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ABSTRACT

In a recent paper, the complete (non-linear) Kaluza-Klein Ansatz for the consistent

embedding of certain scalar plus gravity subsectors of gauged maximal supergravity in D =

4, 5 and 7 was presented, in terms of sphere reductions fromD = 11 or type IIB supergravity.

The scalar fields included in the truncations were the diagonal fields in the SL(N,R)/SO(N)

scalar submanifolds of the full scalar sectors of the corresponding maximal supergravities,

with N = 8, 6 and 5. The embeddings were used for obtaining an interpretation of extremal

D = 4, 5 or 7 AdS domain walls in terms of distributed M-branes or D-branes in the higher

dimensions. Although strong supporting evidence for the correctness of the embedding

Ansätze was presented, a full proof of the consistency was not given. Here, we complete the

proof, by showing explicitly that the full set of higher-dimensional equations of motion are

satisfied if and only if the lower-dimensional fields satisfy the relevant scalar plus gravity

equations.
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1 Introduction

One of the more intriguing outcomes of recent work on the AdS/CFT correspondence has

been a renewed effort to understand how the lower-dimensional gauged supergravities arise

as Kaluza-Klein sphere reductions from D = 11 or type IIB supergravity. It was long ago

demonstrated how the reductions work at the linearised level, but few complete non-linear

results existed. A proof of the consistency of the S7 reduction from D = 11 was presented,

although the Kaluza-Klein Ansatz for the field-strength sector was not fully explicit [1]. It

was generally assumed that the other cases, namely the S4 reduction of D = 11, and the S5

reduction of type IIB, would be consistent too, but until recently no results for these cases

had been obtained. In recent work, a fully explicit reduction Ansatz for the SO(5)-gauged

N = 4 D = 7 case has been obtained [2, 3].1 Explicit results have also been obtained for

various truncations of the full maximal supergravities. These include truncations to the

maximal abelian subgroups U(1)4, U(1)3 and U(1)2 in D = 4, 5 and 7 [5]; the truncation

to SU(2)-gauged N = 2 in D = 7 [6]; to SU(2)× U(1) gauged N = 4 in D = 5 [7]; and to

SO(4) gauged N = 4 in D = 4 [8]. For many purposes, if the fields that participate in the

lower-dimensional solutions of interest lie within these truncated subsectors, the truncated

reduction is much easier to use, since it is usually much simpler than the full maximal

result.2

Another truncation that allows for relatively simple although still non-trivial sphere

reductions is where one retains only the metric and a certain subset of the scalar fields of

the lower-dimensional gauged supergravity; one can keep just certain scalars contained in

the SL(N,R)/SO(N) subset of the full scalar coset manifold, which can be described by

a symmetric tensor Tij. In D = 4, 5 and 7 these subsets correspond to N = 8, 6 and 5

respectively. Specifically, one can consistently truncate to the diagonal scalars, Tij = Xi δij ,

where
∏

iXi = 1. Thus there are 7, 5 and 4 independent scalars in the D = 4, 5 and 7 cases.

As shown in [9], where the reduction Ansätze for these scalar subsectors were presented,

1The complete bosonic reduction Ansatz for another case, namely the local S4 reduction of massive type

IIA supergravity to SU(2) gauged N = 2 supergravity in D = 6 has also been obtained [4].
2We emphasise that in this discussion we are considering only the “remarkable” Kaluza-Klein sphere

reductions, where there is no group-theoretic understanding for why the consistency is achievable. In par-

ticular, some of the scalar fields parameterise inhomogeneous distortions of the sphere. These contrast with,

for example, torus reductions, where the consistency of the truncation to the massless sector is guaranteed

by group theory.
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one can actually discuss all cases where the lower dimension D is related to N by

N =
4(D − 2)

D − 3
, (1)

corresponding to supersymmetric higher-dimensional theories, in a uniform way. The only

integer possibilities are (D,N) = (4, 8), (5, 6) and (7, 5), as listed above. (Some proposals

for other scalar truncations were presented recently in [10].) In [9], extremal AdS domain

wall solutions in these dimensions were derived, with the general set of (N −1) independent

charge parameters. By using the reduction Ansätze to oxidise the solutions to the higher

dimensions, it was shown how they can be interpreted as continuous distributions of M-

branes or D-branes [9]. (Various special cases were obtained also in [11, 12, 13, 14, 15].)

Certain consistency checks for the reduction Ansätze presented in [9] were conducted

there, but a full demonstration of the consistency was not given. Here, we complete the

argument by checking all the higher-dimensional equations of motion, and verifying that

indeed they are satisfied by the Ansätze of [9], if and only if the lower-dimensional equations

of motion are satisfied.3 Of course these calculations would be subsumed by complete

demonstrations of the consistency of the maximal supergravity reductions in D = 4, 5 and

7. Such a complete proof exists for D = 7 [2, 3], and implicitly for D = 4 [1], but not yet

for D = 5. Thus the results presented here provide new and independent evidence for the

conjectured consistency in all the cases.

2 The Scalar Theories, and the Reduction Ansätze

The truncated lower-dimensional gravity plus scalar theory is described by the following

Lagrangian in D dimensions [9]:

e−1 LD = R− 1
2(∂~ϕ)

2 − V , (2)

where the potential V is given by

V = −1
2g

2
(

(
N
∑

i=1

Xi)
2 − 2

N
∑

i=1

X2
i

)

. (3)

(In D = 4, 5 and 7, we shall have N = 8, 6 and 5 respectively.) The N quantities Xi are

parameterised in terms of (N − 1) independent dilatonic scalars ~ϕ as follows:

Xi = e−
1
2
~bi·~ϕ , (4)

3Note that substituting into the higher-dimensional Lagrangian and integrating out the sphere directions

could never, per se, yield a proof of consistency.
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where the ~bi satisfy

~bi ·~bj = 8δij −
8

N
,

∑

i

~bi = 0 , (~u ·~bi)~bi = 8~u , (5)

The middle equation here expresses the fact that the N quantities Xi are subject to the

condition
N
∏

i=1

Xi = 1 . (6)

The last equation in (5) allows us to express the dilatons ~ϕ in terms of the Xi:

~ϕ = −1
4

∑

i

~bi logXi . (7)

The equations of motion for the scalar fields, following from (2), are

~ϕ =
∂V

∂~ϕ
. (8)

From (4) it follows that ∂Xi/∂~ϕ = −1
2
~biXi, and hence the equations of motion (8) become

~ϕ = 1
2g

2
∑

i

~bi
(

Xi

∑

j

Xj − 2X2
i

)

. (9)

Note that we can also write the scalar equations of motion as

logXi = 2g2
(

2X2
i −Xi

∑

j

Xj − 2
N

∑

k

X2
k + 1

N
(
∑

j

Xj)
2
)

. (10)

The Einstein equation following from (2) is

Rµν = 1
4X

−2
i ∂µXi ∂νXi +

1

D − 2
V gµν . (11)

The Kaluza-Klein sphere reduction Ansätze for obtaining these theories from the higher

dimension were presented in [9], and are as follows:

dŝ2 = ∆
2

D−1 ds2D +
1

g2
∆−D−3

D−1

∑

i

X−1
i dµ2

i ,

F̂ = g
∑

i

(2X2
i µ

2
i −∆Xi) ǫ(D) +

1

2g

∑

i

X−1
i ∗dXi ∧ d(µ2

i ) , (12)

where

∆ =
∑

i

Xi µ
2
i , (13)

and the µi are a set of N “direction cosines” that satisfy the constraint

∑

i

µ2
i = 1 . (14)
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In (12), ǫ(D) denotes the volume form of the D-dimensional metric ds2D. Note that if all the

scalars Xi are trivial (Xi = 1), the internal part of the metric becomes
∑

i dµ
2
i , which is the

metric on the unit (N − 1)-sphere.

The D-form field strength F̂ in (12) is the 4-form of eleven-dimensional supergravity for

the case D = 4, the Hodge dual of this 4-form for the case D = 7, and it is the self-dual

5-form of the type IIB theory when D = 5. Note that in each case, given the nature of the

Ansatz, the relevant Bianchi identity and field equation for F̂ are simply

dF̂ = 0 , d∗̂F̂ = 0 . (15)

3 The Consistency of the Reduction

It was shown in [9] that the D-form field-strength Ansatz in (12) satisfies the Bianchi

identity dF̂ = 0, provided that the scalar fields Xi satisfy precisely the lower-dimensional

equations of motion (10). This calculation is a straightforward one, and we shall not repeat

it here. It is harder to show that F̂ satisfies the field equation d∗̂F̂ = 0, because this involves

taking a Hodge dual of the field strength F̂ . This is what we shall now address.

3.1 The Field Equation for F̂

The complication here is that the (N − 1)-sphere is being coordinatised by N quantities µi

subject to the constraint (14). It seems that the best way to proceed is to eliminate one of

the µi in favour of the others, using (14). To that end, we split the µi as µi = (µα, µ0), and

solve for µ0 in terms of the µα.

If we consider first the metric

ds2 =
∑

i

X−1
i dµ2

i , (16)

then in terms of the µα we can write it as ds2 = gαβ dµα dµβ , where

gαβ = X−1
α δαβ +

1

X0 µ2
0

µα µβ . (17)

(We have, of course, used the identity

dµ0 = −µα

µ0
dµα , (18)

which follows from (14).)

It is straightforward to invert the metric gαβ given in (17). The result is

gαβ = Xα δαβ −∆−1 µαµβ Xα Xβ . (19)
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It is also easy to establish that

det(gαβ) =
∆

µ2
0

. (20)

Note that it follows from the metric Ansatz in (12) that the determinant of the higher-

dimensional metric dŝ2 is given by

det(ĝ) =
∆

4
D−1

g2N−2 µ2
0

det(gD) , (21)

where gD denotes the D-dimensional spacetime metric ds2D and g in the denominator is

just the gauge coupling constant (not to be confused with the determinant of the higher-

dimensional metric ĝ or the one for the lower dimension, gD.)

Now let us look at the field-strength Ansatz. We shall use the convention that εM1···MD

always means the tensor density, which is the pure numbers ±1, 0. So the Ansatz for F̂ in

(12) is

F̂ν1···νD = gU
√
−gD εν1···νD ,

F̂ν1···νD−1α =
1

g

√
−gD εν1···νD−1ρ g

ρσ
D (X−1

α ∂σXα −X−1
0 ∂σX0)µα , (22)

where

U ≡
∑

i

(2X2
i µ

2
i −∆Xi) , (23)

and gD denotes the D-dimensional spacetime metric ds2D.

We can now calculate the upper-index components of F̂ . In fact, what we really need

is these components multiplied by
√
ĝ. From the results above we find

√

−ĝ F̂ ν1···νD =
U

gN−2µ0∆2
εν1···νD ,

√

−ĝ F̂ ν1···νD−1α =
1

gN−2µ0
εν1···νD−1 σ ∂σ

(Xα µα

∆

)

. (24)

(εM1···MD is the tensor density that takes the values 0, ±1, and is numerically equal to

εM1···MD
.)

One can directly verify from these expressions that the field equation is satisfied, namely

that

∂M
(

√

−ĝ F̂N1···ND−1M
)

= 0 . (25)

However, it is more elegant to do this by using (24) first to construct the Hodge dual of F̂

itself. To do this, we make the following definitions:

P ≡ 1

n!
εα1···αn dµα1 · · · dµαn ,
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Qα ≡ 1

(n− 1)!
εαβ1···βn−1 dµβ1 · · · dµbn−1 ,

W ≡ 1

n!
εij1···jn µi dµj1 · · · dµjn ,

Zi ≡ 1

(n− 1)!
εijk1···kn−1 µj dµk1 · · · dµkn−1 , (26)

where n = N − 1. Note that what we have done here is to define P and Qα with respect to

the reduced set of n = N−1 coordinates µα, while W and Zi are defined with respect to the

full set of N coordinates µi. (Some analogous formulae and manipulations are presented

also in [3].)

Now, we can establish the following:

W =
1

µ0
P ,

Z0 = µβ Qβ , Zα =
1

µ0
(−Qα + µα µβ Qβ) ,

dµα ∧Qβ = P δαβ ,

dµi ∧ Zj = −(δij − µi µj)W ,

dQα = 0 , dW = 0 , dZi = nµiW . (27)

From (24), it is evident that we have

∗̂F̂α1···αn =
U

gN−2µ0∆2
εα1···αn , ∗̂F̂α1···αn−1ν = − 1

gN−2µ0
εα1···αn−1β ∂ν

(Xβ µβ

∆

)

. (28)

Note that here, and in many other formulae, we are using a “generalised Einstein summation

convention,” in which any dummy index that appears two or more times in an expression

is understood to be summed over. It will always be clear from context whether an index is

a dummy or not.

After some algebra, we can show from the above definitions and properties that this can

be written as

∗̂F̂ =
1

gN−2

( U

∆2
W + ∂ν(

Xi µi

∆
) dxν ∧ Zi

)

. (29)

To check that the equation of motion d∗̂F̂ = 0 is satisfied, we just have to make use of the

various lemmata established above. Thus we have

gN−2d∗̂F̂ = ∂ν
( U

∆2

)

dxν ∧W − ∂ν
(Xi µi

∆

)

dxν ∧ dZi − ∂µj
∂ν

(Xi µi

∆

)

dxν ∧ dµj ∧ Zi ,

= ∂ν
( U

∆2

)

dxν ∧W − nµi ∂ν
(Xi µi

∆

)

dxν ∧W

+∂µj
∂ν

(Xi µi

∆

)

dxν ∧W (δij − µi µj) ,

= ∂ν
( U

∆2

)

dxν ∧W + ∂ν
(

δij
Xi

∆
− 2Xi Xj µi µj

∆2

)

dxν ∧W (δij − µi µj) ,
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= ∂ν
( U

∆2

)

dxν ∧W − ∂ν
( U

∆2

)

dxν ∧W = 0 . (30)

Note that in various steps above, we have made use of the fact that the µi can be taken

freely inside the ∂ν derivative, and that therefore, for instance, a term like µi ∂ν(Xi µi/∆) is

equal to ∂ν(Xi µ
2
i /∆), which is therefore zero since Xi µ

2
i = ∆. This completes the checking

of the consistency of the higher-dimensional field equation for F̂ .

3.2 The Einstein Equation

3.2.1 Calculation of the Ricci Tensor

To check the various components of the higher-dimensional Einstein equation, we first cal-

culate the curvature tensor for the metric Ansatz. From now on, since no generality is lost,

we set the gauge coupling g equal to 1 for simplicity. The metric can be written as

dŝ2 = ∆a ds2D +∆−b
∑

i

X−1
i dµ2

i , (31)

where

a =
2

D − 1
, b =

D − 3

D − 1
. (32)

From this, we find that the affine connection Γ̂M
NP = 1

2 ĝ
MQ (∂N gQP+∂P gQN−∂Q gNP )

is given by

Γ̂µ
νρ = Γµ

νρ +
1
2a∆

−1 (δµρ ∂ν ∆+ δµν ∂ρ∆− gνρ ∂
µ∆) ,

Γ̂µ
να = 1

2a∆
−1 δµν ∂α ∆ ,

Γ̂α
µν = −1

2a gµν ∂
α ∆ ,

Γ̂α
βµ = −1

2b∆
−1 δαβ ∂µ∆+ 1

2g
αγ ∂µ gβγ ,

Γ̂µ
αβ = 1

2b gαβ ∆
−2 ∂µ∆− 1

2∆
−1 ∂µ gαβ ,

Γ̂α
βγ = Γα

βγ − 1
2b∆

−1 (δαγ ∂β ∆+ δαβ ∂γ ∆− gβγ ∂
α ∆) , (33)

where

Γα
βγ ≡ 1

2g
αδ (∂β gδγ + ∂γ gδβ − ∂δ gβγ) = ∆−1Xα µα (δβγ + µ̂β µ̂γ) . (34)

Note that ∂α means ∂/∂µα, and that ∂α ≡ gαβ ∂β .

We calculate the curvature using the expressions

R̂M
NPQ = ∂P Γ̂M

NQ − ∂Q Γ̂M
NP + Γ̂M

PR Γ̂R
QN − Γ̂M

QR Γ̂R
PN ,

R̂NQ ≡ R̂M
NMQ = ∂M Γ̂M

NQ − ∂Q Γ̂M
NM + Γ̂M

MR Γ̂R
QN − Γ̂M

QR Γ̂R
MN . (35)
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After some calculation, we find that

R̂µν = Rµν − 1
4X

−2
i ∂µXi ∂νXi +

1
2∆

−1X−1
i µ2

i ∂µXi ∂νXi − 1
2∆

−2 ∂µ∆ ∂ν∆

+1
2a (∆

−2 ∂λ∆ ∂λ∆−∆−1 ∆) gµν

−a
[

∑

i

X2
i −∆−1X2

i µ
2
i

∑

j

Xj − 2∆−1 X3
i µ

2
i + 2∆−2 (X2

i µ
2
i )

2
]

gµν , (36)

R̂αβ = Rαβ + 1
2b gαβ ∆

−2 ∆− 1
2b gαβ ∆

−3 ∂λ∆ ∂λ∆− 1
2∆

−1 gαβ

+1
2∆

−1 gγδ ∂λgαγ ∂
λgβδ − 1

4∆
−2 ∂α∆ ∂β∆− 1

2∆
−1∇α∂β ∆

−1
4b gαβ ∆

−2 ∂γ∆ ∂γ∆+ 1
2b gαβ ∆

−1∇γ∂
γ ∆ , (37)

R̂αµ = −1
2∆

−2 U (X−1
α ∂µXα −X−1

0 ∂µX0)µα . (38)

Note that in these expressions means the Laplacian in the lower-dimensional spacetime,

∇α denotes the covariant derivative with respect to the internal metric gαβ , with its affine

connection Γγ
αβ , and Rαβ is the Ricci tensor calculated in this connection.

Some useful lemmata which we used are

∂α ∆ ∂α ∆ = 4X3
i µ

2
i − 4∆−1 (X2

i µ
2
i )

2 ,

Γα
αβ = 1

2∆
−1 ∂β ∆+

1

µ2
0

µβ ,

∇α ∂
α ∆ = 2

∑

i

X2
i − 2∆−1 X2

i µ
2
i

∑

j

Xj + 4∆−2 (X2
i µ

2
i )

2

−4∆−1 X3
i µ

2
i +

1
2∆

−1 ∂a∆ ∂α∆ ,

Rαβ = ∆−1 ḡαβ
∑

γ

Xγ −∆−2 (X2
i µ

2
i ) ḡαβ (39)

+∆−2 (Xα −X0)(Xβ −X0)µα µβ −∆−1 (Xα −X0) δαβ ,

gαβ = X−3
α ∂λXα ∂

λXα δαβ +X−3
0 ∂λX0 ∂

λX0 µ̂α µ̂β

−4(Xα δαβ +X0 µ̂α µ̂β) + 2ḡαβ
∑

j

Xj +
4

N
V gαβ ,

gγδ ∂λgαγ ∂
λgβδ = X−3

α ∂λXα ∂
λXα δαβ +X−3

0 ∂λX0 ∂
λX0 µ̂α µ̂β

−∆−1 (X−1
α ∂λXα −X−1

0 ∂λX0)(X
−1
β ∂λXβ −X−1

0 ∂λX0)µα µβ .

The quantities µ̂α are defined by µ̂α ≡ µα/µ0, and the metric ḡαβ is defined by

ḡαβ ≡ δαβ + µ̂α µ̂β . (40)

It is evident from (17) that ḡαβ is the metric on the unit round (N−1)-sphere, corresponding

to setting all the Xi = 1.
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3.2.2 The Consistency of the Einstein Equation

With the results for the Ricci tensor from the previous section, we can now verify that all

components of the higher-dimensional Einstein equation are indeed consistently satisfied.

The higher-dimensional Einstein equation is

R̂MN = ŜMN , (41)

where

ŜMN =
1

2 (D − 1)!

[

F̂ 2
MN − D − 3

D (D − 1)
F̂ 2 ĝMN

]

. (42)

The non-zero components of F̂M1···MD
are given in (22). After some algebra, we find

that

F̂ 2 = −D!∆−Da (U2 +∆X−1
i µ2

i ∂λXi ∂
λXi − ∂λ∆ ∂λ∆) ,

F̂ 2
µν = (D − 1)!∆−2

[

∆X−1
i µ2

i ∂µXi ∂νXi − ∂µ∆ ∂ν∆

−(∆X−1
i µ2

i ∂λXi ∂
λXi − ∂λ∆ ∂λ∆) gµν − U2 gµν

]

, (43)

F̂ 2
αβ = −(D − 1)!∆−2 (X−1

α ∂λXα −X−1
0 ∂λX0)(X

−1
β ∂λXβ −X−1

0 ∂λX0)µα µβ ,

where, as usual, U is given by

U = 2X2
i µ

2
i −∆

∑

i

Xi . (44)

Thus we find that ŜMN is given by

Ŝµν = 1
2∆

−1X−1
i µ2

i ∂µXi ∂νXi − 1
2∆

−2 ∂µ∆ ∂ν∆

− 1

D − 1
∆−2 (U2 − ∂λ∆ ∂λ∆+∆X−1

i µ2
i ∂λXi ∂

λXi) gµν , (45)

Ŝαβ = 1
2b∆

−3 U2 gαβ + 1
2b∆

−2 gαβ X
−1
i µ2

i ∂λXi ∂
λXi − 1

2b∆
−3 ∂λ∆ ∂λ∆ gαβ

−1
2∆

−2 (X−1
α ∂λXα −X−1

0 ∂λX0)(X
−1
β ∂λXβ −X−1

0 ∂λX0)µα µβ , (46)

Ŝαµ = −1
2∆

−2 U (X−1
α ∂µXα −X−1

0 ∂µX0)µα . (47)

To verify that the components R̂µν = Ŝµν of the higher-dimensional Einstein equation

indeed imply the lower-dimensional Einstein equation (11), we simply need to substitute

the above results into (41). It is also necessary to use the scalar equations of motion in

(10), from which we can deduce that

∆ = X−1
i µ2

i ∂λXi ∂
λXi + 4X3

i µ
2
i − 2X2

i µ
2
i

∑

j

Xj −
4

N
∆V . (48)
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Putting all the results together, we find that indeed all the µi dependence cancels out

in the R̂µν = Ŝµν equation, and we correctly reproduce the lower-dimensional Einstein

equation in (11).

After some algebra, using the lemmata given previously, we find that the components

R̂αβ of the Ricci tensor of the higher-dimensional metric are simply given by

R̂αβ = 1
2b∆

−3 U2 gαβ + 1
2∆

−2 gαβ X
−1
i µ2

i ∂λXi ∂
λXi − 1

2b∆
−3 ∂λ∆ ∂λ∆

−1
2∆

−1 (X−1
α ∂λXα −X−1

0 ∂λX0)(X
−1
β ∂λXβ −X−1

0 ∂λX0)µα µβ . (49)

Note that we have made use of the equations of motion for the Xi fields in simplifying this

expression. It is now straightforward to see that this is exactly equal to the expression for

Ŝαβ obtained in (46). Finally, the components Ŝαµ given in (47) agree precisely with the

corresponding components R̂αµ found in (38). Thus the consistency of the reduction Ansatz

is completely verified.

4 Scalar Potentials in D = 3

In the previous sections, we proved the consistency of the embedding of the diagonal sym-

metric potentials in the relevant higher dimensions. The number of scalars N and the

(lower) dimension D are related by (1). As was shown in [9], the various D-dimensional

multi-charge extremal AdS domain walls supported by these scalars can be oxidised back

to solutions of eleven-dimensional supergravity (D = 4 and D = 7) or type IIB super-

gravity D = 5). These higher-dimensional solutions correspond to ellipsoidal continuous

distributions of M5-branes, M2-branes and D3-branes respectively [11, 12, 13, 9, 14, 15].

For general values of D the relation (1) would imply a non-integral value for N , and

no consistent embedding exists. The relation becomes singular for the case D = 3. Thus

contrary to what one might have hoped, the pattern of consistent embeddings does not

seem to extend to an S3 reduction from D = 6 to D = 3. Indeed, it is straightforward to

show that the ellipsoidal continuous distributions of dyonic strings that exist in D = 6 do

not lend themselves to consistent reductions to D = 3.

In this section, we discuss an alternative reduction to a gauged D = 3 supergravity, in

which there is a massive scalar field. The three-dimensional bosonic Lagrangian is given by

e−1L3 = R− 1
2(∂φ)

2 − 1
2g

2
( 1

a21
ea1φ − 1

a1a2
ea2φ

)

, (50)

where a21 = 4/k+4 and a2 = 4/a1. The integer k can take the values 1, 2, or 3. The values

k = 2 and k = 3 correspond to the S3 reduction of D = 6 simple (chiral) supergravity and
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the S2 reduction of D = 5 simple supergravity respectively, and φ is the associated massive

breathing mode [16].

The case of k = 1 corresponds to the S1 Scherk-Schwarz reduction of the Freedman-

Schwarz model. To show this, we begin from the Lagrangian for the gravity plus scalar

sector of the D = 4 Freedman-Schwarz model [17], which can be obtained as a singular

limit [8] of the N = 4, D = 4, SO(4) gauged supergravity [18]:

ê−1L4 = R̂− 1
2(∂φ̂)

2 − 1
2(∂χ)

2 e2φ̂ +
1

2
g2eφ̂ . (51)

Dimensionally reducing this theory on a coordinate z, where the axion χ is allowed to

take the generalised Scherk-Schwarz form χ = mz, we obtain the three-dimensional scalar

Lagrangian

e−1L3 = R− 1
2(∂φ̂)

2 − 1
2(∂ϕ)

2 − 1
2m

2 e2(φ̂+ϕ) + 1
2g

2 eφ̂+ϕ . (52)

Since the original dilaton φ̂ and the dilaton ϕ coming from the dimensional reduction

occur everywhere in the same combination, we see that it is consistent to truncate out the

combination φ̂−ϕ. Making the redefinition φ ≡ (φ̂+ϕ)/
√
2, the Lagrangian (52) reduces to

(50) with k = 1. The three Lagrangians in (50) all give rise to supersymmetric domain-wall

solutions in D = 3 [16, 19].

5 Conclusion

In this paper, we have provided a complete proof of the consistency of the Kaluza-Klein

reduction Ansätze that were presented in [9], which describe the embedding of certain N -

scalar truncations of the maximal gauged supergravities in D = 4, 7 and 5, via spherical

reductions on S7, S4 and S5 respectively. The N scalars, with N = 8, 5 and 6 respectively,

correspond to the diagonal elements in the SL(N,R)/SO(N) submanifolds of the full scalar

manifolds in the corresponding maximal supergravities. (Actually, there are really only

N − 1 independent scalars in these truncations, on account of a unit-determinant condition

on the scalars in the coset.) Our proof included a complete verification of the consistency

of the reduction of the higher-dimensional Einstein equation, which is usually the most

calculationally difficult part of the procedure.

For D = 7, our results are consistent with the full Kaluza-Klein S4 reduction that was

recently obtained explicitly in [2, 3]. For D = 4, they are compatible with the implicit proof

of the consistency of the complete S7 reduction, presented in [1]. Furthermore, our results

provide a complete proof of the validity of the explicit expressions presented in [9] for the

11



Ansätze for the eleven-dimensional fields, which, especially in the case of the 4-form field

strength, are not straightforward to extract from the results presented in [1].

Finally, in D = 5 our results provide further evidence for the conjectured consistency of

the S5 reduction of type IIB supergravity to give maximal SO(6) gauged supergravity in

D = 5.

We also considered the special case of scalar theories in D = 3 that arise from di-

mensional reduction. This dimension lies outside the set of cases covered by the previous

discussion, on account of a degeneration in the formula (1) relating the dimension to the

number of scalar fields. Instead, we described the set of three theories (50) arising as the

scalar sectors of sphere reductions from D = 6, D = 5 and D = 4. In the case of D = 4, we

showed how the single-scalar Lagrangian (50) arises from a Scherk-Schwarz S1 reduction

of the D = 4 Freedman-Schwarz model, accompanied by a further consistent truncation of

one combination of the two resulting dilatonic scalar fields.
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[9] M. Cvetič, S.S. Gubser, H. Lü and C.N. Pope, Symmetric potentials of gauged super-

gravities in diverse dimensions and Coulomb branch of gauge theories, hep-th/9909121.

[10] H. Nastase and D. Vaman, On the nonlinear KK reductions on spheres of supergravity

theories, hep-th/0002028.

[11] P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from

rotating branes, JHEP 9903 (1999) 003, hep-th/9811120.

[12] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of

D3-branes and gauged supergravity, hep-th/9906194.

[13] A. Brandhuber and K. Sfetsos, Nonstandard compactification with mass gaps and

Newton’s Law, hep-th/9908116.

[14] I. Bakas and K. Sfetsos, States and curves of five-dimensional gauged supergravity,

hep-th/9909041.

[15] I. Bakas, A. Brandhuber and K. Sfetsos, Domain walls of gauged supergravity, M-

branes and algebraic curves, hep-th/9912132.
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