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Near a quantum-critical point in a metal strong fermion-fermion interaction mediated by a soft
collective boson gives rise to incoherent, non-Fermi liquid behavior. It also often gives rise to
superconductivity which masks the non-Fermi liquid behavior. We analyze the interplay between
the tendency to pairing and fermionic incoherence for a set of quantum-critical models with effective
dynamical interaction between low-energy fermions. We argue that superconducting Tc is non-zero
even for strong incoherence and/or weak interaction due to the fact that the self-energy from dynamic
critical fluctuations vanishes for the two lowest fermionic Matsubara frequencies ωm = ±πT . We
obtain the analytic formula for Tc which reproduces well earlier numerical results for the electron-
phonon model at vanishing Debye frequency.

Introduction. The interplay between superconduc-
tivity and non-Fermi liquid behavior in metals is one of
most fascinating issues in the modern physics of corre-
lated electron systems1–18 A generic metallic system in
D > 1 is a Fermi liquid with coherent quasiparticles at
low energies. This coherence is destroyed if the system
is brought to a quantum-critical point (QCP), beyond
which it develops an electronic order in spin or charge
channel. At a QCP fluctuations of the order parameter
become massless. In D ≤ 3, the four-fermion interac-
tion, mediated by these massless fluctuations, destroys
fermionic coherence at T = 0, either at specific hot points
on the Fermi surface4,15,19,20, if the order has a finite mo-
mentum, or everywhere on the Fermi surface, if the order
develops with q = 0 (Ref. 21). The same massless fluctu-
ations, however, also mediate the pairing interaction, and
if this interaction has an attractive angular component
the system can develop a superconducting instability at
a finite T , before a QCP is reached. A dome of supercon-
ductivity above a QCP prevents a non-Fermi liquid, QC
behavior from extending down to the lowest energies.

The existence of superconductivity near a QCP is
not guaranteed, however, because strong fermionic self-
energy acts against pairing. There are two effects from
the self-energy. First, at T 6= 0 the self-energy from static
(thermal) fluctuations acts as an impurity and may cause
pair-breaking. This is crucial for spin-triplet supercon-
ductivity, for which thermal self-energy acts as a mag-
netic impurity22, but not for spin-singlet superconduc-
tivity, for which it acts as a non-magnetic impurity and
its singular contribution cancels out by Anderson theo-
rem23. In this paper we consider spin-singlet pairing and
neglect the contribution from thermal fluctuations. Sec-
ond, already at T = 0 the self-energy produces strong
upturn mass renormalization and shrinks the range of a

coherent fermionic behavior. Both these effects are detri-
mental to superconductivity.

The pairing amplitude and the self-energy come from
the same underlying interaction mediated by a soft bo-
son, hence the two are generally of the same order. Zero-
temperature studies of specific models in D = 2 and in
D = 3 − ε have shown3–5,8–10,14 that superconductiv-
ity does develop at a QCP, however these studies also
hinted2–4 that the pairing at a QCP is a threshold prob-
lem and may disappear if the self-energy gets enhanced
compared to the pairing amplitude. A recent study16

made this explicit by extending a model in D = 3 − ε
to large N in such a way that the self-energy gets en-
hanced, while the pairing amplitude remains intact. The
authors of Ref. 16 performed T = 0 analysis and argued
that there exists a critical N above which the pairing
does not develop because decoherence, caused by strong
self-energy, wins over the tendency to pairing due to an
attraction.

In this communication we and analyze the same pair-
ing problem, but at a non-zero T . Our result is different
from Ref. 16 and earlier work by some of us (Ref. 3) –
we argue that superconducting Tc is finite at arbitrary
N . The reason is that the competition between the self-
energy and the pairing interaction at a finite temperature
is qualitatively different from that at T = 0. Namely, at
a finite T the Matsubara self-energy Σ(ωn) is a discrete
variable, defined at a set of ωn = πT (2n + 1). It still
large for all n 6= 0,−1, but at the two lowest Matsubara
frequencies ωn = ±πT it vanishes if we neglect the con-
tribution from static bosonic fluctuations.24 At the same
time, the pairing interaction χ(Ωm), also taken without
the static part (i.e., at bosonic Ωm = 2πTm,m 6= 0) is
not reduced at Ωm = πT − (−πT ) = 2πT compared to
χ(Ωm) at other Ωm. As a result, the pairing interac-
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tion between fermions with ωn = ±πT is strong, while
the competing contribution from the self-energy is ab-
sent. Although this holds only for the two Matsubara
frequencies, we show that this is sufficient to render Tc
finite. Moreover, Tc is not small and has a power-law
dependence of the coupling constant, which is stronger
than than the logarithmical divergence in BCS theory,
although the latter is obtained by summing up an infi-
nite set of Matsubara points.

In broader terms, we argue against the commonly used
procedure3,4,8–10,14,16 to obtain Tc at a QCP by comput-
ing the pairing susceptibility χpp(ω) at T = 0, associating
the superconducting region with the range of N where
χpp(ω) becomes negative below some ω∗, and identifying
Tc with O(ω∗). We argue that Tc has to be determined
from the actual calculations at a finite T , and Tc gener-
ally does not scale with ω∗, except for special cases like
models in D = 3− ε and N = O(1).

To be specific, our conclusion holds for a set of QC
models with dynamical interaction between fermions, for
which the Eliashberg approximation25 is valid. Within
this approximation, the momentum integration in the
gap equation can be carried out explicitly, and the anal-
ysis of superconductivity reduces to a set of equations
for the frequency dependent pairing vertex Φ(ωm) and
fermionic self-energy Σ(ωm), both originating from the
effective, momentum-averaged interaction χ(ωm − ω′m).
We consider a generic case of χ(Ωm) = (g/|Ωm|)γ , where
g is the effective fermion-boson coupling. We list specific
examples of different γ below. In particular, γ = 2 corre-
sponds to much studied strong coupling limit of electron-
phonon interaction1,29,31,32. We argue that Tc is non-
zero for any γ, even if the self-energy is enhanced after a
proper extension of the model to large N , as in16. More-
over, at large N , Tc ≈ [g/(2π)]/N1/γ ≈ 0.16g/N1/γ is
fully determined by the two lowest Matsubara frequen-
cies. At N = 1 this formula yields Tc ≈ 0.16g. This value
is very close to Tc ≈ 0.18g obtained numerically for γ = 2
(Refs. 28 and 29). which implies that Tc for QC electron-
phonon problem is predominantly determined by just the
two lowest Matsubara frequencies.

The model. We consider a system of fermions at
the boundary between a Fermi liquid state and a state
with a long-range order in either spin or charge chan-
nel (ferromagnetism, nematic order, spin/charge-density-
wave, etc). At a QCP, the propagator of a soft boson
becomes massless and mediates singular interaction be-
tween fermions. Like we said, we treat this interaction as
attractive in at least one pairing channel. This is true for
QCP towards density-wave instabilities30, but we caution
that this is not always the case – e.g., for fermions at the
half-filled lowest Landau level, long range current-current
interaction mediated by gapless gauge fluctuations is re-
pulsive in all channels14.

We assume, following earlier work3,4,7,10,13–16,26,27 that
bosons can be treated as slow modes compared to
fermions, i.e., the Eliashberg approximation is valid.
Within this approiximation one can explicitly integrate

over the momentum component perpendicular to the
Fermi surface reduce the integral equations for the
self-energy Σ and the pairing vertex Φ to the set for
Σ(kF , ωm) and Φ(kF , ωm) on the Fermi surface. We
will be interested in the solution for Tc, hence we set
Φ(kF , ωm) to be infinitesimally small and approximate
Σ(kF , ωm) by its normal state value. We make one ad-
ditional approximation – assume that the dependence
of Φ(kF , ωm) on ωm and on on the momentum direc-
tion along the Fermi surface can be factorized, i.e. that
Φ(kF , ωm) = fΦ(kF )Φ(ωm), where fΦ has the symme-
try of the corresponding superconducting state4,18, and
neglect the momentum dependence of Σ(kF , ωm). Un-
der this approximation, the integration over momentum
component along the Fermi surface can be done explic-
itly4,15, and the set of equations for Tc reduces to the
integral equation for Φ(ωm) and the equation for the nor-
mal state self-energy Σ(ωm):

Φ(ωm) = gγ

N
πT

∑
m′ 6=m

Φ(ωm′)
|ωm′ + Σ(ωm′)|

1
|ωm − ωm′ |γ

,

Σ(ωm) = gγπT
∑
m′ 6=m

sign(ωm′)
|ωm − ωm′ |γ

, (1)

where we incorporated the overall factors from the inte-
gration over momentum into g. Like we said, we neglect
the terms with m = m′ in Eq. (1) because for spin-singlet
pairing such terms cancel out between Φ(ωm) and Σ(ωm)
We discuss this in more detail in Ref. 33. The overall
factor 1/N is the result of extending the model to an
SU(N) global symmetry which involves both fermions
and bosons16. We treat N as a parameter. Our goal is
to understand whether there is a critical N above which
Tc = 0, i.e. the normal state extends down to T = 0.

Models described by Eq. (1) include a model for color
superconductivity5 (γ = 0+, χ(Ωm) ∝ log |ωm|), models
for spin- and charge-mediated pairing in D = 3 − ε di-
mension10,14,16 (γ = O(ε) � 1), a 2D pairing model35

with interaction peaked at 2kF (γ = 1/4), 2D models
for pairing at a nematic/Ising-ferromagnetic QCP2,17,22

(γ = 1/3), a 2D hot-spot model for pairing at the
(π, π) SDW QCP3,4,36,37 and at a 2D CDW QCP32,38,
2D models for pairing by undamped fermions (γ = 1),
the strong coupling limit of phonon-mediated supercon-
ductivity1,28,29, and models with parameter-dependent γ
(Refs. 8 and 9).

The argument for the threshold. To set the
stage for our analysis, we briefly display the argument
for the existence of a threshold in N for Tc. The argu-
ment is based on the analysis of the pairing susceptibility
at T = 0 for 0 < γ < 1 (Refs. 3 and 16). At T = 0
the self-energy has a non-Fermi liquid form: Σ(ωm) =
|ωm|1−γωγ0 sign(ωm), where ω0 = g[2/(1− γ)]1/γ . Substi-
tuting this Σ(ωm) into the equation for Φ(ω) and adding
up a bare Φ0, one can compute the T = 0 pairing sus-
ceptibility χpp(ωm) = Φ(Ωm)/Φ0 at ωm < ω0 order by
order in 1/N . The building block for series for χpp(ωm)
is
∫
dωm′1/(|ωm′ − ωm|γ |ωm′ |1−γ), where the first term



3

perturbative

threshold

oscillatory

threshold

FIG. 1. Left: The plot of the function Ψγ(β) for γ = 0.3.
Right: the solution of the equation ((1 − γ)/2N)Ψγ(β) = 1.
For large N , β is real, as in perturbation theory (red line),
i.e., superconductivity does not develop. For N < Ncr, β =
γ/2 ± iβ̄ is complex (blue line). For a complex β, Φ(ωm) is
oscillatory in frequency, implying that Tc is finite.

comes from the interaction and the second from the self-
energy. The integrand scales as 1/|ωm′ | at ωm′ > ωm,
hence the series for χpp(ωm) are logarithmical. At N � 1
the coupling is weak and one can just sum up the series
of leading logarithms, like in BCS theory. However, this
analogy does not go further because in our case, each
logarithm is cut by ωm rather than by T and the summa-
tion of the logarithms yields χpp(ωm) = 1 + α log ω0

|ωm| +
α2

2

(
log ω0
|ωm|

)2
+ α3

6

(
log ω0
|ωm|

)3
+... = (ω0/|ωm|)α, where

α = (1 − γ)/N . This susceptibility is positive i.e. the
summation of the leading logarithms does not give rise
to pairing.

This line of reasoning is developed further by solv-
ing for the susceptibility beyond the logarithmical ap-
proximation. The 1/ωm′ scaling of the kernel suggests a
power-law form Φ(ωm) ∝ (ω0/|ωm|)β at ωm < ω0. Sub-
stituting this into (1) and evaluating the integrals, we ob-
tain an equation on β of the form (α/2)Ψγ(β) = 1, where
Ψγ(β) = Γ(β)Γ(γ−β)

Γ(γ) +Γ(1−γ)
(

Γ(β)
Γ(1−γ+β) + Γ(γ−β)

Γ(1−β)

)
. We

plot Ψγ(β) in Fig. 1. Solving for β as a function of
α and γ and choosing the branch which gives β ≈ α
at small α, consistent with logarithmical perturbation
theory, we find that β increases with α, reaches the
value γ/2 at a critical αcr = (1 − γ)/Ncr, and at larger
α (i.e., smaller N) becomes complex: β = γ/2 ± iβ̄,
where β̄ ∝ (α − αcr)1/2 ∼ (Ncr − N)1/2. As the con-
sequence, χpp becomes an oscillating function of ωm:
χpp(ωm) ∝ (ω0/|ωm|γ/2) cos(β̄ log(ω0/|ωm|) +ψ0), where
ψ0 is an arbitrary phase. Oscillations of the pairing sus-
ceptibility cannot be obtained within a perturbation the-
ory and their presence was interpreted as the sign that
the system has already underwent a pairing instability at
some finite Tc. To obtain Tc, earlier works used T = 0
form of χpp(ωm) and identified Tc with the largest ωm
at which χpp(ωm) first becomes negative. At α ≥ αcr,
when β is small, this yields3,16,39 Tc ∼ ω0e

−a/(Ncr−N)1/2 ,
where a = O(1).

Finite T analysis. We now perform the actual anal-
ysis at a finite T and argue that it yields a result dif-
ferent from the one at T = 0. Namely, we argue that

Tc is non-zero for any N and only tends to zero when N
tends to infinity. We show that this result originates from
the vanishing of the self-energy at Matsubara frequencies
ωm = ±πT . The special role of the lowest Matsubara
frequencies cannot be detected in the T = 0 analysis in
which Matsubara frequency is a continuous variable.

Vanishing of the self-energy Σ(ωm = ±πT ) can
be readily seen from Eq. (1). We have Σ(πT ) =
[g/(2πT )]γπT

∑
m′ 6=0 sign(2m′ + 1)/|m′|γ , and the sums

over positive and negative m′ cancel each other. The
same holds for ωm = −πT . For any other m ≥ 1,
Σ(ωm > 0) ∼ ωm(g/(2πT ))γ � ωm, i.e at low T the self-
energy at |ωm| 6= πT well exceeds the bare ωm term in
the fermionic propagator. Note in passing that the van-
ishing of Σ(ωm = ±πT ) in our analysis does not actually
imply that at this frequency a fermion is a free quasipar-
ticle, because we eliminated from Σ(ωm) the contribution
from static critical fluctuations (the m = m′ term in in
Eq. (1)). Such contribution is irrelevant for the pairing,
but it is parametrically larger than T near a QCP, hence
the full self-energy has a non-Fermi liquid form even at
ωm = ±πT .

To make our point about Tc, we consider large N and
small T . Neglecting ωm compared to the self-energy for
all m except m = 0 and m = −1, using the symmetry
conditions Φ(ωm) ≡ Φm = Φ−m−1 and Σ(ωm) ≡ Σm =
−Σ−m−1, and introducing Φ̄m ≡ Φm/(πTKT ), Σ̄m ≡
Σm/(πTKT ), where KT = [g/(2πT )]γ � 1, we re-write
the gap equation in (1) as a set of coupled equations for
Φ̄m=0,−1 and Φ̄m>0:

Φ̄0 = KT

N
Φ̄−1 + 1

N

∑
m>0

Φ̄m
Σ̄m

[
1
mγ

+ 1
(m+ 1)γ

]

Φ̄m>0 = KT

N

[
Φ̄0

mγ
+ Φ̄−1

(m+ 1)γ

]
+ 1
N

∑
m′>0,m′ 6=m

Φ̄m
Σ̄m

[
1

|m−m′|γ
+ 1

(m+m′ + 1)γ

]
(2)

We distinguish Φ̄0 and Φ̄−1 in (2) only for illustrative
purposes. In fact, the two are equal, Φ̄0 = Φ̄−1.

At vanishing 1/N Eq. (2) has a solution at KT = N ,
i.e. at T = Tc = (g/2π)/N1/γ . Indeed, the first equation
in (2) is satisfied, while the second one determines Φ̄m for
all m > 0 in terms of Φ̄0: Φ̄m>0 = Φ̄0

[
1
mγ + 1

(m+1)γ

]
.

Plugging this Φ̄m>0 into the first equation in (2), we
obtain Tc with 1/N correction (see Ref. 33 for details)

Tc ≈
g

2π
1

N1/γ

(
1 + δγ

Nγ

)
, (3)

where δγ =
∑
m>0 [1/mγ + 1/(m+ 1)γ ]2/Σ̄m is a num-

ber of order one. We see that Tc is non-zero for any N ,
i.e., no matter how strong is the self-energy at Matsub-
ara frequencies ωm with m 6= 0,−1. We also see that
superconducting Tc is predominantly determined by the
two lowest Matsubara frequencies, for which the pairing
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FIG. 2. Superconducting Tc, obtained by solving the gap
Eq. (2) numerically (labeled as “actual”), vs. the analytical
result from Eq. (3). Upper panel: γ = 0.1, lower panel: γ = 2.
In both cases the analytical Tc perfectly matches the numer-
ical one at large N . For N = O(1), the numerical solution
yields much larger Tc than Eq. (3) for γ = 0.1, but for γ = 2
numerical and analytical results remain close even for N = 1.

interaction is strong, but the self-energy vanishes. This
new understanding is very different from the previous
one that superconductivity at a QCP originated from the
pairing of incoherent fermions at T = 0.

The value of Tc. In Fig. 2 we show Tc given by
Eq. (3), together with the numerical solution of the gap
equation. We see that at large N the actual solution
and the one from Eq. (3) agree quite well, as expected.
The agreement does not extend to N ∼ 1 at small γ,
but gets progressively better for larger γ, for which Tc
is predominately determined by the first two Matsubara
frequencies even for N = 1, i.e. Tc ≈ g/(2π). Other Mat-
subara frequencies account only for a small correction
to Tc = g/(2π). To verify this, we computed the lead-
ing correction in 1/γ for an arbitrary N and obtained
Tc = g

2π (s/N)1/γ where s = s(N) is determined from
J3/2+N/s(1/s)/J1/2+N/s(1/s) = s−1, where J is a Bessel
function (see Ref.33 for detail) At N = 1, s = 1.1843, at
N � 1, s = 1+1/(2N), in agreement with Eq. (3) (In Eq.
(3), δγ → 1/2 at γ → ∞). For the strong coupling limit
of electron-phonon superconductivity (γ = 2, N = 1),
Tc ≈ 0.17g, which is very close to 0.18g, obtained in ex-
tensive numerical studies28,29 on a large mesh of Matsub-
ata frequencies. This has been noticed in Ref. 28 but not
related to the absence of the self-energy at ωm = ±πT .

For completeness, we also computed Tc at small γ and
N = O(1). In this regime Tc � ω0 (see Fig. 2) and the
self-energy is again irrelevant, but now simply because at
T = Tc, ωm � Σ(ωm) for all m. Neglecting Σ(ωm′) in
Eq. (1), we obtain (see Ref.33 for details)

Tc ∼ ω0(γN)−1/γ ∼ g

2πN1/γ e
log(b/γ)/γ � g

2πN1/γ , (4)

where b = O(1). A similar result for the pairing scale
has been obtained in Refs. 14,40 using RG procedure.
Note in passing that the divergence of Tc at γ → 0 is
the consequence of the fact that in this limit the effective

10-1 100 101 102γ

1

10

100

1000

T
c/
g

Tc = g/2π

Actual
First Matsubara

FIG. 3. The numerical result for Tc at N = 1 as a function of
γ. At small γ, Tc is determined by all Matsubara frequencies
and increases exponentially with decreasing γ (see the text).
At γ > 1 it rapidly approaches Tc = g/2π, which we obtained
analytically from the two lowest Matsubara frequencies.

interaction χ(Ωm) = (g/|Ωm|)γ tends to a constant, while
there is no upper cutoff in the theory. If we add a cutoff,
we indeed obtain that Tc saturates.

In Fig. 3 we plot Tc at N = 1 obtained numerically
from the Eliashberg equation (1). We see that at γ > 1,
Tc rapidly approaches g/2π – the result which we ob-
tained analytically from the two lowest Matsubara fre-
quencies. We emphasize that at both small and large γ
the fermionic self-energy is irrelevant for Tc. At γ ∼ 1, it
does affect the value of Tc, but is not crucial in the sense
that a comparable Tc is obtained without including the
self-energy.

Conclusion. In this paper we computed super-
conducting Tc for a set of quantum-critical models with
Eliashberg-type effective dynamical interaction between
low-energy fermions. We found that superconductivity
always develops above a quantum-critical point, no mat-
ter what is the interplay between the pairing interaction
and fermionic incoherence at T = 0. We argued that the
proper calculation of Tc should be done directly at a fi-
nite temperature, and Tc is non-zero due to the fact that
at a finite T the self-energy vanishes at the two lowest
fermionic Matsubara frequencies ωm = ±πT . This im-
plies that fermionic incoherence at a QCP is not an ob-
stacle for superconductivity. We caution, however, that
this is true for the Eliashberg Tc, which does not include
fluctuations of the pairing gap. The analysis of the gap
fluctuations requires separate consideration.
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(2013).

35 B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B
52, 5563 (1995); D. Bergeron, D. Chowdhury, M. Punk, S.
Sachdev, and A.-M. S. Tremblay Phys. Rev. B 86, 155123
(2012); Y. Wang and A. V. Chubukov Phys. Rev. B 88,
024516 (2013).

36 A. J. Millis, Phys. Rev. B 45, 13047 (1992).
37 Y. Wang and A. V. Chubukov, Phys. Rev. Lett. 110,

127001 (2013); A. V. Chubukov and P. Wölfle, Phys. Rev.
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Supplemental Material

I. CANCELLATION OF THE SINGULAR SELF-ACTION m = m′ TERM IN EQ. (1)

In the right hand side of Eq. (1) from the main text we have excluded the m = m′ terms for both the self-energy and
the pairing vertex. We argued that this procedure is legitimate because such terms come from thermal fluctuations,
which act as non-magnetic impurity. In an s-wave superconductor, the m = m′ contributions to the self energy and
the pairing vertex cancel out exactly, by Anderson’s theorem. Here we show that singular contributions with m = m′

cancel out even if the pairing channel is different from an s-wave.
We first emphasize that the m = m′ contribution has to be analyzed (and eliminated) within the original theory

with N = 1 before extending it to large N . Otherwise, there will be unphysical divergencies. The elimination of the
m = m′ term before large N extension is legitimate because the goal of taking N to be large is to enhance self-energy
from quantum fluctuations [the one which leads to Σ(ωm) ∝ ωαm with α < 1]. The m = m′ term is not relevant at
T = 0, and its singular contribution comes from thermal fluctuations. The extension to large N , which we used, is
tailored to analyze quantum, but not thermal fluctuations.

We next remind the reader how the cancellation occurs for s-wave pairing. For this, we consider the coupling via
Einstein phonons (the case γ = 2 in our notations). The Eliashberg equations are given by

Σ(ωm) =πT
∑
m′

χ(ωm − ω′m) sgn(ω′m),

Φ(ωm) =πT
∑
m′

χ(ωm − ω′m)
|ω′m + Σ(ω′m)|Φ(ω′m), (S5)

where

χ(ωm − ω′m) = g2

|ωm − ω′m|2 + ω2
E

, (S6)

is the propagator of an Einstein phonon. In the limit ωE → 0, the m = m′ terms in both equations diverge. We keep
ωE finite at intermediate steps and set it to zero only at the end of calculations.

To see the cancellation of m = m′ terms, we introduce the gap function

∆(ωm) ≡ Φ(ωm)
1 + Σ(ωm)/ωm

, (S7)

and re-express the Eliashberg equation for Φ(ωm) in (S5) as

∆(ωm) = T
∑
m′

χ(ωm − ω′m)
[

∆(ω′m)
ω′m

− ∆(ωm)
ωm

]
T
∑
m′ 6=m

χ(ωm − ω′m)
[

∆(ω′m)
ω′m

− ∆(ωm)
ωm

]

+Tχ(0)
[

∆(ω′m)
ω′m

− ∆(ωm)
ωm

]
m=m′

(S8)

We see that the term with m = m′ vanishes, as long as ωE is non-zero. Eliminating this term and re-introducing

Σ̃(ωm) = πT
∑
m′ 6=m

χ(ωm − ω′m) sgn(ω′m) (S9)

and

Φ̃(ωm) = ∆(ωm)
(

1 + Σ̃(ωm)
ωm

)
, (S10)

we obtain the same set of Eliashberg equations as Eq. (S5), but with m′ 6= m in the sum over Matsubara frequencies.
Taking now the ωE → 0 limit, we obtain Eq. (1) in the main text for γ = 2. [In the main text we reverted to the
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FIG. S4. The first 10 eigenvalues of the equation for Φ(ωm) for different γ. The existence of the threshold in N would imply
that the largest eigenvalue saturates at a finite value at T → 0. We see instead that it keeps increasing with decreasing T . We
verified that the largest eigenvalue λ follows our result: λ ∝ 1/T γ . Upper and lower panels show the same behavior in different
vertical ranges.

un-tilded notation, Σ̃(ωm) → Σ(ωm) and Φ̃(ωm) → Φ(ωm). These variables, however, should not be confused with
Σ(ωm) and Φ(ωm) in Eq. (S5).

We now show that the cancellation of the singular terms holds even when the pairing is not an s-wave. For this,
we move one step back and consider the pairing mediated by a critical collective mode with a momentum-dependent
propagator χ(k‖ − k′‖, ωm − ω′m) between fermions at the Fermi surface (|k| = |k′| = kF).

For definiteness, we assume that the susceptibility is peaked at zero transferred momentum and set

χ(k− k′, ωm − ω′m) ∝ 1
(k− k′)2 + |ωm − ω′m|2γ + ξ−2 (S11)

At the critical point, ξ−1 = 0, and 1D integration over k − k′ yields
∫
dxχ(x,Ωm) ∝ 1/|Ωm|γ . Other forms of χ, which

yield the same frequency dependence of the “local” susceptibility can also be used – the end result of the analysis of
m = m′ term will be the same.

Integrating in the fermionic propagators over the momenta transverse to the Fermi surface, we obtain the set of
Eliashberg equations in the form

Σ(k‖, ωm) =T
∑
m′

∫ dk′‖

4πvF
χ(k‖ − k′‖, ωm − ω′m) sgn(ω′m),

Φ(k‖, ωm) =T
∑
m′

∫ dk′‖

4πvF

χ(k‖ − k′‖, ωm − ω′m)
|ω′m + Σ(k′‖, ω′m)| Φ(k′‖, ω′m), (S12)

where both k and k′ are on the Fermi surface. In both equations in (S12), the integrals over k′‖ in the term with
m = m′ are singular at the quantum critical point ξ−1 = 0. To regularize the divergence, we again keep ξ finite at
intermediate steps and set it to infinity only at the end of calculations.

Like before, we introduce the superconducting gap function as

∆(k‖, ωm) ≡
Φ(k‖, ωm)

1 + Σ(k‖, ωm)/ωm
, (S13)
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and reexpress the equation for Φ in (S12) as

∆(k‖, ωm) =T
∑
m′

∫ dk′‖

4π χ(k‖ − k′‖, ωm − ω′m)
[

∆(k′‖, ω′m)
|ω′m|

−
∆(k‖, ωm)
|ωm|

]

=T
∑
m′ 6=m

∫ dk′‖

4π χ(k‖ − k′‖, ωm − ω′m)
[

∆(k′‖, ω′m)
|ω′m|

−
∆(k‖, ωm)
|ωm|

]

+T
∫ dk′‖

4π χ(k‖ − k′‖)
∆(k′‖, ωm)−∆(k‖, ωm)

|ωm|
(S14)

The terms with ∆(k′‖, ωm) and ∆(k‖, ωm) in the last line in Eq. (S14), when taken separately, diverge at ξ → ∞.
However, the singular terms obviously cancel out in the full expression. This has been noted in Ref. S2. The remainder
is non-singular, but is also non-zero for a k-dependent gap function, and we label it as

∆(k‖, ωm)β(k‖, ωm) ≡ T
∫ dk′‖

4π χ(k‖ − k′‖)
∆(k′‖, ωm)−∆(k‖, ωm)

|ωm|
. (S15)

Introducing then

Σ̃(k‖, ωm) = T
∑
m′ 6=m

∫ dk′‖

4πvF
χ(k‖ − k′‖, ωm − ω′m) sgn(ω′m), (S16)

and

Φ̃(k‖, ωm) = ∆(k‖, ωm)
(

1 +
Σ̃(k‖, ωm)

ωm

)
, (S17)

we re-express Eliashberg equations as

Σ̃(k‖, ωm) =Σ̃(ωm) = T
∑
m′ 6=m

∫ dk′‖

4πvF
χ(k‖ − k′‖, ωm − ω′m) sgn(ω′m),

Φ̃(k‖, ωm)
(

1−
β(k‖, ωm)

1 + Σ̃(k‖, ωm)/ωm

)
=T

∑
m′ 6=m

∫ dk′‖

4πvF

χ(k‖ − k′‖, ωm − ω′m)
|ω′m + Σ(k′‖, ω′m)| Φ̃(k′‖, ω′m), (S18)

In a general case, this expression cannot be reduced to integral equation in frequency only, because β term cannot
be absorbed into the coupling constant, and also because the integration over k′ along the Fermi surface cannot be
carried out explicitly if ∆ is momentum-dependent. This last complication is often by-passed by approximating the
momentum dependence of ∆ by one of lattice harmonics. Then momentum integral can be done explicitly.

An additional complication arises when χ(k, ωm) is peaked at finite k [k = (π, π) for antiferromagnetic QCP]. Then
integration over the component of k′ transverse to the Fermi surface necessarily introduces an additional term into
the bosonic propagator for k = k′ = kF , when kF is away from a hot spot. As a result, the momentum integration in
Eq. (S18) cannot be carried out explicitly even if one approximates the gap functions in hot regions as constants and
neglect the dependence of the self-energy Σ̃(k′‖, ωm) on k′‖. For example, if we take antiferromagnetic spin-fermion
model with

χ(k,Ωm) = ḡ

k2 + γ|Ωm|+ ξ−2 , (S19)

expand the dispersion near the hot spot kh as εk = vxδkx + vyδky and the one near the hot spot at kh + (π, π)
as εk+(π,π) = vxδkx − vyδky, integrate over momenta k′ in the gap equation transverse to the Fermi surface and
approximate the bosonic propagator by its value for particles at the Fermi surface, we obtain effective

χ(k‖, k′‖, ωm) = ḡ

(k′‖ − k‖)2 + [4v2
y/(v2

x + v2
y)]k2

‖ + γ|Ω|m + ξ−2 . (S20)

Without the additional k2
‖ term one could explicitly integrate over k‖ − k′‖ and obtain Eq. (1) from the main text

with g = ḡ2/16γ. In the presence of the k2
‖ term, the kernel is no longer a function of k′‖ − k‖, and one has to solve

integral equation in both momentum and frequency.
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This additional complication, however, does not introduce qualitative changes as additional terms do not change
the scaling form of the gap equation at relevant frequencies (i.e., typical k′‖ ∼ k‖ ∼ γΩm). Furthermore, the strength
of the additional term in Eq. (S20) for the antiferromagnetic case and the strength of β term, which is the “leftover”
from m = m′ term in the gap equation for non-s-wave gap, depend on the ratio of vy/vx (Ref. S1) and can be
made small by varying the geometry of the Fermi surface. For this reason, we neglected the complications due to
the “leftover” term m = m′ and due to the presence of additional k2

‖ in χ(k, k′,Ωm) in the hot spot case (and to
momentum dependence of the self-energy along the Fermi surface), integrated explicitly over k′‖ − k‖, and analyzed
the integral equation for Φ(ωm) in the frequency domain.

II. THE FAILURE OF THE ARGUMENT FOR THE THRESHOLD

We present numerical and analytical arguments for the failure of the argument for the existence of the threshold in
N for superconductivity at the quantum-critical point.

The numerical argument is the following. If the threshold exists, then at the threshold value N = Ncr, the linearized
gap equation has a solution at T = 0. One can verify this by solving the gap equation as an eigenvalue/eigenfunction
equation, with N playing the role of the eigenvalue. The existence of N = Ncr would imply that the largest eigenvalue
of the gap equation tends to a finite value Ncr at T → 0.

In Fig. S4 we present the solution of the gap equation for different γ on a mesh of 2000×2000 Matsubara frequencies.
We clearly see that for all γ, one eigenvalue gradually increases as T decreases and shows no tendency of saturation.
We have explicitly verified that at small T , this eigenvalue grows as 1/T γ , precisely as we found in the main text.

There are several analytical arguments as well. They all are valid for γ < 1, when there is a finite frequency ω0,
above which the self-energy Σ(ωm) = (ωm)1−γωγ0 becomes smaller than the bare frequency. The analysis of the gap
equation at T = 0 for γ > 1 is more involved as it requires a proper regularization of divergencies. There is no such
problem in finite T analysis because the self-energy is finite at T > 0 for all γ.

The goal of analytical reasoning is to show that the oscillatory solution with χpp(ωm) ∝ (ω0/|ωm|)γ/2±iβ , which, we
remind, is valid for ωm � ω0, cannot be matched with the solution at ωm � ω0. One argument, which requires some
lengthy calculations and will be presented in a separate publication, is based on the fact that, by power counting, the
corrections to the oscillatory solutions should hold in powers of (ωm/ω0)γ . These corrections come from keeping the
bare ω term in the fermionic propagator along with the fermionic self-energy Σ(ωm). If the prefactors for the series
were finite, the corrections would be determined by internal ω′m of order ωm, i.e. the theory would remain local. The
locality is essential as it is assumed when the pairing problem is reformulated in terms of a differential RG equation
rather than the integral equation, as in Refs. S3–S5. However, the calculation shows that the prefactors for these
corrections are ultra-violent divergent within the perturbation theory, which implies that they are determined by
internal frequencies ω′m of order ω0 rather than ωm. This implies that beyond leading order in ω, the theory becomes
non-local, and the exact behavior even at the smallest frequencies is determined by frequencies of order ω0, where the
bare ω term in the fermionic propagator is no longer small compared to Σ(ωm).

Another analytical argument against the existence of the threshold is the following. Consider again the equation
for Φ(ω) at T = 0 (Eq. (1) from the main text), and rescale frequencies by g. We then have

Φ(Ω) = 1− γ
2N

∫ ∞
−∞

Φ(ω)dω
|ω − Ω|γ |ω|1−γ

1
1 + (1− γ)|ω|γ (S21)

Let’s define the oscillatory solutions Φ(ωm) ∝ |ωm|−γ/2±iβ̄ as Φ±(Ω). These Φ±(Ω) satisfy

Φ±(Ω) = 1− γ
2N

∫ ∞
−∞

Φ(ω)dω
|ω − Ω|γ |ω|1−γ (S22)

Let’s multiply Eq. (S21) by Φ±(Ω)
|Ω|1−γ and integrate it over Ω. We obtain∫ ∞

−∞

Φ(Ω)Φ±(Ω)dΩ
|Ω|1−γ = 1− γ

2N

∫ ∞
−∞

Φ(ω)dω
|ω|1−γ (1 + (1− γ)|ω|γ)

∫ ∞
−∞

Φ(Ω)dΩ
|ω − Ω|γ |Ω|1−γ =

∫ ∞
−∞

Φ(ω)Φ±(ω)dω
|ω|1−γ

1
1 + (1− γ)|ω|γ

(S23)
We see that if Eq. (S21) has a solution Φ(ω), then it must satisfy∫ ∞

−∞

Φ(ω)G1(ω)dω
|ω|1−γ (1 + (1− γ)|ω|γ) = 0, (S24)
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where

G1(ω) = |ω|γΦ±(ω) = |ω|γ/2±iβ̄ (S25)

Now multiply Eq. (S21) by G1(Ω)
|Ω|1−γ(1+(1−γ)|Ω|γ) and integrate over Ω to obtain

0 =
∫ ∞
−∞

Φ(ω)dω
|ω|1−γ

1
1 + (1− γ)|ω|γ

∫ ∞
−∞

dΩ
|Ω− ω|γ

G1(Ω)
|Ω|1−γ (1 + (1− γ)|Ω|γ) =

∫ ∞
−∞

Φ(ω)G2(ω)dω
|ω|1−γ (1 + (1− γ)|ω|γ) , (S26)

where

G2(ω) =
∫ ∞
−∞

dΩ
|Ω− ω|γ

G1(Ω)
|Ω|1−γ (1 + (1− γ)|Ω|γ) , (S27)

and so on. We will get then the series of functions

Gn(ω) =
∫ ∞
−∞

dΩ
|Ω− ω|γ

Gn−1(Ω)
|Ω|1−γ (1 + (1− γ)|Ω|γ) , (S28)

such that for any n, ∫ ∞
−∞

Φ(ω)Gn(ω)dω
|ω|1−γ (1 + (1− γ)|ω|γ) = 0. (S29)

At small frequencies, the oscillatory solution is Φ(ωm) = |A|
(
eiφΦ+(ωm) + e−iφΦ−(ωm)

)
This solution has a single

free parameter – a phase φ. One parameter cannot satisfy infinite set of equation, unless all Gn are multiples of G1.
One can easily check explicitly that they are not. This implies that the oscillatory solution is actually not the solution
of the actual equation for Φ(ωm), even at the smallest frequencies.

III. Tc AT LARGE N

We begin with Eq. (2) of the main text

Φ̄0 =KT

N
Φ̄−1 + 1

N

∑
m>0

Φ̄m
Σ̄m

[
1
mγ

+ 1
(m+ 1)γ

]
,

Φ̄m>0 =KT

N

[
Φ̄0

mγ
+ Φ̄−1

(m+ 1)γ

]
+ 1
N

∑
m′>0,m′ 6=m

Φ̄m
Σ̄m

[
1

|m−m′|γ
+ 1

(m+m′ + 1)γ

]
, (S30)

where we remind Φ̄m = Φm/(πTKT ), KT = [g/(2πT )]γ , and

Σ̄m =
∑
m′ 6=m

sgn(2m′ + 1)
|m−m′|γ

. (S31)

At the leading order in 1/N , only the first term in the r.h.s. of the equation for Φ̄0 matters, and using Φ̄0 ≡ Φ̄−1, we
immediately obtain that Tc is the solution of KT /N = 1, i.e., Tc ≈ g/(2πN1/γ).

To obtain the next order correction to Tc, we rewrite the first equation of (S30) as

KT

N
= 1− 1

N

∑
m>0

Φ̃m
Σ̄m

[
1
mγ

+ 1
(m+ 1)γ

]
, (S32)

where Φ̃m ≡ Φ̄m/Φ̄0, and its leading order value is, from second equation of (S30),

Φ̃m =
[

1
mγ

+ 1
(m+ 1)γ

]
. (S33)

Plugging (S33) into (S32) we obtain

KT

N
= 1− 1

N

∑
m>0

1
Σ̄m

[
1
mγ

+ 1
(m+ 1)γ

]2
≡ 1− δγ

N
. (S34)
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Solving this equation for Tc, we obtain at a large N

Tc ≈
g

2π
1

N1/γ

(
1 + δγ

Nγ

)
, (S35)

where δγ =
∑
m>0 [1/mγ + 1/(m+ 1)γ ]2/Σ̄m. This is Eq. (3) from the main text. At γ → ∞, only the first term in

the sum contributes to δγ . Using the fact that Σ̄1 = 2 [see Eq. (S31)], we obtain limγ→∞ δγ = 1/2.

IV. Tc AT LARGE γ

We again depart from Eq. (1) in the main text

Φ(ωm) = 1
N
gγπT

∑
m′ 6=m

Φ(ωm′)
|ωm′ + Σ(ωm′)|

1
|ωm − ωm′ |γ

Σ(ωm) = gγπT
∑
m′ 6=m

sign(ωm′)
|ωm − ωm′ |γ

(S36)

In the limit γ → ∞ we neglect all terms in the sums except the ones with m′ = m ± 1. Then after the change of
notations

φm = Φ(ωm′)
|ωm′ + Σ(ωm′)|

, (S37)

we get

φm|ωm + Σm| =
1
N
πKTT (φm−1 + φm+1),

Σm =
{

0, m = 0,−1;
2πKTT, m > 0; (S38)

where we used the notation introduced in the paper KT =
(

ḡ
2πT

)γ .
Treating m = 0 and m > 0 separately we find

φ1 = φ0 (s− 1) , φm+1 = φm (s(2m+ 1) + 2N)− φm−1, (S39)

where s = N/KT . We see, that for a given φ0, this equation yields all φm for m > 1. In addition, we need to satisfy
the first relation in (S39) and the condition φm→∞ → 0.

The recurrence relation (S39) can be solved by the method of generating functions. We also recognize in (S39) the
recurrence relation for the Bessel functions zZν−1(z) + zZν+1 = 2νZν(z), where Zν(z) is any of Bessel functions.

The Bessel function, which tends to 0 as m→∞, is Jν(z), so

φm = aJm+1/2+N/s(1/s), (S40)

where a is an arbitrary constant. We now need to satisfy the first relation of (S39), i.e.

aJ3/2+N/s(1/s) = (s− 1)aJ1/2+N/s(1/s). (S41)

Thus
J3/2+N/s(1/s)
J1/2+N/s(1/s)

= s− 1. (S42)

This equation defines s (or KT ) as a function of N .
Solving Eq. (S42) numerically for N = 1 we obtain

s(N = 1) = 1.1843, (S43)

as we stated in the main text. At large N , using the asymptotic expansion of the Bessel function for large order at
fixed argument,

Jν(z) = 1√
2πν

( ez
2ν

)ν
,
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N

s

FIG. S5. s vs. N given by Eq. (S5) – blue line, 1 + 1
2N – red line, s(N = 1) – yellow dashed line.

we find

s ≈ 1 + 1
2N . (S44)

The full function s(N) is shown in Fig. S5.

V. Tc AT SMALL γ

Here we show the details of our computation of Tc at small γ and N = O(1). Fig. 3 from the main text shows that
in this regime the actual Tc is much larger than the contribution of only the lowest Matsubara frequencies, i.e. it is
determined by ωm with m > 0. This figure also shows that Tc � ω0, where ω0 = g[2/(1 − γ)]1/γ is the scale below
which the self-energy Σ(ωm) = (ωm)1−γωγ0 is larger than ωm. Then, the self-energy is irrelevant simply because at
T = Tc, ωm � Σ(ωm) for all m. Neglecting Σ(ωm′) in Eq. (S36), replacing the summation over m by the integration
over the frequency (which is justified because typical m′ � 1), introducing new variable x = (ω0/ω)γ and assuming
that Φ(x) is a smooth function, we reduce integral equation (S36) to a differential equation

Φ′′(x) + Φ(x)
xγN

= 0, (S45)

with the boundary condition Φ(x� 1) ∝ x (i.e. Φ(ωm) ∝ 1/|ωm|γ at ωm � ω0). The solution of this equation is

Φ(x) ∝
√
xJ1

(
2
√
x/γN

)
, (S46)

where J1 is a Bessel function of the first kind. At small argument J1(y) ∝ y, at large y J1(y) oscillates. Because
x ∼ γN is the only scale in Φ(x), it is natural to identify the corresponding frequency ωm = ω0/x

1/γ with Tc. This
yields

Tc ∼ ω0(γN)−1/γ ∼ g

2πN1/γ e
log(b/γ)/γ � g

2πN1/γ , (S47)

where b = O(1).
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