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We study spontaneously generated entanglement (SGE) between two identical

multilevel atoms in free space via vacuum-induced radiative coupling. We show that

the SGE in two-atom systems may initially increase with time but eventually vanishes

in the time scale determined by the excited state lifetime and radiative coupling

strength between the two atoms. We demonstrate that a steady-state SGE can be

established by incoherently pumping the excited states of the two-atom system. We

have shown that an appropriate rate of incoherent pump can help producing optimal

SGE. The multilevel systems offer us more chanel to establish entanglement. The

system under consideration could be realized in a tight trap or atoms/ions doped in

a solid substrate.

PACS numbers: 03.65.Ud, 42.50.Dv

I. INTRODUCTION

The recent development of quantum technologies strives to resolve the quest for the

best entanglement source in quantum optical systems. Though entanglement is observed

in a variety of systems, entanglement in atomic systems are favored as more scalable and

practical systems, compared to their “photonic only” counterparts due to the development

of reliable state-of-the-art technologies to control the atoms one-at-a-time [1] which can be

precisely scaled to many atoms [2, 3]. Many exciting developments of entanglement sources

are involved in atomic systems such as entanglement via atom-cavity coupling [4], atom-atom

http://arxiv.org/abs/0908.0831v1
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entanglement via cavity [5], entanglement in trapped ions/atoms [3, 6], atomic entanglement

in an optical lattice by controlled collision [7] and also atomic entanglement via external

fields [8, 9]. Recently, it has also been shown that well separated atomic ensembles can

also be entangled via coherent coupling between them [10]. Scully has extensively discussed

entanglement in two, three and many atoms via a single photon [11] and has shown that

such an ensemble can produce directional spontaneous emission [12].

Amongst the different atomic entanglement generation processes, an interesting and use-

ful category is spontaneously generated entanglement (SGE) sources via interaction of atoms

with a common bath of cavity field [5], vacuum [3, 6, 13], heat bath [14] or even a spin chain

[15]. Usually, the baths have very short correlation time and hence potentially cause dis-

entanglement [17] and decoherence [16] in an entangled system. Agarwal and Patnaik [19]

have shown that coherences in two multilevel atoms can be generated from their interaction

with a common vacuum bath via the retarded dipole-dipole (dd) coupling when they are

placed in the close proximity of each other. Effect of such vacuum induced coherence (VIC)

on the collective resonance fluorescence is discussed in [20]. SGE is particularly interesting

from the application point of view because: practical quantum devices are often unavoidably

coupled to the environmental bath and hence SGE can occur naturally.

Most of the works listed above are focused on SGE in two-level atoms. Study of multi-

level systems are important because in certain situations, participation of additional internal

atomic levels in the process of generating entanglement or causing disentanglement is un-

avoidable. For example, when two atoms, having a triplet P -state as their excited [19] or

ground [20] state, are placed in close proximity, i.e., the interatomic distance is less than the

wavelength of the atomic transitions involved, R < λ0, even the dipoles involving the or-

thogonal σ± transitions can radiatively couple to generate additional coherences. Recently,

Keitel and coworkers [21] have explicitly shown that the two-level approximation fails in such

a situation. Furthermore, multilevel systems can open up new channels in bath assisted SGE

in a vary natural way and even can give more control parameters [18]. To the best of our

knowledge, only a few studies addresses entanglement in three-level atoms interacting with

a continuum via the radiative coupling [17, 18].

In this paper, we investigate the steady state SGE between two radiatively coupled

and incoherently pumped atoms having their energy levels in a V configuration with non-

degenerate excited states; see Fig. 1. We derive a master equation and trace over the field
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part to obtain the equations for the atomic dynamics. We obtain an analytical solution to

show that multilevel systems are preferable compared to two-level systems for SGE because

they add additional coupling channels to enhance the entanglement. We demonstrate that

the SGE can be sustained to achieve a steady state entanglement by incoherently pumping

the atoms. It may be noted that we are working outside the regime of VIC. In our two-atom

system VIC could be generated if the excited states of both the atoms are degenerate or

near degenerate [19, 20].

The organization of the paper is the following: In Sec. II we derive a master equation for

the two atoms interacting with common vacuum. Tracing over the vacuum bath parameters,

we obtain the equations for the system dynamics. In Sec. III, we present the time evolution

of the entanglement between the two atoms that occurs only for a short period of time.

In Sec. IV, we derive the atomic density matrix equations when atoms are incoherently

pumped. We show that a steady state entanglement can be obtained between the two

atoms purely via incoherent processes. We summarize and discuss our result in Sec. V.

ωks
ωk s ωks

e

µ

e

g g

   atom A atom B 

ωk s

µ

Λ1

2Λ Λ1 2Λ

A

B

A

A

B

B

O O

R

FIG. 1: (Color online) The two identical atoms under consideration. The V type atoms with non-

degenerate excited states. The distance between the two atoms is considered to be small compared

to the radiation wavelength, R < λ0.
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II. THE TWO-ATOM SYSTEM AND THEIR DYNAMICS

We consider two identical three level V systems (say A and B) in free space having two

excited states |eα〉 and |µα〉 (α = A,B), and a ground state |gα〉, as depicted in Fig. 1. Both

the atoms couple to the same vacuum field. While we do not wish to loose the generality of

our results, our scheme can correspond to two 40Ca atoms in a magneto-optical trap (MOT)

in presence of a static magnetic field. The ground state can correspond to 41S0 state and

the excited states can correspond to the magnetic sublevels 41P1 of Ca atom. The static

magnetic field would remove the degeneracy of the 41P1 sublevels and the states |eα〉 and

|µα〉 can correspond to ml = ±1 levels. Note that we restrict to the situation where the cross

couplings between |eα〉 ↔ |gα〉 and |µα〉 ↔ |eα〉 transitions are eleminated by considering

the non-degenerate excited states. Thus the photon emitted from |eα〉 → |gα〉 (|µα〉 → |gα〉)

can only be absorbed by |gα〉 → |eα〉 (|gα〉 → |µα〉). For simplicity, we consider only the case

of real dipole moments for our discussion below. These results can be easily generalized to

complex dipoles, e.g., involving magnetic sublevels.

In this section, we derive the system dynamics with only the contributions from the two-

atom coupling with vacuum, i.e., in absence of incoherent pumping. The role of incoherent

pumping will be discussed in detail in the Sec. IV. The Hamiltonian of the two-atom system

interacting with the vacuum field can be written in the interaction picture as

HI =
∑

α=A,B

(

∑

ks

dαegσ
α
egakse

i[~k·~xα+(ω1−ωks)t]

+
∑

k′s′

dαµgσ
α
µgak′s′e

i[~k′·~xα+(ω2−ω
k′s′

)t] +H.c.
)

,

(1)

where, the vacuum Rabi coupling coefficients corresponding to atom α are

dαeg = i

(

2πℏωks

V

)1/2

~℘α
eg ·~εks

and dαµg = i

(

2πℏωk′s′

V

)1/2

~℘α
µg ·~εk′s′, (2)

and ~℘α
eg (~℘α

µg) is the dipole matrix element corresponding to the transition operator σα
eg =

|eα〉〈gα| (σ
α
µg = |µα〉〈gα|), ~εks(~εk′s′) is the unit polarization vector of the vacuum mode with

frequency ωks (ωk′s′), aks (ak′s′) is the photon annihilation operator corresponding to the

vacuum field with wave vector k (k′) and polarization s (s′), ω1 (ω2) is the atomic frequency

corresponding to |eα〉 ↔ |gα〉 (|µα〉 ↔ |gα〉) transitions, and xα is the position of the atom

α.
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We use the Zwanzig projection operator method [22, 23] to trace over the field degrees of

freedom and obtain a reduced density matrix equation for the atoms. We use the Born and

Markoff approximation to obtain a memoryless master equation. Referring to Ref. [19] and

without duplicating the lengthy calculation, we write the reduced density matrix equation

for the atoms as

ρ̇ = −i[Vdd, ρ] + (Ls + Ldd)ρ, (3)

where

Vdd = G1σ
A
eg ⊗ σB

ge +G2σ
A
µg ⊗ σB

gµ +H.c., (4)

is the part of the dd -interaction that contributes to the level shift. The coupling coefficients

are

G1 =
∑

ks

π

ℏ2(ω1 − ωks)
dAegd

B
gee

i~k·~R,

G2 =
∑

ql

π

ℏ2(ω2 − ωql)
dAµgd

B
gµe

i~k·~R. (5)

Here ~R = ~xA − ~xB. Further, the Liouvillian operators Lj are:

Lsρ = γ1[(2σ
A
geρσ

A
eg − σA

eeρ− ρσA
ee) + A → B]

+ γ2[(2σ
A
gµρσ

A
µg − σA

µµρ− ρσA
µµ) + A → B],

(6)

corresponding to spontaneous emission of the atoms, and

Lddρ = [Γ1(2σ
B
geρσ

A
eg − σA

egσ
B
geρ− ρσA

egσ
B
ge) +H.c.]

+ [Γ2(2σ
B
gµρσ

A
µg − σA

µgσ
B
gµρ− ρσA

µgσ
B
gµ) +H.c.],

(7)

corresponding to the dd coupling mediated by the vacuum. Note that the subscript in ρa is

dropped for brevity. Here the spontaneous decay rates are given as

γ1 =
1

~2

∑

ks

πδ(ω1 − ωks)|deg|
2,

γ2 =
1

~2

∑

ql

πδ(ω2 − ωql)|dµg|
2, (8)

and the atom-atom coupling coefficients are obtained as

Γ1 =
1

~2

∑

ks

πδ(ω1 − ωks)|deg|
2ei

~k·~R,

Γ2 =
1

~2

∑

ks

πδ(ω2 − ωql)|dµg|
2ei

~k·~R. (9)
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Further the index α has been dropped as we consider that the atomic dipoles corresponding

to the same atomic transitions are parallel to each other, i.e., ~℘A
ij ‖ ~℘B

ij. Clearly, the radiative

coupling terms Γi and Gi have numerical significance only in the limit |kR| and |k′R| ≤ 1. In

the other limit, when the interatomic distance R is too large, only the spontaneous emission

terms survive and the atoms behave as two independent atoms. We refer to [19] for the

detail steps of the calculation.

Now let us assume that initially, the two-atom state is |eµ〉, where the notation |ij〉≡|iA〉⊗

|jB〉, i, j = e, µ, g. The nine two-atom basis states are |ee〉, |eµ〉, |eg〉, |µe〉̇, |µµ〉, |µg〉, |ge〉,

|gµ〉 and |gg〉, and we number them 1 through 9 in the same order as above to simplify the

notations for the density matrix elements 〈iAjB|ρ|i
′
Aj

′
B〉. For examples, the density matrix

element 〈eAµB|ρ|eAµB〉 corresponding to our initial state |eµ〉 is represented as ρ22 in the

new notation. The full density matrix equation involves 81 matrix elements but for the

above initial condition, many elements would be identically zero and only 10 density matrix

elements survive. We consider the geometry where dipole matrix elements are orthogonal to

each other and are real (as discussed in Sec. III of [19]), such that the parameters Gi, γi,Γi

are real numbers seen Eq. (26) in [19]. In the following, we explicitely write the dynamics

equations only for those surviving density matrix elements as

ρ̇22 = −2(γ1 + γ2)ρ22,

ρ̇33 = −2γ1ρ33 + 2γ2ρ22 − Γ1(ρ73 + ρ37)

−iG1(ρ73 − ρ37),

ρ̇37 = −2γ1ρ37 − Γ1(ρ77 + ρ33)− iG1(ρ77 − ρ33),

ρ̇66 = −2γ2ρ66 − Γ2(ρ86 + ρ68)− iG2(ρ86 − ρ68), (10)

ρ̇68 = −2γ2ρ68 − Γ2(ρ88 + ρ66)− iG2(ρ88 − ρ66),

ρ̇77 = −2γ1ρ77 − Γ1(ρ37 + ρ73)− iG1(ρ37 − ρ73),

ρ̇88 = −2γ2ρ88 + 2γ1ρ22 − Γ2(ρ86 + ρ68)

−iG2(ρ68 − ρ86),

ρ̇99 = 2γ1(ρ33 + ρ77) + 2γ2(ρ66 + ρ88)

+2Γ1(ρ37 + ρ73) + 2Γ2(ρ68 + ρ86).

Note that the conjugate matrix elements ρ73 and ρ86 (conjugates of ρ37 and ρ68, respectively)

also evolve. Using the Laplace transform method, we solve the above coupled equations for
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the density matrix elements with the initial condition ρ22 = 1 to obtain their time evolution

as

ρ22(t) = e−2(γ
1
+γ

2
)t,

ρ33(t) =
γ2e

−2γ
1
t

2
×

[γ2 cosh(2Γ1t)− Γ1 sinh(2Γ1t)− γ2e
−2γ

2
t

γ2
2 − Γ2

1

+
γ2 cos(2G1t) +G1 sin(2G1t)− γ2e

−2γ
2
t

γ2
2 +G2

1

]

,

ρ37(t) =
γ2e

−2γ
1
t

2
×

[Γ1e
−2γ

2
t − Γ1 cosh(2Γ1t) + γ2 sinh(2Γ1t)

Γ2
1 − γ2

2

−
iG1 cos(2G1t)− iγ2 sin(2G1t)− iG1e

−2γ
2
t

G2
1 + γ2

2

]

, (11)

ρ66(t) =
γ1e

−2γ
2
t

2
×

[γ1 cosh(2Γ2t)− Γ2 sinh(2Γ2t)− γ1e
−2γ

1
t

γ2
1 − Γ2

2

−
γ1 cos(2G2t) +G2 sin(2G2t)− γ1e

−2γ
1
t

γ2
1 +G2

2

]

ρ68(t) = ρ∗37(t)
∣

∣

1↔2
, ρ77(t) = ρ66(t)

∣

∣

1↔2
,

ρ88(t) = ρ33(t)
∣

∣

1↔2
,

ρ99(t) = 1− ρ33(t)− ρ66(t)− ρ77(t)− ρ88(t).

It may be noted that the initial state ρ22 ≡ 〈eAµB|ρ|eAµB〉 decays with a rate of the sum

of the decays of both excited states but does not depend on the dd coupling terms Γi and

Gi. However, the other population and cross terms strongly depend on the dd coupling.

The dd terms Γi play the role of decays via the cosine and sine hyperbolic functions and the

coefficients Gi cause the dd coupling induced vacuum Rabi oscillations. The time dependent

solutions of the matrix elements show the oscillations with frequencies determined by the

atom-atom coupling coefficients G1 and G2. Further, the dd terms are strongly dependent

on the interatomic distance R. Hence the dynamics of the density matrix elements are also

strongly affected by R. We will present numerical plots and discussions for some of the

important density matrix elements that help in evolving the SGE in the following section.
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III. TIME EVOLUTION OF SGE

In this section, we calculate the time evolution of the entanglement between two-atoms.

Out of various different methods to calculate entanglement between the two atoms, we

choose the negativity, defined by [24]

N(ρ) =
‖ρTA‖ − 1

2
= −

∑

i

′

λi, (12)

as the measure of entanglement. Here ‖ρTA‖ denotes the trace norm of ρTA [25]; ρTA is

the partial transposition matrix of the atomic system density operator ρ(t). The primed

sum in the above equation represents the sum over only the negative eigenvalues λi of ρ
TA.

For a high dimensional system, while a non-zero N(ρ) is a sufficient condition to prove

that a system entangled, but a null N(ρ) does not necessarily qualify a system to become

disentangled. From the definition, the negativity N can also be greater than 1. For different

dimensions of the density matrix, the maximum value of N is different. For a two-atom

three-level system, such as ours, the state Ψ = 1√
3
[|ee〉+ |µµ〉+ |gg〉 is maximally entangled

one with the negativity N(Ψ) = 1.

Thus to obtain negativity in our two-atom system, we first calculate the eigenvalues of

ρTA by using the density matrix ρ(t). After a lengthy calculation, we obtain the exact

eigenvalues as

λ1 = λ2 = 0, λ3 = ρ22(t), λ4 = ρ33(t),

λ5 = ρ66(t), λ6 = ρ77(t), λ7 = ρ88(t),

λ8 =
ρ99(t)

2
+

1

2

√

ρ299(t) + 4[|ρ37(t)|
2 + |ρ68(t)|

2], (13)

λ9 =
ρ99(t)

2
−

1

2

√

ρ299(t) + 4[|ρ37(t)|
2 + |ρ68(t)|

2].

It is clear that among all of the above eigenvalues, only λ9 can become negative. Therefore,

if we obtain a negative λ9, it is sufficient to prove the occurence of the SGE. Clearly, λ9 can

be negetive only if at least one of the matrix element ρ37 ≡ 〈eg|ρ|ge〉 or ρ68 ≡ 〈µg|ρ|gµ〉 is

non-zero, i.e., if there is an exchange of at least one photon between two atoms. Thus it is

clearly established that radiative coupling leads to SGE in the two-atom system. Because

both ρ37 and ρ68 contribute to the generation of entanglement. Thus the three-level atoms

offer us more channels to establish entanglement than two-level one.
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FIG. 2: (Color online) The time-dependence of real and imaginary parts of matrix element

ρ37(t) with different values of Γ1(Γ2) and G1(G2). We set γ = 1,r = 1.2. The parameters

(G,Γ) ≡ (2.4, 0.9), (0.9, 0.8), and (−0.24, 0.2) correspond to R = 0.83λ1, 1.18λ1 and 2.78λ1 that

are represented in the figure as the solid, dashed and dotted line, respectively.

Before we proceed further, we first study the density matrix elements ρ37(t) and ρ99(t)

that determine the entanglement. Note that the two excited states are non-degenerate.

Assuming that ω2 = rω1, and say γ1 = γ; Γ1 = Γ, G1 = G, we have γ2 = rγ, Γ2 = rΓ

and G2 = rG. For the numerical plots presented below, we use the parameters given in the

Table I determined from their definitions in Eqs. (5, 8, 9) [30]. Note that as the interatomic

distance reduces, Γ oscillates [19]. However, peak value of Γ decreases with larger interatomic

distances due to decreased dipole-dipole coupling between the two atoms. Thus, Γi ( Gi)

can be same in two or more interatomic different distances. But any particular interatomic

distance determines a particular value for the pair of (Γi, Gi). We will concentrate on the the

photon exchange process with decreased trend of Γi ( Gi ) with the increasing interatomic
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separation. So, the parameters given in table is approximately monotonic.

TABLE I: The interatomic distance and the corresponding coupling parameters. All the frequency

units are scaled with γ.

R (in unit of λ0) Γ1 Γ2 G1 G2

0.50 0.96γ1 0.96γ2 8.0γ1 8.0γ2

0.83 0.9γ1 0.9γ2 2.4γ1 2.4γ2

1.18 0.8γ1 0.8γ2 0.9γ1 0.9γ2

2.78 0.2γ1 0.2γ2 -0.24γ1 -0.24γ2

In Fig. 2, we present the evolution of the density matrix element ρ37 = 〈eg|ρ|ge〉 repre-

senting the single photon radiative coupling process, in which atom A loses its excitation to

excite atom B from its ground state |gA〉 to the state |eB〉. It is observed that, initially the

process of exchange of photon increases. However, after reaching a maximum, Reρ37 falls

off quickly within one spontaneous emission cycle. The time needed to reach the maximum

value for Reρ37 is determined by Γ−1. The maximum of Imρ37 occurs at t ∼ γ−1. In long

time limit both real and imaginary part of ρ37 vanish. Similar conclusions can be derived

for the matrix element ρ68 which physically represents the simultaneous probability of two

processes |µA〉 → |gA〉 and |gB〉 → |µB〉.

In Fig. 3 we present the evolution of the population in the state |gg〉, i.e., the matrix

element ρ99(t). This plot also supports the physical process we described above. We can

see that again large values of Γ slows down ρ99(t) to reach at its asymptotic value. In other

words, the radiative coupling process survives longer. The steady state value is ρ99 = 1, i.e.,

both the atoms reach their ground states in the long time limit.

Next, we discuss the property of the entanglement generated this atomic system. We

present the plot of N(t) that describes the time evolution of the SGE for different values

of Γ and G in Fig. 4. It is shown that at t = 0, there is no entanglement because initially

the atomic system is in the state |eµ〉. For t > 0 the entanglement evolves to reach its

maximum value, and then undergoes a process of disentanglement. Finally, steady state

of negativity becomes identically zero. But the relaxation time becomes longer when the

atoms are nearer (seen solid line in Fig. 2a and Fig. 4 ). From the solution Eq.(11),

we know that relaxation time of Re (ρ37) is determined by max{ 1
2(γ

1
+Γ1)

, 1
2(γ

1
−Γ1)

} which
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FIG. 3: (Color online) The matrix element for our atomic system as a function of t corresponding

to different pairs of (G, Γ). The curves and also corresponding legends are same as in Fig.2.

means larger the value of |Γ1|, longer the relaxation time for disentanglement. This is the

competition between dd coupling and the all-direction spontaneous emission. The evolution

of SGE presented here can be understood as due to the following multiple radiative exchange

processes: spontaneous emission of atom A via |eA〉 → |gA〉 (atom B via |µB〉 → |gB〉)

transition is followed by an absorption of the spontaneously emitted radiation by atom B

via |gB〉 → |eB〉 (atom A via |gA〉 → |µA〉), as it is expressed by ρ37(t) (ρ68(t)) causing the

two-atom entanglement.
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FIG. 4: (Color online) The negativity for our atomic system as a function of t corresponding to

different pairs of (G, Γ). All the parameters correspond to Fig.2, respectively.

IV. STEADY STATE ENTANGLEMENT WITH BROADBAND INCOHERENT

PUMPING

From the previous section, we have seen that the disadvantage of SGE is the temporal

evolution and the quickly diminishing of SGE due to the decays in the system. However,

for any useful application, for example, to use the two-atom system as a coupled qubit,

sustaining the generated SGE is essential. In order to achieve a steady state entanglement,

we introduce an incoherent pump to continually repump population to the excited states.

Steady state entanglement using a classical coherent pumping is discussed in [26] where the

coherent pumping with single frequency drive the atoms. Coherent field assisted entangle-

ment is rather intutive. On the contrary, the usual notion associated with an incoherent
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pumping with a decoherence process and hence a source of disentanglement. However, in

what follows below, we show that an appropriate strength of incoherent pump can lead to a

steady entanglement between the two atoms.

We consider a broadband incoherent pump acting on the two atoms which incoherently

drive the population from |g〉 to |e〉 (|µ〉) levels. Incoherent pumping can be modeled as an

inverse process of spontaneous emission [27, 28]. Thus we add a third Liouvillian Linc to the

the master equation Eq.(4) to get

ρ̇ = −i[Vdd, ρ] + (Ls + Ldd + Linc)ρ, (14)

where

Lincρ = Λ1[(2σ
A
egρσ

A
ge − σA

ggρ− ρσA
gg) + A → B]

+Λ2[(2σ
A
µgρσ

A
gµ − σA

µµρ− ρσA
µµ) + A → B].

(15)

where Λ1 and Λ2 denote incoherent pumping rates for |gα〉 → |eα〉 and |gα〉 → |µα〉 transitions

respectively. We explicitly write the density matrix equations involved in presence of the
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incoherent pump as

ρ̇11 = −4γ1ρ11 + 2Λ1(ρ77 + ρ33)

ρ̇22 = −2(γ1 + γ2)ρ22 + 2Λ1ρ88 + 2Λ2ρ33,

ρ̇33 = −2s1ρ33 + 2γ2ρ22 + 2γ1ρ11 + 2Λ1ρ99

−iG1(ρ73 − ρ37)− Γ1(ρ73 + ρ37),

ρ̇37 = −2s1ρ37 − Γ1(ρ77 + ρ33)

+2Γ1ρ11 − iG1(ρ77 − ρ33),

ρ̇44 = −2(γ1 + γ2)ρ44 + 2Λ1ρ66 + 2Λ2ρ77

ρ̇55 = −4γ2ρ55 + 2Λ2(ρ66 + ρ88) (16)

ρ̇66 = −2s2ρ66 + 2γ1ρ44 + 2γ2ρ55 + 2Λ2ρ99

−iG2(ρ86 − ρ68)− Γ2(ρ86 + ρ68),

ρ̇68 = −2s2ρ68 − Γ2(ρ88 + ρ66) + 2Γ1ρ55 − iG2(ρ88 − ρ66),

ρ̇77 = −2s1ρ77 + 2γ1ρ11 + 2γ2ρ44 + 2Λ1ρ99

−Γ1(ρ37 + ρ73)− iG1(ρ37 − ρ73),

ρ̇88 = −2s2ρ88 + 2γ1ρ22 + 2γ2ρ55 + 2Λ2ρ99

−Γ2(ρ86 + ρ68)− iG2(ρ68 − ρ86),

ρ̇99 = 2γ1(ρ33 + ρ77) + 2γ2(ρ66 + ρ88)− 4(Λ1 + Λ2)ρ99

+2Γ1(ρ37 + ρ73) + 2Γ2(ρ68 + ρ86).

where sα = γα + Λ1 + Λ2 (α = 1, 2). Note that in presence of the incoherent pumping Λi,

the non-zero additional terms are the populations |ee〉, |µµ〉, |µe〉. Hence we have a total

of 13 non-vanishing density matrix elements in presence of Λi. Since we are looking for a

steady state SGE, we calculate the steady state values of the matrix elements by setting the

differentials in the left-hand sides as zero and solving the coupled equations. The analytical
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solutions that we obtain are

ρ11 =
γ2

b
Λ1a2,

ρ22 =
γ1γ2

b(γ1 + γ2)
(a1Λ1 + a2Λ2),

ρ33 =
γ1γ2

b
a2,

ρ37 =
Γ1γ2

s1b
(Λ1 − γ1)a2, ρ44 = ρ22,

ρ55 =
γ1a1

b
Λ2, ρ66 =

γ1γ2a1

b
,

ρ68 =
γ1Γ2

s2b
(Λ2 − γ2)a1,

ρ77 = ρ33, ρ88 = ρ66,

ρ99 =
2γ1γ2

b
(β1a2 + a1β2), (17)

with

a1 = Λ2[γ1 + 2β1(γ1 + γ2)],

a2 = Λ1[γ2 + 2β2(γ1 + γ2)],

βj =
sαγ

2
α + Γ2

α(Λα − γα)

2sαγα(Λ1 + Λ2)
, j = 1, 2,

b = 2γ1γ2(γ1 + γ2)[(β1 + 1)a2 + (β2 + 1)a1]

+(γ1 + γ2)(a2γ2Λ1 + a1γ1Λ2)

+γ1γ2(2a2Λ2 + 2a1Λ1) (18)

It is interesting to note that the steady state of the density matrix elements do not depend

on G1 and G2. The level shift parameters G1 and G2 typically contribute to oscillation of

population and coherence terms. Hence, in the long time limit, such fast oscillation terms

vanish. Thus steady state solutions in Eq. (17) are independent of G1 and G2.

Once again, as in the previous section, we calculate the eigenvalues of ρTA to measure the

entanglement. We obtain equation for the non-zero eigen values as

(ρ11 − λ)(ρ55 − λ)(ρ99 − λ)− |ρ37|
2(ρ55 − λ)

−|ρ68|
2(ρ11 − λ) = 0. (19)

We obtain the numerical values of λ solving the above equation and substitute in Eq. (12) to

obtain the steady state negativity as a function of Λi, as shown in Fig. 5. We have scaled the
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incoherent pumping rate Λi with the spontaneous decay rate γ1 = γ and also for simplicity

we have assumed Λ1 = Λ2 = Λ. Clearly, a non-zero steady state entanglement is obtained

by incoherently repumping the excited state. Smaller the interatomic distance, larger is

the steady state entanglement. Further, as the incoherent pumping rate is increased, the

SGE increases but after reaching a certain optimal value at around Λ = 0.08γ, the atomic

entanglement starts to reduce. For smaller the interatomic distances, even stronger inco-

herent pumping can be used to get entangled atoms. Without any incoherent pumping the

steady state SGE is identically zero. Physically, the increase in entanglement with the in-

coherent pumping can be understood as follows: the spontaneous emission in either of the

two atoms followed by exchange of photon between them generates SGE. But that does not

survive longer because the spontaneously emitted photon can escape in any arbitrary direc-

tion. Once both atoms loose their excitation, SGE vanishes. An incoherent pump assists

the atoms to bring back to the desirable excitation so that more spontaneous emissions and

hence photon exchanges can take place between the two atoms. Thus, increasing the re-

pumping via incoherent pumping helps increasing the SGE. However, incoherent repumping

also competes with the photon exchange process to re-excite the atoms. While an excitation

due to the photon-exchange process enhances the entanglement, an excitation by incoherent

process has no direct contribution to the entanglement. In fact, for a larger Λ, the incoherent

excitation dominates the photon exchange process and hence causes a decrease in SGE. For

Λ ≫ Γi, Gi, SGE becomes identically zero.

V. DISCUSSION AND SUMMARY

We have investigated the spontaneously generated entanglement in a system of two three-

level atoms are coupled to the common vacuum field. We have presented the time evolution

of SGE due to the photon exchange between the two atoms. We have shown that both the

magnitude of entanglement and the survival period of SGE are enhanced by reducing the

interatomic distance. From our analytical calculations, we have shown the strong dependence

of the SGE on the radiative coupling parameters. We have explicitly demonstrated that the

multilevel atoms are preferable compared to their two-level counterparts for SGE, because

each channel adds to enhance the magnitude of the entanglement. In the long time limit,

however, SGE vanishes.
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FIG. 5: (Color online) The steady state negativity for our atomic system as a function of Λ, where

we set Λ1 = Λ2 = Λ, γ1 = γ = 1, r = 1.2, γ2 = rγ. From bottom to top, the values of Γ = 0.8, 0.9

and 0.96, corresponding to R = 1.18λ1, 0.83λ1 and 0.5λ1, respectively.

Further, to reinforce the above short term evolution of SGE in the radiatively-coupled

two-atom system, we have proposed to use an incoherent pump that assists in repumping

the deexcited atoms and sustain the SGE. We have demonstrated that for a certain range

of incoherent pumping, the steady state value of SGE increases as it prevents atoms from

loosing their excited state population. However, since incoherent pumping competes with

the two-atom photon exchange process to reexcite the atoms, a stronger incoherent pumping

is shown to be undesirable. We have shown that an appropriate rate of incoherent pump

can help producing optimal SGE.
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The above entanglement can further increase (not discussed here) if one considers atoms

having degenerate or near degenerate excited states in their excited state that has additional

coherences [19], which will be discussed elsewhere. The radiative coupling discussed above

can be realized in any a tight ion trap. However, this work can be generalized to realizing

SGE in a chain of quantum dots or even in a typical dense multi-atom system. We believe

this work will open up a new way to utilize the naturally occurring SGE to realize an efficient

entanglement source.
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