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This paper investigates the decays from heavy higgsino-like weak-doublets into Z, h bosons and
missing particles. When pair-produced at the LHC, the subsequent Z, h → ``, bb̄ decays in the
doublet decay cascade can yield 4`, 2`2b and 4b + /ET + j(s) final states. Mutual observation of any
two of these channels would provide information on the the associated doublets’ decay branching
fractions into a Z or h, thereby probing the Goldstone equivalence relation, shedding additional
light on the Higgs sector of beyond the Standard Model theories, and facilitating the discrimination
of various contending models, in turn. We compare the Z/h decay ratio expected in the Minimal
Supersymmetric model, the Next-to Minimal Supersymmetric model and a minimal singlet-doublet
dark matter model. Additionally, we conduct a full Monte Carlo analysis of the prospects for de-
tecting the targeted final states during 14 TeV running of the LHC in the context of a representative
NMSSM benchmark model.

PACS numbers: 12.60.Jv, 13.85.Hd, 14.80.Ly, 14.60.Fg

I. INTRODUCTION

The Higgs mechanism plays a central role in the elec-
troweak symmetry breaking and many beyond the Stan-
dard Model (BSM) frameworks have been proposed to
generate the correct weak-scale Higgs mass as well as to
protect it from the ultraviolet(UV) divergence. In any
such spontaneously symmetry breaking scenario, there
are massless spin-0 (Goldstone) excitations along flat di-
rections of the potential that realize the underlying sym-
metry of the Lagrangian. If the symmetry is gauged,
these degrees of freedom are absorbed in the longitudi-
nal modes of the newly massive vectors, and the Gold-
stone equivalence theorem mandates that amplitudes for
longitudinal vector bosons will be equivalent to those
of the associated Goldstone at large collision energies.
In particular, for both the Standard Model (SM) and
BSM cases, given that the Z mass arises from the Higgs
vacuum expectation value (VEV) v, the Z longitudinal
modes and the Higgs boson share common couplings, and
a (near) unit ratio of Z/h production is generically ex-
pected. While there are no heavy electroweak states in
the SM to decay directly to Z and h bosons, new states
with a non-zero electroweak charge exist in many BSM
theories, and their decay branching fraction into Z and h
may be applied as a very useful probe of the Higgs sector
in such models.

Supersymmetry (SUSY) has been widely accepted as a
viable mechanism for alleviating large UV fermion-loop
corrections to the Higgs mass. In R-parity enforcing
SUSY models, the lightest (LSP) and the next-to light-
est supersymmetric particle (NLSP) may be neutralinos.
The NLSP may decay into the LSP along with a Z or
h. This channel is particularly favorable when there are
no other particles in the spectrum, e.g., sfermions, ap-
pearing between the lightest two neutralinos that may
reduce the branching fraction into Z and h. In the mini-

mal supersymmetric standard model (MSSM), scenarios
with a bino-like LSP and higgsino-like NLSPs are quite
common, since lighter higgsinos are preferred in order to
realize a smaller value of the SUSY-preserving higgsino
mixing term µ. Moreover, since anomaly cancellation
requires distinct SU(2)L Higgs doublets (Hu, Hd) to pro-
vide up- and down-like masses, there are two higgsino
NLSPs in this case. The Z, h decay branching frac-
tions of each depend sensitively on the individual neu-
tralino mixing of Hu, Hd, although the ratio of the decay
branching ratios into Z and h is of order unity when both
contributions are added, as predicted by the Goldstone
equivalence theorem. Nevertheless, the specific ratio may
feature some weak residual dependence upon the specific
model parameters, particularly the ratio tanβ of VEVs
acquired by the up and down type MSSM Higgs fields.

It is interesting to consider alternative scenarios that
can impact the Z/h branching ratio. For example,
testable deviation from the MSSM could be predicted if
the Higgs mixes with other fundamental scalars that cou-
ple outside of the SU(2)L gauge structure, such as the the
singlet field S in the Next-to Minimal Supersymmetric
Model (NMSSM) [1–3]. This extension is independently
well-motivated as a solution to the naturalness problem,
providing an explanation for why the µ term might be
light, of electroweak order, counter-balancing similarly
sized contributions to the Z mass that emerge explic-
itly from the soft SUSY-breaking sector. Specifically, the
µ term arises dynamically in this context, as the VEV
of a new singlet chiral supermultiplet containing a pair
of charge-parity (CP) even/odd scalars, as well as a fifth
“singlino” neutralino. One or both of the (pseudo)scalars
may take masses above or around the 125 GeV scale,
and potentially confuse the interpretation of fermion pair
mass measurements at colliders. Since S is a singlet, and
does not participate in the Higgs mechanism, its mixing
into the observed Higgs scalar can reduce the Higgs cou-
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pling to the doublet NLSPs. Similarly, if a singlet pseu-
doscalar around 125 GeV emerges in decays, it can sig-
nificantly suppress the observed branching fraction into
Z by enhancing the observed Higgs-like fraction.

An alternative, explicitly non-supersymmetric, spec-
tral modification that we will entertain for the sake of
comparison and contrast involves extension of the SM us-
ing singlet-doublet fermionic (SDF) dark matter [4]. This
type of model introduces a singlet fermion S that couples
to the SM Higgs field via two heavier doublets D1, D2, al-
lowing for cascade decays into the same final states as the
previously described NMSSM scenario. However this sce-
nario can potentially be distinguished from the NMSSM
by measuring the Z/h ratio, since the new fermions do
not alter the Higgs sector or modify the Higgs mass.

At the LHC, the counts of bb̄ and opposite-sign (OS)
like-flavor (LF) light lepton pairs that reconstruct h or Z
masses in a 2Z/h+ /ET+jet(s) final state can potentially
be utilized in order measure the summed doublet higgsino
(or analogous heavy electroweak state) decay branching
fractions when such states are discovered. Observation
of the Z/h branching fraction ratio, and quantification
of its compatibility with unity, would probe the extent
to which the Goldstone equivalence theorem can offer
interesting constraints on models of new physics. The
searches of interest are inherently difficult, since direct
production of the higgsino-like second lightest neutralino
in the NMSSM and of the heavier neutral fermion in the
singlet-doublet extension are not generically expected to
exhibit very large cross sections. The additional jet(s)
are useful for building more missing energy into the tar-
geted event topology, since tagging of the leptons and bb̄
require visible decays of Z, h. This may exhaust the mass
difference between the LSP and NLSP, especially when
the LSP is not massless, limiting the available missing
energy.

In Section II, we present sample MSSM and NMSSM
higgsino scenarios that are of observational interest at the
LHC, as well as a third example of a simplified fermion
singlet-doublet dark matter model [4] that leaves the SM
Higgs sector (and associated implications for the Gold-
stone equivalence manifest in the doublets’ decay branch-
ings) intact. Section III elaborates on experimental is-
sues relevant to discrimination of the Z/h decay ratio.
In order to ascertain the potential sensitivity of such an
analysis of new heavy weak doublets at the LHC, the col-
lider events in both signal and background channels are
generated by Monte Carlo, and Section IV describes the
simulation setup and assumptions. Sections V, VI detail
the classification and selection optimization applicable to
the various final states. We conclude in Section VII.

II. BENCHMARK SCENARIOS

The first benchmark scenario to be described is an
MSSM construction. To be general, we choose a 70 GeV
LSP mass, above MZ/2, so that the tight invisible Z de-

cay constraints may be evaded without requiring a pure
bino state. A 70 GeV LSP also evades existing LHC con-
straints on Higgsino pair production searches [5, 6]. We
take the NLSPs to be higgsinos that are relatively light,
but that can still decay into the LSP and the Z, h bosons.
Due to its higgsino mixing, the LSP mass has to satisfy
constraints arising from direct detection experiments, e.g.
LUX [7]. We thus choose µ < 0 to help suppress the LSP
coupling to the Higgs, as shown in Table I.

MSSM M1 µ tanβ M
χ̃
0
1
M
χ̃
0
2
M
χ̃
0
3
ξ
Zh

Point I 71 -190 10 70 198 202 3.6

TABLE I: A sample MSSM scenario with light higgsinos.
The mass spectrum and decay branchings are evaluated with
Suspect2 [8] and the MSSM calculator as part of the Mad-
Graph [9] package.

For point I, we assume all sfermions are heavy and de-
couple at leading order. The wino is also assumed heavy.
When χ̃0

2, χ̃
0
3 are produced at the LHC, it is useful to

consider a ratio of the decay branching into Z over that
into h, as defined in Ref. [10],

ξZh ≡
f
χ̃
0
2
BR(χ̃0

2 → χ̃0
1Z) + f

χ̃
0
3
BR(χ̃0

3 → χ̃0
1Z)

f
χ̃
0
2
BR(χ̃0

2 → χ̃0
1h
∗) + f

χ̃
0
3
BR(χ̃0

3 → χ̃0
1h
∗)
, (1)

where f is the number fraction of a specific neutralino
in the signal events, and h∗ denotes any (pseudo)scalar
at the Higgs mass. For instance, in the NMSSM h∗ can
be either the Higgs scalar or the singlet pseudoscalar a1.
At all our benchmark points, the s-channel Z∗ → χ̃0

2χ̃
0
3

process dominates pair production rates and f
χ̃
0
2
≈ f

χ̃
0
3
,

due to a suppression in the Zχ̃0
i χ̃

0
j coupling for i = j

when χ̃0
2, χ̃

0
3 are dominantly higgsinos.

From the Goldstone theorem, χ̃0
i → χ̃0

1h ≈ χ̃0
i → χ̃0

1Z
in the longitudinal Z polarization. As Z also has trans-
verse polarization that couple to χ̃0, summing up the
decay branchings of χ̃0

2, χ̃
0
3 would result in comparable

yet higher decay branching into Z, i.e. ξZ/h > 1 for

f
χ̃
0
2

= f
χ̃
0
3
. It is worth noticing that a large ξZ/h ratio can

arise from a kinematic suppression when the mass gap
separating the neutralinos is relatively small, as the de-
cay into Z has a larger phase space. If Point I is modified

to feature a very light bino, ξZ/h is modified to around
2.

The second scenario that we discuss is a singlino LSP,
higgsino NLSP case in the NMSSM [11], whose superpo-
tential has the following structure,

WHiggs ⊃ λŜĤu · Ĥd +
κ

3
Ŝ3. (2)

An effective µ = λ〈Ŝ〉 term is generated when the singlet
field takes a VEV, and naturalness suggest that the com-
bination is of the order of MZ . Note that the trilinear sin-
glet term simultaneously generates a mass proportional
to κ〈Ŝ〉 ≡ κµ/λ. The somewhat heavy observed Higgs
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mass at 125 GeV receives tree level contribution from
the singlet field, which argues for a larger singlet cou-
pling λ in order to help reduce dependence on multi-TeV
stops and the associated fine tuning. Interestingly, the
NMSSM allows one of the scalars (and one pseudoscalar)
to be very light, if it is mainly a singlet. This extra
scalar, which decays into (bb̄, τ τ̄) at an invariant mass
outside the 125 GeV window, will be a strong indication
of this model. However, if we stay in the picture that the
Higgs is the lightest of the NMSSM scalars and contains
no more than 50% singlet, the singlet cubic coupling κ
would be non-vanishing. The correlations between a large
λ, a small µ, a non-zero κ, and a mass gap from the LSP
greater than the Higgs mass force the higgsino dominated
χ̃0
2, χ̃

0
3 to be at least ∼ 270 GeV. We take the first (A)

and third (C) benchmarks from Ref. [10], summarized as
Points II and II′ in the present Table II.

NMSSM λ κ µ tanβ ma1
m
χ̃
0
1
m
χ̃
0
2
m
χ̃
0
3
ξ
Zh

Point II 0.8 0.25 220 2.9 161 143 270 270 2.1

Point II
′

0.8 0.25 230 2.9 119 150 279 279 0.7

TABLE II: A pair light higgsino NMSSM benchmark points,
exhibiting over (II) and under (II

′
) production of the Z rela-

tive to the h.

We are interested in focusing on the parameter space
region where the singlet (pseudo)scalars are somewhat
heavier than, or comparable in mass to, the Higgs, and
not kinematically distinguishable. For benchmark point
II, the singlet-dominated pseudoscalar a1 is a fair bit
heavier than the Higgs, at 161 GeV. This kinematically
prohibits decays of the NLSP into a1, and the ratio

ξZ/h > 1 thus falls within the same range as it does in
the MSSM. For benchmark point II′, a1 is slightly lighter
at 119 GeV, which is very close to the h mass and can
fake the Higgs boson. The total decay fraction into h
and a1 will exceed the Z fraction in this case, leading to

a ratio ξZh < 1 that is distinguishable from the MSSM.

The third scenario we consider is a non-SUSY BSM ex-
ample with an unmodified Higgs sector, specifically the
singlet-doublet fermionic (SDF) dark matter model [4].
This model extends the SM with a singlet fermion S that
couples to the SM Higgs field via two heavier weak dou-
blets D1, D2, which have U(1)Y charges of − 1

2 and + 1
2 ,

respectively,

− LSDF = yD1
SHD1 + yD2

SH†D2 (3)

+
1

2
MSS

2 +MDD1D2.

The new fermions S,D1, D2 mix via a symmetric mass
matrix,

M =

 MS
1√
2
yD1

v 1√
2
yD2

v
1√
2
yD1

v 0 MD
1√
2
yD2

v MD 0

 . (4)

In general, the spectrum of neutral mass eigenstates
{χ0

i } consists of one lighter singlet-dominated state and

two heavier doublet-dominated states that behave anal-
ogously to the pair of higgsinos in supersymmetric mod-
els, though larger couplings allow for more mixing than is
typically possible in the neutralino sector of the MSSM.
We will focus on the parameter state where the DM χ0

1

is light and singlet-dominated, while the two doublet-like
states χ0

2,3 are heavier, in order to allow for the desired
decays. For visual distinction, these fermions do not have
a tilde (∼) positioned above their symbols. The mixing
angle tan θ ≡ yD1

/yD2 indicates the relative size of the

D1, D2 couplings, and y ≡
√
y2D1 + y2D2.

FIG. 1: Near symmetric branching ratio of χ
0
2,3 decays in the

SDF dark matter model. MS = 50 GeV and MD = 200 GeV
throughout.

Neglecting any potential loop-order correction to the
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SDF y θ MS MD M
χ
0
1
M
χ
0
2
M
χ
0
3
ξ
Zh

Point III 0.4 -0.05π 72 189 70 201 203 3.0

TABLE III: Benchmark SDF dark matter point.

Higgs mass, the terms in Eq. 4 leave the SM Higgs sector
unchanged, and the Goldstone equivalence theorem pre-
dicts similar branching fractions in the χ0

2,3 → χ0
1, Z/h

decays. Fig. 1 show the Z/h ratios associated with χ0
2,3

decays are approximately symmetric, up to corrections
from the kinematic and mixing differences. The ySHD
term plays a central role in providing the NLSPs com-
parable decay width into Z, h (see Appendix A for de-
tails). The doublet component in the DM leads to DM-
nucleon scattering via Z boson, and the shaded regions
in Fig. 1 denote the parameter space corresponding to
a large DM-nucleon scattering cross section that is ruled
out by LUX [7]. The gap between the two shaded areas in
the right half (θ > 0) of each panel identifies an allowed
region of parameter space where the lightest fermion, i.e.
the DM candidate, mass becomes sufficiently light that
LUX loses sensitivity and cannot rule out the scenario.
The discontinuity at θ ≈ −0.03π occurs because the pair
of doublet-like states become Dirac once more at that
point, resulting in a phase shift in the rotation matrix
across the transition. We refer to Ref. [4] for the nu-
cleon scattering cross-section calculation, and other phe-
nomenological studies of this model.

Table III provides an SDF benchmark (Point III). The
mixing angle is chosen to be θ = −0.05π, where the LSP-
nucleon scattering is suppressed and the coupling y can
take relatively large values. Similar to the MSSM, the
Point III also gives rise to a higher decay branching into
Z, as predicted by the Goldstone equivalence theorem.
This shows that, in the simplified picture of weak dou-
blet fermion decays, the unaltered Higgs sector also yields

a ratio ξZ/h > 1; this stands in contrast to the situa-
tion where a new field masking the Higgs is additionally
present, as in the case of NMSSM. However, similar final
states and a similar ξ ratio make this model difficult to
distinguish from other constructions like the MSSM, un-
derscoring a need for caution in the interpretation of re-
sults that may be mutually associable with a degeneracy
of underlying structures. In this case, more knowledge
about the model’s particle spectrum will be needed.

III. EXPERIMENTAL CONSIDERATIONS

Pair production of the various heavy weak doublet can-
didates identified with the aforementioned scenarios con-
stitutes a potentially viable search channel at the LHC.
The decay of these doublets and the subsequent decay
of the associated Z/h boson products lead to final states
that contain leptons and b-tagged jets, plus some amount
of missing transverse energy /ET, and (optionally) addi-
tional jets.

The Z boson will decay dominantly to hadrons (70%),

including a 15% share to just the bb final state. Invisible
decays account for 20% of the branching, and the final
10% is shared among the three lepton pair production
modes ``. There is no intrinsic preference for or against
τ production in this mode, but we will focus on the se-
lection only of light lepton (e, µ) flavors because they
have a much higher detection efficiency, and a lower fake
rate. The Higgs boson h will be reconstructed from its
decay into bb, at a large branching which is under cor-
rection from the size of tanβ in supersymmetric models.
If a ∼ 125 GeV NMSSM singlet pseudoscalar emerges, it
dominantly decays into bb̄ with a branching near 100%.

Light leptons will not be produced directly at any ap-
preciable rate by the decays of the Higgs, although there
may be leptonic decays arising from its direct decay prod-
ucts, with light opposite-sign mixed-flavor pairs (along
with the associated missing neutrinos) represented in the
final state at a typical branching of about 1% each (for a
SM Higgs) via the WW ∗ and ττ channels. These rates
may be further discriminated from the direct decays of
the Z by demanding same flavor combinations with kine-
matic reconstruction of the parent mass.

From the decay of mixed Z/h pairs, the targeted final
states will therefore correspond to 4 leptons ````, 4 b-
tags bbbb, or a mixed state ``bb. The lepton production
channels will be associated with Z boson decays, and the
b-tag production channels will be dominantly associable
with decays of the Higgs (and Higgs-like states). Two out
of the three described signals must be measured in order
to ascertain the parent doublets’ total decay branching
ratio into Z and h.

The 4-lepton channel has a substantial SM background
of vector bosons plus Jets, where the vector boson, e.g.
the Z, decays leptonically and jet mismeasurement pro-
vides a source of missing energy. Contributions include
t-channel vector pair production, and s-channel single
production of a vector resonance with one leg of the en-
suing leptonic decay further radiating a second off-shell
vector; our simulation reflects a strong contribution from
the former. These backgrounds can be efficiently con-
trolled by a /ET cut and by invoking variables designed
to discriminate against the spurious appearance of /ET

that is faked by jet mismeasurement. Profitable selec-
tion alternatives will be discussed in Section V.

By comparison, the 2 and 4 b-Jet channels are mainly
affected by a more severe SM tt̄ background, where the
two natural b quarks from top decay may be readily ac-
companied by additional additional jet-faked b’s. Given
the crowded final state, the rate of fake b-Jets is non-
negligible, and this background remains quite severe even
after a bb̄ invariant mass window cut is imposed. Com-
pared to the 4` final state, channels involving fewer lep-
tons (and correspondingly higher b-tag requirements) will
thereby turn out to have substantial disadvantages with
regards to detection efficiency, as will be shown in the
analysis of specific event selection alternatives in Sec-
tion VI. If the LSP is massless, Run I of the LHC sets
limits in the 4b channel, but there are no existing limits
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for a massive LSP scenario.
When the mass gap between the decaying doublets and

the LSP is close to (or less than) 125 GeV, the decay into
h may become kinematically suppressed, leading to Z
dominated final states with the observable consequence

that ξZh > 1. Additionally, even when decay into h is
allowed, it can still be very difficult in this regime to
boost an appreciable quantity of /ET. It is helpful then
to tag on initial state radiation (ISR) jets in order to
boost the overall /ET of the visible system, but 2 ISR jets
are observed in simulation (for the Point II benchmark
specifically) to cost a half magnitude order in production
cross section.

Further details regarding the mode of simulation,
the specific mechanisms available for controlling various
backgrounds, and the expected visibility of the three tar-
geted final state signal topologies at the

√
s = 14 TeV

LHC are provided in the following sections. We will not

attempt a detailed extraction of the ξZh ratio from sim-
ulated collider data in this work, but will instead direct
attention toward the preliminary task of establishing the
signal. We will reference NMSSM benchmark II for con-
creteness, and comment on the extrapolation of results
to other benchmark scenarios.

IV. EVENT GENERATION AND SELECTION

Signal and the standard model (SM) background
Monte Carlo event samples, including parton shower-
ing and fast detector simulation, are generated via the
standard MadGraph5/MadEvent [9], Pythia [12],
Delphes 3 [13] chain. MadEvent is configured, in
conjunction with Pythia, to use MLM matching. The
Delphes 3 detector simulation employs a standard
LHC-appropriate parameter card, with jet clustering
performed using the anti-kt algorithm. Selection cuts
and computation of collider observables are implemented
within AEACuS 3.15 [14, 15] using the instructions in
Card A, as exhibited in Appendix B. At the preselec-
tion stage jets (including b-tagged jets) are accepted with
a transverse momentum PT > 30 GeV, up to a pseu-
dorapidity magnitude of |η| < 2.5 (although wide jets
|η| < 5.0 are employed for limited purposes such as count-
ing of single-track jets). Leptons, including hadronic
taus, are accepted with PT > 10 GeV and |η| < 2.5.
Light leptons (e, µ) are required to maintain a mutual
isolation of ∆R > 0.3.

Background candidates simulated here are the inclu-
sive production of tt̄ with 0-2 jets, the inclusive produc-
tion of two vector bosons (meaning W and/or Z) with
0,1, or 2 Jets, as well as single W - or Z-boson production
including 0-4 initial state Jets. The single vector chan-
nels exhibit very large production cross sections, around
two orders larger than the corresponding tt̄ background,
and the approximately 15 million events considered for
each case remain a substantial under-sampling. Approx-
imately 3 million events were sampled for the V V+Jets

TABLE IV: Matched production and residual effective cross
section (fb) at the LHC14 are tabulated for the three tar-
geted final state event topologies, reported individually for
the tt̄+Jets and V V+Jets backgrounds, as well as the bench-
mark Point II NMSSM signal.

Selection tt̄+Jets V V+Jets W/Z+Jets Signal

Matched Production 613,000 150,000 2.27 × 10
8

53

Cat I (4
+
e/µ, 0

+
B’s) 0 11.6 0 0.037

Cat II (2–3 e/µ, 2
+

B’s) 3590 12.8 62.6 0.130

Cat III (0–1 e/µ, 4
+

B’s) 1430 6.43 147 0.114

4+e/μ

2-3 e/μ

0-1 e/μ

2 4 6 8 10
0.1

1

10

100

1000

σ/σRef

S
ig
na
lS
ig
ni
fi
ca
nc
e
S
/
1
+
B

Signal Visibility vs. Cross Section, ℒ = 3,000 fb-1, s =14 TeV

FIG. 2: The signal significance metric S/
√

1 +B
is projected for each of the targeted final state
topologies at a luminosity of 3,000 fb

−1
at the√

s = 14 TeV LHC, using statistical errors on
the simulated background estimation only. Col-
lider modeling is based on NMSSM benchmark II,
which features 270 GeV higgsinos and a Z/h ra-

tio of ξ
Z/h

= 2.1. The horizontal axis represents
numerical scaling of the production cross sec-
tion relative to this benchmark. The optimized
event selections employed are summarized in Ta-
ble V. Supplementary cuts on /ET are not consid-
ered here, although this could become a favorable
strategy at very large luminosity or cross section
for the the middle 2`2b scenario, as elaborated in
Section VI. Notice that the scaling of the post-
cut σ depends on both the higgsino production
cross-section and the neutralino decay branching
into the specific final state categories. Particu-
larly at large luminosity, systematic errors in the
background will likewise be important, summed
in quadrature with the statistical fluctuation of
the background.

background, corresponding to around 20 fb−1 of inte-
grated luminosity. More than 60 million events were
sampled for the tt̄+Jets background, corresponding to
around 100 fb−1 of integrated luminosity. For signals, we
have simulated around 25 million events for the NMSSM
benchmark II point, likewise inclusively considering 0-2
Jets, which corresponds to an integrated luminosity ap-
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TABLE V: Summary of optimized secondary event selections employed for each of the three targeted final state event topologies.
Also presented are the (sequential flow) percentages cut of residual events for the background (B) and signal (S) respectively,
where B invokes the unified SM components tt̄+Jets, V V+Jets, and W/Z+Jets. Statistics for the baseline topology of each
event selection category were presented in Table IV.

Cat I (4
+
e/µ, 0

+
B’s) % (B,S) Cat II (2–3 e/µ, 2

+
B’s) % (B,S) Cat III (0–1 e/µ, 4

+
B’s) % (B,S)

τ Veto (0.4,0.7) τ Veto (1.1,1.2) 2 Leading B-Jets (50,28)

b-Jet Veto (0.4,1.5) 1
+

Hadronic Z/H (61,21) e/µ Veto (12,0.8)

/ET/
√
HT > 6.0 GeV

1/2
(100,64) 1

+
Leptonic Z (95,27) τ Veto (5.7,2.4)

1-Track Jet Veto (1.3,1.6) 2
+

Hadronic Z/H (58,34)

∆R < 2.0 (56,40) 6
+

Jets Veto (52,13)

/ET/
√
HT > 3.0 GeV

1/2
(57,28) 1-Track Jet Veto (2.4,1.4)

/ET/
√
HT > 3.0 GeV

1/2
(72,35)

proaching half a million events per femtobarn.

Signal events are pre-classified into three non-
overlapping categories based on the count of light lep-
tons (e, µ), along with a complementary threshold for the
count of of heavy-flavor (b-tagged) jets, as stipulated at
the bottom of the Card A instructions. Category I con-
tains at least 4 leptons, but has no b-tagging requirement.
Category II contains either 2 or 3 leptons, and at least 2
b-Jets. Category III contains either 0 or 1 leptons, and
at least 4 b-Jets. There is significant attenuation of both
signal and background by these preliminary topological
cuts, as demonstrated in Table IV. Category I is intrin-
sically low-background, and the signal already competes
well here, being of the same magnitude order as the iso-
lated tt̄+Jets and V V+Jets components. Categories II
and III are dominated by the tt̄+Jets background, which
shall prove quite difficult to reduce while retaining any
appreciable portion of the already meager signal. Addi-
tionally, we preemptively summarize in Table V the sup-
plementary event selection optimizations and cut flow for
each of these event categories, which will be established
in the following sections.

It should be emphasized before proceeding that the
baseline NMSSM matched production cross section (∼ 50
fb) provided in Table IV is for the particular neutralino
mass Mn2,3

∼ 270 GeV associated with benchmark II,

which has been selected as the default scenario for our
collider study. The cross section can be a quite a bit
larger when the associated doublets are lighter, as can
occur in the MSSM and in the SDF models. If the rel-
evant mass scale, e.g. for the higgsino-type MSSM neu-
tralino or for the SDF doublet, is reduced from 270 GeV
to around 200 GeV, an increase in the higgsino pair-
production cross section by a factor of order five can
generically be expected [16, 17]. In Fig. (2) we preemp-
tively summarize the optimized visibility of each signal
region at a luminosity of 3,000 fb−1 as a rescaled func-
tion (statistical errors only) of the post-cut cross sec-
tion. Kinematic cut efficiencies are expected to be less
affected by scaling when the mass gaps between the LSP
and NLSP(s) remain as represented by the benchmarks.

The scaling is affected by both the higgsino production

rate and the ratio ξZ/h that determines the neutralinos’
branching into each final state category. Benchmark II,

with ξZ/h =2.1, thus inherits a greater share of leptonic

final states. For a model with a low ξZ/h, like benchmark
II’, a higher branching ratio into bb̄ would then enhance
the bbll significance (relative to 4l). The 4-lepton (Cate-
gory I) signal region is found to be highly visible, whereas
the mixed lepton plus b-Jet signal region (Category II) is
conditionally visible, and the 4 b-Jet signal region (Cat-
egory III) projects low visibility. The applicable event
selection strategies in each event category are developed
in detail in the subsequent sections.

V. REFINING THE 4 LEPTON SIGNAL

A natural final state to target for models similar to the
NMSSM benchmark under consideration is the Category
I 4-lepton topology. This final state has been carefully
studied at the LHC [18]. The question of whether it
is possible to improve the discrimination of signal from
background is investigated in the present section. To
begin, a sequence of plots is shown that compare the
normalized event shape distributions of the signal and
background for several observables. All plots have been
generated with the RHADAManTHUS 1.2 [15] soft-
ware package. The single vector backgrounds have been
integrated with the di-boson production channel. Mod-
erate bin smoothing is employed.

Events featuring tt̄+Jets production are generally un-
able to legitimately yield more than two leptons, and sim-
ulation suggests that the likelihood of this background
faking the targeted four lepton final state may likewise
be discounted. The leading vectors plus jets background
is capable of producing this event topology directly, al-
though the branching fraction for Z to 4` is at the 10−6

order [18]; the four-lepton requirement essentially rules
out final states with neutrinos, and any missing trans-
verse energy associated with this production mode will
typically arise from measurement error. This observation
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suggests that collider variables designed to root out fake
missing energy signals may be very helpful here, such
as the /ET-jet angular difference ∆φ [19] (applied as the
minimal azimuthal separation between the missing trans-
verse energy and the leading and b-tagged jets), and the
missing energy significance /ET/

√
HT.

In Figs. (3), the signal is differentiated from the lead-
ing V V+Jets background as more likely to feature pre-
cisely one candidate Z-boson, defined as an OS-LF dilep-
ton pair with an invariant mass of 92 ± 5 GeV (left
panel). More specifically, the unified vector backgrounds
are more likely, by about six times, to contain two pair
rather than one, whereas the signal is observed to con-
tain (0,1,2) reconstructible Z-bosons in approximately
(10,50,40) percent of events, respectively. Neither the
signal nor leading background are likely beyond the per-
cent level to feature b-Jets, although the signal events are
slightly more so likely (right panel). Similarly, the signal
generally contains no hadronic taus. It is also noted that
the signal production cross section for 2 jets is smaller by
a factor of almost four than the matched inclusive cross
section with 0-2 jets; the signal is likewise not very jetty
in character.

In Figs. (4), the signal and vectors plus jets back-
ground are observed to behave consistent with the re-
spective expectations for a legitimate and measurement-
induced missing energy source. Specifically, the back-
ground favors small ∆φ, with /ET well-aligned to a hard
jet, whereas the signal is characterized by larger ∆φ an-
gles, indicating less correlation between the /ET and hard
jet directionality (left panel); this variable is best suited
for application to signals such as the one under consid-
eration that are not overly jetty. Likewise, the quantity
of missing transverse energy observed in signal is gener-
ally a much more substantial multiplier of the estimated
uncertainty

√
HT in the hard event scale (right panel).

Based upon these observations, supplementary event
selection may be performed, corresponding to a require-

ment of /ET/
√
HT > 6.0 GeV1/2; this cut essentially

eliminates the vectors plus jets background in our simu-
lation, while retaining approximately 40% of the signal.
Additional discrimination may be achieved by requiring
no more than one OS-LF di-lepton invariant mass re-
construction within 5 GeV of the Z boson, or by re-
quiring ∆φ > 2, although the original selection is suf-
ficient in our simulation to squelch background, while
retaining the largest fraction of an already tenuous sig-
nal strength. It will typically do no harm to addition-
ally impose a veto on b-Jets and hadronic taus; although
this does not strengthen discrimination against the vector
backgrounds, it may further harden the exclusion against
fakes from channels such as tt̄+Jets. In fact, it will sup-
press the signal by no more than about ten percent to
rule out events with more than one jet of any type.

In Figs. (5), the absolute event counts attributable to
the signal and background components are compared as a
function of the missing transverse energy /ET cut thresh-
old for an integrated luminosity of 300 fb−1; the left-hand

panel corresponds to the raw category I pre-selection,
whereas the described secondary event selections are en-
acted in the right-hand panel. In this case, the resid-
ual discrimination power of the missing transverse energy
variable is apparent, with the background rate observed
to drop below the signal rate in the vicinity of 175 to 200
GeV. However, the absolute signal rate remains rather
low at the studied luminosity in this scenario, at close
to the unit level. The effect of enforcing a hard cut on

the significance estimator /ET/
√
HT > 6.0 GeV1/2 is ap-

parent in the right-hand panel, where backgrounds are
eliminated while retaining about four signal events at
the simulated luminosity and cross section. Even after
a mild cut on the missing transverse energy, no greater
than about 100 GeV, the projected signal significance is
in a favorable range close to 4.

VI. REFINING THE 2-3 LEPTON PLUS 2
+

B-JETS AND 4
+

B-JET SIGNALS

The Category II event classification with 2-3 leptons
and 2 or more b-Jets has the disadvantage of a final state
topology that is readily mimicked by the dual leptonic
decay of W bosons from tt̄ production. With a moder-
ate fake rate for b-Jets, the background is likewise heav-
ily represented in the Category III 0-1 lepton with 4 or
more b-Jets event topology. Moreover, the light SUSY
electroweak sector considered for the signal benchmarks
does not typically yield a quantity of missing energy that
is sufficiently large to substantially distinguish it from
the background. See Figs. (8,11), left-hand panels, for
a comparison of the raw event residuals as a function of
missing transverse energy cut threshold at a luminosity of
300 fb−1. The signal is observed to be dwarfed in both
cases by around four magnitude orders. A large vari-
ety of kinematic discriminants and specialized discovery
variables have been tested in an effort to identify handles
effective for the isolation of signal events.

Considering first category II, it is apparent in the left-
hand panel of Figs. (6) that the signal is emphasized
by insisting that an available pair of light OS-LF lep-
tons kinematically reconstruct the mass of a Z-boson (left
panel). The right-hand panel of Figs. (6) demonstrates
that the /ET significance variable is again effective at cur-
tailing the vectors plus jets background, although it is
of limited efficacy against the tt̄+Jets background; we
shall select the relatively more modest implementation

/ET/
√
HT > 3.0 GeV1/2 in order to not sacrifice too much

signal. Figs. (7) show a similar preference for hadronic
(b-Jet) reconstruction of a particle in the Z/Higgs mass
window (left panel), with a narrow constituent separation
in ∆R (right panel); a cut ∆R < 2.0 will be selected. As
marginal cuts we will opt to also veto single-track jets
and hadronic τ ’s. Figs. (8) compare the signal and back-
ground event residuals before (left) and after (right) these
secondary selections. The background is reduced by more
than two magnitude orders, while the signal is reduced
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FIG. 3: Signal and background event shapes are compared for the final state topology with 4
+

light
leptons (category I). The tt̄ background component delivers no appreciable contribution to this final
state. Left: Over 90% of the signal features a reconstructed OS-LF dilepton in the Z-boson mass
window (92± 5) GeV. About half of the signal reconstructs precisely a single Z, whereas almost 85%
of the unified vector backgrounds are actually observed to reconstruct two pair. Right: Neither the
signal nor the dominant V V+Jets background are likely to be tagged for a b-Jet at beyond the percent
level, although likelihood for the signal is somewhat greater by comparison.
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FIG. 4: Signal and background event shapes are compared for the final state topology with 4
+

light leptons (category I). The tt̄ background component delivers no appreciable contribution to this
final state. Left: The leading vectors plus jets background relies on jet mismeasurement in order to
generate missing energy, and the /ET azimuthal direction is thereby here observed to be much more
strongly correlated (smaller ∆φ) with the direction of a single hard jet than is the case for the signal’s
legitimate missing energy. Right: Likewise, the quantity of missing transverse energy observed in
signal is generally a much more substantial multiplier of the estimated uncertainty

√
HT in the hard

event scale.

only by a simple factor of 3 or 4. However, the ratio still
heavily favors the tt̄+Jets background component, by 2-3
orders of magnitude (less at higher /ET cut thresholds).
The positive response to a cut on missing energy sug-
gests that this could be an effective strategy if very large
luminosities and/or enhanced signal cross-sections were
available.

Potential discriminants tested but found to be of lim-
ited help in this case include MT2 (the “s-transverse

mass”) [20, 21], MW
T2 [22], the jet and dilepton-Z trans-

verse energy balance ∆ET [23], the razor variables [24,
25], the αT ratio [26, 27], the “biased” azimuthal differ-

ence ∆φ∗ [28], the lepton W-projection LP [29, 30], and

various transverse thrust and event shape statistics [31–
34].

Category III presents similarly in many regards, and
faces the same central obstacle that the hadronic event
shape is excessively similar to the background. A similar
preference is observed for a mild cut on the missing en-

ergy significance /ET/
√
HT > 3.0 GeV1/2, and we again

opt to veto on hadronic τ ’s and single-track jets. Distinc-
tions are observed in Figs. (10), which argues for trim-
ming the total number of jets to no more than 5 with
the leading pair necessarily b-tagged, and in Figs. (9),
which argues for vetoing light leptons and insisting on
two hadronic (b-tagged jet) kinematic reconstructions in
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FIG. 5: Signal and background integrated event counts are compared for the final state topology
with 4

+
light leptons (category I) at a luminosity of 300 events per femtobarn as a function of the

missing transverse energy /ET cut threshold. Left: The raw event categorization is intrinsically low
background, although a weak signal may still struggle to compete at low missing transverse energy.

Right: Enacting the secondary event selections (/ET/
√
HT > 6.0 GeV

1/2
, 0 τ , 0 B’s) suggested by

Figs. (3,4) preferentially suppresses the background, to a point approaching elimination. There is
then no residual necessity for large missing energy, although neither is a modest cut in the vicinity of
/ET > 100 GeV strongly disfavored.
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FIG. 6: Signal and background event shapes are compared for the final state topology with 2 − 3
light leptons and 2

+
b-Jets (category II). Left: Around 70% of the signal features an OS-LF dilepton

pair with an invariant mass of 92 ± 5 GeV, whereas the same holds true for only approximately
3% of the tt̄ background component. Right: The relative (dimensionful) significance of the missing
transverse energy as a numerical ratio of /ET to the square-root of the event scale MT (both in GeV)
is substantially larger for the signal (as well as for tt̄) than the vector background components.

the Z/Higgs window. Combinatoric backgrounds reduce
the efficacy of a cut on angular separation for the best
mass reconstruction in this case. Figs. (11) compares the
signal and background event residuals before (left) and
after (right) these secondary selections. The background
is reduced here by around 1.5 magnitude orders, while
the signal is reduced by a factor close to three. However,
the ratio still heavily favors the background, by about
three orders of magnitude, irrespective of a cut on miss-
ing transverse energy.

Figs. (12) evaluate signal to background event signifi-
cances, using the metric S/

√
1 +B, as a function of the

missing transverse energy cut threshold for the category
II (Left) and III (Right) final state topologies, applying

the described optimizations at luminosities of 300 fb−1

and 3,000 fb−1, for the baseline cross section of the bench-
mark II model and also for a hypothetical spectrum that
is sufficiently more light to engender a one magnitude or-
der increase in the production cross section. When both
scale factors are invoked it appears possible to resolve
a significant signal for the category II final state topol-
ogy, providing a crucial second data point (in conjunction
with the highly visible first category) for reconstruction
of the model. Even granting both factors, the category
III final state topology remains difficult to substantially
disentangle from the background.
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FIG. 7: Signal and background event shapes are compared for the final state topology with 2 − 3
light leptons and 2

+
b-Jets (category II). Left: About 80% of the signal features a reconstructed b-Jet

pair in the Z/H-boson mass window (92− 20 GeV to 126 + 20 GeV), whereas the same holds true for
just 30–40% of the unified background components. Right: The angular separation ∆R of the pair
of jets that come closest by invariant mass to reconstructing a Higgs is systematically smaller for the
signal than the tt̄ background component.
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FIG. 8: Signal and background integrated event counts are compared for the final state topology
with 2 − 3 light leptons and 2

+
b-Jets (category II) at a luminosity of 300 events per femtobarn

as a function of the missing transverse energy /ET cut threshold. Left: The raw event categorization
reveals daunting background domination by tt̄+Jets, with no substantive improvement in the signal to
background ratio at large values of the missing energy. Right: Enacting the secondary event selections
(0 τ , 1 leptonic Z, 0 single-track jets, 1 hadronic Z/H with ∆R < 2.0, and /ET/

√
HT > 4.0), the

signal to background ratio is improved by two or three magnitude orders (more at larger /ET cuts),
although it remains apparently intractable at the studied luminosity and signal cross section.

VII. DISCUSSION AND CONCLUSIONS

In this paper we investigated decays from heavy
higgsino-like weak-doublets into Z, h bosons and (small)
missing energy. As examples, we considered the MSSM,
NMSSM and a singlet-doublet extension of the SM fea-
turing a DM candidate that is capable of explaining the
observed relic density after satisfying direct detection
constraints. The NMSSM is well-motivated by its nat-
ural accommodation of the 125 GeV Higgs and a weak
scale value of µ.

Signals from the MSSM, NMSSM and the singlet-
doublet extension will be similar, i.e., we will expect to
find decays into Z, h plus missing energy that cascade

into final states with 4`, 2`2b and 4b plus missing energy.
Leptonic products will be dominantly associated with de-
cays of the Z, whereas decays of the Higgs will be associ-
ated dominantly with heavy flavor jets. Establishing two
of the prior three final states would potentially provide a
mechanism for quantifying the Z to h ratio, which may
in turn assist in discriminating between specific models
exhibiting the described spectral features. In particular,
observation of this ratio will clarify the manner in which
the Goldstone Equivalence Theorem is manifest within
and places constraint upon new physics. The ratio of Z
to h production in higgsino-like decays would be some-
what greater than 1 in the case of the MSSM and the
singlet-doublet extension, since the net Z rate includes
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FIG. 9: Signal and background event shapes are compared for the final state topology with 0 − 1
light leptons and 4

+
b-Jets (category III). Left: The tt̄ background is generally jettier than the signal,

with a larger fraction of events at six or more jets. Right: The leading pair of signal jets is somewhat
more likely to be b-tagged than the leading pair of jets in the tt̄ background, one or more of which are
likely to be initial state radiation.
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FIG. 10: Signal and background event shapes are compared for the final state topology with 0 − 1
light leptons and 4

+
b-Jets (category III). Left: The tt̄ background is substantially more likely to

retain a single lepton than the signal. Right: Around 65% of the signal features two reconstructed
b-Jet pairs in the Z/H-boson mass window (92− 20 GeV to 126 + 20 GeV), whereas the same holds
true for just around 40-45% of the tt̄ (vector) background components.

also the contribution of transverse polarizations. By con-
trast, in the NMSSM the lighter neutralinos can decay
into another state a, which can naturally be close to the
light Higgs mass, that masquerades as the Higgs in de-
cays and gives rise to a Z/h ratio that is smaller than 1
by its.

We explored the visibility of the 4`, 2`2b and 4b fi-
nal states, which are useful to establishing the Z/h ra-
tio, at the 14 TeV LHC. If heavy colored particles are
to be probed at the LHC, then the lighter MSSM and
NMSSM neutralinos and charginos (or their new fermion
counterparts) will likewise be within reach for direct pro-
duction. However, the reach for these neutralinos and
new fermions is not very high, and existing bounds van-
ish rapidly for scenarios with a massive lightest neu-
tralino/fermion. We selected a representative NMSSM
benchmark within this class of models for detailed col-
lider simulation, with higgsino next-to-lightest neutrali-

nos around 270 GeV, a singlino lightest supersymmetric
particle around 140 GeV, and a light pseudoscalar around
160 GeV. Leading backgrounds were also simulated, and
various event selection scenarios were tested in an effort
to optimize the targeted signals. The inclusion of 1-2
initial state jets can be helpful in providing some ad-
ditional boost to the visible system, although low signal
rates, lightness of the invisible final state, and narrowness
of the mass hierarchy were found to limit the efficacy of
hard cuts on missing energy. The four-lepton signal re-
gion is substantially visible, with just 300 fb−1 of inte-
grated luminosity proving almost sufficient for a 5σ level
discovery of the benchmark model. For the same masses,
the 2`2b and 4b final states contend with standard model
backgrounds that prove difficult to reduce. Discovery is
possible in the 2`2b topology if the benchmark cross sec-
tion is elevated by a factor of around ten, in conjunction
with an elevation of the luminosity to the order of 3000
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FIG. 11: Signal and background integrated event counts are compared for the final state topology
with 0 − 1 light leptons and 4

+
b-Jets (category II) at a luminosity of 300 events per femtobarn as

a function of the missing transverse energy /ET cut threshold. Left: The raw event categorization
reveals daunting background domination by tt̄+Jets, with no substantive improvement in the signal
to background ratio at large values of the missing energy. Right: Enacting the secondary event
selections (0 e/µ, 0 τ , 0-5 total jets, 2 leading b-Jets, 0 single-track jets, 2 hadronic Z/H, and
/ET/
√
HT > 4.0), the signal to background ratio is improved by around a magnitude order, although

it remains apparently intractable at the studied luminosity and signal cross section.
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FIG. 12: The signal to background significance metric S/
√

1 +B is evaluated as a function of the
missing transverse energy cut threshold for the category II (Left) and III (Right) final state topologies,
applying the optimizations described in the right-hand panels of Figs. (8,11). Four contours are

shown, corresponding to luminosities of 300 fb
−1

and 3,000 fb
−1

, for the baseline cross section of the
benchmark model and also for a hypothetical spectrum that is sufficiently more light to engender a
one magnitude order increase in the production cross section. Only by conspiracy of both factors may
a significant excess be observed, and then only for category II. In this former case, a harder cut on
/ET > 400 GeV is suggested if luminosity and cross section are large enough to support it, in which
case background is deeply contained and the signal is quite visible. By contrast, in the latter case
similarities in the signal and background missing transverse energy shapes render a substantive /ET

cut ineffective.

fb−1. Visibility of the 4b topology would seem to require
a new collider environment, with substantially upgraded
luminosity and/or center-of-mass energy.

It appears that it will be possible for the LHC to es-
tablish (in the 4` channel) the studied class of models,
where only lighter weak fermions exist around the elec-
troweak scale, where the mass gap separating the dark
matter candidate from the next to lightest states is not
much larger than ∼ 125. For the lightest of these sce-

narios, and utilizing high luminosities, it seems further
possible that the LHC will be able to also confront the
2`2b channel, allowing for direct discrimination of the Z
to h ratio in decays of a higgsino-like state. These obser-
vations would function as a probe of the manner in which
the new physics manifests the Goldstone equivalence the-
orem, and would provide the opportunity to distinguish
between the NMSSM and models such as the MSSM or
the singlet-doublet extension of the SM.
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Appendix A: Doublet decay in the SDF model

Assuming MS < MD, and that the lightest χ̃0
1 is

mostly the singlet S, the heavier χ̃0
2, χ̃

0
3 are mixtures of

the doublets D1, D2, and the squared matrix elements of
their decay processes are

M2
χ
0
i→χ

0
jZ

=
y2

2

[
(M

χ
0
i

+M
χ
0
j
)2 −M2

Z

]
(A1)

×
[
(Ni2Nj1 +Ni1Nj2)cθ + (Ni3Nj1 +Ni1Nj3)sθ

]2
+
g2 + g′2

2
(Ni2Nj2 −Ni3Nj3)2

×
(
M2
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0
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+M2
χ
0
j

+ 4M
χ
0
i
M
χ
0
j
−M2

Z

)
M2

χ
0
i→χ

0
jh

=
y2

2

[
(M

χ
0
i

+M
χ
0
j
)2 −M2

h

]
(A2)

×
[
(Ni2Nj1 +Ni1Nj2)cθ − (Ni3Nj1 −Ni1Nj3)sθ

]2
,

where sθ, cθ are short for sin θ, cos θ. Nij are the el-

ements of the mixing matrix that diagonalizes the mass
matrix in Eq. 4. χ0

2,3 either decay into the singlet compo-

nent of χ0
1 via the ySHD terms, or into the small doublet

component in χ0
1 via the gauge couplings.

Note that without the ySHD term, i.e. in the limit
y → 0, the singlet would altogether decouple from the
doublet, χ0

1 would have no mixing into D1, D2, implying
N12 = N13 = 0, and the prior decays would become
forbidden. Turing on y > 0, with y still smaller than
unity, the doublet mixings in χ0

1 grow linearly with y,
implying N12, N13 ∝ y, giving a y2 dependence also in
the second term in Eq. A1. Thus, decay widths into
both Z, h grow as y2 when y � 1, and thereby maintain a
comparable size. At large y, y·vev ∼MS ,MD in the mass
terms, which cause the D1, D2 mixings to become more
complicated. Still, this property qualitatively holds, as
is observed for the benchmark Point III in Table III.

Appendix B: AEACuS Event Selection Card

Selection cuts and computation of collider observables
have been implemented within AEACuS 3.15 [14, 15]
using the instructions in Card A.
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1 ******** cut_card.dat v3.15 ***
2 * Classify Objects with No Cuts
3 *** Object Reconstruction ****
4 # ALL Jets
5 OBJ_JET_000 = PTM:30, PRM:[0.0,5.0], CUT:0
6 # LEAD Jet
7 OBJ_JET_001 = SRC:+000, PRM:[0.0,2.5],
8 CUT:[1,UNDEF,-1], OUT:PTM_001, ANY:0
9 # SECOND Jet

10 OBJ_JET_002 = SRC:[+000,-001], PRM:[0.0,2.5],
11 CUT:[1,UNDEF,-1], OUT:PTM_002, ANY:0
12 # B-Tagged Jets
13 OBJ_JET_003 = SRC:+000, PRM:[0.0,2.5], HFT:0.5, CUT:0
14 # Non-B Jets
15 OBJ_JET_004 = SRC:[+000,-003], PRM:[0.0,2.5], CUT:0
16 # B-TAGS in Jets 1,2
17 OBJ_JET_005 = SRC:[+001,+002], HFT:0.5, CUT:0
18 # Non-B Sub-Leading Jets
19 OBJ_JET_006 = SRC:[+000,-001,-002,-003],
20 PRM:[0.0,2.5], CUT:0
21 # 1 B-Tags in Z/Higgs Window
22 OBJ_JET_007 = SRC:+003, EFF:[WIN,92,20,126,20,1], CUT:0
23 # 2 B-Tags in Z/Higgs Window
24 OBJ_JET_008 = SRC:+003, EFF:[WIN,92,20,126,20,2], CUT:0
25 # 2 B-Tags in Higgs Window
26 OBJ_JET_009 = SRC:+003, EFF:[WIN,126,20,2], CUT:0
27 # Single Track Jets
28 OBJ_JET_010 = SRC:+000, TRK:[1,1], CUT:0
29 # Leading or B-Tagged Jets (No Output)
30 OBJ_JET_011 = SRC:[+001,+002,+003]
31 # Nearest B-Tag Object Pair to Higgs Window
32 OBJ_JET_012 = SRC:+003, EFF:[OIM,126,UNDEF,-1]
33 # Further B-Tag Object Pair from Higgs Window
34 OBJ_JET_013 = SRC:[+003,-012], EFF:[OIM,126,UNDEF,-1]
35 # ALL Leptons
36 OBJ_LEP_000 = PTM:10, PRM:[0.0,2.5]
37 # Light Soft Leptons
38 OBJ_LEP_001 = SRC:+000, EMT:-3, SDR:[0.3,UNDEF,1], CUT:0
39 # Soft Taus
40 OBJ_LEP_002 = SRC:+000, EMT:+3, CUT:0
41 # DiLepton Pairs in Z Window
42 OBJ_DIL_001 = LEP:001, DLS:-1, DLF:1, WIN:[92,5], CUT:0
43 OBJ_DIL_002 = LEP:001, DLS:-1, DLF:1, WIN:[92,10], CUT:0
44 ****** Event Selection *******
45 # Full Event Missing Transverse Energy
46 EVT_MET_000 = OUT:1
47 # MET-Jet Delta Phi (Leading+B-Tags)
48 EVT_MDP_001 = MET:000, JET:011, OUT:1
49 # MET Significance MET / sqrt( HT )
50 EVT_RHR_001 = NUM:000, DEN:000, OUT:1
51 # Invariant Mass of Nearest Higgs Window Pair
52 EVT_OIM_001 = JET:012, OUT:1
53 # Invariant Mass of Further Higgs Window Pair
54 EVT_OIM_002 = JET:013, OUT:1
55 # Delta-R Separation of Nearest Higgs Window Pair
56 EVT_ODR_001 = JET:012, OUT:1
57 # Delta-R Separation of Further Higgs Window Pair
58 EVT_ODR_002 = JET:013, OUT:1
59 ****** Event Filtering *******
60 # Category I: 4 Leptons, 0+ B-Jets
61 CUT_ESC_001 = KEY:LEP_001, CUT:4
62 CUT_ESC_002 = KEY:JET_003, CUT:0
63 CUT_CHN_001 = ESC:[+001,+002]
64 # Category II: 2-3 Leptons, 2+ B-Jets
65 CUT_ESC_003 = KEY:LEP_001, CUT:[2,3]
66 CUT_ESC_004 = KEY:JET_003, CUT:2
67 CUT_CHN_002 = ESC:[+003,+004]
68 # Category III: 0-1 Leptons, 4+ B-Jets
69 CUT_ESC_005 = KEY:LEP_001, CUT:[0,1]
70 CUT_ESC_006 = KEY:JET_003, CUT:4
71 CUT_CHN_003 = ESC:[+005,+006]
72 ******************************

Card A: AEACuS instruction card for computation of
relevant event statistics. Pre-filtering into event topol-
ogy categories I-III is performed in the final lines.
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