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Applying No-Scale Supergravity boundary conditions at a heavy unification scale to the Flipped SU(5)

grand unified theory with extra TeV-scale vector-like multiplets, i.e. No-Scale F-SU(5), we express the 
Z-boson mass M Z as an explicit function of the boundary gaugino mass M1/2, M2

Z = M2
Z (M2

1/2), with 
implicit dependence upon a dimensionless ratio c of the supersymmetric Higgs mixing parameter μ and 
M1/2. Setting the top Yukawa coupling consistent with mt = 174.3 GeV at M Z = 91.2 GeV, the value 
of c naturally tends toward c � 1, which indirectly suggests underlying action of the Giudice–Masiero 
mechanism. Proportional dependence of all model scales upon the unified gaugino mass M1/2 in the 
No-Scale F-SU(5) model suggests one possible mechanism of confronting the electroweak fine-tuning
problem.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Supersymmetry (SUSY) represents a solution to the big gauge 
hierarchy problem, logarithmically sequestering the reference to 
ultra-heavy (Grand Unification, Planck, String) scales of new 
physics. However, there is a residual little hierarchy problem, im-
plicit in the gap separating TeV-scale collider bounds on (strong 
production of) yet elusive colored superpartner fields from the ob-
servation of a 125 GeV light CP-even Higgs; indeed, this same 
heaviness of the SUSY scale appears equally requisite to sufficient 
elevation of loop contributions to the physical Higgs mass itself. 
One possible mechanism for reconciliation of these considerations 
without an unnatural invocation of fine-tuning, vis-à-vis unmo-
tivated cancellation of more than (say) a few parts per centum
between contributions to physics at the electroweak (EW) scale, 
could be the providence of a unified framework wherein the en-
tire physical spectrum (Standard Model + SUSY) may be expressed 
as functions of a single parameter.
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SCOAP3.
The SUSY framework naturally provides for interplay between 
quartic and quadratic field strength terms in the scalar potential 
of the type essential to spontaneous destabilization of the null 
vacuum, the former emerging with dimensionless gauge-squared 
coupling coefficients from the D-term, and the latter with dimen-
sionful mass-squared coefficients referencing the bi-linear Higgs 
mixing scale μ from the chiral F -term. Crucially though, this ra-
diative electroweak symmetry breaking (EWSB) event, as driven by 
largeness of the top-quark Yukawa coupling, is not realizable with-
out the supplementary inclusion of soft mass terms mHu,d and the 
analog Bμ of μ, which herald first the breaking of SUSY itself. In 
a supergravity (SUGRA) context, these terms may be expected to 
appear in proportion to the order parameter of SUSY breaking in 
the visible sector, as gravitationally suppressed from higher scale 
effects in an appropriately configured hidden sector, namely the 
gravitino mass M3/2. The gravitino mass may itself be exponen-
tially radiatively suppressed relative to the high scale, plausibly 
and naturally taking a value in the TeV range. The Giudice–Masiero 
(GM) mechanism may be invoked to address the parallel “μ prob-
lem”, suggesting that this SUSY-preserving coupling may likewise 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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be of the same order, and likewise generated as a consequence of 
SUSY breaking, as evaluated at the high scale.

Minimization of the Higgs scalar potential with respect to the 
Hu and Hd field directions yields two conditions on the pair of 
resulting vacuum expectation values (VEVs) (vu, vd). The over-
all scale (v2

u + v2
d)1/2, in product with the gauge coefficients 

(g2
L + g′ 2

Y )1/2/2, is usually traded for the physical Z -boson mass 
M Z , whereas the relative VEV strengths are parameterized (tan β ≡
vu/vd) by an angle β . This allows one to solve for μ and Bμ at the 
electroweak scale in terms of M Z , tanβ , and the soft masses mHu,d . 
When addressing the question of fine-tuning, the solution for μ2

is typically inverted as follows in Eq. (1), and an argument is made 
regarding the permissible fraction of cancellation between terms 
on the right-hand side, whose individual scales may substantially 
exceed M2

Z .

M2
Z

2
= m2

Hd
− tan2 βm2

Hu

tan2 β − 1
− μ2. (1)

For moderately large tan β , Eq. (1) reduces to

M2
Z

2
� −m2

Hu
− μ2. (2)

At the outset, it must be noted that some level of cancella-
tion should be here permitted, and indeed expected, within Eq. (2)
as an unavoidably natural consequence of the EWSB event itself. 
Specifically, destabilization of the symmetric vacuum occurs in 
conjunction with (the falsely tachyonic) negation of the quadratic 
H2

u field coefficient, provided by m2
Hu

+ μ2 � −M2
Z /2, which is 

dynamically driven to vanish and then flow negative under the 
renormalization group. However, the proverbial devil may lurk in 
the details, an element of which are loop-level radiative correc-
tions V eff ⇒ V tree + V 1-loop to the effective scalar potential, and 
likewise via derivatives of V 1-loop to the minimization condition 
expressed in Eq. (1), which is recast with m2

Hu
⇒ m2

Hu
+ Σu

u , and 
m2

Hd
⇒ m2

Hd
+ Σd

d .

2. Various measures of fine-tuning

Several approaches to quantifying the amount of fine-tuning
implicit in Eq. (1) have been suggested, one of the oldest being 
that �EENZ [1,2] first prescribed some 30 years ago by Ellis, En-
qvist, Nanopoulos, and Zwirner (EENZ), consisting of the maximal 
logarithmic M Z derivative with respect to all fundamental param-
eters ϕi , evaluating at some high unification scale Λ as is fitting 
for gravity-mediated SUSY breaking. In this treatment, low fine-
tuning mandates that heavy mass scales only weakly influence M Z , 
whereas strongly correlated scales should be light.

�EENZ = Max

{∣∣∣∣∂ ln(Mn
Z )

∂ ln(ϕn
i )

∣∣∣∣ ≡
∣∣∣∣ ϕi

M Z

∂M Z

∂ϕi

∣∣∣∣
}

Λ

. (3)

Lately, a prescription �EW emphasizing evaluation directly at 
the electroweak scale [3,4] has attracted attention, isolating con-
tributions to the (loop-modified) right-hand side of Eq. (1) as a 
ratio with the left.

�EW = Max

{∣∣∣∣
m2

Hd

tan2 β − 1

∣∣∣∣,
∣∣∣∣ Σd

d

tan2 β − 1

∣∣∣∣,
∣∣∣∣
m2

Hu
tan2 β

tan2 β − 1

∣∣∣∣,∣∣∣∣ Σu
u tan2 β

tan2 β − 1

∣∣∣∣,μ2
}

EW
÷ M2

Z

2
. (4)

More strictly [3], individual contributions to Σ
u,d
u,d may be com-

pared to M2
Z /2 in isolation, without allowance for cancellation 

even within the internal summation.
A variation [4,5] of the prior, dubbed �HS, would further split 
the electroweak evaluation of the soft masses and μ-term into the 
sum of their corresponding values at the high scale (HS) Λ plus 
a logarithmic correction from the renormalization group running, 
specifically m2

Hu,d
⇒ m2

Hu,d
(Λ) + δm2

Hu,d
, and μ2 ⇒ μ2(Λ) + δμ2.

�HS = Max

{∣∣∣∣
m2

Hd

tan2 β − 1

∣∣∣∣,
∣∣∣∣

δm2
Hd

tan2 β − 1

∣∣∣∣,
∣∣∣∣
m2

Hu
tan2 β

tan2 β − 1

∣∣∣∣,
∣∣∣∣
δm2

Hu
tan2 β

tan2 β − 1

∣∣∣∣,μ2, δμ2
}

Λ

÷ M2
Z

2
. (5)

The scale Λ referenced in Eq. (5) is not necessarily of GUT or 
Planck order, but may rather contextually refer to a SUSY breaking 
messenger as low as some tens of TeV [6], although this some-
what blurs distinction from the Σ

u,d
u,d terms comprising Eq. (4). 

In any event, leading top-stop loops generate corrections δm2
Hu

∼
m2

t̃1
× ln(mt̃1

/Λ) that have been used [3,6] to infer naturalness 
bounds on the light stop mass (thereby also limiting vital paral-
lel contributions to the Higgs mass), and similarly on the gluino 
mass. It has been suggested [3,6,7] that a large negative tri-linear
soft term At , which may be generated radiatively at the interme-
diate scale, may engender cancellations in the light stop t̃1 tuning 
contribution while simultaneously lifting mh .

3. Impact of dynamics on tuning

In the SUGRA context, M2
Z is generically bound to dimensionful 

inputs ϕi at the high scale Λ via a bi-linear functional, as shown 
following. The parameters ϕi may include scalar and gaugino soft 
SUSY breaking masses (whether universal or not), the bi- and tri-
linear soft terms Bμ and Ai , as well as the μ-term. The coefficients 
Ci and Cij are calculable, in principle, under the renormalization 
group dynamics.

M2
Z =

∑
i

Ciϕ
2
i (Λ) +

∑
i j

Ci jϕi(Λ)ϕ j(Λ). (6)

Applying Eq. (3) prescription, a typical contribution to the fine-
tuning takes the subsequent form.

∂ ln(M2
Z )

∂ ln(ϕi)
= ϕi

M2
Z

×
{

2Ciϕi +
∑

j

Ci jϕ j

}
. (7)

Comparing with Eq. (6), each individual term in Eq. (7) sum is ob-
served, modulo a possible factor of 2, to be simply the ratio of 
one contribution to the unified M2

Z mass, divided by M2
Z /2. The 

structural similarity of the �EENZ and �HS prescriptions is there-
fore clear.

Differing conclusions drawn with respect to the supposed nat-
uralness of a given SUSY model construction by the various fine-
tuning measures described are implicit within underlying assump-
tions that each makes regarding what may constitute a natural 
cancellation. For example, Eq. (3) permits two types of dynamic 
cancellation that are not recognized by Eq. (5). The first of these 
is between multiple Eq. (6) terms in which a single parameter 
ϕi may appear. The second is between each high-scale parame-
ter and its running correction, for example between μ2(Λ) and 
δμ2, as represented by, and absorbed into, the numerical coef-
ficients Ci and Cij . �HS is therefore a harsher metric of tuning 
than �EENZ. It is sometimes argued [4,8] that �EW, which adopts 
a perfectly a priori view of only the low energy particle spectrum, 
sets an absolute lower bound on fine-tuning via holistic recombi-
nation of high-scale mass parameters and their potentially large 
running logarithms. Proponents of this opinion acknowledge [4]



68 T. Leggett et al. / Physics Letters B 740 (2015) 66–72
that the suggested bound is only as strong as an assumption 
that the SUSY breaking soft masses m2

Hu,d
and the SUSY-preserving

μ-term harken from wholly disparate origins, such that cancella-
tions amongst the two classes are inherently unnatural.

The positions of the authors in the current work are that 
(i) precisely the prior mode of cancellation is made natural by 
its essential role in promoting the electroweak symmetry breaking 
event, and that (ii) solid theoretical motivation exists (GM mech-
anism) for suspecting the SUSY-preserving μ scale to have yet 
likewise been forged in the supersymmetry breaking event. If the 
former precept is granted, then the limit offered by �EW is po-
tentially spurious. If the latter precept is additionally granted, then 
the very notion of electroweak fine-tuning may be moot.

4. Tuning in No-Scale F-SU(5)

Bottom up support for the prior opinions is provided here by 
consideration of a specific model of low energy physics named 
F-SU(5) (see Ref. [9] and references therein), which combines 
(i) field content of the Flipped SU(5) grand unified theory (GUT), 
with (ii) a pair of hypothetical TeV-scale vector-like supermul-
tiplets (“flippons”) of mass MV derivable within local F-Theory 
model building, and (iii) the boundary conditions of No-Scale Su-
pergravity (SUGRA). The latter amount to vanishing of the scalar 
soft masses and the tri-/bi-linear soft couplings M0 = A0 = Bμ = 0
at the ultimate F-SU(5) gauge unification scale MF � MPl, and 
are enforced dynamically by invocation of a minimal Kähler po-
tential [10,11]. Non-zero boundary values may be applied solely to 
the universal gaugino mass M1/2, as necessarily implied by SUSY 
breaking, and to the μ-parameter. In this perspective, the value 
of μ is actually that evolved up from the scale dynamically es-
tablished in EWSB; its retrospective similarity to (and proportional 
scaling with) M1/2 is interpreted as a deeply suggestive accident. 
The model is highly constrained by the need to likewise dynami-
cally tether (via the Renormalization Group Equations (RGEs)) the 
value of Bμ generated in EWSB to its mandated vanishing at MF ; 
in fact, this releases the constraint typically exhausted by the fixing 
of Bμ to instead determine tan β � 20, which incidentally supports 
the approximation adopted by Eq. (2), while not being so large 
that impact of the bottom quark Yukawa coupling is substantially 
heightened.

The consequence (at fixed Z -boson M Z and top-quark mt
masses) is an effectively one-parameter model, with all leading 
dynamics established by just the single degree of freedom allo-
cated to M1/2. Inclusion of the flippon multiplets provides a vital 
modification to the β-function RGE coefficients, most notably re-
sulting in nullification of the color-charge running (b3 = 0) at the 
first loop; however, dynamic dependence on the mass scale MV is 
quite weak, affecting gauge unification only via logarithmic feed-
back from a threshold correction term. Some vestigial freedom 
remains for the preservation of Bμ(MF ) = 0 by compensating ad-
justments to tan β and MV at fixed M1/2, at the price of disrupting 
the natural tendency of this model to supply a suitable thermal 
dark matter (over 99% Bino) candidate; to be precise, there are as-
sociated fluctuations induced in the lightest neutralino (Bino) vs. 
the next to the LSP (stau) mass gap that synchronously affect the 
dark matter coannihilation rate.

Numerical analysis of the parameter interdependencies in No-
Scale F-SU(5) is conducted with SuSpect 2.34 [12], utilizing 
a proprietary codebase modification that incorporates the flippon-
enhanced RGEs. Applying the �EW measure of Eq. (4) to the 
F-SU(5) model is thereby found to indicate a level of tuning 
that may indeed be considered large. Down-type contributions to 
Eq. (4) are tan β-suppressed, and Σu

u is computed to be rather 
small, possibly reflecting the presence of large, negative tri-linear
couplings. Dominant contributions to M2
Z /2 are thus restricted to 

solely the pair of terms m2
Hu

and μ2 appearing directly in Eq. (2). 
Each term, or its absolute square root evaluated at the EWSB scale, 
is larger than and roughly proportional to the boundary value of 
M1/2, with a ratio around 1.8 for M1/2 ∼ 400 GeV that drops to 
about 1.3 for M1/2 ∼ 1500 GeV. The corresponding contributions 
to �EW therefore increase from about 140 to about 1000 over 
the same range of inputs. One interpretation of this circumstance, 
taking |mHu | and |μ| to arise from disparate mechanisms, is that 
narrow tracking and cancellation of the two terms indicates fine-
tuning. However, we make the case here for a very different point 
of view: that it is precisely the close tracking of |mHu | and |μ|, 
as dynamically induced by electroweak symmetry breaking, and 
preserved under projection onto the boundary scale MF by the 
renormalization group, in the context of a single parameter con-
struction, that suggests a natural underlying interdependence.

It is not the purpose of this work to present a functioning hid-
den sector that is capable of producing at some high scale the 
requisite SUSY breaking, along with the associated soft term and 
μ-parameter boundary values. It is the purpose of this work to in-
vestigate, primarily by numerical means,1 the dependency of all 
contextual low energy physics upon the single input scale M1/2
(and by extension its dependence in turn upon M3/2). Insofar as 
this may be demonstrated, the considered model can successfully 
attack the fine-tuning problem, i.e. no large cancellations enforced 
coincidentally, without a common dynamic origin. Insofar as the 
relation μ(MF ) � M1/2 may be validated, the providence of an un-
derlying GM mechanism is supported through identification of the 
“fingerprints” which it has impressed upon the low energy phe-
nomenology.

The most remarkable element of this construction may be the 
capacity to so severely constrain freedom of input parameteriza-
tion (with all concomitant benefits to the interrelated questions of 
the little hierarchy and the μ-problem) while retaining consistency 
(even at the purely thermal level) with dark matter observations, 
limits on rare processes, and collider bounds.

5. Gaugino parameterization of F-SU(5)

The EW fine-tuning was numerically computed for No-Scale 
F-SU(5) according to Eq. (3) prescription in Ref. [13], yielding 
result of O(1). This absence of fine-tuning is equivalent to a state-
ment that the Z -boson mass M Z can be predicted in F-SU(5) as 
a parameterized function of M1/2; clarifying and rationalizing this 
intuition in a more quantitative manner is a key intention of the 
present section. First, we define a dimensionless ratio c of the su-
persymmetric Higgs mixing parameter μ at the unification scale 
MF with the gaugino mass M1/2:

c = μ(MF )

M1/2
. (8)

This parameter c is a fixed constant if the μ term is generated 
via the Giudice–Masiero mechanism [14], which can, in principle, 
be computed from string theory. Its invocation implicitly addresses 
the need to otherwise explicitly refer to the μ parameter as an 
independent high-scale input. We shall numerically scan over ar-
bitrary values of this parameter, although the No-Scale F-SU(5)

construction will be demonstrated to prefer a narrow range near 
c � 1. The vector-like flippon mass parameter MV is expected to 

1 A parallel analytical treatment, making directly formal, albeit approximate, ap-
plication of the No-Scale F-SU(5) renormalization group and boundary conditions 
is underway, with results intended to follow in a separate publication.
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develop an exponential compensation (for Bμ = 0 and all else con-
stant)

MV ∼ A(λ)eM1/2/R(λ) (9)

of the fundamental scale M1/2 due to its previously described ap-
pearance within a logarithmic threshold correction, where the un-
determined dimensionful parameters A(λ) and R(λ) may be sen-
sitive (among other things) to the top quark Yukawa coupling λ. 
In the same vein, sensitivity to tanβ is weak, and it is expected 
that any residual dependencies upon either parameter within the 
region of interest may be Taylor-expanded for absorption into a 
generic quadratic function of M1/2.

We thus adopt an ansätz

M2
Z = f1 + f2M1/2 + f3M2

1/2 (10)

consistent with Eq. (6), where the undetermined coefficients f i
represent implicit functions of dimensionless quantities including 
c and λ. Some evidence suggests that the dimensionful coeffi-
cients f1 and f2 may additionally be sensitive to Bμ , particularly 
to any potential deviations from the null No-Scale boundary value. 
If ( f1 ≪ M2

1/2) and ( f2 � M1/2), then a linearized approximation 
of the prior is applicable:

M Z = fa + fb M1/2. (11)

The form of Eq. (10) must now be verified with explicit RGE cal-
culations. This is accomplished via a numerical sampling, wherein 
the Z -boson mass is floated within 20 ≤ M Z ≤ 500 GeV, and the 
top quark mass (equivalently its Yukawa coupling) within 125 ≤
mt ≤ 225 GeV. The region scanned for the gaugino mass bound-
ary is within 100 ≤ M1/2 ≤ 1500 GeV. In order to truncate the 
scanning dimension, MV and tan β are explicitly parameterized 
functions of M1/2 (consistent with the prior description) such that 
the physical region of the model space corresponding to M Z =
91.2 GeV and mt = 174.3, along with a valid thermal relic density, 
is continuously intersected2; this may be considered equivalent to 
fixing the top quark Yukawa coupling (and associated higher-order 
feedback) within just this subordinate parameterization. The range 
of the ratio c from Eq. (8) is an output of this analysis, which is 
run from the EWSB scale up to MF under the RGEs.

As an initial phase of the analysis, the only constraints ap-
plied are the No-Scale SUGRA boundary conditions M0 = A0 = 0, 
along with correct EWSB, a convergent μ term, and no tachy-
onic sfermion or pseudoscalar Higgs boson masses, these latter 
conditions being the required minimum for proper RGE evolution. 
These constructionist elements carve out a narrow viable param-
eter space between 83 � M Z � 93 GeV, which is illustrated as 
a function of the dimensionless parameter c in Fig. 1. The blue 
region represents those points that cannot satisfy the minimum 
evolution requirements. The band of points clustered on the M Z

axis with c = 0 have no RGE solution for μ at all. The red sliver 
within 83 � M Z � 93 GeV, narrowly bounding the physical re-
gion around M Z ∼ 91 GeV, represents the sole surviving region of 
model space satisfying the boundary condition M0 = A0 = 0 with 
a convergent RGE solution. The gauge couplings being held fixed, 
the fluctuation of M Z is attributable to fluctuation of the Higgs 
VEV magnitude, as compensated by differential contributions to 
the right-hand side of Eq. (1) induced by variation of μ, M1/2, and 
the top quark Yukawa λ.

2 The No-Scale F-SU(5) model space favors a top quark mass of mt = 174.3 −
174.4 GeV in order to compute a Higgs boson mass of mh ∼ 125 GeV [15–17]. The 
central world average top quark mass has recently ticked upward (along with an 
increase in precision) to mt = 174.34 GeV [18], affirming this preference.
Fig. 1. Representation of the region of the model space for M1/2 = 1.2 TeV that 
cannot sustain correct RGE evolution (blue) versus the region that can compute a 
SUSY spectrum with no RGE errors, EWSB, convergent μ term, and no tachyonic 
masses (red). All other M1/2 produce identical results. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 2. The Z -boson mass is shown as a function of the dimensionless parameter 
c for seven different values of M1/2. The black points are the results of the RGE 
calculations, while the curves are polynomial fits. The curves are only comprised of 
points with a vanishing Bμ parameter at the MF unification scale.

As a second phase of the analysis, the final No-Scale SUGRA 
constraint Bμ = 0 must be applied at the MF unification scale. 
The vanishing Bμ = 0 requirement is enforced numerically with a 
width |Bμ| ≤ 1 GeV that is comparable to the scale of EW radiative 
corrections. The effect is to carve out a simply connected string of 
points from the narrow red region, depicted in Fig. 2 for seven 
values of M1/2 in the model space.

The No-Scale SUGRA constraint on the Bμ parameter naturally 
parameterizes all the particle and sparticle masses as a function 
of the dimensionless parameter c of Eq. (8). This is clearly shown 
in Fig. 3 for the Z -boson mass M Z , top quark mass mt , Higgs bo-
son mass mh , and gluino mass mg̃ . We use the gluino mass as 
an example, though the entire SUSY spectrum can also thusly be 
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Table 1
Results of RGE calculations for four different values of M1/2. These are only points 
with a vanishing Bμ parameter at the MF unification scale. The entries highlighted 
in bold are those that compute the observed experimental measurements for M Z , 
mt , and mh .

M1/2 = 500 GeV

c M Z mt mh mg̃

0.955 90.189 164.47 118.88 655
0.965 90.349 166.29 120.03 659
0.975 90.543 168.34 121.30 664
0.985 90.720 170.11 122.48 669
1.005 91.181 174.31 125.28 681
1.015 91.444 176.49 126.84 687
1.025 91.741 178.81 128.45 694
1.035 92.082 181.31 130.21 702

M1/2 = 900 GeV

c M Z mt mh mg̃

0.933 90.496 167.69 119.46 1182
0.943 90.659 169.38 120.70 1190
0.953 90.818 170.95 121.85 1197
0.963 91.011 172.76 123.20 1205
0.973 91.189 174.35 124.39 1212
0.983 91.390 176.06 125.71 1220
0.993 91.652 178.17 127.28 1230
1.003 91.849 179.67 128.53 1238

M1/2 = 1200 GeV

c M Z mt mh mg̃

0.913 90.525 167.96 120.31 1574
0.923 90.672 169.49 121.48 1583
0.933 90.832 171.06 122.66 1591
0.943 90.999 172.63 123.88 1601
0.953 91.180 174.24 125.09 1610
0.963 91.371 175.87 126.41 1619
0.970 91.502 176.94 127.26 1626
0.983 91.780 179.11 129.04 1640

M1/2 = 1350 GeV

c M Z mt mh mg̃

0.905 90.537 168.06 120.76 1773
0.915 90.691 169.66 121.92 1782
0.925 90.850 171.21 123.12 1792
0.935 91.017 172.77 124.35 1802
0.945 91.188 174.29 125.55 1811
0.955 91.367 175.81 126.77 1822
0.969 91.644 178.03 128.59 1838
0.977 91.806 179.28 129.62 1847

parameterized as a function of c via the Bμ = 0 condition. The 
point chosen in Fig. 3 to exhibit the correlation between the par-
ticle and sparticle masses is M1/2 = 1200 GeV. Table 1 itemizes 
certain numerical results from the RGE calculations for four of the 
Fig. 2 curves. The Higgs boson mass mh in Table 1 includes both 
the tree level + 1-loop + 2-loop + 3-loop + 4-loop contribu-
tions [9] and the additional flippon contribution [19]. Sensitivity is 
observed to fluctuation of the VEV scale with M Z .

The dimensionless parameter c is expected to be a fixed con-
stant if the μ term is generated by the GM mechanism. On any 
single-valued slice of the present parameterization with respect 
to c, particle and sparticle masses will residually be dependent 
upon just M1/2, as is visible for variation of the Z -boson mass 
in Fig. 2. This is made explicit for c = 0.80, 0.85, 0.90, 0.95, 1.00
in Fig. 4, where each curve is well fit by a quadratic in the form 
of Eq. (10). Fig. 5 demonstrates a fit against the linear approxi-
mation in Eq. (11). As the c parameter decreases, Fig. 5 illustrates 
that the linear fit approaches the precision of the quadratic fit. The 
dimensionful intercept fa is a function of c, but is observed gener-
Fig. 3. Depiction of the correlation between the Z -boson mass M Z , top quark 
mass mt , Higgs boson mass mh , and gluino mass mg̃ , as a function of c, for 
M1/2 = 1.2 TeV. All other SUSY particles can be expressed similarly. The curves are 
only comprised of points with a vanishing Bμ parameter at the MF unification 
scale. All other M1/2 produce comparable correlations.

Fig. 4. Simple quadratic fits for M2
Z as a function of M2

1/2. Five different cases of c
are shown. The curves are only comprised of points with a vanishing Bμ parameter 
at the MF unification scale. The black points are sampled from Fig. 2.

ically to take a value in the vicinity of 89 GeV. As seen in Fig. 2, 
larger values of M1/2 correlate with smaller values of c at fixed 
Z -boson mass; it is the region M1/2 � 900 GeV that remains vi-
able for probing a prospective SUSY signal at the 13–14 TeV LHC 
in 2015–2016.

The relationship between the μ term and M1/2 at the MF uni-
fication scale is linear for fixed M Z , with a slope given by the ratio 
c from Eq. (8). This is expanded in Fig. 6 for M Z = 91.2. Parame-
terization of the flippon mass MV and tan β as functions of M1/2

(with the top quark Yukawa and approximate relic density fixed) 
are illustrated in Fig. 7.

Having established a (family in c of) quadratic expression(s) for 
M2

Z in Eq. (6) form, the Z -boson mass is extracted by reference 
only to M1/2 and c at the high scale Λ, and fine-tuning may be 
evaluated. Adopting the linear Eq. (11) form, we first consider tun-
ing with respect to M1/2 at fixed c, as prescribed by Eq. (3).
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Fig. 5. Linear fits for M Z as a function of M1/2. Five different cases of c are shown. 
The curves are only comprised of points with a vanishing Bμ parameter at the MF
unification scale. The black points are sampled from Fig. 2.

Fig. 6. Linear relationship between the μ term at the MF unification scale and 
M1/2 for M Z = 91.2 GeV.

�Λ
M1/2

=
∣∣∣∣ ∂ ln(M Z )

∂ ln(M1/2)

∣∣∣∣ =
∣∣∣∣ M1/2

M Z

∂M Z

∂M1/2

∣∣∣∣

= 1

M Z

(
M Z − fa

fb

)
fb = 1 − fa

M Z
� 1 − 89

M Z
. (12)

Curiously, this expression evaluates very close to zero. It would 
appear this result is a consequence of the fact that the physical 
Z -boson mass can in fact be stably realized for a large continuum 
of M1/2 values, at the expense of variation in the ratio c. It may 
be better understood by attending in turn to the parallel functional 
dependence on the dimensionless c parameter itself. We have

�Λ
c =

∣∣∣∣∂ ln(M Z )

∂ ln(c)

∣∣∣∣ =
∣∣∣∣ c

M Z

∂M Z

∂c

∣∣∣∣
=

∣∣∣∣ c
(

∂ fa + ∂ fb M1/2

)∣∣∣∣ ∼ c � 1, (13)

M Z ∂c ∂c
Fig. 7. Vector-like flippon mass MV and tanβ as functions of M1/2 with Yukawa 
couplings fixed.

using the numerical observation ∂ fa
∂c + ∂ fb

∂c M1/2 ∼ M Z . Therefore, 
stipulating the adopted high-scale context, we suggest that the 
more natural fine-tuning measure for No-Scale F-SU(5) may be 
�EENZ ∼ 1.

6. Conclusions

We have shown here that by implementing only the No-Scale 
Supergravity boundary conditions of M0 = A0 = Bμ = 0 at the uni-
fication scale, the Z -boson mass M Z can be expressed as a simple 
quadratic function of the unified gaugino mass M1/2, i.e. M2

Z =
M2

Z (M2
1/2), in the supersymmetric GUT model No-Scale F-SU(5). 

A top-down string theoretic construction may be expected to fix 
the Yukawa couplings and a dimensionless boundary ratio c of 
the supersymmetric Higgs mixing parameter μ with M1/2 at some 
heavy unification scale. The only degree of freedom left to in-
fluence M Z is M1/2. Setting the top Yukawa coupling consistent 
with mt = 174.3 GeV at M Z = 91.2 GeV, the value of c nat-
urally tends toward c � 1, which suggests underlying action of 
the Giudice–Masiero mechanism. The regions of the model space 
in correspondence with the physical masses M Z = 91.2 GeV and 
mt = 174.3 GeV are further consistent with the correct Higgs bo-
son mass mh � 125 GeV and dark matter observations, and possess 
overlap with the limits on rare processes and collider bounds. Pro-
portional dependence of all model scales upon the unified gaug-
ino mass M1/2 in the No-Scale F-SU(5) model could suggest one 
potential mechanism of confronting the electroweak fine-tuning
problem.
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