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Abstract

Diverse mass and mixing patterns between the quarks and leptons makes it challenging to con-

struct a simple grand unified theory of flavor. We show that SO(10) SUSY GUTs with type II

seesaw mechanism giving neutrino masses provide a natural framework for addressing this issue.

A simple ansatz that the dominant Yukawa matrix (the 10-Higgs coupling to matter) has rank

one, appears to simultaneously explain both the large lepton mixings as well as the observed quark

flavor hierarchy in these models. A testable prediction of this ansatz is the neutrino mixing, Ue3,

which should be observable in planned long baseline experiments.
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I. INTRODUCTION

Understanding the origin of the hierarchical pattern of quark masses and mixings has long

been recognized as a challenge for physics beyond the standard model [1]. The discovery of

neutrino masses and mixings with totally different flavor pattern than quarks (i.e. θl
23

∼ 45o

and θl
12

≃ 35o as against θq23 ∼ 2.5o and θq12 ∼ 13o) has added more mystery to the flavor

problem. In generic bottom-up pictures where quarks and leptons are treated as different

species of particles with no particular relation between them, this problem is not so serious

since one can simply focus on each sector separately, as is often done for neutrinos [2].

However, in grand unified theories where the quarks and leptons unify at a very high scale,

one would naively expect that their masses and mixings would exhibit a similar pattern. The

fact that they are so different may be hint of some really new exciting underlying physics.

In this note we address this question in the context of supersymmetric SO(10) models with

renormalizable Yukawa couplings being responsible for fermion masses.

We show that in SO(10) models with 10, 126 plus possibly another 10 or 120 Higgs

fields where fermion masses are generated by renormalizable Yukawa couplings [3] only and

where type II seesaw is responsible for neutrino masses [4], there is a natural way to have

a unified understanding of both large lepton mixings and small quark ones. The basic idea

is to require that one of the 10 Yukawa couplings is the dominant one contributing to up,

down and charged lepton masses and has rank one with other smaller couplings providing

neutrino masses as well as most of the quark lepton flavor hierarchy. Rank one plus small

corrections as a way to unravel fermion flavor in D-brane models was discussed in [5]. We

find that SO(10) models with type II seesaw [3, 4, 6, 7] are ideally suited for such an ansatz.

A specific form of the rank one matrix can lead to tri-bimaximal mixing with corrections

dictated by the quark flavor pattern.

This paper is organized as follows: in sec. II, we review the mass formulae in SO(10)

models with renormalizable couplings; in sec. III, we summarize our basic strategy for

understanding the quark lepton flavor in a unified manner, discuss the rank one ansatz

and apply it both the two generation case (IIIA) and three generation cases (IIIB). In sec.

IIIC, we present realistic three generation models and outline their predictions. Sec. IV is

devoted to some specific conjectures for the rank one matrix which could emerge from discrete

symmetry models with specific discussion on the correction to tri-bimaximal mixings. Sec.

V is devoted to a possible way to obtain the rank one ansatz in SO(10) models and in sec.

VI, we present our conclusions.
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II. OVERVIEW OF RENORMALIZABLE SUSY SO(10) MODELS FOR

FERMION MASSES

The basic idea in this class of models is to consider SUSY SO(10) theory with Higgs

fields that give fermion masses to be in 10 (denoted by H) and 126 + 126 (denoted by

∆ and ∆) plus either an extra 10 (H ′) or 120 (Σ). The GUT symmetry is broken by

210+54+126+126 [8]. The Yukawa superpotential of this model is:

WY = hψψH + f ψψ∆̄ + h′ ψψ (Σ or H ′) , (1)

where the symbol ψ stands for the 16 dimensional representation of SO(10) that represents

the matter fields. The coupling matrices h and f are symmetric, and h′ is symmetric or

anti-symmetric depending on whether we adopt H ′ or Σ. The representations H , H ′ and ∆

have two standard model (SM) doublets in each of them whereas Σ has four such doublets.

The general way to understand so many SM doublets is that at the GUT scale MU , once the

GUT and the B − L symmetry are broken, one linear combination of the up-type doublets

and one of down-type ones remain almost massless whereas the remaining ones acquire GUT

scale masses just like the color triplet and other non-MSSM multiplets. The electroweak

symmetry is broken after the light MSSM doublets (to be called Hu,d) acquire vacuum

expectation values (vevs) and they then generate the fermion masses. The resulting mass

formulae for different fermion masses are given by:

Yu = h + r2f + r3h
′, (2)

Yd = r1(h+ f + h′) ,

Ye = r1(h− 3f + ceh
′) ,

YνD = h− 3r2f + cνh
′,

where Ya are mass matrices divided by the electro-weak vev vwk and ri and ce,ν are the

mixing parameters which relate the Hu,d to the doublets in the various GUT multiplets.

More precisely, the matrices h, f and h′ in Ya are multiplied by the Higgs mixings. The

precise definitions of the couplings and the Higgs mixings are given in ref.[7]. When H ′ is

adopted for the h′ coupling, ce = 1 and cν = r3. In generic SO(10) models of this type, the

neutrino mass formula has a type I [9] and a type II [10] contributions:

Mν = fvL −MD

1

fvR
M t

D , (3)

where vL is the vev of the B − L = 2 triplet in the 126 Higgs field and is given by vL ≃
λµv2

wk

M2

∆L

. Note that in general, the two contributions to neutrino mass depend on two different

parameters and it is easy to have symmetry breaking pattern in SO(10) [11] where the first
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contribution (the type II term) dominates over the type I term. The neutrino mass formula

then becomes

Mν = fvL. (4)

Note that f is the same coupling matrix that appears in the charged fermion masses in

Eq. (2), up to factors from the Higgs mixings and the Clebsch-Gordan coefficients. The

equations (2) and (4) are the key equations in our unified approach to address the flavor

problem.

The main hypothesis of our approach is that the fermion mass formula of Eq. (2) are

dominated by the matrix h with the contributions of f and h′ being small perturbations.

In the limit of f, h′ → 0, the quark and lepton mixings vanish as do the neutrino masses.

We will show below that this simple hypothesis combined with Eq. (4) can simultaneously

explain large lepton mixings while keeping the quark mixings being proportional to |f |/|h|
and hence small. We will subsequently assume that the matrix h has rank one in which case

the mass hierarchy can also be explained in a natural manner.

III. EXPLAINING QUARK-LEPTON FLAVOR HIERARCHIES

The quark and lepton mixing matrices are given by the product of diagonalizing uni-

tary matrices for quark and lepton mass matrices as follows: denoting the diagonaliz-

ing matrices of Mu, Md by Vu and Vd respectively (e.g., VuMuM
†
uV

†
u = diag.(m2

u, m
2

c , m
2

t )

and similarly for the down quark mass matrix ), the CKM (Cabibbo-Kobayashi-Maskawa)

quark mixing matrix is given as VCKM = VuV
†
d . The PMNS (Pontecorvo-Maki-Nakagawa-

Sakata) lepton mixing matrix is given as UPMNS = (VeV
†
ν )

∗ in the similar notation (e.g.,

VνMνV
t
ν = diag.(m1, m2, m3)).

In general, when two matrices with random O(1) elements are considered, the mixing

angles of the relative diagonalizing unitary matrices are all O(1) in radian, while the eigen-

values can have a hierarchy of O(0.1). In such an anarchical scenario, the neutrino masses

and mixings can be explained (except for the CHOOZ bound of 13 neutrino mixing): the

neutrino mixings are generically O(1) and there is a little hierarchy for the neutrino mass

squared difference ratio ∆m2

12
/∆m2

23
[12]. On the other hand, since the quark mixings are all

smaller than O(1) and the masses of quarks and charged leptons are very much hierarchical,

anarchic mass matrices in general provide no explanation of these observations. Besides, it

appears that the mass ratios and CKM mixings have several correlations among them. It is

therefore to be expected that the quark and lepton matrices instead of being independent

anarchic matrices must have some relations among them and an underlying theory leading
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to these relations. In this paper we find that SO(10) with type II seesaw could be such a

theory.

When the fermion masses are given by the Eqs. (2) and (4), several possible outcomes are

obtained by simple assumptions. To understand these possible outcomes from the Eqs.(2)

and (4), let us first ignore h′. We then have the following possibilities:

Assumption 1:

Take h, f are general rank 3 matrices, and f is small. This is the case analyzed to fit

observed experimental data and to obtain predictions from the minimality of the number of

parameters in various papers [4]. Here, we list the properties resulting from the smallness

of f without resorting to any numerical fit.

• The CKM mixings are small, due to the fact that there is an approximate up-down

symmetry and VCKM = VuV
†
d [13].

• Bottom-tau unification up to O(f/h).

• The 3 neutrino mixings are generically of O(1) since h and f are unrelated matrices.

The type II seesaw dominance of the neutrino mass is crucial for the generic largeness

of the neutrino mixings.

Thus it is interesting that without any special assumption, the gross features of fermion

mixings can be reproduced. This does not, however, throw any light on the mass hierarchies

among quarks and leptons, though one can fit the experimental results by the choices of

parameters (even in the type I seesaw) [4, 14, 15]. Since we use the experimental data as

an input, these scenarios do not provide a fundamental understanding of either the mass

hierarchy for quarks and charged leptons, or why the 13 neutrino mixing (Ue3) is less than

O(1). Similar situation holds for models where h′ is added [16, 17].

Assumption 2:

Let us next consider the specific case when h is a rank 1 matrix [7], and f is a rank 3

matrix with eigenvalues of f being hierarchical (f1, f2 ≪ f3) and small compared to the

elements of h. As we noted in ref.[7], this choice helps to suppress proton decay in SUSY

SO(10) models without invoking huge cancellations among the colored Higgsino exchange

amplitudes. In this case we will show in the next two subsections that the following results

follow:

1. CKM mixings are small.

2. Approximate bottom-tau unification occurs.
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3.
mc

mt

:
ms

mb

:
mµ

mτ

≃ r2 : 1 : −3.

4. The quark mixing are related as Vcb ∼ ms/mb + eiσmc/mt (where σ is a phase) and

Vub ∼ Vcbf2/f3.

5. Atmospheric and solar neutrino mixings are generically large, but 13 mixing is ∼ f2/f3.

All these predictions are in qualitative agreement with observations. The advantage of

the rank one assumption is that it naturally explains the mass hierarchies among quarks and

leptons in addition to large lepton mixings. We emphasize that these features are obtained

from the rank 1 assumption above without using any numerical inputs, and our claim here

is not based on the scenario of the numerical predictions from a fit in which the minimality

of parameters plays a key role.

Before we do a full demonstration of these results in the context of a three generation

model, let us illustrate the first four points in the context of a two generation model.

A. A two generation illustration

In this subsection, we apply our rank one hypothesis to the second and the third gen-

eration. We will confirm the results 1-4 mentioned above. The starting point is the mass

relation from Eqs. (2) and (4) where we ignore the h′ contribution . Using our assumption,

we have h = ( sin θ cos θ )t ( sin θ cos θ )h3 and f = diag(f2, f3) (without loss of generality,

we can parameterize f to be diagonal). The parameter θ is of O(1) in general. We now have

ten parameters (θ, h3 and r1 as real parameters, f2, f3, and r2 as complex parameters, and

vL for neutrino mass scale) describing ten observables of all lepton and quark mixings and

masses.

One can easily obtain r1mt ≃ mb tanβ ≃ mτ tan β at the leading order neglecting

O(f3/h3) correction, where tan β is a ratio of vevs of Hu and Hd. Therefore, r1 corresponds

to the freedom of tanβ, r1 ∼ tanβ/50.

When f2 ≪ f3 ≪ h3, we obtain

mc

mt

≃ r2
f3
h3

sin2 θ,
ms

mb

≃ f3
h3

sin2 θ,
mµ

mτ

≃ −3
f3
h3

sin2 θ. (5)

Because mc/mt ≪ ms/mb, r2 is small, i.e. r2 ≃ mc/mt/(ms/mb).

To proceed further, we first diagonalize the charged fermion mass matrices to zeroth order

in f2, f3 → 0. The matrix diagonalizing this is given by

U0 =

(

cos θ − sin θ

sin θ cos θ

)

, (6)
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since U0(sin θ cos θ)t = (0 1)t. Let us now see how the small quark mixings arise despite

large mixings in U0. Because U0YdU
t
0
has a small off-diagonal element, r1(f2− f3) sin θ cos θ,

the down-type quark mass matrix is diagonalized by Vd = ṼdU0, where Ṽd is close to unit

matrix whose off-diagonal element is ≃ f3/h3 sin θ cos θ. The up-type quark mass matrix is

diagonalized by Vu = ṼuU0, where the off-diagonal element of Ṽu is ≃ r2f3/h3 sin θ cos θ. The

quark mixing matrix is then given by VCKM = VuV
†
d = ṼuṼ

†
d , in this product U0 cancels out

leaving small mixings between the two generations i.e. small Vcb ≃ (1−r2)f3/h3 sin θ cos θ ≃
(ms/mb + eiσmc/mt) cot θ, where σ is a phase of r2.

Coming now to lepton mixings, suppose that the charged lepton mass matrix is diag-

onalized by Vℓ, then it can be written as Vℓ = ṼeU0, where Ṽe is close to a unit matrix

similarly to the quark sector, and is roughly equal to V †
CKM

. Since the neutrino mass matrix

is already diagonal as a parameterization, the PMNS matrix is given by the charged lepton

mixings so that UPMNS = V ∗
ℓ ≃ V t

CKM
U0

L. This leads to a large lepton mixing as desired.

In the two generation case, θ describes approximately (up to small corrections of order Vcb)

the “atmospheric mixing angle”. Since this was an input into our rank one ansatz, we can

choose to be large to explain the observations.

If f2, f3 and r2 are assumed to be real, there are six real parameters in this model. In this

case, mb, ms, θatm and m2/m3 can be written as a function of mc, mt, mµ, mτ and Vcb for

example. Even if f2, f3 and r2 are all complex, we have the following approximate relation

at the grand unified scale:

ms

mb

= Vcb tan θ

(

1 +O

(

f3
h3

))

, (7)

mb = mτ

(

1 +O

(

f3
h3

))

,

ms = −1

3
mµ

(

1 +O

(

f3
h3

))

.

Since the relations are satisfied under the assumption of approximate rank 1 property ir-

respective of the counting of freedom, they are stable even in the case of three generation

model. Indeed, the predictivity from the minimality of the parameter is related to the

O(f3/h3) corrections, and the minimality does not play a crucial role in the approximate

relations from the rank 1 assumption.

It is known that there is a solution that the large atmospheric mixing is obtained even if

the smallness of f is not assumed a priori. In the scenario, the b-τ mass convergence as well

as the other experimental inputs predict the neutrino mixing as an output [4]. Our main

goal in this section is not to give numerical predictions but rather to show how one can get

qualitatively expected hierarchical pattern for masses and mixings. Later on we of course

study the detailed numerical predictions. As it turns out there is a fine-tuned solution to
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fit the experimental data even if f3 is comparable to h3. however such a fine-tuned solution

is sensitive to the numerical inputs, and therefore the numerical predictions in this case

may be unstable under a possible higher order correction. In our case where the quark and

lepton mass hierarchy is predicted by the rank 1 assumption, they are stable under radiative

corrections.

While the qualitative predictions are in the expected range, we note that the approximate

relation tan θatm ≃ (ms/mb)/Vcb is not very good agreement with the current observation,

and small h′ will be invoked to obtain the best fit of the experimental data. We emphasize

that our final solutions do not use any fine tuned cancellations, and thus are stable even if

we add small corrections to fit the numerical experimental data.

B. Three generation case

The fermion mass equations for this case are those in Eq. (2) with all coupling matrices

being 3× 3. The assumption that h has rank one means that we can write it as

h =













c

b

a













(

c b a

)

, (8)

f = diag(f1, f2, f3) (f1,2 ≪ f3). (9)

Again, we can parameterize f to be diagonal and a, b, c to be real without loss of generality.

At first, we ignore h′. In order to analyze the detailed consequences of this assumption, we

go to the basis where h is diagonal. This is achieved by the matrix:

U0 =













cos θs sin θs 0

− cos θa sin θs cos θa cos θs − sin θa

− sin θa sin θs sin θa cos θs cos θa













, (10)

where tan θs = −c/b and tan θa =
√
b2 + c2/a with

U0hU
t
0
= diag(0, 0, h3), (11)

where h3 = a2+b2+c2. It is interesting to note that in the diagonalization matrix there is an

ambiguity resulting from the residual SU(2) flavor symmetry in h (i.e. one of three mixing

angles is not fixed at this stage). We choose the unitary matrix U0 to be an approximate

leading order diagonalization matrix of Yu, Yd, and Ye as in the previous subsection (Vu =

ṼuU0, Vd = ṼdU0, and Vℓ = ṼeU0 where Ṽu, Ṽd, Ṽe are close to a unit matrix). Then, once
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the f contribution is included, the afore mentioned SU(2) flavor symmetry is broken and

the ambiguity in mixing angles alluded to above is removed. We wish to note that in our

original parameterization of U0, we chose the 13 element to be zero since even after including

the f -contribution, the 13 element goes to zero in the limit f1,2/f3 → 0 (which is the limit

where Yu,d,e is rank 2). We have not used prejudices from neutrino experiment.

By the same argument as in the case of two generations, U0 is cancelled out in the CKM

mixing matrix and the quark mixings are small. The PMNS matrix is given by

UPMNS = Ṽ ∗
e U0, (12)

and since the off-diagonal elements of Ṽℓ are small (being related to quark mixings), ne-

glecting the 23 and 13 quark mixings, we get for the solar and atmospheric mixing angles

[5]

θatm ≃ θa, (13)

θ⊙ ≃ θs ± θ13 cot θa cosα,

where α is defined as the diagonal phase matrix diag(1, eiα, eiβ) needed to diagonalize the

charged lepton mass matrix [18].

We also get a formula for Ue3 as follows:

Ue3 = (Ṽe)12 sin θa. (14)

To proceed with the rest of the masses and mixings, let us define the matrices in the U0

rotation: Ỹa ≡ U0YaU
t
0
, f̃ ≡ U0fU

t
0
, and so on. In this notation, Ṽa is a diagonalization

matrix of Ỹa. Because f̃23 = (f2 − f3) sin θa cos θa and f̃13 = (f2 − f1) sin θa sin θs cos θs, one

can obtain

Vub ≃ Vcb
f2 − f1
f3

sin θs cos θs
cos θa

. (15)

Neglecting O(f3/h3) and O(f1,2/h3) corrections, Ṽa can be approximately as:

V̌ =













cos θ̌ − sin θ̌ 0

sin θ̌ cos θ̌ 0

0 0 1













, (16)

where

sin θ̌ ≃ f2 − f1
f3

cos θa sin θs cos θs
sin2 θa

, (17)

and thus

Ue3 ≃ f2 − f1
f3

cot θa sin θs cos θs. (18)
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Thus we have obtained all the features listed before. Due to the generic largeness of the

relative mixing angles of the unrelated matrices, solar and atmospheric neutrino mixing

angles are of O(1) generically. On the other hand, 13 mixing is not in the category of the

generic largeness since it is related to the ratio of eigenvalues of f . The eigenvalue ratio is

also related to Vub/Vcb implying that the 13 mixing angle has to be small in our approach. It

is important to note that we do not assume a particular flavor texture such like hierarchical

pattern in one matrix to obtain the feature. The key property to obtain the features for the

neutrino mixings is that the correction to the rank one charged lepton mass matrix and the

type II seesaw term are unified (or more roughly, simultaneously diagonalized), as a result

of SO(10) unification.

C. Realistic model with h′

The discussion above gives the qualitative consequences of the rank one property, and the

experimental inputs are not used to obtain the features. The discussion below will address

the issue of the experimental data for the first generation. Actually, we have not listed the

first generation masses and Vus before. In fact, if h′ = 0, one obtains the following relation

among the fermion masses:

mu

mt

:
md

mb

:
me

mτ

≃ r2(1 + r2X) : 1 +X : −3(1− 3X), (19)

where X = f1f2f3/(a
2f1f2+b

2f1f3+c
2f2f3). When one fits down quark and electron masses

(e.g., X = 0.35), the up quark mass is clearly too large since r2 ≃ mc/mt/(ms/mb) ∼ 0.1.

As a result, one of the first generation masses cannot be fitted. Besides, since V̌ in Eq.(16)

is common for up- and down-type quarks, Vus becomes too small compared to observations,

since Vus ≃ VcbVub. Therefore, one needs non-vanishing contribution from h′ to obtain

realistic masses for the first generation and Vus under the rank 1 assumption.

As is well-known, the empirical relation Vus ≃
√

md/ms is obtained when (Ỹd)11 → 0 and

(Ỹd)12 ≃ (Ỹd)21. Therefore we choose f̃11 → 0. When (Ỹd)11, (Ỹe)11 → 0 is assumed, the

choice of (Ỹe)12(Ỹe)21 ∼ (Ỹd)12(Ỹd)21 satisfies the Georgi-Jarskog (GJ) relation (memµmτ ∼
mdmsmb) for the down-type quarks and charged lepton masses. The up quark mass can be

fit by using the freedom of r3. As a result, we have the following two solutions typically to

fit the first generation masses and Vus in a simple manner.

Case A: f̃11 ≃ 0 and |f̃12+ h̃′
12
| ≃ |− 3f̃12 + h̃′

12
|. The smallness of up quark mass is realized

by a cancellation in (Ỹu)12 = r2f̃12 + r3h̃
′
12
.

In this case, h′ has to be symmetric which we can obtain by employing an extra 10 Higgs
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field. For example, h̃′
12

≃ f̃12 is the simplest solution, giving

Ue3 ≃ 1

3
Vus sin θa, (20)

Vus ≃ 2 sin θ̌ ≃ 2
f2
f3

cos θa
sin2 θa

tan θs. (21)

where θ̌ is given in Eq.(17) and used a relation f1 ≃ −f2 tan2 θs from f̃11 ≃ 0. Assuming that

the corrections from the other elements of h̃′ (e.g., h̃′
13,23) are small, we have an approximate

relation
Vub
Vcb

∼ 1

2
Vus tan

2 θa, (22)

which is in good agreement with the experiment.

Case B: In this case we have f̃11f̃22− f̃ 2
12 ≃ 0. Then, 11 and 12 elements of (V̌ f̃ V̌ t) are zero,

where V̌ in Eq.(16) is an approximate diagonalization matrix in the limit h′ → 0. The 12

element of V̌ h̃′V̌ t produces the Cabibbo angle. The GJ relation is manifest when |ce| = 1 and

(V̌ h̃′V̌ t)11 ≃ 0. The up quark mass is fitted by the smallness of r3, mu/mc ≃ r2
3
/r2md/ms.

In this case, h′ can be either symmetric or anti-symmetric. Since 11 element vanishes

automatically, anti-symmetric coupling from 120 Higgs field is a better choice. As is noted,

V̌ contributes to Ue3, but it does not contribute to the Cabibbo angle. As a result, we obtain

from Eq.(14)

|Ue3| ≃ sin θa| sin θ̌ + eiγce
1

3
Vus| ≃

∣

∣

∣

∣

∣

f2
f3

tan θs cot θa + eiγce
1

3
Vus sin θa

∣

∣

∣

∣

∣

, (23)

where γ is a relative phase between f̃12 and h̃′
12

roughly, and we have used a relation f1 ≃
−f2 tan2 θs. Since Vus is generated purely from h′, it is not directly correlated to Vub/Vcb

contrary to the case A.

As we have noted, to fit Vcb, ms/mb and θatm very well, one needs a correction in h̃′
23
.

However, the correction does not affect the approximate expressions for Ue3 very much.

It is interesting that the Ue3 is related to the mass ratio of neutrino in both cases. Since

the GJ relation and the empirical relation of Vus are not exact relations, there can be a shift

from them in a numerical fit analysis.

Here we assumed (Ỹa)11 → 0 to satisfy the GJ relation and the empirical relation of Vus

in a simple manner. When one introduces other parameters especially for symmetric h′,

there will be an accidental fine-tuned solution for the relations in a general fit for (Ỹa)11 6= 0.

Actually, when h′ is symmetric (ce = 1) and r3 = 1, it results in a minimal model in which

only one 10 and 126 Higgs fields couple to fermions with h being rank 3. In the minimal

model for the fermion sector, it is known that there is a fine-tuned solution to fit fermion
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masses and mixings [15] unless the minimality of the Higgs potential is taken into account.

In this case, when the first generation masses and Vus are tuned, there is no freedom to

adjust Ue3 and thus the approximate relation in the previous subsection holds, Ue3 ∼ f2/f3.

When r3 6= 1 (but r3 ≃ 1), Ue3 can be tuned to be any value (including zero) since first

generation masses and Vus can be fitted even if (Ỹe)12 = 0. (When h is rank 1 and h′ is

anti-symmetric, there is no such fine-tuned solution. When h is rank 3, the fine-tuning fit

for Ue3 = 0 is allowed [16].) Therefore, the assumption (Ỹa)11 → 0 to satisfy GJ relation in a

simple manner is crucial to keep the Ue3 prediction. Actually, when (Ỹa)11 → 0 is assumed,

the fine-tune solutions are removed, and the Ue3 is predicted as we have noted, irrespective

of the number of parameters. We also note that the assumption (Ỹa)11 → 0 is preferable to

suppress nucleon decay amplitudes naturally.

The case with the assumption that h (rank 1) and f are real and anti-symmetric h′ is

pure imaginary (in which case, the charged fermion mass matrices are hermitian) is in fact

the model discussed in [7]. For this case, cancellation cannot happen between f and h′ and

thus the numerical fit does not shift very much from the above expression. In the numerical

fit, it predicts |Ue3| = 0.08−0.12 in the case where |ce| = 1 (and the GJ relation is manifest).

Under the hermiticity assumption, one obtains eiγ = ±i and it is consistent with the above

expression. In this case, since (Ỹe)22 is real, the PMNS phase is roughly same as the phase

in the expression in Eq.(23) and thus

tan δPMNS ≃ 1

3

ceVus

sin θ̌
, (24)

and we obtain δPMNS ≃ ±30o or 180± 30o using the experimental inputs.

For the case of |ce| 6= 1, one can also fit the experimental data and the prediction is |Ue3| =
0.05−0.14. Since the cancellation is not allowed between f̃13 and h̃

′
13
, the experimental data

of Vub cuts the upper region of experimentally allowed mass squared ratio difference, and

then gives an upper bound of Ue3.

IV. TRI-BIMAXIMAL ANSATZ

In the previous section, we incorporated large lepton mixings but their values were inputs

into the theory. In this section, we consider special cases where the dominant part of the

lepton mixing is in the tri-bimaximal form [19]. This would require special form for the rank

one matrix h. We envisage that the rank one form for h as well as the matrix forms for f

and h′ come from some vacuum alignment of flavon fields, e.g., [20, 21].

In the triplet flavon models, the 3 × 3 matrix can be expanded by the tensor products

of the flavon fields when there are three independent flavons. The three flavon fields can be

12



expressed (without loss of generality, by making unitary transformations) as

φ1 = (0, 0, 1), φ2 = (0, a, b), φ3 = (c, d, e). (25)

In general, there is no reason for the flavon vevs to be hierarchical, and the large neutrino

mixings can originate from a ∼ b, c ∼ d ∼ e [22]. The experimental result from the neutrino

oscillation seems to imply a special alignment of flavon vevs rather than the generic largeness,

namely [20],

φ1 = (0, 0, 1), φ2 = (0,−1, 1)/
√
2, φ3 = (1, 1, 1)/

√
3. (26)

The vacuum alignment can be obtained by imposing a discrete flavor symmetry [21], leading

to tri-bimaximal neutrino mixings.

It is worth pointing out at the beginning that the aligned flavon fields can be written in

several ways by choice of coordinates (or by making unitary transformations) and the final

results are independent of the coordinate choice.

It is interesting to note that the aligned flavon vevs correspond to a link of a hexahedron,

a diagonal line of a lateral surface, a diagonal line of a regular hexahedron, respectively. The

interpretation becomes clear when the flavon fields are expanded in terms of the following

orthogonal axes of coordinates (called hexahedral coordinate)

x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1), (27)

which correspond to the three lateral links of the regular hexahedron. The hexahedral

coordinate is convenient to describe the Z4 rotation around the surface-diagonal axes of

the hexahedron. In fact, the regular hexahedron has different coordinates to describe the

symmetry of the shape. One can consider a coordinate system which proves convenient to

describe the Z3 rotation around the vertex-diagonal axes of the hexahedron,

x′
1
= (2,−1,−1)/

√
6, x′

2
= (1, 1, 1)/

√
3, x′

3
= (0,−1, 1)/

√
2. (28)

The axes of the coordinates x′1 and x
′
3 are on the regular triangle which is formed by three of

the hexahedron’s vertices, and x′
2
is perpendicular to the triangle. We call this tetrahedral

coordinate.

The unitary matrix for the coordinate transformation from hexahedral (unprimed) to

tetrahedral (primed) coordinate is the tri-bimaximal (TB) matrix i.e. x′ = xU t
TB

, where

UTB =













√

2

3

√

1

3
0

−
√

1

6

√

1

3
−
√

1

2

−
√

1

6

√

1

3

√

1

2













. (29)

Therefore, in general (irrespective of the rank one assumption), if the charged-lepton mass

matrix is (nearly) diagonal in the hexahedral coordinate and the neutrino mass matrix is

13



(nearly) diagonal in the tetrahedral coordinate, then the neutrino mixing matrix is (nearly)

tri-bimaximal and given by:

UMNSP = VeUTBV
†
ν , (30)

where Ve is a diagonalizing matrix of Ye in the hexahedral coordinate, and Vν is a diagonal-

izing matrix of Mν in the tetrahedral coordinate.

Suppose that the vacuum alignment in Eq.(26) is given in the hexahedral coordinate as

we have noted. Then, those flavons in the tetrahedral coordinate are given as (φ′
i = φiUTB)

φ′
1
= (−1,

√
2,
√
3)/

√
6, φ′

2
= (0, 0, 1), φ′

3
= (0, 1, 0). (31)

Therefore, from the discussion in the previous section, one can easily check that the nearly

tri-bimaximal neutrino mixings are obtained when h is rank one formed by φ1 (irrespective

of the choice of the coordinate), and f is formed by φ2 and φ3. We define φ4 which is

obtained an outer product of φ2 and φ3, i.e. φ4 = φ3 × φ2. In the tetrahedral coordinate,

φ′
4
= (1, 0, 0).

As we have mentioned, the Yukawa matrices can be expressed in terms of the tensor

products of the flavon fields. The symmetric matrices can be formed by six bases. Since we

set 11 element to be zero in the hexahedral coordinate, we define the following matrices as

the bases to form the linear space of symmetric matrices:

Y1 = φt
1φ1 =













0 0 0

0 0 0

0 0 1













, (32)

Y2 = 2φt
2
φ2 =













0 0 0

0 1 −1

0 −1 1













, (33)

Y3 = 2(φt
3
φ3 −

1

2
φt
4
φ4) =













0 1 1

1 1

2

1

2

1 1

2

1

2













, (34)

Y4 =
√
6(φt

2
φ3 + φt

3
φ2) =













0 −1 1

−1 −2 0

1 0 2













, (35)

Y5 =
√
3(φt

2φ4 + φt
4φ2) =













0 −1 1

−1 1 0

1 0 −1













, (36)
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where the elements of the matrices are presented in the hexahedral coordinate.

In the following, we will consider two models: (I) Vν is a unit matrix (f is diagonal in

the tetrahedral coordinate), (II) Vν is close to a unit matrix.

A. Model I : Vν = 1

The Model I can have both case A and case B solutions as described in the previous

section. The case A solutions are, however, more natural in this model. In order to obtain

such a solution, we employ additional 10 Higgs to obtain a correction matrix h′, and h′ is a

symmetric matrix.

We arrange the h, f , h′ couplings as follows:

h = h3 Y1, (37)

f = h3 ǫ (Y2 + λ Y3), (38)

h′ = h3 ǫ λ ρ Y4 (or h3 ǫ λ ρ Y5). (39)

Then, since the ratio of eigenvalues of f is 1 : λ : −λ/2, we obtain ∆m2

sol
/∆m2

atm
= 3

4
λ2.

In the parameterization in the previous section, U0 in Eq.(10) is the tri-bimaximal matrix

because a : b : c =
√
3 :

√
2 : −1.

The fermion Yukawa matrices are

Yu = h+ r2f + r3h
′ (40)

= h3













0 ǫλ(r2 − r3ρ) ǫλ(r2 + r3ρ)

ǫλ(r2 − r3ρ) r2ǫ(1 +
λ
2
) + r3xǫλρ −ǫr2(1− λ

2
)

ǫλ(r2 + r3ρ) −ǫr2(1− λ
2
) 1 + r2ǫ(1 +

λ
2
)− r3xǫλρ













, (41)

Yd = r1(h+ f + h′) (42)

= r1h3













0 ǫλ(1− ρ) ǫλ(1 + ρ)

ǫλ(1− ρ) ǫ(1 + λ
2
) + xǫλρ −ǫ(1− λ

2
)

ǫλ(1 + ρ) −ǫ(1 − λ
2
) 1 + ǫ(1 + λ

2
)− xǫλρ













, (43)

Ye = r1(h− 3f + h′) (44)

= r1h3













0 ǫλ(−3− ρ) ǫλ(−3 + ρ)

ǫλ(−3− ρ) −3ǫ(1 + λ
2
) + xǫλρ 3ǫ(1− λ

2
)

ǫλ(−3 + ρ) 3ǫ(1− λ
2
) 1− 3ǫ(1 + λ

2
)− xǫλρ













, (45)

where x = −2 when h′ ∝ Y4, and x = 1 when h′ ∝ Y5.

For the numerical fits, the parameter ǫ is given by ǫ ∼ ms/mb ∼ Vcb, and the parameter

λ is given by λ(1− ρ) ∼ Vus.
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FIG. 1: Ue3 is shown as a function of ∆m2
sol
/∆m2

atm (left) and θs(right) for Model I.

When ρ ≃ −1, then Goergi-Jarskog relation is satisfied naturally. At that time, (Yd)13 ≃
0. This is interesting since the empirical relation |Vtd| ≃ VusVcb is satisfied simultaneously

when r2, r3 are small (up-type quark masses are more hierarchical rather than down-type

quark masses).

The parameter r2 is fixed as |r2| ∼ mc/mt/(ms/mb). The up quark mass can be made

small by a choice r3 ∼ r2/ρ.

Cabibbo angle, Ue3 and the ratio of mass squared differences ∆m2

sol/∆m
2

atm are all cor-

related by the parameter λ. The naive approximate relation is Ue3 ≃ Vus/(3
√
2) as we have

derived in the previous section.

In Fig. 1, we plot Ue3 as a function of the mass squared difference ratio. In the plot, we

fit me/mτ and mµ/mτ using ρ and ǫ (which are assumed to be real in the plot). Then, Ue3

is calculated as a function of λ. (The mixing angles do not depend on h3). We note that

a correction from h′ is needed to fit Vcb, e.g., ∆h
′ ∝ φt

1
φ2 + φt

2
φ1. As we have mentioned,

such correction do not modify the Ue3 very much. In Fig. 1, we also show the plot of Ue3 as

a function of θsol. Using the experimental constraint on ∆m2

sol
/∆m2

atm
and the other input

from quark masses and mixings, we find that Ue3 is predicted to be 0.07-0.08. We note that

the smaller side of experimental range of ∆m2

sol
/∆m2

atm
is preferred from the numerical fit,

which obeys from the naive relation λ(1− ρ) ∼ Vus. The solar mixing angle θsol is found to

be ∼ 32o from the plot which is obeyed by the approximation Eq.(13) when the PMNS phase

is 0 (or π), which is resulting from the assumption where ρ and ǫ are real. The atmospheric

mixing angle θatm is 45o up to ±2-3o correction from Vcb for Model I irrespective of case A

or case B solutions.

The current allowed range for the neutrino parameters at 2σ level are as follows [23]:

θatm = 37o − 51o, θsol = 31.8o − 36.4o and ∆m2

sol
/∆m2

atm
= 0.027− 0.038.
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B. Model II: Vν 6= 1

The Model II can have both case A and case B solutions as well. In this model, the case

B solutions are more natural. It is possible that the f coupling is not completely diagonal

in the tetrahedral coordinate. Using the available freedom, we choose the 12 element of f

in the hexahedral coordinate to obtain the case B solution. Since the 12 elements of Y3+Y4

and Y3 + Y5 are zero, one can consider the choice:

h = h3 Y1, (46)

f = h3 ǫ (Y2 + λ (Y3 + Y4)) , (47)

h′ = h3 ǫ λ ρ Y4. (48)

The matrix Y4 can be replaced with Y5. One can also choose h′ to be antisymmetric, e.g.,

h′ ∝ φt
2φ3 − φt

3φ2.

In the tetrahedral coordinate, the f coupling is written when f ∝ Y2 + λ(Y3 + Y4) (case

B1) as

f tetra ∝













−1

2
λ 0 0

0 λ
√

3

2
λ

0
√

3

2
λ 1













, (49)

and if the notation in the previous section is used, we obtain a : b : c = (
√
3 cosψ +√

2 sinψ) : (
√
2 cosψ−

√
3 sinψ) : −1 where tan 2ψ =

√
6λ/(1−λ). The mass squared ratio

is ∆m2

sol/∆m
2

atm = 3/4λ2(1− 4λ+O(λ2)). When we use f ∝ Y2 + λ(Y3 + Y5) (case B2),

f tetra ∝













−1

2
λ 0

√
3

2
λ

0 λ 0
√
3

2
λ 0 1













, (50)

we obtain a : b : c = (
√
3 cosψ′ − sinψ′) :

√
2 : (− cosψ′ −

√
3 sinψ′) where tan 2ψ′ =√

3λ/(1 + λ/2). The mass squared ratio is ∆m2
sol/∆m

2
atm = 3/4λ2(1− λ+O(λ2)).

We note that if there is a O(λ) correction in the 12 element in the tetrahedral coordinate,

it modifies the θs angle largely, and it separates from the nearly tri-bimaximal mixing, and

thus we do not use the choice.

As we have obtained in the previous section, Ue3 prediction is

|Ue3| ∼
∣

∣

∣

∣

∣

∣

√

√

√

√

1

2

∆m2
sol

∆m2
atm

+ eiγ
1

3
√
2
Vus

∣

∣

∣

∣

∣

∣

. (51)

Clearly, if the parameters ρ, λ, ǫ are all real, then, γ = 0 or π, and the maximal and minimal

values of Ue3 are obtained. At that time, there is no phase in the PMNS mixing matrix.

(The Kobayashi-Maskawa phase can be obtained from a phase of r2 and/or r3.)
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FIG. 3: θatm is shown as a function of ∆m2
sol
/∆m2

atm (left) and sin θ13 is shown as a function of

θatm for Model II-case B2 (described in the text).

In Fig.2 (case B1, Eq.(49)) and Fig.3 (case B2, Eq.(50)), we plot Ue3 when ρ λ, ǫ are real

to find the lower and upper limits. Due to the off-diagonal elements of f in the tetrahedral

coordinate, the atmospheric angle shifts from 45o, and the shift is correlated to Ue3, unlike

the case of Model I.

In case B1, using the experimental constraint on ∆m2

sol
/∆m2

atm
, we find that Ue3 is

predicted to be 0.05-0.08. This solution corresponds to the sign choice eiγ = −1 in Eq.(51).

We also plot atmospheric mixing angle in Fig.2 (right). It is interesting to note that for the

case B1, λ should be negative for |λ| ∼ 0.1 − 0.3 to fit mass squared difference ratio since

∆m2

sol
/∆m2

atm
= 3/4λ2(1− 4λ+O(λ2)). As a result, the direction of the shift is determined

to fit experimental values, i.e. θatm > 45o.
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atm for Model II-case B1 (left), case B2 (right).

In case B2, the mass squared ratio can be fitted for both signatures of λ (we find two

branches in both graphs in Fig.3). The plot in Fig.3 is shown constraining tan2 θsol > 0.35,

and one can find that ∆m2

sol
/∆m2

atm
becomes too small for one of the branch to fit solar

mixing angle, and θatm > 45o is favored in this case as well. Larger Ue3 values (> 0.15) is

preferred once we include the experimental limit on ∆m2

sol
/∆m2

atm
. The solution corresponds

to the sign choice eiγ = +1 in Eq.(51).

As we discussed above that both case A and case B solutions can be obtained in Models

I and II. The interesting question is how can we distinguish these two models. For example,

the predictions of Ue3 (as shown in Figs 1,2 and 3) distinguishes between the cases A and B.

Actually, if Ue3 is just below the current CHOOZ bound, the case B solution with eiγ = 1

is preferred. Since the case A is a more natural solution for Model I and case B is a more

natural solution for Model II, one may weakly conclude that this prediction distinguishes

between Models I and II. But a stronger way to distinguish these models would be to use

the predictions of θatm. In Model I, θatm is fixed to be 45o up to ±2−3o corrections from Vcb,

where as Model II prefers θatm > 45o (Figs 2 and 3) in the experimentally allowed region.

This difference is directly due to the rigorousness of µ− τ symmetry in the f coupling from

the tri-bimaximal ansatz (Vν = 1 (Model I)) where the f coupling has Z2 × Z2 symmetry.

In Model I, the deviation from the maximal angle is related to Vcb, while in Model II, the

deviation is related to Ue3. The current best fit value of the atmospheric mixing angle

(θbest fitatm = 43o [23]) is nearly the maximal mixing, and it implies the Model I. However, the

error is still large. The accurate deviation from the maximal angle will be obtained in future

three generation fit of the neutrino oscillations [24], and it will give us an important test for

the tri-bimaximal ansatz.

The predictions for θsol are similar with a small margin in these models, since the devia-
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tions from the tri-bimaximal angle (θs = 35.3o) are related to Ue3 in all cases. In Model I,

θsol is predicted to be ∼ 32o, where as, in Model II (Fig. 4), θsol is predicted to be ∼ 34o

(case B1), ∼ 33o (case B2), once we include all the experimental bounds. The PMNS phase

is assumed to be 0 or π in the plot, and the general phase fit will change the predictions of

the angle, especially for Model II.

V. DERIVATION OF RANK ONE ANSATZ

The rank one Yukawa coupling with 10 Higgs field generates the features of flavor hi-

erarchy, and rank 1 matrices can often appear in various ways (flavor symmetry, discrete

symmetry, and string models). In this section, we give an SO(10) model, where the rank

one ansatz used in our discussion of flavor emerges from a discrete symmetry.

When the direct couplings of chiral fermions with a Higgs field are forbidden by a sym-

metry, and the effective Yukawa couplings are generated by propagating vector-like matter

fields, the rank of the effective Yukawa matrix depends on the number of the vector-like

fields. Actually, when there are only one pair of vector-like matter fields as a flavor singlet,

the effective Yukawa matrix is rank 1.

The model we assume has one extra vector-like pair of matter fields with mass slightly

above the GUT scale (denoted by ψV ≡ 16V ⊕ ψ̄V ≡ 16V ) and three gauge singlet fields

Ya. We add a Z4 discrete symmetry to the model under which the fields ψa → iψa, and

Ya → −iYa. The 10-Higgs field H is invariant under this symmetry. The gauge invariant

Yukawa superpotential under this assumption is given by

W = ψVHλψV +MV ψV ψ̄V + ψ̄V

∑

a

Yaψa. (52)

When we give vevs 〈Ya〉 6= 0, ψV and ψa are mixed. The heavy vector-like fields, ψ̄V and a

linear combination of ψV and ψa (i.e. MV ψV +
∑

a Yaψa), and the effective operator below

its scale and at the GUT scale is given by:

Leff =
λ

M2
V +

∑

a Y
2
a

[

∑

a

Yaψa

]

H

[

∑

b

Ybψb

]

. (53)

This gives rise to a rank one h coupling. We note that it does not contradict the O(1) top

Yukawa coupling, when M2

V ∼ ∑

a Y
2

a (or M2

V <
∑

a Y
2

a ).

If we let the 126 Higgs field transform like −1 under Z4, it can induce the f coupling

with rank three.

Another way to get mass matrix patterns of types in sec. IV is to assume that there

are three component flavon fields (denoted by the dimensionless field φi ≡ Φ

M
) which are

representations of some internal flavor group and constrain their couplings to fermions by
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other symmetries. As an example, let us choose four flavon fields which transform as follows

under a Z4 × Z2 × Z2 group: φ1(−i,+,+); φ2(1,−,+); φ3(1,+,−); φ4(1,−,−); ψ(i,+,+);

∆̄(−1,+,+); H(1,+,+); H ′(−1,−,−). The invariant Yukawa coupling under these sym-

metries is:

LY = φt
1
φ1ψψH + φt

2
φ2ψψ∆̄ + φt

3
φ3ψψ∆̄ + φt

4
φ4ψψ∆̄ + φt

2
φ3ψψH

′ + h.c. (54)

In general the vevs of the φi fields align as in Eq. (25) which can then lead to our type of rank

one models. With suitable discrete symmetries, e.g., ∆(27) [21], the flavon vevs can align

as in Eq. (26), leading to models of the type considered here (Model I). When Z2 group is

chosen instead of Z2 ×Z2 group such that φ1(+); φ2(−); φ3(−); φ4(+); ψ(+); ∆̄(+); H(+);

H ′(+), φt
2
φ3 term is allowed in the ψψ∆̄ coupling and Model II (B1) can be considered.

More details on the flavon vev alignment with discrete symmetries and implications for rank

one models is currently under investigation.

VI. CONCLUSION

In conclusion, we have shown how a simple ansatz for the dominant Yukawa coupling

matrix in renormalizable SO(10) models can lead to a unified understanding of the diverse

quark and lepton flavor hierarchies. We suggest this as a possible way to address the

challenge of a unified description of quark-lepton flavor. We have not attempted in this note

to derive our ansatz from any specific discrete symmetries, although we show a guideline to

obtain a rank one form from a higher than GUT scale theory. This may be the next step

towards a complete theory of flavor.

Within our rank one hypothesis, we have considered two classes of models which are nearly

tri-bimaximal and point out that both a measurement of θ13 and the atmospheric mixing

angle θatm can distinguish between these models. In these models, the natural minimal value

of θ13 is around 0.05, whereas the maximal value can be larger than 0.15. This range of θ13

can be probed in the upcoming experiments. The current estimate of θ13 using the 1.5 σ

excess of events in MINOS νµ − νe appearance channel [25] and all other experimental data

is sin2 θ13 ≃ 0.02± 0.01 (1 σ) [26].
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