at the first
loop; however, dynamic dependence on the mass scale
MV is quite weak, affecting gauge unification only via
logarithmic feedback from a threshold correction term.
Some vestigial freedom remains for the preservation of
Bµ(MF ) = 0 by compensating adjustments to tanβ and
MV at fixed M1/2, at the price of disrupting the natural
tendency of this model to supply a suitable thermal dark
matter (over 99% Bino) candidate; to be precise, there
are associated fluctuations induced in the lightest neu-
tralino (Bino) vs. the next to the LSP (stau) mass gap
that synchronously affect the dark matter coannihilation
rate.

Numerical analysis of the parameter interdepen-
dencies in No-Scale F -SU(5) is conducted with
SuSpect 2.34 [12], utilizing a proprietary codebase mod-
ification that incorporates the flippon-enhanced RGEs.
Applying the ∆EW measure of Eq. (4) to the F -SU(5)
model is thereby found to indicate a level of tuning that
may indeed be considered large. Down-type contribu-
tions to Eq. (4) are tanβ-suppressed, and Σu

u is com-
puted to be rather small, possibly reflecting the pres-
ence of large, negative trilinear couplings. Dominant
contributions to M2

Z/2 are thus restricted to solely the
pair of terms m2

Hu
and µ2 appearing directly in Eq. (2).

Each term, or its absolute square root evaluated at the
EWSB scale, is larger than and roughly proportional
to the boundary value of M1/2, with a ratio around
1.8 for M1/2 ∼ 400 GeV that drops to about 1.3 for
M1/2 ∼ 1500 GeV. The corresponding contributions to
∆EW therefore increase from about 140 to about 1000
over the same range of inputs. One interpretation of
this circumstance, taking |mHu | and |µ| to arise from
disparate mechanisms, is that narrow tracking and can-
cellation of the two terms indicates fine tuning. However,
we make the case here for a very different point of view:
that it is precisely the close tracking of |mHu | and |µ|,
as dynamically induced by electroweak symmetry break-
ing, and preserved under projection onto the boundary
scale MF by the renormalization group, in the context of
a single parameter construction, that suggests a natural

underlying interdependence.

It is not the purpose of this work to present a function-
ing hidden sector that is capable of producing at some
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high scale the requisite SUSY breaking, along with the
associated soft term and µ-parameter boundary values.
It is the purpose of this work to investigate, primarily
by numerical means 1, the dependency of all contextual
low energy physics upon the single input scale M1/2 (and
by extension its dependence in turn upon M3/2). Insofar
as this may be demonstrated, the considered model can
successfully attack the fine-tuning problem, i.e. no large
cancellations enforced coincidentally, without a common
dynamic origin. Insofar as the relation µ(MF) ≃ M1/2

may be validated, the providence of an underlying GM
mechanism is supported through identification of the
“fingerprints” which it has impressed upon the low en-
ergy phenomenology.

The most remarkable element of this construction may
be the capacity to so severely constrain freedom of input
parameterization (with all concomitant benefits to the
interrelated questions of the little hierarchy and the µ-
problem) while retaining consistency (even at the purely
thermal level) with dark matter observations, limits on
rare processes, and collider bounds.

GAUGINO PARAMETERIZATION OF F-SU(5)

The EW fine-tuning was numerically computed for No-
Scale F -SU(5) according to the Eq. (3) prescription in
Ref. [13], yielding result of O(1). This absence of fine-
tuning is equivalent to a statement that the Z-boson mass
MZ can be predicted in F -SU(5) as a parameterized
function of M1/2; clarifying and rationalizing this intu-
ition in a more quantitative manner is a key intention
of the present section. First, we define a dimensionless
ratio c of the supersymmetric Higgs mixing parameter µ
at the unification scale MF with the gaugino mass M1/2.

c =
µ(MF )

M1/2
(8)

This parameter c is a fixed constant if the µ term is gener-
ated via the Giudice-Masiero mechanism [14], which can,
in principle, be computed from string theory. Its invoca-
tion implicitly addresses the need to otherwise explicitly
refer to the µ parameter as an independent high scale
input. We shall numerically scan over arbitrary values
of this parameter, although the No-Scale F -SU(5) con-
struction will be demonstrated to prefer a narrow range
near c ≃ 1. The vector-like flippon mass parameter MV

is expected to develop an exponential compensation (for

1 A parallel analytical treatment, making directly formal, albeit
approximate, application of the No-Scale F-SU(5) renormaliza-
tion group and boundary conditions is underway, with results
intended to follow in a separate publication.

Bµ = 0 and all else constant)

MV ∼ A(λ)eM1/2/R(λ) (9)

of the fundamental scale M1/2 due to its previously de-
scribed appearance within a logarithmic threshold correc-
tion, where the undetermined dimensionful parameters
A(λ) and R(λ) may be sensitive (among other things)
to the top quark Yukawa coupling λ. In the same vein,
sensitivity to tanβ is weak, and it is expected that any
residual dependencies upon either parameter within the
region of interest may be Taylor-expanded for absorption
into a generic quadratic function of M1/2.
We thus adopt an ansätz

M2
Z = f1 + f2 M1/2 + f3 M

2
1/2 (10)

consistent with Eq. (6), where the undetermined coef-
ficients fi represent implicit functions of dimensionless
quantities including c and λ. Some evidence suggests
that the dimensionful coefficients f1 and f2 may addi-
tionally be sensitive to Bµ, particularly to any poten-
tial deviations from the null No-Scale boundary value. If
(f1 ≪ M2

1/2) and (f2 ≪ M1/2), then a linearized ap-
proximation of the prior is applicable:

MZ = fa + fb M1/2 . (11)

The form of Eq. (10) must now be verified with explicit
RGE calculations. This is accomplished via a numerical
sampling, wherein the Z-boson mass is floated within
20 ≤ MZ ≤ 500 GeV, and the top quark mass (equiva-
lently its Yukawa coupling) within 125 ≤ mt ≤ 225 GeV.
The region scanned for the gaugino mass boundary is
within 100 ≤ M1/2 ≤ 1500 GeV. In order to truncate
the scanning dimension, MV and tanβ are explicitly pa-
rameterized functions of M1/2 (consistent with the prior
description) such that the physical region of the model
space corresponding to MZ = 91.2 GeV and mt = 174.3,
along with a valid thermal relic density, is continuously
intersected2; this may be considered equivalent to fixing
the top quark Yukawa coupling (and associated higher-
order feedback) within just this subordinate parameteri-
zation. The range of the ratio c from Eq. (8) is an output
of this analysis, which is run from the EWSB scale up to
MF under the RGEs.
As an initial phase of the analysis, the only constraints

applied are the No-Scale SUGRA boundary conditions
M0 = A0 = 0, along with correct EWSB, a conver-
gent µ term, and no tachyonic sfermion or pseudoscalar

2 The No-Scale F-SU(5) model space favors a top quark mass
of mt = 174.3 − 174.4 GeV in order to compute a Higgs boson
mass of mh ∼ 125 GeV [15–17]. The central world average top
quark mass has recently ticked upward (along with an increase
in precision) to mt = 174.34 GeV [18], affirming this preference.
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Higgs boson masses, these latter conditions being the re-
quired minimum for proper RGE evolution. These con-
structionist elements carve out a narrow viable param-
eter space between 83 . MZ . 93 GeV, which is il-
lustrated as a function of the dimensionless parameter
c in FIG. 1. The blue region represents those points
that cannot satisfy the minimum evolution requirements.
The band of points clustered on the MZ axis with c = 0
have no RGE solution for µ at all. The red sliver within
83 . MZ . 93 GeV, narrowly bounding the physical re-
gion around MZ ∼ 91 GeV, represents the sole surviving
region of model space satisfying the boundary condition
M0 = A0 = 0 with a convergent RGE solution. The
gauge couplings being held fixed, the fluctuation of MZ

is attributable to fluctuation of the Higgs VEV magni-
tude, as compensated by differential contributions to the
right-hand side of Eq. (1) induced by variation of µ,M1/2,
and the top quark Yukawa λ.

0.0 0.5 1.0 1.5 2.0 2.5
20

100

200

300

400

500

No constraint on B

2/1M
c

Z-
bo

so
n 

m
as

s M
Z  

[G
eV

]

 Computed results for all points within 20 MZ 500 GeV 

 Only region with correct RGE evolution within 20 MZ 500 GeV

M1/2 = 1.2 TeV

MZ = 91.2 GeV

M0 = A0 = 0

FIG. 1: Representation of the region of the model space for
M1/2 = 1.2 TeV that cannot sustain correct RGE evolution
(blue) versus the region that can compute a SUSY spectrum
with no RGE errors, EWSB, convergent µ term, and no tachy-
onic masses (red). All other M1/2 produce identical results.

As a second phase of the analysis, the final No-Scale
SUGRA constraint Bµ = 0 must be applied at the MF

unification scale. The vanishing Bµ = 0 requirement is
enforced numerically with a width |Bµ| ≤ 1 GeV that is
comparable to the scale of EW radiative corrections. The
effect is to carve out a simply connected string of points
from the narrow red region, depicted in FIG. 2 for seven
values of M1/2 in the model space.
The No-Scale SUGRA constraint on the Bµ parame-

ter naturally parameterizes all the particle and sparticle
masses as a function of the dimensionless parameter c
of Eq. (8). This is clearly shown in FIG. 3 for the Z-
boson mass MZ , top quark mass mt, Higgs boson mass
mh, and gluino mass mg̃. We use the gluino mass as
an example, though the entire SUSY spectrum can also

0.80 0.85 0.90 0.95 1.00

88.5

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

93.0

M0 = A0 =  B  = 0

MZ = 91.2 GeV

2/1M
c

 Polynomial Fit of M1/2 = 1500 GeV
 Polynomial Fit of M1/2 = 1350 GeV
 Polynomial Fit of M1/2 = 1200 GeV
 Polynomial Fit of M1/2 = 1050 GeV
 Polynomial Fit of M1/2 = 900 GeV
 Polynomial Fit of M1/2 = 700 GeV
 Polynomial Fit of M1/2 = 500 GeV

Z-
bo

so
n 

m
as

s M
Z  

[G
eV

]

FIG. 2: The Z-boson mass is shown as a function of the
dimensionless parameter c for seven different values of M1/2.
The black points are the results of the RGE calculations, while
the curves are polynomial fits. The curves are only comprised
of points with a vanishing Bµ parameter at theMF unification
scale.

thusly be parameterized as a function of c via the Bµ = 0
condition. The point chosen in FIG. 3 to exhibit the
correlation between the particle and sparticle masses is
M1/2 = 1200 GeV. TABLE I itemizes certain numerical
results from the RGE calculations for four of the FIG. 2
curves. The Higgs boson mass mh in TABLE I includes
both the tree level+1-loop+2-loop+3-loop+4-loop con-
tributions [9] and the additional flippon contribution [19].
Sensitivity is observed to fluctuation of the VEV scale
with MZ .

The dimensionless parameter c is expected to be a fixed
constant if the µ term is generated by the GM mecha-
nism. On any single-valued slice of the present parame-
terization with respect to c, particle and sparticle masses
will residually be dependent upon just M1/2, as is visi-
ble for variation of the Z-boson mass in FIG. 2. This is
made explicit for c = 0.80, 0.85, 0.90, 0.95, 1.00 in FIG. 4,
where each curve is well fit by a quadratic in the form
of Eq. (10). FIG. 5 demonstrates a fit against the linear
approximation in Eq. (11). As the c parameter decreases,
FIG. 5 illustrates that the linear fit approaches the pre-
cision of the quadratic fit. The dimensionful intercept fa
is a function of c, but is observed generically to take a
value in the vicinity of 89 GeV. As seen in FIG. 2, larger
values of M1/2 correlate with smaller values of c at fixed
Z-boson mass; it is the region M1/2 & 900 GeV that re-
mains viable for probing a prospective SUSY signal at
the 13–14 TeV LHC in 2015–16.

The relationship between the µ term and M1/2 at the
MF unification scale is linear for fixed MZ , with a slope
given by the ratio c from Eq. (8). This is expanded in
FIG. 6 for MZ = 91.2. Parameterization of the flippon
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TABLE I: Results of RGE calculations for four different values
ofM1/2. These are only points with a vanishing Bµ parameter
at the MF unification scale. The entries highlighted in red are
those that compute the observed experimental measurements
for MZ , mt, and mh.

M1/2 = 500 GeV

c MZ mt mh mg̃

0.955 90.189 164.47 118.88 655

0.965 90.349 166.29 120.03 659

0.975 90.543 168.34 121.30 664

0.985 90.720 170.11 122.48 669

1.005 91.181 174.31 125.28 681

1.015 91.444 176.49 126.84 687

1.025 91.741 178.81 128.45 694

1.035 92.082 181.31 130.21 702

M1/2 = 900 GeV

c MZ mt mh mg̃

0.933 90.496 167.69 119.46 1182

0.943 90.659 169.38 120.70 1190

0.953 90.818 170.95 121.85 1197

0.963 91.011 172.76 123.20 1205

0.973 91.189 174.35 124.39 1212

0.983 91.390 176.06 125.71 1220

0.993 91.652 178.17 127.28 1230

1.003 91.849 179.67 128.53 1238

M1/2 = 1200 GeV

c MZ mt mh mg̃

0.913 90.525 167.96 120.31 1574

0.923 90.672 169.49 121.48 1583

0.933 90.832 171.06 122.66 1591

0.943 90.999 172.63 123.88 1601

0.953 91.180 174.24 125.09 1610

0.963 91.371 175.87 126.41 1619

0.970 91.502 176.94 127.26 1626

0.983 91.780 179.11 129.04 1640

M1/2 = 1350 GeV

c MZ mt mh mg̃

0.905 90.537 168.06 120.76 1773

0.915 90.691 169.66 121.92 1782

0.925 90.850 171.21 123.12 1792

0.935 91.017 172.77 124.35 1802

0.945 91.188 174.29 125.55 1811

0.955 91.367 175.81 126.77 1822

0.969 91.644 178.03 128.59 1838

0.977 91.806 179.28 129.62 1847

mass MV and tanβ as functions of M1/2 (with the top
quark Yukawa and approximate relic density fixed) are
illustrated in FIG. 7.

Having established a (family in c of) quadratic expres-
sion(s) for M2

Z in the Eq. (6) form, the Z-boson mass is
extracted by reference only to M1/2 and c at the high
scale Λ, and fine tuning may be evaluated. Adopting the
linear Eq. (11) form, we first consider tuning with respect
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FIG. 3: Depiction of the correlation between the Z-boson
mass MZ , top quark mass mt, Higgs boson mass mh, and
gluino mass mg̃, as a function of c, for M1/2 = 1.2 TeV. All
other SUSY particles can be expressed similarly. The curves
are only comprised of points with a vanishing Bµ parameter at
the MF unification scale. All other M1/2 produce comparable
correlations.
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FIG. 4: Simple quadratic fits for M2

Z as a function of M2

1/2.
Five different cases of c are shown. The curves are only com-
prised of points with a vanishing Bµ parameter at the MF

unification scale. The black points are sampled from FIG. 2.

to M1/2 at fixed c, as prescribed by Eq. (3).

∆Λ
M1/2

=

∣

∣

∣

∣

∂ln(MZ)

∂ln(M1/2)

∣

∣

∣

∣

=

∣

∣

∣

∣

M1/2

MZ

∂MZ

∂M1/2

∣

∣

∣

∣

(12)

=
1

MZ

(

MZ − fa
fb

)

fb = 1−
fa
MZ

≃ 1−
89

MZ

Curiously, this expression evaluates very close to zero. It
would appear this result is a consequence of the fact that
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FIG. 5: Linear fits forMZ as a function ofM1/2. Five different
cases of c are shown. The curves are only comprised of points
with a vanishing Bµ parameter at the MF unification scale.
The black points are sampled from FIG. 2.
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the physical Z-boson mass can in fact be stably realized
for a large continuum of M1/2 values, at the expense of
variation in the ratio c. It may be better understood by
attending in turn to the parallel functional dependence
on the dimensionless c parameter itself. We have

∆Λ
c =

∣

∣

∣

∣

∂ln(MZ)

∂ln(c)

∣

∣

∣

∣

=

∣

∣

∣

∣

c

MZ

∂MZ

∂c

∣

∣

∣

∣

(13)

=

∣

∣

∣

∣

c

MZ

(

∂fa
∂c

+
∂fb
∂c

M1/2

)∣

∣

∣

∣

∼ c ≃ 1 ,

using the numerical observation ∂fa
∂c + ∂fb

∂c M1/2 ∼ MZ .
Therefore, stipulating the adopted high-scale context, we
suggest that the more natural fine-tuning measure for
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FIG. 7: Vector-like flippon mass MV and tan β as functions
of M1/2 with Yukawa couplings fixed.

No-Scale F -SU(5) may be ∆EENZ ∼ 1.

CONCLUSIONS

We have shown here that by implementing only the No-
Scale Supergravity boundary conditions of M0 = A0 =
Bµ = 0 at the unification scale, the Z-boson mass MZ

can be expressed as a simple quadratic function of the
unified gaugino mass M1/2, i.e. M

2
Z = M2

Z(M
2
1/2), in the

supersymmetric GUT model No-Scale F -SU(5). A top-
down string theoretic construction may be expected to
fix the Yukawa couplings and a dimensionless boundary
ratio c of the supersymmetric Higgs mixing parameter µ
with M1/2 at some heavy unification scale. The only de-
gree of freedom left to influence MZ is M1/2. Setting the
top Yukawa coupling consistent with mt = 174.3 GeV at
MZ = 91.2 GeV, the value of c naturally tends toward
c ≃ 1, which suggests underlying action of the Giudice-
Masiero mechanism. The regions of the model space in
correspondence with the physical massesMZ = 91.2 GeV
and mt = 174.3 GeV are further consistent with the cor-
rect Higgs boson mass mh ≃ 125 GeV and dark matter
observations, and possess overlap with the limits on rare
processes and collider bounds. Proportional dependence
of all model scales upon the unified gaugino mass M1/2

in the No-Scale F -SU(5) model could suggest one poten-
tial mechanism of confronting the electroweak fine tuning
problem.
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