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ABSTRACT

We study the universal nature of the product of the entropies of all horizons of charged

rotating black holes. We argue, by examining further explicit examples, that when the

maximum number of rotations and/or charges are turned on, the entropy product is ex-

pressed in terms of angular momentum and/or charges only, which are quantized. (In the

case of gauged supergravities, the entropy product depends on the gauge-coupling constant

also.) In two-derivative gravities, the notion of the “maximum number” of charges can

be defined as being sufficiently many non-zero charges that the Reissner-Nordström black

hole arises under an appropriate specialisation of the charges. (The definition can be re-

laxed somewhat in charged AdS black holes in D ≥ 6.) In higher-derivative gravity, we

use the charged rotating black hole in Weyl-Maxwell gravity as an example for which the

entropy product is still quantized, but it is expressed in terms of the angular momentum

only, with no dependence on the charge. This suggests that the notion of maximum charges

in higher-derivative gravities requires further understanding.

http://arxiv.org/abs/1306.4522v2
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1 Introduction

Understanding black hole entropy at the microscopic level has been a major focus of research

in string theory and M-theory in the past years. While the microscopics of asymptotically-

flat BPS black holes in four and five dimensions is by now well understood [1] (for a re-

view, see, for example, [2] and references therein), the internal properties of general non-

extremal black holes are less clear. However, it has been known for a long time that general

asymptotically-flat multi-charged rotating black holes of supergravities in four [3] and five

[4] dimensions1 have a tantalizing entropy formula [3], and a first law of thermodynamics

[7, 8, 9] associated with both the inner and the outer black hole horizons, which are highly

suggestive of a possible microscopic interpretation in terms of a two-dimensional conformal

field theory (CFT). Specifically, the entropies S± of the outer and inner horizons are of the

1These black holes can be used as generating solutions for the maximally supersymmetric N = 4 (N = 8)

supergravities obtained by toroidally compactifying the heterotic string (or Type IIA string or M-theory).

In addition to the mass M , these solutions are specified in four dimensions by four charges Qi (i = 1, 2, 3, 4)

and one angular momentum J . In five dimensions they are specified by the mass and three charges, Qi

(i = 1, 2, 3), and two angular momenta, J1 and J2. It turns out that in four dimensions the complete

generating solution is specified by an additional fifth charge, which has been obtained only in the BPS [5]

and static [6] cases.
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form [3, 8, 9]: S± = 2π(
√
NL±

√
NR), where the quantities NL andNR may be viewed as the

excitation numbers of the left and right moving modes of a weakly-coupled two-dimensional

conformal field theory. The product S+ S− = 4π2(NL −NR) should therefore by quantised

in integer multiples of 4π2 [7, 8, 9] (and re-emphasized in [10]). Indeed, one finds:

S+ S− = 4π2
(
J2 +

4∏

i=1

Qi

)
, (1.1)

S+ S− = 4π2
(
J1J2 +

3∏

i=1

Qi

)
, (1.2)

for four and five dimensional black holes, respectively. (These results were implicit in [8, 9],

although not explicitly evaluated.) These expressions are modulus-independent, and are

expressed solely in terms of the quantized duality-invariant quartic (cubic) charge form,

and the quantised angular momenta.

In parallel developments Ansorg and collaborators (see, for example, [11, 12] and ref-

erences therein) studied axisymmetric solutions of Einstein-Maxwell gravity, with sources

external to the outer horizon. They obtained striking universal formulae expressing the

entropy products of the outer and inner Killing horizons in terms of the total angular mo-

mentum J and total charge Q. For the Reissner-Nordström black hole [11], these products

reduce to (1.1) with all Qi = Q. The quantized nature of the entropy-product formulae for

other asymptotically-flat solutions, such as general ring and string solutions, was recently

verified in [13], and for static black holes and rings of N=2 supergravity in four and five

dimensions in [14] and [15, 16], respectively.

Another approach that has brought considerable insights into the internal structure of

general black holes is the study of absorption coefficients or greybody factors for fields in

the black hole background. This involves solving the wave equations for external fields in

the black hole geometry. A remarkable feature of many black-hole metrics is that the wave

equations, such as the Klein-Gordon equation for a minimally coupled massless scalar field,

are typically separable, and this greatly simplifies the study of the scattering problem. The

core of the calculation is reduced to the investigation of the solutions of the radial equation,

whose complexity is governed by the nature of its singular points. As well as having singular

points at the origin and at infinity, additional singularities occur at all of the zeros of the

metric functions that determine the number, and the locations, of the horizons. Thus it can

be that important features of the scattering process are governed not only by the properties

of the metric outside and on the outer horizon, but also by its properties at interior horizons

and at other singular points of the metric radial functions.
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Specifically, the radial part of Klein-Gordon equation for massless probe scalars in the

background of general asymptotically-flat black holes in four and five dimensions exhibits

an approximate SL(2,R) × SL(2,R) conformal symmetry, associated with the poles at

the inner and outer black hole horizons [8, 9, 17]. The terms that break this symmetry are

associated with features of the asymptotic geometry, and can be neglected in an appropriate

low-energy regime for the probe scalars. This raises the expectation [17] that at least the

low-energy dynamics of general black holes could be described by a two-dimensional CFT.2

Recently, this proposal was developed further in [20, 21] , by identifying an explicit

part of the general multi-charged rotating black-hole geometry that exhibits a manifest

SL(2,R) × SL(2,R) conformal symmetry of the wave equation. The metrics of these con-

formal backgrounds differ from the original black-hole metrics by the removal of certain

terms in the warp factor only, and they were accordingly dubbed the “subtracted geome-

tries.”3 The key global structure and the thermodynamic properties of these subtracted

geometries, such as the areas of the two horizons and the angular periodicities, remain the

same, and so the subtracted geometry is expected to preserve the information about internal

structure of the black hole. The subtracted geometry is, however, asymptotically conical

[21, 22], rather than asymptotically flat. A physical interpretation of the subtraction is the

removal of the ambient asymptotically Minkowski space-time in a way that extracts the

“intrinsic” SL(2,R)×SL(2,R) symmetry of the black hole. A lift of the subtracted metric

on a circle gives rise to AdS3× Sphere geometries, and thus the microscopic interpretation of

the general black-hole entropy can be deduced via an AdS3/CFT2 correspondence [20, 21].

Further studies of the properties of the dual CFT operators that parameterise deformations

from the subtracted geometry were carried out in [29, 24].

The intriguing internal properties of general asymptotically-flat black holes in four and

five dimensions, and their potential dual two-dimensional CFT descriptions, are intimately

related to geometrical properties of the two horizons. On the other hand, black holes in

asymptotically anti-de Sitter (AdS) spacetime, and rotating black holes in dimensions larger

then five, have the property that the radial metric function have more than two zeros.4 The

2 These terms can also be neglected for special black-hole backgrounds, including the near-supersymmetric

limit (the AdS/CFT correspondence) [18, 8, 9] and the near-extreme rotating limit (the Kerr/CFT corre-

spondence) [19, 10].
3The sources for the subtracted geometry were obtained in [22] as a certain scaling limit of another black

hole. The full solution for the subtracted geometry can also be obtained by acting on the original black-hole

solution with specific Harrison transformations [22, 23, 24, 25] within the STU model, which is a consistent

truncation of maximally supersymmetric supergravity. For related works, see [26, 27, 28].
4To be more precise, the singular points we are referring to correspond to all the (real or complex) values
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wave equations in these backgrounds will have dominant contributions associated with poles

at each of these zeros. One can therefore again expect that the thermodynamics associated

with each pole will play a role in governing the properties of the black hole at the microscopic

level. This could potentially be suggestive of a microscopic behaviour of such black holes

in terms of a dual field theory in more than two dimensions. One specific (mesoscopic) test

of these ideas is the calculation of the product of all the horizon entropies [30]. It turns

out that these entropy products are also universal; they depend only on quantized charges,

quantized angular momenta and the cosmological (or gauge-coupling) constant, which is

also quantized in the context of compactifications of string theory.

Most of the black-hole examples that have been investigated arise as solutions of conven-

tional gravity or supergravities with second-order equations of motion, for which the horizon

area and entropy are related by the Bekenstein-Hawking formula S = 1
4A. In these cases

the quantisation of the product of entropies is therefore synonymous with the quantisation

of the product of horizon areas. In higher-derivative gravities, by contrast, the entropy is

no longer in general proportional to the area of the horizon, but is instead given by the

Wald formula which involves the variation of the action with respect to the Riemann ten-

sor. Entropy-product formulae in higher-derivative gravities were studied recently in [31]. A

question arises as to whether in higher-derivative theories it is the product of the entropies

or the product of the areas (or neither) that is quantised. Subtleties can arise when trying

to answer this question. In particular, the definition of entropy can be ambiguous in any

even spacetime dimension, since one can always add a purely topological Euler integrand to

the action which, while not affecting the equations of motion, does change the Wald entropy

by a purely numerical additive constant. For example, in four dimensions one can add a

Gauss-Bonnet term to the standard Einstein-Hilbert plus matter Lagrangian, such that the

original entropy Si0 at the i’th horizon is modified to

Si = Si0 + α . (1.3)

It is clear that if the original entropy product
∏
i S

i
0 were quantised and expressible purely

in terms of the charges and angular momenta, then the modified entropy product
∏
i S

i

would not be. As we shall discuss in detail later, there is in fact a natural way to remove

ri of the radial coordinate r at which the norm of some Killing vector vanishes. The metric on the surface

at the fixed radius ri may have signature (0,+,+,+, . . . ,+), in which case it is an ordinary horizon; or

signature (0,−,+,+, . . . ,+), in which case the surface is a timelike “pseudo-horizon” with imaginary area;

or ri may be complex (such roots arise in conjugate pairs). For the sake of brevity, in this paper we shall

refer to all of the surfaces defined by the roots of the relevant metric radial function as “horizons.”
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the ambiguity in the definition of the entropy, by requiring that the black hole should have

zero entropy in the case that its mass is sent to zero.

In section 2, we study the entropy product formulae for some further examples of charged

rotating black holes in four and five dimensions that had not previously been examined.

These include the four-dimensional dyonic rotating black hole solutions of the Einstein-

Maxwell-Dilaton theory obtained by Kaluza-Klein reduction of pure five-dimensional gravity

[37, 38], and also the recently-constructed general three-charged rotating black holes of five-

dimensional gauged STU supergravity [36]. We also consider the charged rotating black

holes of four-dimensional f(R)-Maxwell theory [40]. Although f(R) gravity is ostensibly a

higher-derivative theory, the known black-hole solutions have constant Ricci scalar R, and

hence the equations of motion are effectively reduced to second-order ones.

Turning now to black holes in theories involving higher-derivative gravity in a more

non-trivial way, exact solutions are rather harder to come by. For higher-derivative the-

ories whose Lagrangians are built from polynomial curvature invariants, if each Riemann

tensor is contracted with at least two Ricci tensors then Einstein metrics continue to be

solutions. The Wald formula then implies that the entropy is proportional to the area of

the horizon, and the previous entropy-product formulae still hold for any such black holes

that are Einstein metrics. Exact solutions for static charged black holes have also been

found in Lovelock-Maxwell theory, and for these it was argued that the entropy-product

rule seemingly breaks down [31]. However, we argue that this may just be an artefact of

considering the rather degenerate special case of non-rotating black holes. The relevant

point here, as we shall discuss in detail later, is that the total number of horizons for a

black hole with generic non-vanishing charges and angular momenta can be greater than

the number of horizons in special cases where charges and/or angular momenta vanish. It

is in the generic case with the maximal number of horizons that one can expect the product

of horizon areas to be quantised.

A simple illustrative example is provided by the Reissner-Nordström solution, which has

two horizons located at the roots r± of r2 − 2Mr + Q2 = 0. The product of the horizon

areas is A+A− = (4πr2−)(4πr
2
+) = 16π2Q4, which is indeed quantised and independent of

the mass M . Taking the limit when Q goes to zero gives the area product A+A− = 0,

which, although trivial because of the factor A− = 0, is still quantised. If, however, we were

to consider the Schwarzschild solution in isolation, we would say it has just one horizon,

at r+ = 2M , and the “area product” would simply be A+ = 4πr2+ = 16πM2, which is not

quantised and does depend on M . Thus one sees that the Schwarzschild black hole itself,
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having only one rather than two horizons, is not a sufficiently generic solution to reveal the

underlying nature of the quantised area-product formula for the Reissner-Nordström family.

Returning to the black hole solutions of Lovelock-Maxwell theory examined in [31], it

is quite plausible that the failure of the area-product rule for the static black holes is again

a consequence of not considering the most generic situation, in this case with rotation

included. Unfortunately the more general rotating solutions in the Lovelock-Maxwell are

not presently known, and so it is not possible at this time to settle the question definitively.

In section 3 we consider an example that is rather analogous, and where we are able

explicitly to illustrate a similar phenomenon, namely for charged rotating black holes in

the conformally-invariant Weyl-Maxwell theory in four dimensions. We demonstrate that

in this example the entropy-product rule holds for rotating black hole solutions but that it

would fail if one considered just the static non-rotating solutions in isolation.

In section 4, we comment on a general phenomenon for rotating black holes, namely

that if the metric is written as a timelike bundle over a Euclidean-signature base space,

with warp factors multiplying the base and the fibre metrics, then the expression for the

area of any horizon is independent of the warp factor. However, if one takes the static

limit, the area becomes dependent on the warp factor. This observation could have further

implications for the study of the microscopic properties of general rotating black holes in

gravity theories in diverse dimensions, along the lines of the “subtracted geometry.”

We conclude our paper in section 5.

2 Further Area-Product Examples in D = 4 and D = 5

In this section we consider three further examples of black hole solutions in four and five

dimensions for which area-product relations had not previously been studied. The first is

the four-dimensional rotating dyonic black hole solution of the Einstein-Dilaton-Maxwell

theory that can be obtained as the dimensional reduction of five-dimensional pure gravity

[37, 38]. Next, we look at the general solution for a 3-charge rotating black hole in five-

dimensional gauged supergravity [36]. The third example is the charged rotating black hole

solution of Maxwell theory coupled to f(R) gravity in four dimensions [40].

2.1 Entropy product formula for the dyonic KK black hole

The solution for the dyonic rotating Kaluza-Klein black hole carrying electric and magnetic

charge can be embedded in the four-dimensional N = 2 supergravity STU theory. The
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electric and magnetic charges are both carried by just one of the four gauge fields in the

theory. It should be noted that although there exists a discrete duality symmetry in the

KK reduction of five-dimensional gravity, under which the electric and magnetic charge are

exchanged, there is no continuous duality symmetry and so this dyonic black hole cannot be

rotated into a purely electric or purely magnetic one. Using the notation and conventions

of [33], the solution can be written as

dŝ24 = −eϕ4 (dt− ωdφ)2 + e−ϕ4 ds23 , (2.1)

where

ds23 = (ρ2 − 2mr)
(dr2

∆
+ dθ2

)
+∆sin2 θ dφ2 ,

∆ = r2 + a2 − 2mr , ρ2 = r2 + a2 cos2 θ . (2.2)

The functions ϕ4 and ω are given by

ω =
2amc4 [(r −m)Ξ +mc5] sin

2 θ

ρ2 − 2mr
,

e2ϕ4 =
(ρ2 − 2mr)2 Ξ

(f1Ξ + 2mc24U−)(f2 + 2mΞU+)
, (2.3)

where we have defined

U± = (r −m)c5 ± as4s5 cos θ , f1 = ρ2 − 2mr + 2m2c24 , f2 = ρ2 − 2mr + 2m2Ξ2 ,

ci = cosh δi , si = sinh δi , Ξ =
√

1 + c24s
2
5 . (2.4)

The other non-vanishing fields in the four-dimensional supergravity theory are

e2ϕ1 = e2ϕ2 = e2ϕ3 =
f1Ξ + 2mc24U−
Ξ (f2 + 2mΞU+)

,

Â = νdφ+ σ4(dt− ωdφ) , (2.5)

where

ν =
2ms4c4∆cos θ + 2amc4s5[c

2
4c5 (r −m) +mΞ] sin2 θ

Ξ (ρ2 − 2mr)
,

σ4 =
2m2c24s5c5 + 2mΞ[(r −m)s5 + as4c5 cos θ]

f2 + 2mΞU+
. (2.6)

There are two horizons, which are located at the two roots r± of ∆ = 0. The entropies

are given by

S± = 2πmc4

∣∣∣r± Ξ−m(Ξ− c5)
∣∣∣ . (2.7)
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(The absolute value must be used here because r− Ξ − m(Ξ − c5) can be negative under

appropriate conditions; see later.) The angular momentum J and the electric and magnetic

charges Q) and P are given by

J = amc4Ξ , Q = 2ms5Ξ , P =
2ms4c4

Ξ
, (2.8)

from which it follows that

S+S− = 4π2m2c24

∣∣∣a2Ξ2 −m2s24s
2
5

∣∣∣ , (2.9)

and hence, as can be seen from (2.8),

S+S− = 4π2
∣∣∣J2 − 1

16
P 2Q2

∣∣∣ . (2.10)

It might, at first sight, seem surprising that with only one field strength active, the

charges contribute in the entropy product formula. However, bearing in mind that the

charge contribution in a general black hole must be invariant under SL(2, R)3, and that for

the usual “4-charge” black hole the charge contribution is of the form P1Q2P3Q4, this is in

fact correct. See, for example, equation (6.22) in [34] :5

D(p, q) = 4[(p1q1)(p
2q2)+(p1q1)(p

3q3)+(p2q2)(p
3q3)−p0q1q2q3+q0p1p2p3]−(pµqµ)

2 .(2.11)

For comparison, we may consider the standard 4-charge black hole. In the notation of

[33] this has magnetic charges P1 and P3, and electric charges Q2 and Q4. Evaluating the

entropy-product formula, we find

S+S− = 4π2
(
J2 +

1

4
P1Q2P3Q4

)
. (2.12)

This is indeed consistent with (2.10) and, after making the exchange p2 ↔ q2, (2.11).

5In [34], the notation where a “standard” 4-charge black hole has one electric charge q0 and three magnetic

charges (p1, p2, p3) is used. By contrast, in the notation of [33] the ‘standard” 4-charge black hole has

magnetic charges p1 and p3, and electric charges q2 and q4. Our presentation of the Rasheed black hole has

electric and magnetic charges q4 and p4. In the notation of [34], a simple choice for the Rasheed black hole

would be to take q0 and p0 non-zero, in which case the last term in (2.11) gives −(q0)
2(p0)2, in contrast to

+4q0p
2p2p3 for the standard 4-charge black hole [3].

See, also [5], eq. (69), where the manifestly (S- and T -) duality invariant quartic charge form was first

derived, as it appeared in the entropy formula of the most general BPS black hole of four-dimensional N = 4

ungauged supergravity. For related U-duality invariant charge forms in four and five dimensions, see, e.g.,

[35].
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2.2 3-charge solution in D = 5 gauged supergravity

Area-product formulae for a variety of rotating black holes in gauged supergravities were

studied in [30]. However, only more recently has the general 3-charge rotating black hole in

five-dimensional gauged supergravity been constructed [36], and so we are now in a position

to check the area-product relation for this example. It has horizons determined by the roots

of a 6th-order polynomial in the radial coordinate r. Since only even powers of r occur, we

can define x = r2 and reduce the problem to one with three horizons, at the roots x = x1,

x = x2 and x = x3. The radial function is then given by [36]

∆ = (x+ a2)(x+ b2)(1 + g2x)− 2mx+ 2mg2
{
(s21 + s22 + s23)x

2

−(s21s
2
2 + s21s

2
3 + s22s

2
3)[(a

2 + b2 − 2m)x+ a2b2(2 + g2x)]

+s21s
2
2s

2
3

(
[(a+ b)2 − 2m)][(a − b)2 − 2m]− 2g2a2b2(2x+ 2m+ a2 + b2) + g4a4b4

)

+2mg2a2b2[s41s
4
2 + s41s

4
3 + s42s

4
3 − 2s21s

2
2s

2
3(s

2
1 + s22 + s23)]

}
. (2.13)

The entropy, angular momenta and charges are also given in [36]. After transforming to the

variable x = r2, the entropy at the i’th horizon is given by

Si =
π2

2χa χb

√
Wi

xi
, (2.14)

where

Wi =
[
(xi + a2)(xi + b2) + 2mxi(s

2
1 + s22 + s23)

]{
(xi + a2)(xi + b2)

+2mg2[(a+ b)2 − g2a2b2][(a− b)2 − g2a2b2]s21s
2
2s

2
3 − 4mg2a2b2(s21s

2
2

+s21s
2
3 + s22s

2
3)
}
+ 8m2xic1c2c3s1s2s3ab

√
Ξ1aΞ2aΞ3aΞ1bΞ2bΞ3b

+4m2xi
[
xi + g2a2b2(s21 + s22 + s23)

]
(s21s

2
2 + s21s

2
3 + s22s

2
3)

−4m2
{
(a2 + b2)(1 + g2a2)(1 + g2b2)xi + g2

[
(a4 + b4)xi

+g2a4b4(2 + g2xi)
]
(s21 + s22 + s23) + g2a2b2(a2 + b2

+g2a2b2)
[
2 + g2xi(s

2
1s

2
2 + s21s

2
3 + s22s

2
3)
]}
s21s

2
2s

2
3

+4m2g4a4b4(s41s
4
2 + s41s

4
3 + s42s

4
3)− 8m2xig

6a4b4s41s
4
2s

4
3

+8m3(xi + g2a2b2)s21s
2
2s

2
3 , (2.15)

and

χa = 1− g2a2 , χb = 1− g2b2 , Ξia = 1 + g2a2s2i , Ξib = 1 + g2b2s2i . (2.16)
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The angular momenta and electric charges are given by [36]

Ja =
πm

2χ2
aχb

(
ac1c2c3

√
Ξ1aΞ2aΞ3a − bχ2

as1s2s3
√

Ξ1bΞ2bΞ3b

)
, (2.17)

Jb =
πm

2χaχ
2
b

(
bc1c2c3

√
Ξ1bΞ2bΞ3b − aχ2

bs1s2s3
√

Ξ1aΞ2aΞ3a

)
,

Qi =
πm

2χaχb

(cisi
√
Ξ1aΞ2aΞ3aΞ1bΞ2bΞ3b√

ΞiaΞib
− g2ab

c1c2c3s1s2s3
cisi

√
ΞiaΞib

)
. (2.18)

From these it is a straightforward matter to compute the product of the entropies, and

express it in terms of the conserved charges. We find that it can be written as

3∏

i=1

Si = ±2iπ3

g3
(πJaJb + 4Q1Q2Q3) . (2.19)

This result reduces to the special cases presented previously in [30] if two or more charges are

set equal. (The ± sign on the right-hand side reflects the fact that there is a sign ambiguity

in taking the square roots in (2.14). This would not be seen if we took the product over all

six horizons in the language of the original radial variable r, in which case the right-hand

side would be squared.)

2.3 Charged rotating black hole in f(R) theory

Although f(R) gravities involve in general higher derivatives in their equations of motion,

their solutions include those for which the Ricci scalar is constant. In this case, the effective

equations of motion are then reduced to second order. In four dimensions, it happens that

the trace of the Maxwell energy-momentum tensor vanishes, and so one can still construct

analytic charged solutions in this case for which R is constant.

The four-dimensional Lagrangian for f(R) gravity coupled to a Maxwell field is given

by

L4 =
√−g(f(R)− 1

4F
2) . (2.20)

The Einstein equations of motion are then

f ′(R)Rµν − 1
2gµνf(R) + (∇µ∇ν − gµν�)f ′(R) = 1

2(F
2
µν − 1

4gµνF
2) , (2.21)

where f ′(R) means ∂f(R)/∂R. The trace of the Einstein equation is independent of the

Maxwell field,

f ′(R)R − 2f(R)− 3�f ′(R) = 0 , (2.22)

and so it admits solutions where the Ricci scalar is constant, R = R0, where

f ′(R0)R0 = 2f(R0) . (2.23)
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For solutions with R = R0, the Einstein equations (2.21) then reduce to

Rµν − 1
2gµν(R− 2Λ) = 1

2(F̃
2
µν − 1

4gµν F̃
2) , (2.24)

where Λ = 1
4R0 is the effective cosmological constant and F̃µν = Fµν/

√
f ′(R0). This is

precisely the same equation as in Einstein-Maxwell theory, which admits the well-known

Reissner-Nordström and Kerr-Newman solutions, except that now the charge is scaled by

the 1/
√
f ′(R0) factor. This gives rise to the static [39] and rotating [40] charged black holes

in four-dimensional f(R) gravity coupled to the Maxwell field. Note that the entropy is

also given by one quarter the area of the horizon, scaled by the f ′(R0) factor. Thus the

entropy-product formula for the charged rotating black hole in f(R) gravity is similar to

that for the Kerr-Newman solution in Einstein-Maxwell theory, but for an overall scaling by

an f ′(R0)-dependent factor. The entropy product formula for the static case was discussed

in [31].

3 Entropy Product Formula for Maxwell-Weyl Theory

In four dimensions, owing to the fact that Gauss-Bonnet term is a total derivative, the most

general quadratic-curvature Lagrangian can be parameterised as

L2 = αRµνRµν + βR2 . (3.1)

Any Einstein metric with cosmological constant Λ, which is a solution for the theory de-

scribed by the Lagrangian L0 = R−2Λ, will continue to be a solution of the theory described

by L = L0 + L2. For any such black hole solution, the Wald formula implies that the en-

tropy will just be a constant multiple of the area of the horizon, and hence entropy-product

results for the Kerr-AdS metric in Einstein gravity will continue to holds in the extended

theory. If black hole solutions over and above those that are Einstein metrics existed, then

their entropy-products would need to be investigated in their own right.

In fact here no explicit black hole solutions, beyond Kerr-AdS, are known for the general

case of cosmological Einstein gravity augmented by the quadratic-curvature Lagrangian

(3.1). The situation becomes simpler, however, if we consider pure conformal gravity, where

the Lagrangian is simply a multiple of the square of the Weyl tensor, and additional non-

Einstein black hole solutions can be found. In fact non-trivial such solutions can also be

found in the conformally-invariant Weyl-Maxwell theory, described by the Lagrangian

L =
√−g

(
1
2αC

µνρσCµνρσ +
1
3αF

2
)
=

√−g
(
αRµνRµν − 1

3αR
2 + 1

3αF
2
)
+ αLGB . (3.2)

(Here LGB denotes the Gauss-Bonnet Lagrangian.)
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3.1 Charged rotating black holes

Charged rotating black holes in the four-dimensional conformally-invariant Einstein-Weyl

theory

L =
√−g

(1
2
αCµνρσCµνρσ +

1

3
αFµνFµν

)
(3.3)

were studied in [32]. The solution for a dyonic black hole can be written as [32]

ds24 = ρ2
(dr2
∆r

+
dθ2

∆θ

)
+

∆θ sin
2 θ

ρ2

(
adt− (r2 + a2)

dφ

Ξ

)2
− ∆r

ρ2

(
dt− a sin2 θ

dφ

Ξ

)2
,

A =
qr

ρ2

(
dt− a sin2 θ

dφ

Ξ

)
+
p cos θ

ρ2

(
adt− (r2 + a2)

dφ

Ξ

)
, (3.4)

where

ρ2 = r2 + a2 cos2 θ , ∆θ = 1− g2a2 cos2 θ , Ξ = 1− g2a2 ,

∆r = (r2 + a2)(1 + g2r2)− 2mr +
(p2 + q2)r3

6m
. (3.5)

The horizons occur at the roots of ∆r = 0. In what follows we shall set p = 0 so that there

is only an electric charge, since the inclusion of a magnetic charge adds no further features

of relevance to the discussion.

The conserved energy, charge and angular momentum are given by [32]

E =
2αg2

Ξ2

(
m+

a2q2

12m

)
, Q =

αq

3Ξ
, J =

2aαg2

Ξ2

(
m+

q2

12mg2

)
, (3.6)

and the Wald entropy at a root ri is given by

Si =
2πα

Ξ

(
1 + g2r2i +

q2ri
6m

− cΞ
)
, (3.7)

The constant c is purely numerical (i.e. parameter independent), and corresponds to adding

a constant multiple of the Gauss-Bonnet invariant to the action. If we choose c = 1, the

resulting Lagrangian involves only the Ricci tensor and Ricci scalar, and we have

Si =
2πα

Ξ

( g2
4π
Ai +

q2ri
6m

)
, (3.8)

where Ai = 4π(r2i + a2) is the area of the i’th “horizon.” This is a more natural definition

for the entropy of the system since the entropy vanishes when the solution becomes the

vacuum. Calculating the product of the entropies at the four horizons, keeping the constant

c arbitrary for now, and then expressing the result in terms of the conserved charges, we

find

4∏

i=1

Si = (2π)4α2
[
cJ2 + (1− c)E2g−2 + 3c(1− c)Q2 + c2(1− c)2α2

]
. (3.9)
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Making the natural choice c = 1 discussed above yields the result

4∏

i=1

Si = (2π)4α2J2 , (3.10)

which is indeed quantised. This is a highly non-trivial result since now the entropy is no

longer simply one quarter of the area of the horizon, in which case, the quantisation of the

entropy product implies the geometric quantisation of the product of all horizon areas.

3.2 Charged static black holes

In the previous subsection, we saw that with the natural choice c = 1 the product of

entropies depended only on the angular momentum, but was independent of the charges.

If we send the angular momentum to zero, the entropy of one of the horizons becomes also

goes to zero. More precisely, in the static case, the four null surfaces are reduced to only

three. There are in fact more general static solutions than the obvious one resulting from

setting a = 0. The most general static solution is given by [41]

ds2 = −fdt2 + dr2

f
+ r2dΩ2

2 , A = −q
r
dt ,

f = −1
3Λr

2 + c1r + c0 +
d

r
, 3c1d+ 1 + q2 = c20 , (3.11)

and the entropies are given by

Si = −2πα(3d + (c0 + 2)ri)

3ri
. (3.12)

Thus we have

3∏

i=1

Si = − 8
27π

3α3(2− 3c0 + c30 − 26d2g2) + 128
9 α(c0 + 2)π3Q2

e , (3.13)

where Qe =
1
4αq is the electric charge. It is thus clear that the product of entropies is longer

expressed purely in terms of quantised charges in this static case.

An important lesson one learns from theWeyl-Maxwell theory is that in higher-derivative

gravities, the failure of the entropy product formula in the static case does not necessarily

imply the failure of the formula in the more general rotating solutions with angular momenta

as well.

After all, for Schwarzschild black holes with or without a cosmological constant, the

entropy or the product of entropies depends on the mass, rather than on any quantised

quantities. However, as we discussed for the Schwarzschild black hole in the introduction,

the static solution is a special case of the more general solutions with angular momenta or
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charges, which have a larger number of null surfaces. The static solution corresponds to

degenerate limit where the area of one or more of the null surfaces of the more general class

of solutions goes to zero.

In all the examples examined so far, as long as maximally rotating solutions exist in

two-derivative or higher-derivative gravities, the entropy product formulae do work, in the

sense of depending only on the products of angular momenta with (or without) charges.

However in many cases, such as in Lovelock gravities, the exact solutions for rotating black

holes are unknown. We expect that the entropy-product formulae will work in these cases,

even if they fail for the known, but rather degenerate, charged static solutions.

4 Warp-factor Independence and the Static Limit

Most of the charged black hole metrics in ungauged supergravities were constructed by

using solution-generating techniques, starting from a an uncharged black hole as a “seed”

solution. One of the most universal solution-generating techniques involves performing a

dimensional reduction of the seed metric to three dimensions, and then acting with global

symmetries of the associated non-linear sigma model coupled to gravity in three dimensions.

For example, in the case of constructing charged rotating solutions in four dimensions, one

performs a timelike reduction using the Kaluza-Klein ansatz given in (2.1). The reduced

three-dimensional metric ds23 is invariant under the global symmetry transformations, and

thus remains the same as in the original reduction of the seed Kerr solution, as in (2.2).

The specific forms of the warp factor eϕ4 and the function ω in (2.1) will depend on the

details of the theory under consideration, and the nature of the charges that are turned on,

but the general structure, and the universality of the 3-metric ds23, will be common to all

examples.

The horizons of the charged metric will be located at the same radii ri as those of the

original seed metric, namely at the zeroes of the function ∆. It is then evident from (2.1)

and (2.2) that the area of the horizon at r = ri will be given by

Ai = 4π
√

(2mr − ρ2)ω2
∣∣∣
r=ri

, (4.1)

and so, in particular, it is independent of the warp factor eϕ4 .

The above discussion assumes that the metric is stationary, but not static. In the static

case, a = 0 and the function ω vanishes, and so evidently for the metric to be non-degenerate

at the horizons it must be that the warp factor acquires a factor of ∆ that can cancel the

15



overall factor of ∆ in the 3-metric ds23. The area of the horizon at r = ri is now given by

Ai = 4π
[
e−ϕ4 ∆

]
r=ri

, (4.2)

which, unlike in the rotating case, does depend upon the warp factor eϕ4 .

The independence of the horizon area on the warp factor for stationary black-hole met-

rics has been noted in earlier works, and indeed it has formed the basis for the notion

of “subtracted geometries” that was considered in [20, 21]. In those papers, the proposal

was to subtract certain terms in the warp factors of the black hole metrics, in such a

way that the massless scalar wave equation for the subtracted geometry attains a manifest

SL(2,R)×SL(2,R) conformal symmetry. It was noted in [20, 21] that the areas of the two

horizons and the periodicity of the azimuthal angles for the rotating solutions are unchanged

in the subtracted geometries. It could, however, be troubling if the phenomenon we have

noted above, in which the warp factor does enter in the area formula in the static case,

were to signal a discontinuity if one approached the static situation as an a → 0 limit of

the rotating solution. It is of interest, therefore, to investigate this limit in detail in explicit

examples.

We saw in section 2.1 that the entropy-product formula (2.10) for the rotating dyonic

black hole required an absolute value of the J2 − P 2Q2/16 factor on the right-hand side,

to allow for the case where J2 < P 2Q2/16. Specifically, the origin of this non-analytic

dependence on the conserved charges is that the metric function ω in (4.1) changes sign

and becomes negative at the inner horizon if J2 becomes less than P 2Q2/16. A direct

calculation of the entropy product for the static metric with a = 0 confirms that indeed

S+S− =
1

4
π2P 2Q2 . (4.3)

Thus we see in this example that the direct evaluation in the static metric is in agreement

with the result obtained by taking a J → 0 limit.

It is noteworthy that it is possible to cast the metric in the warped-product form (2.1)

for any axisymmetric solution in four dimensions. In five dimensions, all known rotating

black-hole solutions in gauged and ungauged supergravity can be cast in the analogous

form:

ds25 = −∆−1/3(dt+ ωφdφ+ ωψdψ)
2 +∆2/3ds24 , (4.4)

where the four-dimensional base metric ds24 is Kähler, and the warp factor ∆ depends only

on the radial coordinate r and the polar angle θ. This is the case for all known rotating

black holes, including [42] the general rotating three charge rotating AdS black hole that
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was obtained in [36]. We have checked for many of these examples that their entropy is

independent of the warp-factor.

5 Conclusions

In this paper, we discussed the universal nature of the product of the entropies associated

with all the horizons of a black hole, and in particular that the product depends only on the

charges and angular momenta, which are subject to quantisation conditions. The entropy-

product formulae are valid as long as either the maximum number of rotation parameters,

and/or the maximum number of charges, are turned on. The meaning of the former is clear,

namely that there is a non-vanishing rotation in each of the [(D − 1)/2] orthogonal spatial

2-planes. The notion of the “maximum number of charges” requires further explanation.

It is well known that Einstein-Maxwell gravity in four or five dimensions, with or without

a cosmological constant, can be embedded in a four or five-dimensional supergravity. The

Reissner-Nordström black hole solution in the associated supergravity theory can be viewed

as a superposition of some more basic U(1)-charged building blocks. For example, four-

dimensional Einstein-Maxwell gravity can be embedded in the STU model, which is a

consistent truncation of maximally supersymmetric ungauged supergravity that has N = 2

supersymmetry and four U(1) gauge fields. The quantised entropy-product formula is valid

provided that all four charges are turned on, with the Reissner-Nordström black hole then

corresponding to the special case where the four charges are set equal.

This picture can be extended to higher-dimensional non-supersymmetric theories, where

the Reissner-Nordström black hole again emerges as a superposition of more fundamental

ingredients [43]. Thus for a theory that supports multiply-charged black holes, if the solution

specialises to the Reissner-Nordström black hole when the charges are equated, then the

number of charges can be viewed as “maximal,” and the entropy-product formulae will hold.

In the dyonic black hole we discussed in section 2, although it involves only two charges,

namely the electric and magnetic charges carried by a single U(1) gauge field in the STU

model, rather than the usual four charges carried by all four gauge fields, it still can be

viewed as having the maximum number of charges since the solution can be reduced to the

Reissner-Nordström black hole if the charges are equated.6 (As discussed in the appendix,

6Note that in ungauged supergravity theories in four and five dimensions, the product of horizon areas is

governed, respectively, by quartic or cubic charge-forms, which are modulus independent and invariant under

duality transformations. (See, for example, [5] for the quartic charge form in N = 4 ungauged supergravity).

Note that in four dimensions both the four-charge black holes [3] and the Kaluza-Klein black hole [37, 38]
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for dilatonic AdS black holes in dimensions D ≥ 6, the entropy-product rule can work in

cases where there are fewer than the maximal number of charges.)

The situation changes in higher-derivative gravity. The changes are two-fold: Firstly, in

general higher-derivative gravity, the entropy may no longer be proportional to the area of

the horizon, and thus the quantisation of the product of entropies may no longer be a purely

geometric property. Secondly, the concept of “maximal charges” has to be refined. In the

explicit example of the conformally-invariant Maxwell-Weyl gravity, we demonstrated that

the entropy-product formula still works, but the result is expressed in terms of the angular

momentum only, with no dependence on the charge. This implies that the Maxwell charge

is no longer “maximal,” in the sense discussed above. In order to obtain an entropy-product

formula that is quantised, one must therefore necessarily turn on the angular momentum.

The example of charged static black holes in another higher-derivative theory, Maxwell-

Lovelock gravity, was studied in [31], and it was found there that the product of the entropies

did not satisfy a quantisation rule. This suggests that the phenomenon we found in Maxwell-

Weyl gravity may be more widespread in higher-derivative theories; one must have non-zero

angular momentum in order to obtain a quantised entropy-product formula.

Of course, the higher-derivative examples that we have been discussing all have in com-

mon that the gravitational action is higher-derivative, while the Maxwell gauge field action

is left unaltered. A natural conjecture, therefore, is that in higher-derivative theories the

Maxwell field should have appropriate higher-derivative terms also, in order to acquire the

“maximal” status. In fact, such terms are natural in higher-derivative extensions of su-

pergravities. The success of the entropy product formulae for the rotating black hole in

Maxwell-Weyl gravity suggests this possibility. In a spherical dimensional reduction, the

angular momentum can be viewed as the electric charge of some Kaluza-Klein vector asso-

ciated with an isometry of the sphere. The reduction of such a higher-derivative theory will

clearly give rise to a Kaluza-Klein vector with higher-derivative terms also.

To conclude, there appears to be a robust rule that the product of entropies at all

horizons of a black hole can be expressed purely in terms of quantized quantities provided

that the maximum numbers of angular momenta and/or charges are turned on. The key

point in all cases is that the maximal number of distinct “horizons” should be attained.

In two-derivative theories, the notion of “maximum number of charges” can be restated

as the condition that by equating them appropriately, the solution can be reduced to the

Reissner-Nordström black hole. In higher-derivative theories, the notion is not yet entirely

are special examples where the duality invariant quartic charge form is non-zero.
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clear, and is worthy of further investigation.
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A On Maximal Charges

Earlier in the paper we introduced the concept of a “maximal” number of charges in a

charged black-hole solution. The concept is mostly simply discussed in the context of static

solutions. In general, charged black holes are constructed as superpositions of multiple

charges associated with different vector gauge fields in the theory. If the solution reduces to

the Reissner-Nordström black hole under an appropriate specialisation of the charges, then

we refer to such multiply-charged black holes as having the “maximum number” of charges.

For these solutions, the entropy-product at all horizons is expressed in terms of charges

only. However, the converse is not necessarily true. For example, gauged supergravities

in seven or six dimensions cannot be truncated to Einstein-Maxwell theory, and hence the

charged AdS black holes cannot be reduced to Reissner-Nordström-AdS black holes by

specialising the charges. Nevertheless, for charged black holes in these theories, built from

two basic ingredients where one or the other of two independent gauge fields is excited,

the entropy-product rule still holds. In this appendix, we shall comment further on these

observations.

Let us consider the Lagrangian proposed in [43] as the focus for our discussion, since

the theory contains all the essential properties of supergravities in terms of the structure of
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its relevant solutions. The Lagrangian is given by

e−1LD = R− 1
2(∂φ)

2 − 1
4e
a1φF 2

1 − 1
4e
a2φF 2

2 − V (φ) , (A.1)

V (φ) = −g
2N1

4

[
2(D − 3)2(N1 − 1)e−a1φ + 2a21(D − 3)(D − 2)N1e

− 1
2
(a1+a2)φ

−a21(D − 2)
(
(D − 3)N1 − (D − 1)

)
e−a2φ

]
, (A.2)

where the constants (a1, a2) satisfy the constraint

a1a2 = −2(D − 3)

D − 2
. (A.3)

The theory admits charged AdS black holes [43], given by

ds2 = −(HN1
1 HN2

2 )−
(D−3)
D−2 fdt2 + (HN1

1 HN2
2 )

1
D−2 (f−1dr2 + r2dΩ2

D−2) ,

A1 =
√
N1 c1
s1

H−1
1 dt , A2 =

√
N2 c2
s2

H−1
2 dt ,

φ = 1
2N1a1 logH1 +

1
2N2a2 logH2 , f = 1− µ

rD−3
+ g2r2HN1

1 HN2
2 ,

H1 = 1 +
µs21
rD−3

, H2 = 1 +
µs22
rD−3

, (A.4)

where si = sinh δi, ci = cosh δi, and (N1, N2) are given by

N1 +N2 =
2(D − 2)

D − 3
, a21 =

4

N1
− 2(D − 3)

D − 2
. (A.5)

The solution becomes the Reissner-Nordström-AdS black hole if we set δ1 = δ2.

The thermodynamic quantities are all calculated in [43]. For our purposes, we shall give

only the charges and entropy:

Qi =
(D − 3)ωD−2

16π
µNicisi , S = 1

4r
D−2
0 H1(r0)

N1/2H2(r0)
N2/2ΩD−2 . (A.6)

For the case when g = 0, the general solution has two real horizons; the outer horizon is

located at r0 = µ1/(D−3), and the inner horizon is at r = 0. The entropy-product formula,

ignoring inessential numerical constants, is given by [43]

S+S− ∼ QN1
1 QN2

2 . (A.7)

If we turn off one of the charges, then r = 0 is no longer a horizon, but a singularity

with zero area. Thus this example demonstrates the validity of our definition of “maximal”

charges.

For non-vanishing g, the situation can be more subtle. The horizons are located at all the

roots of the metric function f . For rational values of Ni, the number of roots is finite. The
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general formula determining these roots is rather involved. For the Reissner-Nordström-AdS

black holes, it can be shown that

∏

i

S
2(D−2)
i=1 ∼ (g−1Q)2(D−2) . (A.8)

It was conjectured in [43] that the general product formula, for unequal charges, is

2(D−2)∏

i=1

Si ∼ [(g−1Q1)
N1(g−1Q2)

N2 ]D−3 . (A.9)

The entropy-product formula appears to be suggesting that it fails to work if we set one

charge to zero, say Q2 = 0. This is clearly the case for g = 0, as we have discussed. However,

if we let N1 = 2 and Q2 = 0, we find that for D ≥ 6, the entropy formula continues to work:

2(D−3)∏

i=1

Si ∼ (g−1Q1)
2(D−3) , for D ≥ 6 , (A.10)

that is to say, the product of entropies depends only on the charges and the gauge coupling

constant g. Note that the total number of horizons is reduced from 2(D − 2) to 2(D − 3).

On the other hand, the entropy-product formula indeed fails to work when D = 4 or 5 with

this charge specification. In the cases of D = 4, 5, 6 or 7, the theory can be embedded in a

gauged supergravity and the results were found already in [30].

It is somewhat surprising that when we have less than the maximal number of charges,

the entropy-product formula still works. The most likely explanation can be found in the

superposition rule

N1 +N2 =
2(D−2)
D−3 . (A.11)

This shows that Ni can only take integer values in D = 4 and 5. In dimensions higher than

five, the largest integer value that N1 can take is N1 = 2, in which case N2 is fractional and

smaller than 1. In other words, N1 = 2 is the maximum integer ingredient, and that seems

to be sufficient for the entropy-product rule to work, even if Q2 is turned off. Of course, it

is worth emphasising again that for the “ungauged” supergravity theories with g = 0, the

entropy-product formula requires that both charges Qi are turned on.
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[24] M. Cvetič, M. Guica and Z.H. Saleem, General black holes, untwisted, arXiv:1302.7032

[hep-th].

[25] A. Sahay and A. Virmani, Subtracted geometry from Harrison transformations: II,

arXiv:1305.2800 [hep-th].

[26] A. Chakraborty and C. Krishnan, Subttractors, arXiv:1212.1875 [hep-th].

[27] A. Chakraborty and C. Krishnan, Attraction, with boundaries, arXiv:1212.6919 [hep-

th].

[28] S. Jana and C. Krishnan, A Kaluza-Klein subttractor, arXiv:1303.3097 [hep-th].

[29] M. Baggio, J. de Boer, J.I. Jottar and D.R. Mayerson, Conformal symmetry for black

holes in four dimensions and irrelevant deformations, arXiv:1210.7695 [hep-th].

23

http://arxiv.org/abs/1204.0507
http://arxiv.org/abs/1004.0996
http://arxiv.org/abs/hep-th/9609026
http://arxiv.org/abs/0809.4266
http://arxiv.org/abs/1106.3341
http://arxiv.org/abs/1112.4846
http://arxiv.org/abs/1201.0601
http://arxiv.org/abs/1203.5088
http://arxiv.org/abs/1302.7032
http://arxiv.org/abs/1305.2800
http://arxiv.org/abs/1212.1875
http://arxiv.org/abs/1212.6919
http://arxiv.org/abs/1303.3097
http://arxiv.org/abs/1210.7695
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