
ar
X

iv
:1

10
9.

40
99

v1
  [

qu
an

t-
ph

]  
19

 S
ep

 2
01

1

Quantum correlations and violation of Bell inequality induced by External Field in a two photon
radiative cascade
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We study the polarization dependent second order correlation of a pair of photons emitted in a four level
radiative cascade driven by an external field. It is found that the quantum correlations of the emitted photons,
degraded by the energy splitting of the intermediate levelsin the radiative cascade can be efficiently revived by
a far detuned external field. The physics of this revival is linked to an induced stark shift and the formation
of dressed states in the system by the non-resonant externalfield. Further, we investigated the competition
between the effect of the coherent external field and incoherent dephasing of the intermediate levels. We found
that the degradation of quantum correlations due to the incoherent dephasing can be content for small dephasing
with the external field. We also studied the non-locality of the correlations by evaluating the Bell’s inequality
in the linear polarization basis for the radiative cascade.We find that the Bell parameter decreases rapidly
with increase in the intermediate level energy splitting orincoherent dephasing rate to the extent that there is
no violation. However, the presence of an external field leads to control over the degrading mechanisms and
preservation of nonlocal correlation among the photons. This in turn can induce, violation of Bell’s inequality
in the radiative cascade for arbitrary intermediate level splitting and small incoherent dephasing.

PACS numbers: 42.50.Ct, 42.50.Ar, 42.50.Hz, 03.65.Ud,

I. INTRODUCTION

Quantum correlation of polarized photons emitted in a ra-
diative cascade has been quite extensively studied since the
early days of quantum mechanics [1–3]. Earlier studies in this
regard were mainly focused on fundamental tests of quantum
mechanics like the violation of Bell’s inequality and existence
of local hidden variable theories [2–6]. In recent times though
such polarization correlation studies have gained importance
in context to quantum information science particularly be-
cause of the entangled nature of the photon pairs. Note that
many quantum information (QI) protocols based on quantum
optics like quantum cryptography [7], teleportation [8, 9], effi-
cient optical quantum computing [10] and long-distance quan-
tum communication using quantum repeaters [11] requires an
entangled photon pair per pulse. In general a large yield of
such entangled photon pairs can be generated by nonlinear op-
tical processes in bulk media [12] like the parametric down-
conversion [13]. However they are broadband, probabilistic
and subject to Poissonian emission statistics leading to multi-
pair emission [14]. In contrast a deterministic source of entan-
gled photons would be able to suppress any multipair produc-
tion and generate light pulses containing single photon pair
with a high yield. This hence would render many of the above
mentioned QI protocols much more efficient.

A suitable candidate for deterministic source of entangled
photons turns out to be the radiative cascade emission from a
single dipole, modeled as a four level system emitting a pair
of photon in each excitation cycle [15, 16]. Note that the ori-
gin of entangled photon pair in a four level radiative cascade
is attributed to the plausibility of two indistinguishabledecay
pathways. In case of atomic dipoles one requires careful trap-
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ping and preparation to implement this. However it has been
found that in quantum dots (QDs), such photon pair genera-
tion can be triggered readily [17]. The biexciton decay in a
QD generates a photon pair which can ideally be entangled in
their time-frequency [18] or polarization degrees of freedom
[19–21]. In practice though, the path indistinguishability is
hard to achieve in a radiative cascade. Even for QDs due to
anisotropic electron-hole exchange interaction the degeneracy
of the intermediate (excitonic) state is lifted [22, 23] thereby
destroying nonlocal properties of the emitted photons.
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FIG. 1: (Color online) Schematic diagram of a general four level
radiative cascade.

The four level radiative cascade in general can be repre-
sented schematically by the Fig. (1). We can see from the
figure that due to the intermediate level splitting, the decay
pathways are distinguishable and four distinct linearly polar-
ized transition contribute to the emission spectrum. Entangle-
ment of the polarized photons is then washed out given the
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fact that one can easily get which path information via energy
consideration of the emitted photons [24]. This has hence lead
to numerous investigations, particularly in QDs to find ways
of reducing the intermediate state energy splitting withinthe
radiative linewidth of the intermediate levels. [20, 21, 25–28].
Note that, in a recent work a.c. Stark effect was used in QDs
to reduced the intermediate level splitting within linewidth
of the levels[29]. However it is worth mentioning here that
even if the intermediate level splitting is cancelled in QDs,
there are other processes that can have degradable effect on
quantum correlations and polarization entanglement. For ex-
ample dephasing interactions with the solid-state environment
through collisions with phonons and electrostatic interactions
with fluctuating charges around the dipoles [30] may also de-
grade the the polarization entanglement. Moreover, any inco-
herent mechanisms inducing a population exchange between
the excitonic levels such as transitions through the dark states
or spin-flip processes may deteriorate the visibility of entan-
glement [15, 16].

We in this paper, theoretically investigate the effect of a
strong external coherent drive on the intermediate level split-
ting in a four level radiative cascade and thereby on the sec-
ond order quantum correlations of the emitted photons. We
also evaluate the generalized form of Bell’s inequality namely
the Clauser-Horne-Shimony-Holt (CHSH) inequality [2, 5] in
presence of the external coherent field and study how it can
induce the generation of entanglement among the correlated
photons. We restrict our analysis mainly to the rectilinear(H,
V) polarization basis. We further consider other incoherent
processes like the transfer of population among the interme-
diate states and investigate the effect of interplay of coherent
field with this process on the quantum correlations and CHSH
inequality.

II. MODEL AND DYNAMICAL EVOLUTION

A. Model of a radiative cascade

We consider a four level system undergoing a cascade emis-
sion as our primary model of study. In addition we also have
an auxiliary level (|u〉) which is dipole allowed to|X1〉 and
|X2〉. The importance of this auxlliary level in governing the
dynamics of the four level cascade will be discussed later. The
decay paths as shown schematically in Fig. (2) involves two
radiative transitions, one from an upper level|2X〉 to the inter-
mediate states|X1〉 or |X2〉 and the other from this interme-
diate states to the ground state|g〉. The energy-level splitting
of the intermediate states is given by∆FS . Note that the basis
states{|2X〉, |X1〉, |X2〉, |g〉} of our model can correspond to
the eigenbasis of a any dipole(like a QD or atom) under going
a cascade decay. It is well known that radiative decay from
the excited state in this basis generates collinearly polarized
photons with two orthogonal linear polarizationsH (horizon-
tal) andV (vertical). Ideally if there is no splitting∆FS = 0,
the intermediate states are degenerate and the decay paths be-
comes indistinguishable. In this case the four level system
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FIG. 2: (Color online) Energy level diagram of the five-levelcascade
system. Here∆FS is the energy-level separation of the intermediate
states andγ’s are the spontaneous emission rates.γ12 andγ21 are
the incoherent dephasing rates of the intermediate states.An external
non-resonant driveΩ couples one of the intermediate levels|X2〉 to
an auxiliary level|u〉 with a detuningδ.

relaxes, generating the maximally entangled two photon state

|Ψ〉 = 1√
2
[|H1H2〉+ |V1V2〉] , (1)

However, in practical situations like a QD cascade or an
atomic cascade usually the splitting is nonzero and thus the
intermediate levels are non-degenerate. Moreover population
relaxation among the intermediate states can also occur for
example from spin flipping processes. Thus in reality any po-
larization correlation or entanglement of the emitted photon
pairs in such radiative cascade becomes crucially dependent
on the degree of degeneracy and dynamics of these interme-
diate states. In this work we propose the use of external field
to manipulate the dynamics of these intermediate states and
thereby achieve control on the generation of polarization cor-
relations of the emitted photons. For this purpose, we use an
auxiliary state|u〉 in our model and couple it to one of the
intermediate level say|X2〉 with a strong non-resonant coher-
ent drive. The basic idea is to exploit the concept of a.c. Stark
shift of the intermediate level|X2〉 to nullify the level splitting
∆FS and recover the indistinguishability of the decay paths.
Since the Stark shift depends on the Rabi frequency of the
transition|X2〉 → |u〉 and the detuningδ (see Fig. 2) of the
drive it can in principle be made equal to∆FS even for arbi-
trary large value of∆FS . In the next section we develop the
theoretical framework necessary to study the dynamics of the
four level cascade in presence of the auxiliary level.

B. Dyamics of cascade emission

To understand the dynamics of our system we consider a
density matrix formalism ( given the open nature of the four
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level cascade ) and write down the corresponding master equa-
tion for the density operatorρ as,

∂ρ

∂t
= − i

~
[H, ρ] + Lρ. (2)

HereH is the Hamiltonian of the system comprising of the
free energy termH0 and the interaction termHI ,

H0 =
∑

k

~ωk|k〉〈k|

HI = −~
(

Ωeiδt |X2〉 〈u|+Ω∗e−iδt |u〉 〈X2|
)

. (3)

HereΩ = ~dX2u · ~E/~ is the Rabi frequency of the transition
andδ: the detuning given byδ = ωX2u − νL, whereνL is the
frequency of the incident coherent drive. The relaxation pro-
cesses like radiative decay and other incoherent mechanism
present in the system that lead to decoherence is incorporated
in the dynamics by the Lindblad operatorLρ of Eq. (2) and is
given by,

Lρ = Lrρ+ Ldρ (4)

Lrρ = −
5

∑

i=1

γi
2

(

σi
+σ

i
−ρ− 2σi

−ρσ
i
+ + ρσi

+σ
i
−

)

, (5)

Ldρ = −γ12
2

(

σα
+σ

α
−ρ− 2σα

−ρσ
α
+ + ρσα

+σ
α
−

)

−γ21
2

(

σβ
+σ

β
−ρ− 2σβ

−ρσ
β
+ + ρσβ

+σ
β
−

)

. (6)

Here the operatorsσ+ = σ†
− are the atomic lowering and

raising operators defined as :σ1
+ = |2X〉〈X1|, σ2

+ =
|2X〉〈X2|, σ3

+ = |X1〉〈g|, σ4
+ = |X2〉〈g|, σ5

+ =

|X2〉〈u|, σα
+ = |X1〉〈X2| andσβ

+ = |X2〉〈X1|. The decays in
the system (see Fig. 2 ) are given as follows :γ = (γ1 + γ2)
andγ3 (γ4) are the radiative decay rate of the excited state
|2X〉 and the state|X1〉 (|X2〉) respectively. The radiative de-
cay rate on the transition|X2〉 → |u〉 is given byγ5 = γu.
Further,γ12(γ21) is the incoherent dephasing rate of the state
|X1〉(|X2〉) which corresponds to the rate of population relax-
ation between them. It is worth mentioning here that the inco-
herent dephasing considered by us is different from the pure
dephasing in qubits. We here consider decoherence arising
from population relaxation of the intermediate state as well
as decay of the coherence among the levels whereas in pure
dephasing environment only the coherence decays. As such
the Lindbald operator to model these decoherence phenome-
nas (incoherent dephasing) take the formLd [16][check for
example Eq.[(A − 7), (A − 12), (A − 13)] of appendix A].
In accordance with the above framework the time evolution
of our system reduces to a set of differential equations of the
form

dρ

dt
= Mρ, (7)

whereM a 25× 25 sparse square matrix. An elaborate form
of Eq. (7) containing the detail of the time dependence of
the density matrix elements is provided in the appendix A. To
understand the effect of external field induced manipulation of

the intermediate level splitting and incoherent dephasingon
the dynamics of photon emission, we next study the two-time
second-order correlations.

III. QUANTUM CORRELATION OF PHOTON PAIRS

The two time second order correlation is an experimentally
measurable quantity being related to the two time intensity
correlations of the emitted photons. Further it also reflects
the influence of the atomic properties on the statistics of the
emitted photons. The two time second order correlation is
defined by [16],

〈II〉 = 〈ǫ̂∗(θ1,φ1)
· ~E−(~r, t)ǫ̂∗(θ2,φ2)

· ~E−(~r, t+ τ)

: ǫ̂(θ2,φ2) · ~E+(~r, t+ τ)ǫ̂(θ1,φ1) · ~E+(~r, t)〉.
(8)

where 〈II〉 stands for the two time polarization an-
gle dependent intensity-intensity correlation〈I(θ2,φ2)(~r, t +
τ)I(θ1,φ1)(~r, t)〉. Note that in the above definition,
E+(~r, t)(E−(~r, t)) is the positive (negative) frequency part
of the quantized electric field operator at a point~r in the far-
field zone. The electric field operator for our model of the
radiative cascade is given by,

~E(+)(~r, t) = ~E
(+)
0 (~r, t)−

(ω0

c

) 1

r
(
[

n̂× (n̂× ~dX12X)
]

|X1〉〈2X |t

+
[

n̂× (n̂× ~dX22X)
]

|X2〉〈2X |t

+
[

n̂× (n̂× ~dgX1
)
]

|g〉〈X1|t

+
[

n̂× (n̂× ~dgX2
)
]

|g〉〈X2|t). (9)

Further,ǫ̂(θ,φ) is the polarization unit vector of the measured
radiation at the detector along any arbitrary direction given by
(θ, φ) and are related to the linear polarization unit vectors
ǫ̂H , ǫ̂V (where H stands for horizontal and V for vertical) by
[15, 16],







ǫ̂
(1)
(θ,φ)

ǫ̂
(2)
(θ,φ)






=





cos θ e−iφ sin θ

−eiφ sin θ cos θ









ǫ̂H

ǫ̂V



 (10)

The polarization unit vectors satisfies the orthogonality rela-
tion (ǫ̂

(i)
(θ,φ) · ǫ̂

(j)∗
(θ,φ)) = δij . The above matrix relation can be

understood as an unitary transformation between a basis de-
fined by the linear polarization unit vectors and a basis defined
by ǫ̂(1) andǫ̂(2). In experimental setup the anglesθ, φ would
correspond to the orientation of the optic axis of a half/quarter
wave plate to the direction of propagation of the emitted ra-
diation. We will next write down the key expression for the
〈II〉 and discuss the implication. For this purpose let us first
make some simplified assumptions. Let us consider that both
the levels|X1〉 and|X2〉 in Fig. 2 have the same incoherent
dephasing rates i.e.γ12 = γ21 = γd. Further we assume that
the radiative decay rates of the intermediate levels are also
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equal(γ1 = γ2 = γ3 = γ4 = γ). Such assumptions are well
justified as they do not influence the dynamics of the system
significantly. Moreover as we restrict our analysis to the linear
polarization basis, we can setφ1 = φ2 = 0. Hence under the
above assumptions the two-time polarization angle dependent
intensity-intensity correlation is found to be:

〈II〉 =
(ω0

c

)8 1

2r4
D2

1D
2
2〈|2X〉〈2X |t〉{e−γτ

+ cos 2θ1 cos 2θ2 e
−(γ+2γd)τ

+ 2 sin 2θ1 sin 2θ2Re [W (Ω, δ, τ)]}, (11)

where,

W(Ω, δ, τ) = exp

[

−
{

3Γ

4
+ i(∆FS + δ/2)

}

τ

]

×
[

cos (ζτ) +
Γ1 − iδ/2

ζ
sin (ζτ)

]

(12)

andΓ = (γ + γd + γu/3), Γ1 = (γ + γd + γu), ζ =
√

Ω2 − (Γ1/4− iδ/2)2. The simplified form of the second
order correlation in Eq. (11) has been derived to gain
helpful insight, about the effect of interplay between the
external field, the intermediate level splitting∆FS and the
other incoherent processes on the polarization correlation
of photon pairs. For detailed mathematical analysis leading
to the generalized form of the two time intensity-intensity
correlation, the reader is referred to appendix B of this paper.
One can clearly see from Eqns (11, 12) that the second
order correlation is profoundly influenced by the incoherent
dephasing rateγd as well as the excitonic level splitting∆FS ,
the Rabi frequencyΩ and detuningδ. We next study the
second order correlation of Eq. (11) for different limits ofthe
system parameters to understand their effect on the dynamics
of photon pair correlation and generation.

Case I : To understand the sole effect of the splitting
∆FS we first consider(γd = Ω = δ = 0). In the ab-
sence of any external field and forγ >> γu the intensity
-intensity correlation of Eq. (11) reduces to the second order
correlations measured in ref.[19, 26] and given by [16],

〈II〉 =
(ω0

c

)8 1

2r4
D2

1D
2
2〈|2X〉〈2X |t〉e−γτ{1 +

cos 2θ1 cos 2θ2 + sin 2θ1 sin 2θ2 cos(∆FSτ)}.
(13)

Further, note that for small∆FS the above expression for
intensity-intensity correlation is equivalent to that proposed
by Freedman and Clauser [3] and later measured by Aspect
and co-workers [5].

Case II : We next study the effect of a strong resonant
(δ = 0) external field on∆FS and thereby on the second
order correlation. For this purpose we letγd = 0 and neglect
γu under the assumption thatγ >> γu. Further we also
consider thatΩ >> all the decay rates in the system. With

these assumptions, Eqn. (11) reduces to

〈II〉 =
(ω0

c

)8 1

2r4
D2

1D
2
2〈|2X〉〈2X |t〉e−γτ{1 +

cos 2θ1 cos 2θ2 + sin 2θ1 sin 2θ2e
γτ/4

× [cos{(∆FS +Ω)τ} + cos{(∆FS − Ω)τ}]}.
(14)

Thus we see that in presence of a resonant external field, beats
result in the system with a frequency equal to the Rabi fre-
quencyΩ. Now for∆FS = Ω we find,

〈II〉 ∝ e−γτ [1 + cos 2θ1 cos 2θ2]

+ sin 2θ1 sin 2θ2e
−3γτ/4{1 + cos (2Ωτ)}. (15)

It can be clearly seen that the second order correlation
oscillates with twice the Rabi frequency. Next to analytically
study the behavior of this correlation let us consider some
approximations. We see from the above expression that when
∆FS = Ω >> γ, (2Ωτ) is very large and hence〈cos(2Ωτ)〉τ
can be neglected. Here〈....〉τ stands for time average.Thus
under this approximation the timed average second order cor-
relation becomes independent of intermediate level splitting
or Rabi frequency and depends only on the decay rates and
polarization angle of the detectors. The reason of considering
the time average of the second order correlation and this
approximation will become apparent in the next section.

Case III : In the case of a far detuned(δ ≥ Ω) strong
external field withγd = 0 and neglectingγu the second order
correlation becomes

〈II〉 =
(ω0

c

)8 1

2r4
D2

1D
2
2〈|2X〉〈2X |t〉e−γτ{1 +

cos 2θ1 cos 2θ2 + sin 2θ1 sin 2θ2 e
γτ/4

× [cos{(∆FS +Ω+)τ} + cos{(∆FS − Ω−)τ}]},
(16)

whereΩ± = 1/2
√
δ2 + 4Ω2 ± δ/2 and we have considered

Ω, δ >> γ. Thus here again we see that in presence of a
resonant external field, beats result in the system with a fre-
quencyΩ+ +Ω− =

√
δ2 + 4Ω2. Note that in this case when

∆FS = Ω− the intensity-intensity correlation becomes

〈II〉 ∝ e−γτ [1 + cos 2θ1 cos 2θ2]

+ sin 2θ1 sin 2θ2 e
−3γτ/4[1 + cos{(

√

δ2 + 4Ω2)τ}],
(17)

It is interesting to compare the time dependent cosine modu-
lation term of Eq. (15) and (17). We see that when we have
a detuned external field, for any∆FS the argument of the
modulation will be(2∆FS + δ)τ . This is obviously greater
than the modulation of(2∆FSτ) that we get from Eq. (15)
for the same∆FS . Thus in this case our earlier approximation
regarding dropping the highly oscillating cosine will work
much better. Thus we anticipate that our scheme for a strong
external field with large detuning will give optimal resultsfor
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suppressing the effect of intermediate level splitting on the
two photon correlations.

Case IV : Finally we will incorporate the incoherent de-
phasing of the intermediate states|X1,2〉 in our analysis and
study its effect on the quantum correlation of photons pairs. In
this case we consider all the dynamical parameters with only
two reasonable assumption :Ω, δ >> all the decay rates in
the system and thatγ >> γu. The second order correlation
then becomes,

〈II〉 =
(ω0

c

)8 1

2r4
D2

1D
2
2〈|2X〉〈2X |t〉e−γτ{1 +

cos 2θ1 cos 2θ2 e
−2γd + sin 2θ1 sin 2θ2 e

[γ−3γd]τ/4

× [cos{(∆FS +Ω+)τ} + cos{(∆FS − Ω−)τ}]},
(18)

Thus we see that in presence of the incoherent dephasing all
the polarization angle dependent terms in the correlation gets
an additional decay which will crucially regulate the quality
of correlation among the photons. The approximation we con-
sidered in the earlier cases also hold in this case but they does
not effect the dephasing rate of its influence. In the next sec-
tion we define a quantitative measure of polarization correla-
tion among the photons and discuss the effect of the external
field, excitonic splitting and incoherent dephasing on polariza-
tion correlation and entanglement generation among the pho-
tons.

IV. DEGREE OF POLARIZATION CORRELATION

In this section we study a quantity: the time averaged de-
gree of correlationCµ in a basis defined by the polarization
of the emitted photons. Note thatCµ has been studied exten-
sively in context to polarization entanglement [19, 26, 31]and
is defined in the literature as,

Cµ =
〈IµIµ〉 − 〈IµIµ′ 〉
〈IµIµ〉+ 〈IµIµ′ 〉 (19)

whereµ, µ′ stands for mutually orthogonal polarization ba-
sis like{H,V } or {D,D′}. The degree of correlation varies
between+1 and−1, where+1 represent perfect correlation
(−1 for anti-correlation) and 0 represent no polarization cor-
relation. We next investigate the effect of intermediate level
splitting ∆FS , the external fieldΩ, detuningδ and the inco-
herent dephasing rateγd on the degree of correlation. For this
purpose we consider a time average of Eq. (19) such thatCµ

is solely dependent on the polarization angles for some partic-
ular values of∆FS ,Ω, δ andγd. This thus helps to understand
the effect of interplay among several dynamical parametersof
the system on the quantum correlation of the polarized pho-
tons.

A. Effect of the external field on the quantum correlation
among photons in presence of intermediate level splitting

In this sub-section we numerically study (without any ap-
proximation on Eq. 11) the behavior of the degree of corre-
lationCµ averaged over time as a function of basis angle, for
non zero intermediate-level splitting∆FS and different ex-
ternal fields strength. We neglect any incoherent dephasing
mechanism (putγd = 0) for present, to keep our discussion
simple. Effect of such incoherent dephasing in presence of the
intermediate level splitting and external field will be consid-
ered in the next section.

In Fig. (3) we show the behavior of time averagedCµ as a
function of the basis angle. We find that for no intermediate-
level splitting (∆FS = 0), there is perfect quantum correla-
tion and thereby entanglement among the photons in the po-
larization basis ( for a detail discussion in this regard seefor
example ref [16, 19] ). This is reflected in the figure by the
fact that the degree of correlationCµ does not change (solid
straight line of Fig. 3a) when the observation is made in dif-
ferent polarization bases (HV − DD − V H). However we
find that as the intermediate level splitting increases the quan-
tum correlation among the photons in the polarization basisis
degraded. This is depicted by the oscillatory behavior ofCµ

in Fig.(3a) as the observation of photons are made in different
polarization basis. Finally we find (solid oscillatory curve in
Fig. 3a) that the quantum correlation among the photons are
completely lost for large intermediate level splitting. Note that
similar behavior was reported earlier in the study of such po-
larization correlation in Ref. [16]. Now that we have analyzed
the dependence of degree of correlation and thereby the quan-
tumness of two photon correlation on the intermediate level
splitting we focus on the key aspect of this paper.

We now consider the effect of an external coherent field
on the degree of correlationCµ when∆FS 6= 0. In Fig.
(3b) and (3c) we show thatCµ is dramatically altered in pres-
ence of the field. For example we see from Fig. (3b) that
for ∆FS = Ω = 5γ the degree of correlation of the pho-
tons in the diagonal basis is enhanced by almost75%. This
can be further enhanced to the extent of achieving almost per-
fect quantum correlations among the photons with higher field
strength (aroundΩ ∼ 2.5 × ∆FS = 12.25γ) and strong de-
tuning (δ = 5 ×∆FS = 25γ in this case). Thus we find that
our scheme becomes more effective with suitable off-resonant
external field and larger field strengths. Moreover this also
suggest that our approximation of dropping the cosine term in
the analytical discussion of the quantum correlation is more
appropriate for the case (III). Note that parameters used inour
simulation are well within reach of experiments in practically
realizable systems [29, 31]. In Fig. (3c) we show the effect
of external field on the degree of correlation for a representa-
tive value of the intermediate level splitting∆FS = 10γ. Our
simulations predict even better result for this case with large
detuning (almost10×∆FS) and field strength (3.5×∆FS).

The results of our simulations can be understood under
dressed state basis. The external field between levelX2 and
level u will split the excitonic level into two eigenstates|+〉
and|−〉 as shown in Fig. (2). When the field satisfies the con-
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FIG. 3: (Color online) Degrees of correlation averaged overtime as
a function of basis angle for (a) different intermediate-level split-
ting without external field and with different drive field for(b)
∆FS/γ = 5 and (c)∆FS/γ = 10. The drive field is given by
Ω/γ =

√

(∆2

FS
+∆FSδ) /γ2.

dition thatΩ =
√

∆2
FS +∆FSδ, the eigenstate|+〉 has the

same energy as the other excitonic levelX1. There is no en-
ergy splitting between|X1〉 and|+〉, so the polarization cor-
relation in the diagonal basis can be revived as shown in Fig.
(3). However, another eigenstate|−〉 also affects the emis-
sion of photon from the biexciton level. This effect makes

the degree of the correlation not perfectly recover back to 1.
The energy difference between two eigenstates is

√
δ2 + 4Ω2.

Therefore, larger detuningδ can make this disturbing effect by
eigenstate|−〉 be weak enough until it can be approximately
neglected and the degree of correlation in the diagonal basis
is then enhanced to almost 1.

Our numerical finding hence suggests that external con-
trol fields can efficiently revive degraded quantum correlation
among the photons for quite large values of intermediate level
splitting also. We would like to emphasize here that our the-
oretical model and methods thus predicts a practically plausi-
ble control knob (Ω, δ) to regulate the intrinsic parameter of
the system (∆FS) which is otherwise difficult to achieve in
such radiative cascade systems [21, 25–28]. Of course, our
results have certain limitation on the choice ofΩ andδ. It is
important to note that this parameters can in principle be ar-
bitrary, although off-resonant external field with moderately
large power but large detuning is not realistic in practice be-
cause it may not be in the absorption width.

B. Effect of the external field on the quantum correlation
among photons in presence of Incoherent processes

As discussed earlier, now we numerically investigate the
competition between the coherent (external driving field) and
incoherent process (dephasing of the intermediate levelsγd 6=
0) and their effect on the degree of polarization correlation.
Fig. 4a & b shows the time averaged degree of correlation
Cµ for ∆FS = 0 and∆FS = 5γ respective, in presence of
incoherent dephasingγd = γ and different external fieldsΩ.
Note that the adverse effect of such incoherent dephasing on
the quantum correlation is clearly visible in both Figs.(4a&
b). In absence of the external field, in addition to the fact that
Cµ oscillates as the polarization basis is changed (suggest-
ing classical correlation) the maximum value of it is reduced
(< 1). This implies that in presence of the incoherent pro-
cess perfect correlation among the photons is not possible for
example in the rectilinear basis also (see Fig.4 a) even when
∆FS = 0. This is in striking contrast to the case discussed
earlier (for∆FS = 0) when we have not considered the inco-
herent dephasing.

Moreover we see in Fig.(4a) that whenγd 6= 0,∆FS = 0,
in presence of a resonant external field the behavior ofCµ

changes significantly. The otherwise oscillatoryCµ is now
suppressed and in particular we find thatCµ beomes inde-
pendent of polarization basis forΩ = γd. We find that the
difference in the degree of correlation of the photon pairs be-
tween the rectilinear and diagonal basis is reduced by almost
100%. However if we consider fields stronger than the in-
coherent dephasing rate the quantum correlation is spoiled
again (as shown by the oscillatory dashed-dot curve in Fig.4a).
Our simulation suggest that for optimal parameters even in
presence of degrading incoherent processes the coherent field
can revive the quantum correlations among the photons which
thereby makes the degree of correlation independent of the
polarization basis. In Fig.(4b) we consider the competition
between the coherent field and incoherent dephasing process
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FIG. 4: (Color online) Degree of correlation averaged over time as a
function of basis angle for different values of the externalfield. Here
figure (a) correspond to∆FS/γ = 0 and figure (b) is for∆FS/γ =
5. The incoherent dephasing rateγd of the intermediate level is taken
to beγd/γ = 1.

further, but now in presence of a large excitonic-level split-
ting. We see similar behavior of theCµ as in Fig.(4a) with
one main difference. In this case we see that the external field
can revive the quantum correlation when it is resonant and
Ω = ∆FS . This is different from the analysis of the earlier
section whereγd = 0, and the optimal condition was found
to be with a non-resonant field. Thus we see from our sim-
ulations that in addition to intermediate level splitting if we
have a incoherent process (dephasing in this case) the quan-
tum correlation among the photons can be preserved to some
extent by the external field even though the degree of correla-
tion achieved in this case is not perfect.

V. BELL’S INEQUALITY FOR CORRELATED
POLARIZED PHOTONS

In a classic paper in1969 Clauser, Horne, Shimony and
Holt [2] re-formulated and generalized Bell’s inequality in
terms of practically feasible correlation measurements among
any two quantum mechanical systems. This later came to be

known asCHSH inequality and was first measured by Aspect
and co-workers in a beautifully designed experiment [5]. In
recent times though CHSH inequality has been exploited ex-
tensively in studying entanglement among photons [15, 31–
33] and there application to different quantum information
protocols [7]. The standard procedure to verify the CHSH
version of Bells inequality [2] for photon polarization states,
is as follows. Two independent polarization detectors perform
a coincidence measurement on the two photons emitted by the
source for four combinations of linear-polarizer angles: De-
tector1 say measures at some anglesα1 andα2, and detector
2 at β1 andβ2. The Bell parameterS then calculated in the
CHSH form is given by,

S = E(α1, β1)− E(α1, β2) + E(α2, β1) + E(α2, β2) ≤ 2,
(20)

where

E(αi, βj) = p+(αi, βj)− p−(αi, βj) (21)

is the correlation coefficient of the measurementαi, βj . Here
p+(αi, βj) denotes the fraction of events where the polariza-
tion measurements by detector1 at angleαi and by detector 2
atβj are positively correlated (both photons pass through their
respective polarizers, or both are rejected) andp−(αi, βj) de-
notes the fraction of events where the photons are anticorre-
lated (one passes the polarizer, and the other is rejected).If the
photons are perfectly correlated, thenE(αi, βj) = +1; for
perfectly anticorrelated photons, we haveE(αi, βj) = −1.
Note that the maximum magnitude of the Bell parameterS
that quantum mechanics allows is|S| = 2

√
2 and the states

that satisfy this are known as the Bell states (For example Eq.
1). For the photons generated from the radiative cascade we
follow an approach outlined in [31, 34] to define the Bell pa-
rameter of (20) in the rectilinear-diagonal polarization basis
as,

S =
√
2 [CH + CD] ≤ 2 (22)

whereCH andCD corresponds to the degree of polarization
defined by (19) in the rectilinear and diagonal basis. Thus if
the radiatively emitted photon pairs are correlated following
the laws of quantum mechanics we will expect that the above
inequality will be violated. However as the correlations are
sensitive to the intermediate level splitting and any incoher-
ent mechanisms present in the system we intuitively expect
the CHSH inequality to be also sensitive to such system pa-
rameters. Thus, it is worth investigating the inequality ofEq.
(22) as a function of the intermediate level splitting and the
incoherent dephasing rate. Further, we have seen that exter-
nal field induced A.C. stark shift can diminish the interme-
diate level splitting in the radiative cascade, thereby reviving
the lost quantum correlation among the photons. This hence
raises the question as to how does the Bell parameterS be-
have in presence of a strong external driving field. We next
study Eq. (22) in context to these effects and discuss their
implications.

In Fig. 5 we plot the Bell parameterS as a function of the
intermediate level splitting∆FS . We first consider the case
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FIG. 5: (Color online) The Bell parameter as a function of the
intermediate-level splitting∆FS in presence and absence of the ex-
ternal fieldΩ. No incoherent dephasing has been considered here.
All parameters are normalized with respect to radiative decay rateγ.

with no external field, which is depicted by the broken line in
Fig. 5. We find that for the two photon radiative cascade with
∆FS = 0, the violation is maximum. We remind the reader
that, this corresponds to the condition when the emitted pho-
tons are indistinguishable in time-frequency and generates an
entangled state in the linear polarization basis{H,V } (Eq.1).
However we find that as∆FS increases,S decreases and there
is no more violations for∆FS > γ (S < 2). These behav-
ior of the Bell parameter suggest that for∆FS 6= 0, but less
than the line-widthγ of the intermediate levels the photons
are still quantum mechanically correlated [29]. Further, as the
splitting increases beyond4γ the Bell parameter becomes a
constant at a value of aroundS = 1.5. Thus we see that for
∆FS > γ the correlations of photons emitted in the radiative
cascade remain no more quantum.

However when the external field is turned on it effects the
correlation among the photons dramatically and that is re-
flected on the Bell parameter. The solid and dashed-dot curve
in Fig. 5 shows the Bell parameter as a function of the in-
termediate level splitting∆FS in presence of a resonant and
non-resonant field respectively. We see from the behavior of
the solid curve that eventhough in presence of a resonant ex-
ternal fieldS decreases initially with increase in∆FS but it
never decrease below2. Rather it becomes a constant (around
2.5) as the intermediate level splitting increases and the exter-
nal field strength is varied to keep it tuned to the level splitting
(Ω = ∆FS). Moreover, for a non-resonant external field (the
dashed-dot curve) the effect onS is even more pronounced.
This is expected, as from our earlier results, we know that
the degree of correlations among the photons are even better
when we have detuned external field. In this case we find that
with increase in∆FS given thatΩ is kept equal to the level
splitting,S change minutely from the value at maximum vio-
lation. In Fig. 6 we plot the Bell parameterS as a function of
the incoherent dephasing rateγd. We find that when∆FS = 0
the Bell parameterS ≥ 2 only for γd much smaller than the
linewidth γ of the intermediate levels. Further as for non-
zero∆FS the quantum correlation among the photons are ad-
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FIG. 6: (Color online) The Bell parameter as a function of thein-
coherent dephasing rateγd for different values of the external field.
Here the intermediate level are considered to be energy separated by
an amount∆FS/γ = 5.

versely effected we have no violation of Bell’s inequality even
for γd = 0. However by turning on the far detuned external
field we see from Fig. 6 that we are successful in regaining
the situation for∆FS = 0 and thus have violation of Bell’s
inequality for smallγd. Thus our analysis shows that, even
though the external field is very effective in reducing or get-
ting rid of the adverse effect of intermediate level splitting on
the quantum correlation of photons, it does not substantially
alter or inhibit the effect of decoherence created in the system
by the incoherent dephasing.

VI. CONCLUSION

In conclusion, we in this paper studied the polarization de-
pendent intensity-intensity correlation of a pair of photons
emitted in a four level radiative cascade driven by an exter-
nal field. We found that, by applying a far detuned external
field, the intensity-intensity correlation which is substantially
degraded in the presence of the level splitting between the
intermediate levels, can be efficiently revived. The mecha-
nism that leads to this revival was found to be an induced
stark shift and the formation of dressed states in the system
by the non-resonant external field. We further investigatedthe
interplay of the intermediate level splitting and the external
field in presence of a incoherent dephasing of the intermedi-
ate levels. The incoherent dephasing create a decoherence in
the system and thereby substantially effect the degree of cor-
relation of the photons. In the presence of an external field,
however we found that the effect can be partially controlled.
Finally, we also investigate the non-locality of the correlations
by studying the violation of Bell’s inequality in the linearpo-
larization basis for the radiative cascade. For an intermediate
level, energy splitting more than the radiative linewidth and
in presence of incoherent dephasing rate we found that the
photons are classically correlated and there is no violation of
Bell’s inequality. In presence of an external field and no inco-
herent processes, effect of the intermediate level splitting can
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be suppressed, thereby generating nonlocal correlation among
the photons. This hence leads to violation of Bell’s inequality
in the radiative cascade for even arbitrary intermediate level
splitting. In presence of incoherent dephasing however, the
external field modulation is effective in preserving the non-
locality of the correlation only if the incoherent process is not
so strong.
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Appendix A - Density Matrix Elements

To calculate the two-time intensity-intensity correlation
function the dynamical evolution of the matrix elements
ρX1X1

(t+ τ ), ρX2X2
(t+ τ ), and ρX1X2

(t+ τ ) are re-
quired. This can be found by solving the equation of motion
for the density matrix elements given by the set of equations:

ρ̇2XX1
= −1

2
(γ1 + γ2 + γ3 + γ21) ρ2XX1

; (A-1)

ρ̇2XX2
= − 1

2 (γ1 + γ2 + γ4 + γu + γ12) ρ2XX2

−iΩ∗ρ2Xu;
(A-2)

ρ̇2Xg = −1

2
(γ1 + γ2) ρ2Xg; (A-3)

ρ̇2Xu = −1

2
(γ1 + γ2 + i2δ) ρ2Xu − iΩρ2XX2

; (A-4)

ρ̇X1g = −1

2
(γ3 + γ21) ρX1g; (A-5)

ρ̇X1u = −1

2
(γ3 + γ21 + i2δ) ρX1u − iΩρX1X2

; (A-6)

ρ̇X1X2
= − 1

2 (γ3 + γ4 + γu + γ21 + γ12) ρX1X2

−iΩ∗ρX1u;
(A-7)

ρ̇X2g = −1

2
(γ4 + γu + γ12) ρX2g + iΩρug; (A-8)

ρ̇X2u = − 1
2 (γ4 + γu + γ12 + i2δ) ρX2u

−iΩ (ρX2X2
− ρuu);

(A-9)

ρ̇ug = iδρug + iΩ∗ρX2g; (A-10)

ρ̇2X2X = − (γ1 + γ2) ρ2X2X ; (A-11)

ρ̇X1X1
= − (γ3 + γ21) ρX1X1

+γ1ρ2X2X + γ12ρX2X2
;

(A-12)

ρ̇X2X2
= − (γ4 + γu + γ12) ρX2X2

+ γ2ρ2X2X

+γ21ρX1X1
+ iΩρuX2

− iΩ∗ρX2u;
(A-13)

ρ̇uu = γuρX2X2
− iΩρuX2

+ iΩ∗ρX2u; (A-14)

ρji = ρ∗ij (A-15)

ρ2X2X + ρX1X1
+ ρX2X2

+ ρuu + ρgg = 1. (A-16)

Appendix B - Correlation function

The resulting two-time correlation function in Eq. (8) can
written as

〈II〉 =
(

ω0

c

)8 1
4r4D

2
1D

2
2 〈|2X〉 〈2X |t〉 {f1 (τ) + f2 (τ)

+g1 (τ) + g2 (τ) + (cos 2θ1 + cos 2θ2) (f1 (τ)− g1 (τ))
+ (cos 2θ1 − cos 2θ2) (g2 (τ)− f2 (τ))
+ cos 2θ1 cos 2θ2 (f1 (τ) + g1 (τ)− f2 (τ) − g2 (τ))
+ sin 2θ1 sin 2θ2

[

e−i(φ1+φ2)w∗ (τ) + ei(φ1+φ2)w (τ)
]}

.

(B-1)

Here

f1 (τ) = eb0τ
[

cosh
(

ητ
2

)

− γ3−γ4+γ21−γ12−γu

η sinh
(

ητ
2

)

]

;
(B-2)

f2 (τ) =
2γ12e

b0τ

η
sinh

(ητ

2

)

; (B-3)

g1 (τ) = eb0τ
[

cosh
(

ητ
2

)

+ γ3−γ4+γ21−γ12−γu

η sinh
(

ητ
2

)

]

;
(B-4)

g2 (τ) =
2γ21e

b0τ

η
sinh

(ητ

2

)

; (B-5)

w (τ) = ea0τ−i∆FSτ
[

cos
(

µτ
4

)

+ γ4+γ12+γu−2iδ
µ sin

(

µτ
4

)

]

,
(B-6)

where, a0 = − 1
4 (2γ3 + 2γ21 + γ4 + γ12 + γu + 2iδ),

b0 = − 1
2 (γ3 + γ4 + γ21 + γ12 + γu),
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µ =

√

16Ω2 − (γ4 + γ12 + γu − 2iδ)2, and

η =

√

4γ21γ12 − (γ3 − γ4 + γ21 − γ12 − γu)
2.

Also,D1 =
∣

∣

∣

~dX12X

∣

∣

∣
=

∣

∣

∣

~dX22X

∣

∣

∣
andD2 =

∣

∣

∣

~dgX1

∣

∣

∣
=

∣

∣

∣

~dgX2

∣

∣

∣
.

We can calculate the average correlation function as
〈II〉av =

∫∞

0 〈II〉 dτ and the result is

〈II〉av =
(

ω0

c

)8 1
4r4D

2
1D

2
2 〈|e〉 〈e|t〉 {F1 + F2 +G1 +G2

+(cos 2θ1 + cos 2θ2) (F1 −G1)
+ (cos 2θ1 − cos 2θ2) (G2 − F2)
+ cos 2θ1 cos 2θ2 (F1 +G1 − F2 −G2)
+ sin 2θ1 sin 2θ2

[

e−i(φ1+φ2)W ∗ + ei(φ1+φ2)W
]}

,

(B-7)

where

F1 =
γ4 + γ12 + γu
b20 − η2/4

; (B-8)

F2 =
γ12

b20 − η2/4
; (B-9)

G1 =
γ3 + γ21
b20 − η2/4

; (B-10)

G2 =
γ21

b20 − η2/4
; (B-11)

W =
i (∆FS + δ) + (γ3 + γ21) /2

(a0 − i∆FS)
2
+ µ2/16

. (B-12)

For the caseγ3 = γ4 ≡ γ, γ21 = γ12, andγ, γ12 ≫ γu,
the two-time polarization-angle-dependent intensity-intensity
correlation function is found to be

〈II〉 =
(

ω0

c

)8 1
2r4D

2
1D

2
2 〈|2X〉 〈2X |t〉 {e−γτ

+cos 2θ1 cos 2θ2e
−(γ+2γ12)τ

+sin 2θ1 sin 2θ2Re
[

ei(φ1+φ2)w (τ)
]}

.

(B-13)
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