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ABSTRACT

We obtain a large class of AdS spacetimes warped with certain internal spaces in eleven-

dimensional and type IIA/IIB supergravities. The warp factors depend only on the internal

coordinates. These solutions arise as the near-horizon geometries of more general semi-

localised multi-intersections of p-branes. We achieve this by noting that any sphere (or AdS

spacetime) of dimension greater than 3 can be viewed as a foliation involving S3 (or AdS3).

Then the S3 (or AdS3) can be replaced by a three-dimensional lens space (or a BTZ black

hole), which arises naturally from the introduction of a NUT (or a pp-wave) to the M-

branes or the D3-brane. We then obtain multi-intersections by performing a Kaluza-Klein

reduction or Hopf T-duality transformation on the fibre coordinate of the lens space (or

the BTZ black hole). These geometries provide further possible examples of the AdS/CFT

correspondence and of consistent embeddings of lower-dimensional gauged supergravities in

D = 11 or D = 10.
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1 Introduction

Anti-de Sitter (AdS) spacetimes naturally arise as the near-horizon geometries of non-

dilatonic p-branes in supergravity theories. The metric for such a solution is usually the

direct sum of AdS and an internal sphere. These geometries are of particular interest

because of the conjecture that supergravity on such a background is dual to a conformal

field theory on the boundary of the AdS [1, 2, 3]. Examples include all the anti-de Sitter

spacetimes AdSd with 2 ≤ d ≤ 7, with the exception of d = 6. The origin of AdS6 is a little

more involved, and it was first suggested in [4] that it was related to the ten-dimensional

massive type IIA theory. Recently, it was shown that the massive type IIA theory admits

a warped-product solution of AdS6 with S4 [5], which turns out to be the near-horizon

geometry of a semi-localised D4/D8 brane intersection [6]. It is important that the warp

factors depend only on the internal S4 coordinates, since this implies that the reduced

theory in D = 6 has AdS spacetime as its vacuum solution. The consistent embedding of

D = 6, N = 1 gauged supergravity in massive type IIA supergravity was obtained in [7].

Ellipsoidal distributions of the D4/D8 system were also obtained, giving rise to AdS domain

walls in D = 6, supported by a scalar potential involving 3 scalars [8].

In fact, configurations with AdS in a warped spacetime are not rare occurrences. In [9],

a semi-localised M5/M5 system [6] was studied, and it was shown that the near-horizon

geometry turns out to be a warped product of AdS5 with an internal 6-space. This makes

it possible to study AdS5/CFT4 from the point of view of M-theory. In this paper, we shall

consider AdS with a warped spacetime in a more general context and obtain such geometries

for all the AdSd, as the near-horizon limits of semi-localised multiple intersections in both

type IIA and type IIB theories.

The possibility of this construction is based on the following observations. As is well

known, a non-dilatonic p-brane has the near-horizon geometry AdSd × Sn. The internal

n-sphere can be described geometrically as a foliation of Sp×Sq surfaces with n = p+ q+1

(see appendix A), and so, in particular, if n ≥ 4 the n-sphere can be viewed in terms of a

foliation with S3 × Sn−4 surfaces, viz.

dΩ2
n = dα2 + cos2 α dΩ2

3 + sin2 αdΩ2
n−4 . (1)

In appendix B, we show that when a non-dilatonic p-brane with an n-sphere in the transverse

space intersects with a Kaluza-Klein monopole (a Taub-NUT with charge QN) in a semi-

localised manner, the net result turns out to be effectively a coordinate transformation of

a solution with a distribution of pure p-branes with no NUT present. The round S3 in (1)
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becomes the cyclic lens space S3/ZQN
with metric

dΩ̄2
3 =

1
4dΩ

2
2 +

1
4(

dy

QN

+ ω)2 , (2)

where dω = Ω2 is the volume form of the unit 2-sphere. This metric retains the same local

structure as the standard round 3-sphere, and it has the same curvature tensor, but the y

coordinate on the U(1) fibres is now identified with a period which is 1/QN of the period

for S3 itself. We can now perform a dimensional reduction, or a T-duality transformation,

on the fibre coordinate y, and thereby obtain AdS in a warped spacetime. The warp factor

depends only on the internal “latitude” coordinate α, but is independent of the lower-

dimensional spacetime coordinates. In fact, the M5/M5 system with AdS5 found in [9]

can be obtained in precisely such a manner from the D3-brane by using type IIA/IIB T-

duality. Note that an isotropic p-brane can be viewed as carrying a single unit of NUT

charge. Although this semi-localised way of introducing a Taub-NUT seems trivial, in

that it amounts to a coordinate transformation, performing Kaluza-Klein reduction on the

fibre coordinate does create a non-trivial intersecting component, since the Kaluza-Klein

2-form field strength now carries a non-trivial flux. This fact was used in [10] to construct

multi-charge p-branes starting from flat spacetime.

An analogous procedure can instead be applied to the anti-de Sitter spacetime, rather

than the sphere, in the near-horizon limit AdSd×Sn of a non-dilatonic p-brane. As discussed

in appendix A, AdSd can be described in terms of a foliation of AdSp × Sq surfaces with

d = p+q+1 and so, in particular, for d ≥ 4 it can be expressed as a foliation of AdS3×Sd−3:

ds2AdSd
= dρ2 + cosh2 ρ ds2AdS3

+ sinh2 ρ dΩ2
d−4 . (3)

In the presence of a pp-wave that is semi-localised on the world-volume of the p-brane, the

AdS3 turns out to have the form of a U(1) bundle over AdS2 [11],

ds2AdS3 = −r2W−1 dt2 +
dr2

r2
+ r2W (dy + (W−1 − 1))dt)2 , (4)

where W = 1+Qw/r
2, and Qw is the momentum carried by the pp-wave. This is precisely

the structure of the extremal BTZ black hole [12]. We can now perform a Kaluza-Klein

reduction, or T-duality transformation, on the fibre coordinate y. In the near-horizon limit

where the “1” in W can be dropped, we obtain AdS2 in a warped spacetime with a warp

factor that depends only on the foliation coordinate, ρ.

A T-duality transformation on such a fibre coordinate of AdS3 or S3 has been called

Hopf T-duality [13]. It has the effect of (un)twisting the AdS3 or S3. The effect of this

procedure on the six-dimensional dyonic string, whose near-horizon limit is AdS3×S3, was
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extensively studied in [11]. In this paper, we apply the same technique to AdS3 or S3

geometries that are themselves factors in the foliation surfaces of certain larger-dimensional

AdS spacetimes or spheres.

In section 2, we consider the semi-localised D3/NUT system and show that the effect of

turning on the NUT charge QN in the intersection is merely to convert the internal 5-sphere,

viewed as a foliation of S1 × S3, into a foliation of S1 × (S3/ZQN
), where S3/ZQN

is the

cyclic lens space of order QN. We can then perform a T-duality transformation on the Hopf

fibre coordinate of the lens space and thereby obtain an AdS5 in a warped spacetime as a

solution in M theory, as the near-horizon geometry of a semi-localised M5/M5 system.

In section 3, we consider a semi-localised D3/pp-wave system, for which the AdS5 be-

comes a foliation of a circle with the extremal BTZ black hole, which is locally AdS3 and can

be viewed as a U(1) bundle over AdS2. We then perform a Hopf T-duality transformation

on the fibre coordinate to obtain a solution with AdS2 in a warped spacetime in M-theory,

as the near-horizon geometry of a semi-localised M2/M2 system.

In sections 4 and 5, we apply the same analysis to the M2/NUT and M2/pp-wave

systems, and the M5/NUT and M5/pp-wave systems, respectively; we obtain various con-

figurations of AdS in warped spacetimes by performing Kaluza-Klein reductions and Hopf

T-duality transformations on the fibre coordinates.

In section 6, we consider the D4/D8 system, which has the near-horizon geometry of a

warped product of AdS6 and S4. We perform a Hopf T-duality transformation on the fibre

coordinate of the foliating lens space of S4, and thereby embed AdS6 in a warped spacetime

solution of type IIB theory.

We end with concluding remarks in section 7. In appendix A, we show how arbitrary-

dimensional spheres and AdS spacetimes can be described in terms of foliations. In appendix

B, we show that the solution describing the semi-local intersection of a non-dilatonic p-brane

with a Kaluza-Klein monopole (Taub-NUT) is equivalent, after a coordinate transformation,

to a solution purely composed of distributed p-branes, with no NUT.

2 D3/NUT systems and AdS5 in M-theory from T-duality

AdS5 spacetime arises naturally from type IIB theory as the near-horizon geometry of the

D3-brane. Its origin in M-theory is more obscure. One way to embed the AdS5 in M-theory

is to note that S5 can be viewed as a U(1) bundle over CP 2, and hence we can perform

a Hopf T-duality transformation on the U(1) fibre coordinate. The resulting M-theory

solution becomes AdS5×CP 2×T 2 [13]. However, this solution is not supersymmetric at the
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level of supergravity, since CP 2 does not admit a spin structure. Charged spinors exist but,

after making the T-duality transformation, the relevant electromagnetic field is described

by the winding-mode vector and it is only in the full string theory that states charged with

respect to this field arise. It was therefore argued in [13] that the lack of supersymmetry

(and indeed of any fermions at all) is a supergravity artifact and that, when the full string

theory is considered, the geometry is supersymmetric. Such a phenomenon was referred as

“supersymmetry without supersymmetry” in [14].

Recently, AdS5 in warped eleven-dimensional spacetime was constructed in [9]. It arises

as the near-horizon limit of the semi-localised M5/M5 intersecting system. After performing

a T-duality transformation, the warped spacetime of the near-horizon limit becomes AdS5×
(S5/ZQN

). In this section, we shall review this example in detail and show that the M5/M5

system originates from a semi-localised D3/NUT intersection in type IIB supergravity.

2.1 D3/NUT system

Any p-brane with a transverse space of sufficiently high dimension can intersect with a

NUT. The D3/NUT solution of type IIB supergravity is given by

ds210IIB = H−1/2(−dt2 + dw2
1 + · · ·+ dw2

3) +H1/2
(
dx21 + dx22

K(dz2 + z2 dΩ2
2) +K−1(dy +QN ω)2

)
, (5)

F5 = dt ∧ d3w ∧ dH−1 + ∗(dt ∧ d3w ∧ dH−1) ,

where z2 = z21 + z22 + z23 , and ω is a 1-form satisfying dω = Ω2. The solution can be best

illustrated by the following diagram:

t w1 w2 w3 x1 x2 z1 z2 z3 y

D3 × × × × − − − − − − H

NUT × × × × × × − − − ∗ K

Diagram 1. The D3/NUT brane intersection. Here × and − denote the

worldvolume and transverse space coordinates respectively,

and ∗ denotes the fibre coordinate of the Taub-NUT.

The function K is associated with the NUT component of the intersection; it is a

harmonic function in the overall transverse Euclidean 3-space coordinatised by zi. The

function H is associated with the D3-brane component. It satisfies the equation

∂2
~zH +K ∂2

~xH = 0 . (6)
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Equations of this type were also studied in [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In

the absence of NUT charge, i.e. K = 1, the function H is harmonic in the the transverse

6-space of the D3-brane. When the NUT charge QN is non-zero, K is instead given by

K = 1 +
QN

z
, (7)

and the function H cannot be solved analytically, but only in terms of a Fourier expansion

in ~x coordinates. The usual way to solve for the solution is to consider the zero-modes

in the Fourier expansion. In other words, one assumes that H is independent of ~x. The

consequence of this assumption is that the resulting metric no longer has an AdS structure

in its near-horizon region. In [6], it was observed that an explicit closed-form solution for

H can be obtained in the case where the “1” in function K is dropped. This solution is

given by [6]

K =
QN

z
, H = 1 +

∑

k

Qk

(|~x− ~x0k|2 + 4QN z)2
. (8)

In this paper, we shall consider the case where the D3-brane is located at the origin of the

~x space and so we have

H = 1 +
Q

(x2 + 4QN z)2
, (9)

where x2 = xi xi. Thus, the D3-brane is also localised in the space of the ~x as well. Let us

now make a coordinate transformation

x1 = r cosα cos θ , x2 = r cosα sin θ , z = 1
4QN

−1 r2 sin2 α . (10)

In terms of the new coordinates, the metric for the solution becomes

ds210IIB = H−1/2(−dt2 + dw2
1 + dw2

2 + dw2
3) +H1/2(dr2 + r2 dM2

5 ) ,

H = 1 +
Q

r4
. (11)

where

dM2
5 = dα2 + c2 dθ2 + 1

4s
2
(
dΩ2

2 + (
dy

QN

+ ω)2
)
, (12)

and s = sinα, c = cosα. Thus, we see that dM2
5 describes a foliation of S1 times the

lens space S3/ZQN
. For a unit NUT charge, QN = 1, the metric dM2

5 describes the round

5-sphere and the solution becomes an isotropic D3-brane. It is interesting to note that the

regular D3-brane can be viewed as a semi-localised D3-brane intersecting with a NUT with

unit charge.1 In the near-horizon limit r → 0, where the constant 1 in the function H can
1An analogous observation was also made in [10], where multi-charge solutions were obtained from flat

space by making use of the fact that S3 can be viewed as a U(1) bundle over S2. In other words, flat space

can be viewed as a NUT, with unit charge, located on the U(1) coordinate.
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be dropped, the metric becomes AdS5 ×M5:

ds210IIB = Q−1/2 r2 (−dt2+dwidwi)+Q1/2 dr
2

r2
+Q1/2

(
dα2+c2 dθ2+ 1

4s
2(dΩ2

2+(
dy

QN

+ω)2)
)
.

(13)

2.2 M5/M5 system and AdS5 in M-theory

Since the near-horizon limit of a semi-localised D3-brane/NUT is a direct product of AdS5

and an internal 5-sphere that is a foliation of a circle times a lens space, it follows that if we

perform a T-duality transformation on the U(1) fibre coordinate y, we shall obtain AdS5 in

a warped spacetime as a solution of the type IIA theory. The warp factor is associated with

the scale factor s2 of dy2 in (13). This type of Hopf T-duality has the effect of untwisting

a 3-sphere into S2 × S1 [11]. If one performs the T-duality transformation on the original

full solution (5), rather than concentrating on its near-horizon limit, then one obtains a

semi-localised NS5/D4 system of the type IIA theory, which can be further lifted back to

D = 11 to become a semi-localised M5/M5 system, obtained in [6]. In [9], the near-horizon

structures of these semi-localised branes of M-theory were analysed, and AdS5 was obtained

as a warped spacetime solution. We refer the readers to Ref. [9] and shall not discuss this

solution further, but only mention that, from the above analysis, it can be obtained by

implementing the T-duality transformation on the coordinate y in (13).

3 D3/pp-wave system and extremal BTZ black hole

In this section, we study the semi-localised pp-wave intersecting with a D3-brane. The

solution is given by

ds210IIB = H−1/2
(
−W−1 dt2 +W (dy + (W−1 − 1)dt)2 + dx21 + dx22

)

+H1/2(dz21 + · · · dz26) , (14)

F(5) = dt ∧ dy ∧ dx1 ∧ dx2 ∧ dH−1 + ∗(dt ∧ dy ∧ dx1 ∧ dx2 ∧ dH−1) ,

The solution can be illustrated by the following diagram

t y x1 x2 z1 z2 z3 z4 z5 z6

D3 × × × × − − − − − − H

wave × ∼ − − − − − − − − W

Diagram 2. The D3/pp-wave brane intersection. Here ∼ denotes the wave coordinate.
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In the usual construction of such an intersection, the harmonic functions H and W

depend only on the overall transverse space coordinates ~z. The near-horizon limit of the

solution then becomes K5 × S6, where K5 is the generalised Kaigorodov metric in D = 5,

and the geometry is dual to a conformal field theory in the infinite momentum frame [26].

On the other hand, the semi-localised solution is given by [6]

H =
Q

|~z|4 , W = 1 +Qw(|~x|2 +
Q

|~z|2 ) . (15)

We now let

x1 =
1

r
cosα cos θ , x2 =

1

r
cosα sin θ , zi =

r Q1/2

sinα
νi , (16)

where νi coordinates, satisfying νi νi = 1, define a 5-sphere with the unit sphere metric

dΩ2
5 = dνi dνi. Using these coordinates, the metric of the semi-localised D3/wave system

becomes

ds210IIB = Q1/2 s−2 (ds2AdS3
+ dα2 + c2 dθ2 + s2 dΩ2

5) , (17)

where ds2AdS3
is given by

ds2AdS3 = −r2W−1 dt2 + r2W (dy + (W−1 − 1)dt)2 +
dr2

r2
,

W = 1 +
Qw

r2
. (18)

Note that the above metric is exactly the extremal BTZ black hole [12], and hence it is

locally AdS3. Thus we have demonstrated that the semi-localised D3/pp-wave system is

in fact a warped product of AdS3 (the extremal BTZ black hole) with a 7-sphere, where

S7 is described as a foliation of S1 × S5 surfaces.2 Note that the metric (17) can also be

expressed as a direct product of AdS5 × S5, with the AdS5 metric written in the following

form:

ds25 = s−2(ds2AdS3 + dα2 + c2 dθ2) . (19)

Making a coordinate transformation tan(α/2) = eρ, the metric becomes

ds25 = dρ2 + sinh2 ρ dθ2 + cosh2 ρ ds2AdS3
, (20)

which is precisely the AdS5 metric written as a foliation of a circle times AdS3 (see appendix

A).

The extremal BTZ black hole occurs [28] as the near-horizon geometry of the boosted

dyonic string in six-dimensions, which can be viewed as an intersection of a string and
2A D3-brane with an S

3
×IR worlvolume was obtained in [27]. In that solution, which was rather different

from ours, the dilaton was not constant.
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a 5-brane in D = 10. The boosted D1/D5 system was used to obtain the first stringy

interpretation [29] of the microscopic entropy of the Reissner-Nordström black hole in D =

5. The boosted dyonic string has three parameters, namely the electric and magnetic

charges Qe, Qm, and the boost momentum parameter Qw. On the other hand, the extremal

BTZ black hole itself has only two parameters: the cosmological constant, proportional to
√
QeQm, and the mass (which is equal to the angular momentum in the extremal limit),

which is related to Qw. (Analogous discussion applies to D = 4 [30].) In our construction

of the BTZ black hole in warped spacetime, the original configuration also has only two

parameters, namely the D3-brane charge Q, related to the cosmological constant of the

BTZ black hole, and the pp-wave charge, associated with the mass.

3.1 NS1/D2 and M2/M2 systems and AdS2

We can perform a T-duality transformation on the coordinate y in the previous solution.

The D3-brane is T-dual to the D2-brane, and the wave is T-dual to the NS-NS string. Thus

the D3/pp-wave system of the type IIB theory becomes an NS1/D2 system in the type IIA

theory, given by

ds210IIA = W 1/4H3/8
[
− (WH)−1 dt2 +H−1 (dx21 + dx22) +W−1 dy21 ,

+ dz21 + · · · dz26
]
,

eφ = W−1/2H1/4 , (21)

F(4) = dt ∧ dx1 ∧ dx2 ∧ dH−1 , F(3) = dt ∧ dy1 ∧ dW−1 .

This solution can be represented diagrammatically as follows:

t x1 x2 y1 z1 z2 z3 z4 z5 z6

D2 × × × − − − − − − − H

NS1 × − − × − − − − − − W

Diagram 3. The NS1/D2 brane intersection.

In the near-horizon limit where the 1 in W is dropped, the metric of the NS1/D2 system

(21), in terms of the new coordinates (16), becomes

ds210 = Q1/4
w Q5/8 s−5/2

(
ds2AdS2 + dα2 + c2 dθ2 + s2 dΩ2

5 + (Qw Q)−1 s4 dy21

)
, (22)

where

ds2AdS2 = −r4 dt2

Qw
+

dr2

r2
. (23)
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Thus we see that the near-horizon limit of the NS1/D2 system is a warped product of AdS2

with a certain internal 8-space, which is a warped product of a 7-sphere with a circle.

We can further lift the solution back to D = 11, where it becomes a semi-localised

M2/M2 system,

ds211 = (WH)1/3
[
− (WH)−1 dt2 +H−1 (dx21 + dx22) +W−1 (dy21 + dy22) ,

+ dz21 + · · ·+ dz26

]
,

F(4) = dt ∧ dx1 ∧ dx2 ∧ dH−1 + dt ∧ dy1 ∧ dy2 ∧ dW−1 . (24)

The configuration for this solution can be summarised in the following diagram:

t x1 x2 y1 y2 z1 z2 z3 z4 z5 z6

M2 × × × − − − − − − − − H

M2 × − − × × − − − − − − W

Diagram 4. The M2-M2 brane intersection.

It is straightforward to verify that the near-horizon geometry of this system is a warped

product of AdS2 with a certain 9-space, namely

ds211 = Q1/3
w Q2/3 s−8/3 (ds2AdS2

+ dα2 + c2 dθ2 + s2 dΩ2
5 + (Qw Q)−1 s4 (dy21 + dy22)) , (25)

where ds2AdS2
is an AdS2 metric given by (23), and the internal 9-space is a warped product

of a 7-sphere and a 2-torus.

3.2 Further possibilities

Note that in the above examples, we can replace the round sphere dΩ2
5 by a lens space of

the following form:

dΩ2
5 = dα̃2 + c̃2 dθ̃2 + s̃2 (dΩ̃2

2 + (
dỹ

Q̃N

+ ω̃)2) , (26)

where c̃ ≡ cos α̃, s̃ ≡ sin α̃ and dω̃ = Ω̃2. As we have discussed in appendix B, this can

be viewed as an additional NUT with charge Q̃N intersecting with the system. We can

now perform a Kaluza-Klein reduction or T-duality transformation on the fibre coordinate

ỹ, leading to many further examples of warped products of AdS2 or AdS3 with certain

internal spaces. The warp factors again depend only on the coordinates of the internal

space. These geometries can be viewed as the near-horizon limits of three intersecting
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branes, with charges Q, QN and Q̃N. Of course, this system can equally well be obtained

by replacing the horospherical AdS5 in (13) with (19).

For example, let us consider the M2/M2 system with an additional NUT component.

The solution of this semi-localised intersecting system is given by

ds211 = (WH)1/3
[
− (WH)−1 dt2 +H−1 (dx21 + dx22) +W−1 (dy21 + dy22) ,

+K(dz2 + z2 dΩ2
2) +K−1(dy +QN ω)2 + du21 + du22

]
,

F(4) = dt ∧ dx1 ∧ dx2 ∧ dH−1 + dt ∧ dy1 ∧ dy2 ∧ dW−1 . (27)

where the functions H, W and K are given by

H =
Q

(|~u|2 + 4QN z)2
, W = 1 +Qw(|~x|2 +

Q

|~u|2 + 4QN z
) , K =

QN

z
. (28)

We illustrate this solution in the following diagram:

t x1 x2 y1 y2 z1 z2 z3 y u1 u2

M2 × × × − − − − − − − − H

M2 × − − × × − − − − − − W

NUT × × × × × − − − ∗ × × K

Diagram 5. The M2/M2/NUT brane intersection.

The near-horizon structure of this solution is basically the same as that of the M2/M2

system with the round S3 in the foliation replaced by the lens space S3/ZQN
. We can now

perform Kaluza-Klein reduction on the fibre coordinate y and the solution becomes the

semi-localised D2/D2/D6 brane intersection, given by

ds210IIA = (WH)3/8K−1/8
[
− (WH)−1 dt2 +H−1 (dx21 + dx22) +W−1 (dy21 + dy22) ,

+K(dz2 + z2 dΩ2
2) + du21 + du22

]
,

F(4) = dt ∧ dx1 ∧ dx2 ∧ dH−1 + dt ∧ dy1 ∧ dy2 ∧ dW−1 . (29)

eφ = (W H)1/4K−3/4 , F(2) = QN Ω2 . (30)

The solution can be illustrated by the following diagram:
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t x1 x2 y1 y2 z1 z2 z3 u1 u2

D2 × × × − − − − − − − H

D2 × − − × × − − − − − W

D6 × × × × × − − − × × K

Diagram 6. The D2/D2/D6 brane intersection.

4 M2/NUT and M2/pp-wave systems

In this section, we apply an analogous analysis to the M2-brane. We show that the semi-

localised M2-brane intersecting with a NUT is in fact an isotropic M2-brane with the internal

7-sphere itself being described as a foliation of a regular S3 and lens space S3/ZQN
, where

QN is the NUT charge. Reducing the system to D = 10, we obtain a semi-localised D2/D6

system whose near-horizon geometry is a warped product of AdS4 with an internal 6-space.

We also show that a semi-localised pp-wave intersecting with the M2-brane is in fact a

warped product of AdS3 (the BTZ black hole) and an 8-space. The system can be reduced

to D = 10 to become a semi-localised D0/NS1 intersection.

4.1 M2-brane/NUT system

The solution for the intersection of an M2-brane and a NUT is given by

ds211 = H−2/3 (−dt2 + dw2
1 + dw2

2) +H1/3
(
dx21 + · · ·+ dx24

+K(dz2 + z2dΩ2
2) +K−1(dy +QN ω)2

)
,

F(4) = dt ∧ dw1 ∧ dw2 ∧ dH−1 , (31)

where z2 = z21 + z22 + z23 and dω = Ω2. The solution can be illustrated by the following

diagram:

t w1 w2 x1 x2 x3 x4 z1 z2 z3 y

M2 × × × − − − − − − − − H

NUT × × × × × × × − − − ∗ K

Diagram 7. The M2/NUT brane intersection.

If the function K associated with the NUT components of the intersection takes the

form K = QN/z, then the function H associated with the M2-brane component can be

11



solved in the semi-localised form

H = 1 +
Q

(|~x|2 + 4QN z)3
. (32)

Thus, the solution is also localised on the space of the ~x coordinates. Let us now make a

coordinate transformation

xi = r cosαµi, , z = 1
4QN

−1 r2 sin2 α , (33)

where µi µi = 1, defining a 3-sphere, with the unit 3-sphere metric given by dΩ2
3 = dµi dµi.

In terms of the new coordinates, the metric for the solution becomes

ds211 = H−2/3(−dt2 + dw2
1 + dw2

2) +H1/3(dr2 + r2 dM2
7 ) ,

H = 1 +
Q

r6
, (34)

where

dM2
7 = dα2 + c2 dΩ2

3 +
1
4s

2
(
dΩ2

2 + (
dy

QN

+ ω)2
)
. (35)

Thus we see that dM2
7 is a foliation of a regular 3-sphere, together with a lens space S3/ZQN

.

When QN = 1 the metric dM2
7 describes a round 7-sphere and the solution becomes an

isotropic M2-brane. Interestingly, the regular M2-brane can be viewed as an intersecting

semi-localised M2-brane with a NUT of unit charge. In the near-horizon limit r → 0, where

the 1 in the function H can be dropped, the metric becomes AdS4 ×M7.

4.2 D2-D6 system

In the M2-brane and NUT intersection (31), we can perform a Kaluza-Klein reduction on

the y coordinate. This gives rise to a semi-localised intersection of D2-branes and D6-branes:

ds210IIA = H−5/8K−1/8 (−dt2 + dw2
1 + dw2

2) +H3/8K−1/8 (dx21 + · · · + dx24)

H3/8K7/8 (dz21 + dz22 + dz23) ,

eφ = H1/4K−3/4 , (36)

F(4) = dt ∧ d2w ∧ dH−1 , F2 = e−3/2φ∗(dt ∧ d2w ∧ d4x ∧ dK−1) .

The solution can be illustrated by the following diagram

12



t w1 w2 x1 x2 x3 x4 z1 z2 z3

D2 × × × − − − − − − − H

D6 × × × × × × × − − − K

Diagram 8. The D2/D6 brane intersection.

Again, in the usual construction of a D2-D6 system, the harmonic functions H and K

are taken to depend only on the overall transverse space coordinates ~z. In the semi-localized

construction, the function H depends on ~x as well. In terms of the new coordinates defined

in (33), the metric becomes

ds210IIA = (
r s

2QN

)1/4
[
H−5/8(−dt2+dw2

1+dw2
2)+H3/8(dr2+r2(dα2+c2 dΩ2

3+
1
4s

2 dΩ2
2)
]
. (37)

Thus, in the near-horizon limit where the 1 in H can be dropped, the solution becomes a

warped product of AdS4 with an internal 6-space:

ds210IIA = (2QN)
−1/4Q3/8 s1/4 (ds2AdS4 + dα2 + c2 dΩ2

3 +
1
4s

2 dΩ2
2) , (38)

where ds24 is the metric on AdS4, given by

ds2AdS4 =
r4

Q
(−dt2 + dw2

1 + dw2
2) +

dr2

r2
. (39)

The internal 6-space is a warped product of a 4-sphere with a 2-sphere.

4.3 AdS4 in type IIB from T-duality

In the above discussion, we found that our starting point is effectively to replace the round

7-sphere of the M2-brane by the foliation of a round 3-sphere together with a lens space

S3/ZQN
. We can also replace the round 3-sphere by another lens space S3/Z

Q̃N
, given by

dΩ̄2
3 =

1
4

(
dΩ̃2

2 + (
dỹ

Q̃N

+ ω)2
)
. (40)

As discussed in the appendix, the lens space arises from introducing a NUT around the fibre

coordinate ỹ, with NUT charge Q̃N. The system can then be viewed as the near-horizon

limit of three intersecting branes, with charges Q, QN and Q̃N. For example, with this

replacement the D2/D6 system becomes a D2/D6/NUT system. Performing a T-duality

transformation on the fibre coordinate ỹ, the S3 untwists to become S2×S1. The resulting

type IIB metric is given by

ds210IIB =
( Qs c

4QN Q̃N

)1/2 (
ds2AdS4 + dα2 + 1

4c
2 dΩ̃2

2 +
1
4s

2 dΩ2
2 +

(4QN Q̃N)
2

Qs2 c2
dỹ2

)
. (41)
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This metric can be viewed as describing the near-horizon geometry of a semi-localised

D3/D5/NS5 system in the type IIB theory. This metric (41) provides a background for

consistent reduction of type IIB supergravity to give rise to four-dimensional gauged super-

gravity with AdS background.

In order to construct the semi-localised D3/D5/NS5 intersecting system in the type IIB

theory, we start with the D2/D6/NUT system, given by

ds210IIA = H−5/8K−1/8 (−dt2 + dw2
1 + dw2

2) +H3/8K7/8 (dz21 + dz22 + dz23)

+H3/8K−1/8 (K̃ (dx2 + x2 dΩ̃2
2) + K̃−1(dy + Q̃N ω̃)

2) ,

eφ = H1/4K−3/4 , (42)

F(4) = dt ∧ d2w ∧ dH−1 , F2 = e−3/2φ∗(dt ∧ d2w ∧ d4x ∧ dK−1) .

where x2 = x21 + x22 + x23 and the functions H, K and K̃ are given by

H = 1 +
Q

(4Q̃N x+ 4QN z)3
, K =

QN

z
, K̃ =

Q̃N

x
. (43)

It is instructive to illustrate the solution in the following diagram:

t w1 w2 x1 x2 x3 y z1 z2 z3

D2 × × × − − − − − − − H

D6 × × × × × × × − − − K

NUT × × × − − − ∗ × × × K̃

Diagram 9. The D2/D6/NUT system

We can now perform the T-duality on the coordinate y, and obtain the semi-localised

D3/D5/NS5 intersection of the type IIB theory, given by

ds210IIB = H−1/2(K K̃)−1/4
[
− dt2 + dw2

1 + dw2
2

H K̃ (dx21 + dx22 + dx23) +K K̃ dy2 +HK (dz21 + dz22 + dz23)
]
. (44)

It is straightforward to verify that the near-horizon structure of the above D3/D5/NS5

system is of the form (41). The solution can be illustrated by the following diagram:
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t w1 w2 x1 x2 x3 y z1 z2 z3

D3 × × × − − − × − − − H

D5 × × × × × × − − − − K

NS5 × × × − − − − × × × K̃

Diagram 10. The D3/D5/NS5 system

4.4 M2/pp-wave system

The M2/pp-wave solution is given by

ds211 = H−2/3(−W−1 dt+W (dy + (W−1 − 1)dt)2 + dx2) +H1/3(dz2 + z2 dΩ2
7) ,

F(4) = dt ∧ dy ∧ dx ∧ dH−1 . (45)

The solution can be illustrated by the following diagram:

t y1 x1 z1 z2 z3 z4 z5 z6 z7 z8

M2 × × × − − − − − − − − H

wave × ∼ − − − − − − − − − W

Diagram 11. The M2/pp-wave brane intersection.

When both functions H and W are harmonic on the overall transverse space of the zi

coordinates, the metric becomes a direct product of the Kaigorodov metric with a 7-sphere

in the near-horizon limit. Here, we instead consider a semi-localised solution, with H and

K given by

H =
Q

z6
, W = 1 +Qw (x2 +

Q/4

z4
) . (46)

Making the coordinate transformation

x =
cosα

r
, z2 =

r Q1/2

2 sinα
, (47)

the metric becomes AdS4 × S7, with

ds211 =
Q1/3

4s2
(ds2AdS3

+ dα2) +Q1/3 dΩ2
7 . (48)

Here ds2AdS3
is the metric of AdS3 (the BTZ black hole), given by (18). Thus, we have

demonstrated that the semi-localised M2/pp-wave system is a warped product of AdS3 and
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an 8-space. Making the coordinate transformation tan(α/2) = eρ, the first part of (48) can

be expressed as

ds24 = dρ2 + cosh2 ρ ds2AdS3
. (49)

This is AdS4 expressed as a foliation of AdS3 (see appendix A).

4.5 The NS1/D0 system

Reducing the above solution on the coordinate y1, it becomes an intersecting NS1/D0

system, with

ds10IIA = H−3/4W−7/8
(
− dt2 +W dx2 +W H (dz21 + · · ·+ dz28)

)
,

F(3) = dt ∧ dx ∧ dH−1 , F(2) = dt ∧ dW−1 ,

eφ = H−1/2 W 3/4 . (50)

The metric of the near-horizon region describes a warped product of AdS2 with an 8-space:

ds210IIA = 8−3/4Q3/8Q1/8
w s−9/4 (ds2AdS2 + dα2 + 4s2dΩ2

7) , (51)

where ds2AdS2
is the metric of AdS2, given by (23). The NS1/D0 system can be illustrated

by the following diagram:

t x1 z1 z2 z3 z4 z5 z6 z7 z8

NS1 × × − − − − − − − − H

D0 × − − − − − − − − − W

Diagram 12. The NS1/D0 brane intersection.

In the M2/pp-wave and NS1/D0 systems, the internal space has a round 7-sphere. We

can replace it by foliating of two lens spaces S3/ZQN
and S3/ZQ̃N

. As discussed in the

appendix B, this can be achieved by introducing two NUTs in the intersecting system.

We can then perform Kaluza-Klein reductions or T-duality transformations on the two

associated fibre coordinates of the lens spaces. The resulting configurations can then be

viewed as the near-horizon geometries of four intersecting p-branes, with charges Q, Qw,

QN and Q̃N
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5 M5/NUT and M5/pp-wave systems

5.1 M5/NUT and NS5/D6 systems

The solution of an M5-brane intersecting with a NUT is given by

ds211 = H−1/3(−dt2 + dw2
1 + · · · + dw2

5) +H2/3(dx21 +K (dz2 + z2dΩ2
2) +K−1(dy + ω)2) ,

F(4) = ∗(dt ∧ d5w ∧ dH−1) . (52)

The solution can be illustrated by the following diagram:

t w1 w2 w3 w4 w5 x1 z1 z2 z3 y

M5 × × × × × × − − − − − H

NUT × × × × × × × − − − ∗ K

Diagram 13. The M5/NUT brane intersection.

In the usual construction where the harmonic functions H and K depend only the z

coordinate, the metric does not have an AdS structure in the near-horizon region. Here, we

instead consider a semi-localised solution, given by

H = 1 +
Q

(x2 + 4QN z)3/2
, K =

QN

z
. (53)

After an analogous coordinate transformation, we find that the metric can be expressed as

ds211 = H−1/3(−dt2 + dwi dwi) +H2/3(dr2 + r2 dM2
4 ) ,

dM2
4 = dα2 + 1

4s
2 (dΩ2

2 + (
dy

QN

+ ω)2) . (54)

Thus, in the near-horizon limit, the metric is AdS7 ×M4, where M4 is a foliation of a lens

space S3/ZQN
.

We can dimensionally reduce the solution (52) on the fibre coordinate y. The resulting

solution is the NS-NS 5-brane intersecting with a D6-brane:

t w1 w2 w3 w4 w5 x1 z1 z2 z3

NS5 × × × × × × − − − − H

D6 × × × × × × × − − − K

Diagram 14. The NS5/D6 brane intersection.
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The solution is given by

ds210IIA = H−1/4K−1/8 (−dt2 + dwi dwi) +H3/4K−1/8 dx2 +H3/4K7/8 dzi dzi ,

eφ = H1/2K−3/4 , F(3) = eφ/2∗(dt ∧ d5w ∧ dH−1) ,

F(2) = e−3φ/2∗(dt ∧ d5w ∧ dx ∧ dK−1) , (55)

In the near-horizon limit, the metric becomes a warped product of AdS7 with a 3-space

ds210IIA =
Q3/4

(2QN)1/4
s1/4 (

r

Q
(−dt2 + dwi dwi) +

dr2

r2
+ dα2 + 1

4s
2 dΩ2

2) . (56)

5.2 M5/pp-wave and D0/D4 system

The solution of an M5-brane with a pp-wave is given by

ds211 = H−1/3(−W−1 dt2 +W (dy1 + (W−1 − 1)dt)2 + dx21 + · · · + dx24)

+H2/3 (dz21 + · · ·+ dz25) ,

F4 = ∗(dt ∧ dy1 ∧ d4x ∧ dH−1) . (57)

The solution can be illustrated by the following diagram:

t y1 x1 x2 x3 x4 z1 z2 z3 z4 z5

M5 × × × × × × − − − − − H

wave × ∼ − − − − − − − − − W

Diagram 15. The M5/pp-wave brane intersection.

We shall consider semi-localised solutions, with the functions H and W given by

H =
Q

z3
, W = 1 +Qw (x2 +

4Q

z
) . (58)

Using analogous coordinate transformations, we find that the metric of the semi-localised

M5/pp-wave system becomes

ds211 = 4Q2/3 s−2(ds2AdS3 + dα2 + c2 dΩ2
3) +Q2/3 dΩ2

4 , (59)

where ds2AdS3
, given by (18), is precisely the extremal BTZ black hole and hence is is locally

AdS3. After making the coordinate transformation tan(α/2) = eρ, the first part of the

metric (59) can be expressed as

ds27 = dρ2 + sinh2 ρ dΩ2
3 + cosh2 ρ ds23 . (60)
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This is AdS7 written as a foliation of AdS3 and S3.

Performing a dimensional reduction of the solution (57) on the coordinate y1, we obtain

a D0/D4 intersecting system, given by

ds210IIA = H−3/8W−7/8(−dt2 +W dxi dxi +HW dzi dzi) ,

eφ = H−1/4 W 3/4 , F(2) = dt ∧ dW−1 ,

F4 = e−φ/2∗(dt ∧ d4x ∧ dH−1) . (61)

The near-horizon limit of the semi-localised D0/D4 system is a warped product of AdS2

with an 8-space:

ds210IIA = 29/4Q3/4 Q1/8
w s−9/4 (ds22 + dα2 + c2 dΩ2

3 +
1
4s

2 dΩ2
4) , (62)

where ds22 is given by (23). We illustrate this intersecting system with the following diagram

t x1 x2 x3 x4 z1 z2 z3 z4 z5

D4 × × × × × − − − − − H

D0 × − − − − − − − − − W

Diagram 16. The D0/D4 brane intersection.

In this example in the internal space the round S3 and S4 can be replaced by a lens

space S3/ZQN
and the foliation of a lens space S3/Z

Q̃N
, respectively. We can then perform

Kaluza-Klein reductions or T-duality transformations on the fibre coordinates of the lens

spaces, leading to four-component intersections with charges Q, Qw, QN and Q̃N.

6 AdS6 in type IIB from T-duality

So far in this paper we have two examples of intersecting Dp/D(p+ 4) systems in the type

IIA theory that give rise to warped products of AdSp+2 with certain internal spaces, namely

for p = 0 and p = 2. It was observed [5] also that the D4/D8 system, arising from massive

type IIA supergravity, gives rise to the warped product of AdS6 with a 4-sphere in the

near-horizon limit:

ds210IIA = s1/12 (ds2AdS6 + g−2(dα2 + c2 dΩ2
3)) . (63)

Note that the D4/D8 system is less trivial than the previous examples, in the sense that

it cannot be mapped by T-duality to a non-dilatonic p-brane intersecting with a NUT or a

wave.
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We can now introduce a NUT in the intersecting system which has the effect, in the

near-horizon limit, of replacing the round 3-sphere by a lens space, given in (2). We can

then perform a Hopf T-duality transformation and obtain an embedding of AdS6 in type

IIB theory:

ds210 = c1/2
[
ds2AdS6 + g−2(dα2 + 1

4c
2 dΩ2

2) + s2/3 c−2 dy2
]
. (64)

This solution can be viewed as the near-horizon geometry of an intersecting D5/D7/NS5

system. It provides a background for the exact embedding of six-dimensional gauged su-

pergravity in type IIB theory.

The D5/D7/NS5 semi-localised solution can be obtained by performing the T-duality

on the D4/D8/NUT system. The solution is given by

ds210IIB = (H1K)−1/4
(
− dt2 + dw2

1 + · · ·+ dw2
4 +H1K (dx21 + dx22 + dx23)

+H2 K dy2 +H1H2 dz
2
)
. (65)

The functions H1, H2 and K are given by

H1 = 1 +
Q1

(4QN |~x|+ 4Q2

9 z3)5/3
, H2 = Q2 z , K =

QN

|~x| . (66)

It is straightforward to verify that the near-horizon structure of this system is of the form

(64). The solution can be illustrated by the following:

t w1 w2 w3 w4 x1 x2 x3 y z

D5 × × × × × − − − − − H1

D7 × × × × × × × × − − H2

NS5 × × × × × − − − − × K

Diagram 17. The D5/D7/NS5 brane intersection.

7 Conclusion

In this paper, we obtain various AdS spacetimes warped with certain internal spaces in

eleven-dimensional and type IIA/IIB supergravities. These solutions arise as the near-

horizon geometries of more general semi-localised multi-intersections of M-branes in D = 11

or NS-NS branes or D-branes in D = 10. We achieve this by noting that any bigger sphere

(AdS spacetime) can be viewed as a foliation involving S3 (AdS3). Then the S3 (AdS3) can
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be replaced by a three-dimensional lens space (BTZ black hole), which arise naturally from

the introduction of a NUT (pp-wave). We can then perform a Kaluza-Klein reduction or

Hopf T-duality transformation on the fibre coordinate of the lens space (BTZ black hole).

It is important to note that the warp factor depends only on the internal foliation coor-

dinate but not on the lower-dimensional spacetime coordinates. This implies the possibility

of finding a larger class of consistent dimensional reduction of eleven-dimensional or type

IIA/IIB supergravity on the internal space, giving rise to gauged supergravities in lower

dimensions with AdS vacuum solutions. The first such example was obtained in [7]. In this

paper, we obtain further examples for possible consistent embeddings of lower-dimensional

gauged supergravity in D = 11 and D = 10. For example, we obtain the vacuum solutions

for the embedding of the six and four-dimensional gauged AdS supergravities in type IIB

theory and for the embedding of the seven-dimensional gauged AdS supergravity in type

IIA theory.
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A Spheres and AdS from foliations

There are two closely parallel constructions which arise in the various intersections involving

NUTs and waves. The former involves a construction of the unit metric on the sphere Sp+q+1

as a foliation of Sp ×Sq surfaces, while the latter involves an analogous construction of the

unit metric on AdSp+q+1, as a foliation of AdSp × Sq surfaces.

Consider first the construction of the unit Sp+q+1 metric. We start from the unit metrics

dΩ2
p = dXi dXi and dΩ2

q = dY a dY a on the spheres Sp and Sq, defined as the surfaces

XiXi = 1 , Y a Y a = 1 (67)

in IRp+1 and IRq+1 respectively. We now introduce Cartesian coordinates ZA = (Zi, Za) in

IRp+q+2, defined by

Zi = Xi cosα , Za = Y a sinα , (68)

and so ZA ZA = 1, thus defining a unit sphere Sp+q+1 in IRp+q+2. Clearly (68) defines a

complete parameterisation of points in IRp+q+2, with 0 ≤ α ≤ 1
2π, and so α, together with

the constrained coordinates xi and ya on the spheres Sp and Sq, provide coordinates for
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the unit sphere Sp+q+1 with a manifest SO(p + q + 2) isometry group action on the ZA

coordinates. The metric on Sp+q+1 is given by dΩ2
p+q+1 = dZA dZA, and so from the above

definitions we obtain

dΩ2
p+q+1 = dα2 + cos2 α dΩ2

p + sin2 αdΩ2
q . (69)

The foliating surfaces at a fixed value of the “latitude” coordinate α are Sp×Sq, with radii

cosα and sinα for the two factors. The construction is a generalisation of the Clifford Torus

S1 × S1 foliating S3.

In a similar manner, one can construct a metric dω2
p+q+1 on the unit AdSp+q+1 as

follows. We start from a unit AdSp, with metric dω2
p = dXµ dXν ηµν , and a unit Sq with

metric dΩ2
q = dY a dY a, where the coordinates Xµ on IRp+1 satisfy the indefinite-signature

condition

XµXν ηµν = −1 , ηµν = diag(−1,−1, 1, 1, . . . , 1) , (70)

while the coordinates Y a on IRq+1 satisfy Y a Y a = 1 as before. We now define coordinates

ZA = (Zµ, Za) by

Zµ = Xµ cosh ρ , Za = Y a sinh ρ , (71)

which therefore satisfy

ZA ZB ηAB = −1 , ηAB = diag(−1,−1, 1, 1, . . . , 1) . (72)

The coordinates ZA, subject to this constraint, therefore define AdSp+q+1, with a manifest

SO(p+ q − 1, 2) isometry. The metric dω2
p+q+1 = dZA dZB ηAB is given by

dω2
p+q+1 = dρ2 + cosh2 ρ dω2

p + sinh2 ρ dΩ2
q . (73)

B NUTs without NUTs

In this appendix, we show explicitly that the semi-localised intersection of a p-brane with

a Kaluza-Klein monopole (a NUT) can be recast, after appropriate coordinate transfor-

mations, as a restricted class of ordinary distributed p-branes. For definiteness, we take

the case of a semi-localised intersection of the M2-brane with a NUT as an example. The

analysis for the other cases is essentially identical.

The semi-localised solution obtained in [6] is given by

ds211 = H−2/3 dwµ dwµ +H1/3 [(dx21 + · · · + dx24)

+K (dz21 + dz22 + dz23) +K−1 (dy +Ai dzi)
2] ,
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K =
QN

|~z| , Ai dzi = QN cos θ dϕ , (74)

H = 1 +
∑

k

Qk(
|~x− ~x0k|2 + 4QN |~z|

)3 ,

where Qk denotes the M2-brane charge located at ~x0k, QN is the NUT charge, and we take

(z1, z2, z3) =
R2

4QN

(sin θ cosϕ, sin θ sinϕ, cos θ) . (75)

It now follows that the part of the metric

ds̄2 ≡ K (dz21 + dz22 + dz23) +K−1 (dy +Ai dzi)
2 (76)

is nothing but the locally-flat metric

ds̄2 = dR2 +R2 dΩ̄2
3 , (77)

where

dΩ̄2
3 ≡ 1

4dΩ
2
2 +

1
4

( dy

QN

+ cos θ dϕ
)2

(78)

is the metric on the cyclic lens space S3/ZQN
. Locally, this is just the standard metric on

the unit 3-sphere. Viewed as a U(1) bundle over S2 the coordinate y on the U(1) fibres

is taken always to have the period 4π. When QN = 1, the topology is therefore precisely

S3. However, if QN is a larger integer, the fibre coordinate has a period that is smaller by

the fraction 1/QN than the period that would be needed for S3 itself, and consequently the

topology is S3/ZQN
.

The solution (74) can therefore be recast as

ds211 = H
−2/3
2 dwµ dwµ +H

1/3
2 (dx21 + · · ·+ dx24 + dz̃21 + · · ·+ dz̃24) , (79)

with the harmonic function given by

H2 = 1 +
∑

k

Qk(
|~x− ~x0k|2 + |~̃z|2

)3 . (80)

The coordinates z̃i live on IR4/ZQN
, and are related to R and the coordinates (θ, ϕ, y) on

the lens space S3/ZQN
by

z̃1 + i z̃2 = R sin 1
2θ e

i
2
(y/QN+ϕ) , z̃3 + i z̃4 = R cos 1

2θ e
i
2
(y/QN−ϕ) . (81)

In other words, if we make the following coordinate transformation from (z1, z2, z3, y) to

(z̃1, z̃2, z̃3, z̃4),

z̃1 + i z̃2 =
[2QN (r + z3)(z1 + i z2)√

z21 + z22

]1/2
e

i
2QN

y
,

z̃3 + i z̃4 =
[2QN (r − z3)(z1 − i z2)√

z21 + z22

]1/2
e

i
2QN

y
, (82)
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where r2 ≡ z21 + z22 + z23 , then the metric (76) is seen to be nothing but

ds̄2 = dz̃21 + dz̃22 + dz̃23 + dz̃24 . (83)

The semi-localised M2-brane/NUT intersection (74) can therefore be obtained by start-

ing from a standard distribution of pure M2-branes (79), with charges spread over only four

of the eight transverse directions as in (80). This is precisely equivalent to the semi-localised

M2-brane/NUT intersection (74) with unit NUT charge, QN = 1. To obtain higher values of

the NUT charge, one simply has to factor the IR4 space of the z̃i coordinates by ZQN
, as de-

fined above. Note that although this semi-localised way of introducing a NUT seems trivial,

in that it amounts a coordinate transformation, performing Kaluza-Klein reduction on the

fibre coordinate does create a non-trivial intersecting component, since the Kaluza-Klein

2-form field strength now carries a non-trivial flux.

The above discussion carries over, mutatis mutandis, to the cases of the semi-localised

M5-brane/NUT and D3-brane/NUT.
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