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46 ABSTRACT

47 The evolution of the modern human (Homo sapiens) cranium is characterized by a 

48 reduction in the size of the feeding system, including reductions in the size of the facial skeleton, 

49 postcanine teeth, and the muscles involved in biting and chewing. The conventional view 

50 hypothesizes that gracilization of the human feeding system is related to a shift toward eating 

51 foods that were less mechanically challenging to consume and/or foods that were processed 

52 using tools before being ingested. This hypothesis predicts that human feeding systems should 

53 not be well-configured to produce forceful bites and that the cranium should be structurally 

54 weak. An alternate hypothesis states that the modern human face is adapted to generate and 

55 withstand high biting forces. We used finite element analysis (FEA) to test two opposing 

56 mechanical hypotheses: that compared to our closest living relative, chimpanzees (Pan 

57 troglodytes), the modern human craniofacial skeleton is 1) less well configured, or 2) better 

58 configured to generate and withstand high magnitude bite forces. We considered intraspecific 

59 variation in our examination of human feeding biomechanics by examining a sample of 

60 geographically diverse crania that differed notably in shape. We found that our biomechanical 

61 models of human crania had broadly similar mechanical behavior despite their shape variation 

62 and were, on average, less structurally stiff than the crania of chimpanzees during unilateral 

63 biting when loaded with physiologically-scaled muscle loads. Our results also show that modern 

64 humans are efficient producers of bite force, consistent with previous analyses. However, highly 

65 tensile reaction forces were generated at the working (biting) side jaw joint during unilateral 

66 molar bites in which the chewing muscles were recruited with bilateral symmetry. In life, such a 

67 configuration would have increased the risk of joint dislocation and constrained the maximum 

68 recruitment levels of the masticatory muscles on the balancing (non-biting) side of the head. Our 
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69 results do not necessarily conflict with the hypothesis that anterior tooth (incisors, canines, 

70 premolars) biting could have been selectively important in humans, although the reduced size of 

71 the premolars in humans has been shown to increase the risk of tooth crown fracture. We 

72 interpret our results to suggest that human craniofacial evolution was probably not driven by 

73 selection for high magnitude unilateral biting, and that increased masticatory muscle efficiency 

74 in humans is likely to be a secondary byproduct of selection for some function unrelated to 

75 forceful biting behaviors. These results are consistent with the hypothesis that a shift to softer 

76 foods and/or the innovation of pre-oral food processing techniques relaxed selective pressures 

77 maintaining craniofacial features favoring forceful biting and chewing behaviors, leading to the 

78 characteristically small and gracile faces of modern humans.
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92

93

94 INTRODUCTION

95 Human craniofacial architecture is extreme among living primate species. In particular, 

96 modern humans (Homo sapiens) exhibit a tall braincase and a small and short maxilla which 

97 distinguishes them from even our closest living relatives, the chimpanzees and bonobos of genus 

98 Pan (Fleagle, Gilbert & Baden, 2010). Reductions in the size and prognathism of the face, 

99 combined with increases in neurocranial globularity, have also been shown to differentiate 

100 modern humans from some extinct members of the genus Homo (Lieberman, McBratney & 

101 Krovitz, 2002). Homo exhibits an even more pronounced reduction in the size and robusticity of 

102 the facial skeleton, as well as in the size of the postcanine dentition and masticatory muscles 

103 (e.g., Robinson, 1954; Rak, 1983; Demes & Creel, 1988), relative to australopiths, an extinct 

104 informal group of early hominins from which modern humans are likely to be descended (e.g., 

105 Walker, 1991; Wood, 1992; Skelton & McHenry, 1992; Strait, Grine & Moniz, 1997; Strait & 

106 Grine, 2004; Kimbel, Rak & Johanson, 2004; Berger et al., 2010). Theories purporting to explain 

107 the adaptive significance of masticatory reduction in Homo frequently stress the importance of 

108 changes in diet, usually involving a shift to foods that require less extensive intra-oral processing 

109 (e.g., Robinson, 1954; Rak, 1983; Brace, Smith & Hunt, 1991; Wrangham et al., 1999; 

110 Lieberman et al., 2004; Ungar, Grine & Teaford, 2006; Wood, 2009). However, Wroe et al. 

111 (2010) suggest that modern human crania are instead adapted to produce forceful bites, based on 

112 their conclusion that the human feeding apparatus is mechanically efficient, requires less muscle 

113 force than most other hominoids in order to generate comparable bite reaction forces, and should 
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114 therefore require a less robust structure. This paper evaluates these two alternatives by 

115 comparing feeding biomechanics in modern H. sapiens to that of chimpanzees (Pan troglodytes).

116 A conventional view of cranial gracilization in the lineage leading to modern Homo states 

117 that this process was spurred by the development of stone tool technologies (e.g., Ungar, Grine 

118 & Teaford, 2006), as tool use reduces food particle size (Lucas, 2004), allowing a reduced bite 

119 force per chew and/or fewer chews per feeding bout (Lucas & Luke, 1984; Agrawal et al., 1997; 

120 Zink & Lieberman, 2016). Under this hypothesis, tool use reduces the selective advantage 

121 offered by anatomical features that increase muscle force leverage and/or buttress the face 

122 against feeding loads. In addition to tool use, increased reliance on meat eating may have played 

123 a role in the initial stages of masticatory reduction in early Homo (Lieberman, 2008; Ungar, 

124 2012; Zink & Lieberman, 2016). Further gracilization of the jaws and teeth is hypothesized to 

125 have occurred with the advent of cooking, which may have been practiced by H. erectus 

126 (Wrangham, 2009; Organ et al., 2011), by reducing masticatory stresses (Lieberman et al., 2004; 

127 Lucas, 2004) and increasing digestive efficiency (Wrangham et al., 1999; Carmody & 

128 Wrangham, 2009; Carmody, Weintraub & Wrangham, 2011; Groopman, Carmody & 

129 Wrangham, 2015). If gracilization in Homo is a consequence of the removal of selection pressure 

130 to maintain and resist high magnitude or repetitive bite forces, then human feeding systems 

131 should not be optimized to produce high biting forces and the cranium could be structurally weak 

132 (i.e., exhibit high stress and strain when exposed to feeding loads). 

133 The hypothesis described above is opposed by an alternative interpretation of human 

134 feeding mechanics. A paradox of the human cranium is that the marked facial orthognathism 

135 exhibited by recent modern humans increases the mechanical advantage (i.e., leverage) of the 

136 muscles responsible for elevating the mandible, allowing humans to generate a given bite force 
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137 with relatively low muscular effort (Spencer & Demes, 1993; O’Connor, Franciscus & Holton, 

138 2005; Lieberman, 2008, 2011; Wroe et al., 2010; Eng et al., 2013). Many studies interpret bite 

139 force efficiency among primate species as being significant in an adaptive sense (Rak, 1983; 

140 Strait et al., 2013; Smith et al., 2015a; Ross & Iriarte-Diaz, 2014), with increases in leverage 

141 predicted for species that rely on foods that require forceful biting in order to be processed (e.g., 

142 hard seeds or nuts). Therefore, high biting leverage among humans seemingly contrasts with the 

143 hypothesis that the human craniofacial skeleton has experienced relaxed selection for traits that 

144 favor forceful biting and chewing behaviors (e.g., Brace, Smith & Hunt, 1991; Lieberman et al., 

145 2004; Ungar, Grine & Teaford, 2006; Wood, 2009). However, Wroe et al. (2010) present an 

146 alternative view based on their analysis of modern human, extant ape, and fossil australopith 

147 feeding biomechanics. Using finite element analysis (FEA), Wroe et al. (2010) found that their 

148 human model was mechanically more efficient at producing bite forces than the other hominoids 

149 in their sample. Additionally, they found that the human cranium experienced stresses similar to 

150 those in 3 of the 5 other species when models were scaled to the same surface area and bite force, 

151 including Pan. Consequently, Wroe et al. (2010) conclude that the human skull need not be as 

152 robust in order to generate, or sustain, bite reaction forces comparable to those of other 

153 hominoids, and that powerful biting behaviors may have been selectively important in shaping 

154 the modern human cranium.

155 Here, we use FEA to test two opposing mechanical hypotheses: that relative to 

156 chimpanzees, the modern human craniofacial skeleton is 1) less well configured, or 2) better 

157 configured to generate and withstand high magnitude unilateral bite forces. Our analysis builds 

158 on previous research into human craniofacial function (e.g., Lieberman, 2008; Wroe et al., 2010; 

159 Szwedowski, Fialkov & Whyne, 2011; Maloul et al., 2012) by examining masticatory 
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160 biomechanics within the context of the constrained lever model (Greaves, 1978; Spencer and 

161 Demes, 1993; Spencer, 1998, 1999), which predicts that bite force production in mammals is 

162 constrained by the risk of generating distractive (tensile) forces at the working (biting) side TMJ. 

163 Under this model, during unilateral biting, reaction forces are produced at the bite point and the 

164 working and balancing (non-biting) side TMJs. These three points form a “triangle of support”, 

165 and the line of action of the resultant vector of the jaw elevator muscle forces must intersect this 

166 triangle in order to produce a “stable” bite in which compressive reaction forces are generated at 

167 all three points (Fig. 1A). The resultant vector lies in the midsagittal plane when the muscles are 

168 recruited with bilateral symmetry and will pass through the triangle of support during bites on 

169 the incisors, canines, and premolars. However, molar biting changes the shape of the triangle 

170 such that a midline muscle result may lie outside of the triangle of support. If this occurs, a 

171 distractive (tensile) force is generated in the working side TMJ that “pulls” the mandibular 

172 condyle from the articular eminence (Fig. 1B). In the case of the mammalian jaw, the soft tissues 

173 of the TMJ are well suited to resist compressive joint reaction forces in which the mandibular 

174 condyle is being “driven” into the cranium, but they are poorly configured to resist distractive 

175 joint forces in which the condyle is being “pulled away” from the cranium (Greaves, 1978). 

176 Mammals, including humans (Spencer, 1998), avoid this by reducing the activity of the chewing 

177 muscles on the balancing side during bites on the posterior teeth. This draws the muscle resultant 

178 vector toward the working side and back within the triangle, but the total muscle force available 

179 for biting is reduced, thereby reducing peak bite force magnitudes. Thus, although one might 

180 expect that a bite on a distal tooth would produce an elevated bite force due to a short load arm 

181 (per a given muscle force), this effect is mitigated by the constraint that the muscle force vector 

182 must lie within the triangle of support. A finding that constraints on bite force production were 
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183 especially strong in humans would be consistent with the hypothesis that the human cranium is 

184 poorly configured to generate high unilateral bite forces, and inconsistent with the opposing 

185 hypothesis.

186 We further build on previous work by considering intraspecific variation in our analysis 

187 of human feeding biomechanics. Our prior work has shown that high degrees of intraspecific 

188 variation in cranial shape need not necessarily produce a high degree of intraspecific mechanical 

189 variation (Smith et al., 2015b), implying that mechanical patterns are conservative and reflect an 

190 underlying common geometry that may be overlain by skeletal traits that can vary without 

191 dramatically altering the fundamental mechanical framework of the cranium. A caveat, however, 

192 is that Smith et al. (2015b) examined only one species, P. troglodytes. Thus, it has yet to be 

193 established if this pattern is generalizable across primates (or other vertebrates). Accordingly, we 

194 examined mechanical variation among a sample of geographically diverse human crania found to 

195 differ notably in shape.

196

197 MATERIALS & METHODS

198 Analysis of human cranial shape variation and selection of specimens for FEA

199 We analyzed finite element models (FEMs) of six crania lying at the extremes of human 

200 variation, as well as one “average” specimen found to conform closely to an average shape. To 

201 select specimens, we analyzed shape variation within a sample of modern human (H. sapiens) 

202 crania using previously collected geometric morphometric (GM) data (Baab et al., 2010). We 

203 analyzed 85 landmarks collected from a sample of 88 Holocene human crania housed at the 

204 American Museum of Natural History (AMNH) (Tables 1, 2). These included mainly facial 

205 landmarks combined with a few that characterize neurocranial shape, corresponding to our focus 
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206 on facial biomechanics in this study. This sample includes individuals from diverse regions 

207 across the globe, and provides a cross-section of populations that differ in cranial robusticity 

208 (Baab et al., 2010). Landmark data from these 88 specimens were converted to shape coordinates 

209 by Generalized Procrustes analysis (e.g., Bookstein, 1991; Slice, 2005) and analyzed using 

210 principal components analysis (PCA). We found that the first 3 principal components (PCs) 

211 described 39% of the shape variation in our sample (Fig. 2). In order to maximize shape-related 

212 biomechanical variation in our FEMs, we considered variation from all 88 PCs when selecting 

213 specimens to be modeled. We first determined those individuals exhibiting the largest distances 

214 from the group centroid (i.e., consensus shape), calculated as Euclidean distance using all 88 PCs 

215 (Table 3). From among these individuals, we chose the six specimens that exhibited the largest 

216 pairwise distances, excluding insufficiently preserved crania, those missing many teeth, and 

217 those unavailable for loan (Table 4). These six “extreme” modern human crania included: one 

218 male and one female Khoe-San from South Africa (AMNH VL/2463 and AMNH VL/2470, 

219 hereafter referred to as “KSAN1” and “KSAN2”); a male from Greifenberg, Austria (AMNH 

220 VL/3878, “BERG”); a female from the Malay Archipelago (AMNH 99/7889, “MALP”); a male 

221 from the Tigara culture at Point Hope, Alaska (AMNH 99.1/511, “TIGA”); and a male from 

222 Ashanti, West Africa (AMNH VL/1602, “WAFR”). An additional specimen, a Native American 

223 male from Grand Gulch, Utah (AMNH 99/7365, “GRGL”), was chosen as an “average” 

224 representative of human cranial shape based on its close proximity (i.e., small Euclidean 

225 distance) to the group centroid and its availability for loan (see Table 3). Note that this individual 

226 was incorrectly transcribed as AMNH 99/7333 by Ledogar (2015).

227

228 Creation of finite element models from “extreme” and “average” human specimens
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229 Construction of solid models

230 The seven specimens chosen for analysis were CT-scanned at Penn State’s Center for 

231 Quantitative Imaging (pixel size = 0.16 mm) and the 2D digital image stacks were used to create 

232 seven solid meshes (Fig. 3) using Mimics v 14.0 (Materialise, Ann Arbor, MI, USA), following 

233 the methods outlined by Smith et al., 2015 (a,b). Mandibles corresponding to the seven crania 

234 (except for BERG and KSAN2, which lacked mandibles; see below) were also scanned so that 

235 they could be used to direct muscle force vectors in the loading simulations described below. The 

236 crania were solid-meshed at similar densities using tet4 elements (element count: 

237 GRGL=2,118,350; BERG=1,928,931; KSAN1=1,620,112; KSAN2=1,392,417; 

238 MALP=1,323,093; TIGA=2,059,433; WAFR=1,831,053). Solid meshes were then imported as 

239 Nastran (NAS) files into Strand7 (Strand7 Pty Ltd) FEA software. 

240 We created two sets of human FEMs that differed in their assigned muscle force and 

241 bone properties. One set of human FEMs (“ALL-HUM” models) was assigned human properties 

242 for bone tissue and masticatory muscle force, whereas chimpanzee properties were applied to the 

243 second set (“CHIMPED” models). The ALL-HUM models provide the most realistic assessment 

244 of human cranial mechanics, in terms of the predicted strains and bite forces. These models also 

245 allow for a more thorough examination of intraspecific variation in humans. In contrast, the 

246 CHIMPED models permit direct comparisons between our humans FEMs and our previously 

247 analyzed FEMs of chimpanzees and fossil hominins (Smith et al., 2015a,b). These comparisons 

248 focus on shape-related differences in mechanical performance that are free of the effects of 

249 differences in cranial size and bone material properties. Therefore, the comparisons between the 

250 CHIMPED human models and the chimpanzee data from Smith et al. (2015a,b) most directly 
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251 address our mechanical hypothesis described above because the hypotheses relate specifically to 

252 the mechanical consequences of shape differences.

253

254 Material properties of tissues

255 Human cortical bone material properties assigned to the ALL-HUM models were 

256 collected from various locations across the craniofacial skeletons of two fresh-frozen human 

257 cadavers (female, aged 22; male, aged 42) by measuring their resistance to ultrasonic wave 

258 propagation (see Supplementary Information). Previous studies show that freezing has only a 

259 very minimal effect on ultrasonic measurements and elasticity of cortical bone (Zioupos et al., 

260 2000). For each location sampled, the elastic (Young’s) modulus in the axis of maximum 

261 stiffness (E3) was averaged between the human donors and used to distribute spatially 

262 heterogeneous isotropic material properties throughout the seven human FEMs using a method 

263 (Davis et al., 2011) analogous to the diffusion of heat through a highly conductive material. To 

264 achieve this, values at each of the sampled locations, which ranged from 17.92 GPa to 25.52 GPa 

265 (mean=20.61 GPa, SD=1.92), were converted to temperatures and distributed throughout the 

266 cortical volume of the FEM. The elastic modulus of cortical bone was then set to vary with 

267 temperature during the subsequent loading analysis, with any thermally-induced strains removed 

268 from the analysis. For Poisson’s ratios, models were each assigned the average of the sampled 

269 locations (v23 = 0.293). The same procedure was used to diffuse chimpanzee material properties 

270 to the CHIMPED model variants using data collected from a cadaveric female chimpanzee at 14 

271 craniofacial regions (Smith et al., 2015a,b). In both the ALL-HUM and CHIMPED sets of model 

272 variants, homogeneous isotropic properties were used to model both trabecular bone (E3=637 

273 MPa; v23=0.28) and enamel (E3=80,000 MPa; v23=0.28), following Smith et al. (2015a,b).
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274

275 Muscle forces and constraints

276 Jaw adductor muscle forces were applied to both sets of FEMs for the anterior 

277 temporalis, superficial masseter, deep masseter, and medial pterygoid under the assumption that 

278 the chewing muscles were acting at peak activity levels on both sides of the cranium. These 

279 loads allow an estimate of the maximum bite force produced by each individual. In the ALL-

280 HUM variants, muscle forces were applied based on muscle physiological cross-sectional area 

281 (PCSA) data reported by van Eijden, Korfagen & Brugman (1997), with forces corrected to 

282 account for pennation and differences in gape during fixation using formulae from Taylor & 

283 Vinyard (2013). Corrected PCSAs were then used to calculate forces in Newtons (N) such that 

284 each cm2 of muscle was equivalent to 30 N (Murphy, 1998). These unscaled forces were applied 

285 to the “average” specimen (GRGL), while the six “extreme” variants were applied forces that 

286 were either scaled up or down based on differences in model size (Table 5), with size represented 

287 by model volume (i.e., the summed volume of all tet4 elements in mm3) to the two-thirds power. 

288 This muscle force scaling procedure removes the effects of differences in model size on stress, 

289 strain, and strain energy density from the mechanical results (Dumont, Grosse & Slater, 2009; 

290 Strait et al., 2010). The CHIMPED model variants were also assigned forces that were scaled 

291 dependent on their size using PCSA data from an adult female chimpanzee (Strait et al., 2009; 

292 Smith et al., 2015a,b). However, rather than scaling the FEMs around the “average” specimen 

293 (GRGL), we scaled the forces applied to the CHIMPED models (see Table 5) from the baseline 

294 chimpanzee model used for scaling purposes (PC1+) in the analysis by Smith et al. (2015b), 

295 permitting size-free comparisons between humans and chimps. For both sets of muscle loadings, 

296 plate elements modeled as 3D membrane were “zipped” at their nodes to the surface faces of tet4 
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297 elements representing each muscle’s origin. The scaled muscle forces for each set of analyses 

298 were applied using Boneload (Grosse et al., 2007) to the normal surfaces of the plate elements as 

299 tractions directed toward their respective insertions on the mandible, with the mandible slightly 

300 depressed and the condyles translated onto the articular eminences (Dumont, Piccirillo & Grosse, 

301 2010). Mandibles were only used here to direct these vectors. In the case of the BERG specimen, 

302 which was lacking its mandible, a scaled version of the GRGL mandible was used to define the 

303 orientation of muscle force vectors. Similarly, a scaled version of the KSAN1 mandible was used 

304 to replace the missing mandible in KSAN2.

305 For both sets of biting simulations, each of the seven FEMs was oriented such that one of 

306 three axes (i.e., X, Y, or Z) was parallel to the occlusal plane. Each model was constrained at a 

307 single node against translation in all axes at the working-side TMJ, while the balancing-side TMJ 

308 was constrained only in the superoinferior and anteroposterior directions (Strait et al., 2009; 

309 Smith et al., 2015a,b), thus creating an axis of rotation around the TMJs. Models were subjected 

310 to simulations of left premolar (P3) and left molar (M2) biting by constraining a node in the 

311 center of occlusal surface in each tooth, respectively, in the superoinferior direction. These 

312 constraints generated strains in the craniofacial skeleton, as well as reaction forces at the TMJs 

313 and bite point, upon the application of muscle forces. 

314

315 Analysis of model output parameters

316 Following Smith et al (2015a,b), we displayed global strain patterns using strain maps. 

317 These maps are analogous to histograms in that they illustrate strain magnitudes at thousands of 

318 nodes simultaneously, but have the added advantage of preserving spatial information. In 

319 addition, we collected strain data generated by each FEM from surface elements at 14 locations 
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320 across the craniofacial skeleton (Fig. 4). These locations correspond to those included in 

321 previous in vitro and in silico (e.g., FEA) studies on primate feeding biomechanics (e.g., 

322 Hylander and Johnson, 1991, 1997; Ross et al., 2011; Smith et al., 2015a,b). At each location, we 

323 examined several strain metrics from each of the seven FEMs in order to understand patterns of 

324 deformation. These included maximum principal strain (tension), minimum principal strain 

325 (compression), maximum shear strain (maximum principal strain – minimum principal strain), 

326 von Mises strain (distortional strain or non-isometric strain), and strain energy density (SED, the 

327 strain energy stored at a given point). Additionally, strain mode, the absolute value of maximum 

328 principal strain divided by minimum principal strain, was recorded for each location. This 

329 measure indicates whether tension or compression is dominant at a given location. 

330 Data on the reaction forces generated at constrained nodes (i.e., the bite point and two 

331 TMJs) were recorded in Newtons (N). Reaction forces at the P3 and M2 were recorded relative to 

332 the occlusal plane, while reaction forces at the left and right TMJs were recorded and compared 

333 relative to a user-defined “triangle of support” Cartesian coordinate system, with one of three 

334 axes perpendicular to a reference plane defined by the “triangle of support” formed by the 

335 constrained nodes at the bite point and two articular eminences (Smith et al., 2015a,b). The 

336 efficiency of bite force production at a given bite point in each model was also compared using 

337 the mechanical advantage (MA), a measure of masticatory muscle efficiency or leverage, 

338 calculated as the ratio of bite force output to muscle force input. 

339 In the evaluation of our mechanical hypothesis, we first inspected data collected from the 

340 ALL-HUM models for large levels of intraspecific variation that could potentially invalidate the 

341 functional significance of our results. Strain magnitudes and SED at each of the 14 sampled 

342 locations were examined for large differences between individuals, in addition to a comparison 
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343 of coefficients of variation (CVs) at specific locations. Differences in the spatial patterning of 

344 strain magnitudes between the ALL-HUM models were also compared using strain maps, in 

345 addition to variation in biting efficiency (i.e., MA). Lastly, we also calculated CVs for von Mises 

346 strain and MA in the CHIMPED model variants for direct comparison with the chimpanzee CVs 

347 reported by Smith et al. (2015b) using the Fligner-Killeen test for equal CVs.

348 To analyze relative mechanical performance in our human FEMs, we focused on 

349 comparisons between the CHIMPED humans and our previously analyzed FEMs of chimpanzee 

350 crania (Smith et al., 2015b). Specifically, we compared the magnitudes of von Mises strain, 

351 considered to be a key metric in assessing regional bone strength (Keyak & Rossi, 2000), at the 

352 14 sampled locations, as well as differences in biting efficiency, between humans and chimps. 

353 We tested for significant differences between species using the Mann-Whitney U test. 

354

355 In vitro validation of specimen-specific human cranial FEM

356 Data on in vitro bone strain collected during simulated P3 biting in a cadaveric human 

357 head were used to validate our results. As noted above, two human heads were used to gather 

358 data on the properties of craniofacial cortical bone. Before the removal of bone samples, the 

359 male specimen was CT-scanned, and strain data from 14 craniofacial locations were collected 

360 during a series of in vitro loading analyses (see Supplementary Information). Digital images of 

361 the specimen were then used to construct an eighth FEM, the in vitro loadings were replicated 

362 using FEA, and strain data were collected from the FEM at locations corresponding to the 14 

363 gage sites. The in vitro and in silico strain data were then compared in order to establish the 

364 degree to which assumptions regarding geometry and material properties introduce error into an 

365 FEM, where error is represented by the differences between the in vitro (observed) and in silico 
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366 (expected) results, divided by the expected results. These data were also analyzed using ordinary 

367 least squares (OLS) regression. Lastly, the orientations for both maximum and minimum 

368 principal strain in FEM were visually compared to those recorded during the in vitro loadings. 

369

370 RESULTS

371 In vitro validation of specimen-specific human cranial FEM

372 Strain magnitudes recorded during in vitro P3 loadings of the human cadaveric specimen 

373 and the results of the specimen-specific FEA are listed in Table 6. Comparisons of these data 

374 reveal that the specimen-specific FEM generated strains very similar in magnitude to those 

375 generated during the in vitro loadings. Results of the regression analysis on log-transformed 

376 strain data confirm a close correspondence between in vitro and in silico results, with significant 

377 regressions of 0.845x+0.194 (r2=0.909, p<0.001) and 0.849x+0.186 (r2=0.953, p<0.001) for 

378 maximum principal strain and minimum principal strain, respectively. However, assumptions 

379 regarding geometry and material properties did introduce error into the FEM (see Table 6). 

380 Visual inspection of principal strain orientations in the specimen-specific FEA reveals that 

381 orientations for both maximum principal strain and minimum principal strain at the 14 sampled 

382 locations were also very similar to those recorded from the 14 gage locations during the in vitro 

383 analysis (Fig. S3 – Fig. S7). 

384

385 Shape-related variation in human feeding biomechanics

386 Variation in strain magnitude and spatial patterning

387 Box-plots of strain and SED distributions recorded from the ALL-HUM models at the 14 

388 sampled locations during premolar (P3) and molar (M2) biting are shown in Fig. 5 (see also 
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389 Tables S1 and S2). Despite notable differences in craniofacial morphology between the models, 

390 comparisons of strain magnitudes reveal strong similarities. For P3 biting, the highest strain 

391 magnitudes were experienced at the working nasal margin (Location 12), although on average 

392 higher tensile strain magnitudes were generated at the working and balancing postorbital bars 

393 (Locations 4 and 5). During M2 biting, the working zygomatic root (Location 8) was subjected to 

394 the highest strain magnitudes, except that tension was greatest at the balancing postorbital bar. 

395 During both bites, low strain magnitudes were generated along the supraorbital torus (Locations 

396 1-3), the balancing zygomatic root (Location 9), balancing infraorbital (Location 11), and the 

397 zygomatic bodies (Locations 13 and 14). All FEMs of human crania were found to exhibit this 

398 general pattern.

399 Some regions of the face did exhibit large differences among individuals. In particular, 

400 the FEMs were found to differ in von Mises strain magnitude by as much as 210% at the nasal 

401 margin, which also has the highest CVs for all forms of strain during both P3 and M2 biting 

402 (Table 7), with the exception of minimum principal strain at the working dorsal orbital (Location 

403 2) and balancing infraorbital (Location 11) during P3 biting, SED at the working dorsal orbital 

404 (Location 2) during P3 biting, and the balancing zygomatic body (Location 14) for both bites.

405 Strain mode was nearly always compressive or tensile at a given location across the seven 

406 ALL-HUM models (Fig. 6), with a few exceptions. During premolar biting, only 3 locations 

407 varied with respect to strain mode (Locations 1, 10, 11), with only one FEM differing from the 

408 other models in each case. These three locations also differed in strain mode during molar biting, 

409 with Locations 1 and 10 exhibiting slightly higher levels of variation, in addition to variation in 

410 strain mode at Location 4.
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411 By comparison with CHIMPED FEMs, humans were found to exhibit lower levels of 

412 shape-related variation in von Mises strain magnitude and lower CVs than chimpanzees at the 14 

413 sampled locations (Table 8). However, results of the Fligner-Killeen tests reveal that only 3 of 

414 the 14 “gage sites” exhibit significant differences in CV values. Specifically, humans were found 

415 to exhibit a significantly lower CV at the zygomatic arches during both P3 and M2 biting at the 

416 working infraorbital during P3 biting. 

417

418 Variation in the spatial patterning of strain concentrations

419 Despite some large differences in strain magnitude, the spatial patterning of strain 

420 distributions was similar across the ALL-HUM models. The color maps during P3 biting (Fig. 7) 

421 reveal two predominant deformation regimes that are common across the seven FEMs: (1) 

422 superior displacement of the anterior maxilla in proximity to the loaded P3, which creates highly 

423 tensile and compressive (hence highly shearing) strains surrounding the root of the nasal margin, 

424 compression along the nasal margin, and compression at the working zygomatic root; and (2) 

425 frontal bending of the zygomae under the inferiorly directed pulling action of the masticatory 

426 muscles, which generates tension at the zygomatic body and near the zygomaticomaxillary 

427 junction, particularly at the working-side, and deforms the orbit such that it is tensed along an 

428 inferolaterally-oriented axis and compressed along a superolaterally-oriented axis. 

429  The color maps of strain patterning during M2 biting were also generally similar across 

430 the ALL-HUM models (Fig. 8). As expected, all models exhibited lower strain magnitudes in the 

431 lower maxillary region during molar biting compared to premolar biting, but higher 

432 concentrations of compressive strain at the working zygomatic root. Molar biting was also 

433 associated with the same type of frontal bending, zygomatic torsion, and orbital deformation that 
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434 was observed for premolar biting, with relatively large concentrations of strain at the postorbital 

435 bars, orbital margins, and medial infraorbital. 

436 In their study of chimpanzee biomechanical variation, Smith et al. (2015b) compared 

437 color maps of principal strain magnitudes in their 6 models with the scales normalized to an 

438 average of 10 landmarks (Locations 1-5, 8-12). They suggest that, by illuminating similarities 

439 and differences between individuals in the concentrations of relatively high and low strain 

440 concentrations through this normalization step, such “relative strain” maps strain may be 

441 particularly informative in comparative analyses of craniofacial function. When viewed in this 

442 manner (Fig. 9), the CHIMPED human models more clearly reveal a shared pattern of facial 

443 deformation that differs from that of chimpanzees under identical loading conditions, which was 

444 predominantly characterized by torsion of the zygoma and resulting orbital deformation under 

445 the inferiorly-directed masseteric muscle force.

446

447 Variation in bite force production and efficiency

448 The ALL-HUM models exhibit moderate differences in bite force production and 

449 efficiency (mechanical advantage, MA) at P3 and M2 bite points (Table 9). With respect to bite 

450 force production, humans generated premolar bite forces that ranged from 333 to 507 N when 

451 loaded with scaled masticatory muscle forces. The MA range for premolar biting was 0.34-0.43 

452 with all but one individual (WAFR) occupying a narrower range of 0.39-0.43. Molar bite forces 

453 ranged from 496 to 756 N. In terms of leverage, most FEMs exhibited molar MAs of 0.57-0.64, 

454 but with the WAFR model again being considerably less efficient (0.53). 

455 When compared to the chimpanzee data in Smith et al. (2015a), the CHIMPED human 

456 models analyzed here were found to exhibit somewhat lower ranges of variation in biting MA. 
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457 However, results of the Fligner-Killeen tests reveal no significant differences in CV values 

458 between the species at either the P3 (chimp=8.67, human=5.65; p=0.18) or M2 (chimp=8.11, 

459 human=6.67; p=0.13) bite point.

460

461 Variation in reaction forces generated at the temporomandibular joints

462 During premolar biting, all seven of the ALL-HUM models generated strongly 

463 compressive reaction forces at both TMJs (see Table 9), similar to the results for chimpanzees 

464 (Smith et al., 2015b). However, unlike in chimpanzees, M2 biting generated distractive (tensile) 

465 reaction forces at the working-side TMJ that would have “pulled” the mandibular condyle away 

466 from the articular eminence in five of the seven models. In order to remove distractive forces, 

467 these models required reductions in the muscle force applied to the balancing-side, which ranged 

468 from 5% to 15% (see Table 9). Interestingly, when loaded with chimpanzee muscle forces, all 

469 seven of the CHIMPED human models exhibit distractive forces in the working TMJ during M2 

470 biting, with larger muscle force reductions required to eliminate the distraction (see below).

471

472 Biomechanical “performance” of human feeding 

473 Structural stiffness of the human craniofacial skeleton

474 Direct comparisons of shape-related mechanical performance between our human FEMs 

475 and our previously analyzed chimpanzee FEMs (Smith et al., 2015a,b) were permitted by the 

476 CHIMPED models. These comparisons reveal that the human craniofacial skeleton is less stiff 

477 and experiences von Mises strains that are elevated relative to those experienced by chimpanzees 

478 when subjected to identical loading conditions (Fig. 10). Several of the sampled locations were 

479 found to experience significantly higher magnitudes in humans during both P3 and M2 biting 
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480 following the results of Holm-Bonferroni-corrected Mann-Whitney U tests (Table 10). These 

481 included the working nasal margin (Location 12), postorbital bars (Locations 4 and 5), working 

482 zygomatic root (Location 8), and the working dorsal orbital (Location 2). However, strains at the 

483 mid-zygomatic arches in humans were within the range observed for chimpanzees (which are 

484 extremely variable). Additionally, human zygomatic bodies were found to be structurally stiff, 

485 with significantly lower von Mises strain magnitudes than chimpanzees. 

486

487 Human bite force production and mechanical efficiency

488 Analysis of our CHIMPED human FEMs reveals that human crania are capable of 

489 generating bite forces with higher mechanical efficiency than chimpanzees (Fig. 11). Pairwise 

490 comparisons using the Mann-Whitey U test demonstrate that these differences are significant at 

491 both P3 (U=1.5, z=-2.73, exact p= 0.003) and M2 (U=1, z=-2.79, exact p=0.002) bite points. 

492 However, unlike chimpanzees, all seven of the CHIMPED human models generated highly 

493 distractive (tensile) reaction forces at the working-side TMJ during molar biting. Therefore, 

494 molar biting in humans increases the risk of having the muscle resultant vector fall outside the 

495 triangle of support. To bring the joint back into compression, a reduction in balancing side 

496 muscle force of 15%-30% was required (Table 11). 

497

498 DISCUSSION

499 In vitro validation

500 In order to validate the findings of our mechanical analysis, we compared in vitro bone 

501 strain in a cadaveric human head during simulated P3 biting to the results of a specimen-specific 

502 FEA. We found the results of our specimen-specific FEA corresponded quite well with in vitro 
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503 data. In addition to the notable similarities in strain orientation at the 14 sampled locations, 

504 results of the regression analysis reveal that FEA can predict in vitro strain magnitudes with a 

505 high degree of accuracy (r2 values >0.9). Similarly, Nagasao et al. (2005) were able to validate a 

506 dry bone human cranium with a high degree of accuracy (r2=0.989). However, these authors 

507 examined only 2 gage sites and they simulated biting by applying forces to teeth, thus omitting 

508 the impact of muscle loading. A greater number of sites were included in an analysis by 

509 Szwedowski, Fialkov & Whyne (2011), who found that their FEM results predicted in vitro data 

510 with an r2 of 0.73. Toro-Ibacache et al. (2015) also applied point loads to a cadaveric human 

511 head and validated strains at two locations in a specimen-specific FEM, finding broad 

512 similarities.

513 Although we found excellent correspondence between in vitro and in silico results, it is 

514 clear that FEA does incorporate error (see Table 6). This error was deceptively large at some 

515 “gage sites,” particularly in areas of low strain. For example, error for maximum principal strains 

516 at the balancing dorsal orbital (Location 3) was 80%, but this represents a difference between 

517 experimental and FEA results of only 2.67 microstrain (με). Generally speaking, this is not a 

518 meaningful difference in the context of vertebrate feeding biomechanics, where some regions of 

519 the cranium can experience strain in the thousands of microstrain. However, some moderately 

520 strained areas exhibited high error percentages. In particular, the working infraorbital validated 

521 well for minimum principal strain, but error for maximum principal strain was nearly 50%. This 

522 discrepancy may be related to the morphology of the bone that forms the thin anterior wall of the 

523 maxillary sinus, which is susceptible to large modeling errors (Maloul, Fialkov & Whyne, 2011), 

524 or could be a result of simplifications to the thin bones of the nasal cavity (see Toro-Ibacache et 

525 al., 2015).
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526

527 Mechanical variation

528 We found that the ALL-HUM models exhibited generally low levels of shape-related 

529 mechanical variation in strain magnitude and bite force production. Additionally, though some 

530 regions (e.g., the nasal margin) were found to exhibit large differences in strain magnitude, our 

531 human FEMs shared a common pattern of the spatial distribution of relatively high and low 

532 strain concentrations. These findings are similar to those of Smith et al. (2015b), who found 

533 broad similarities in strain patterning among on a sample of chimpanzee FEMs that differed 

534 notably in shape. Similarly, Toro-Ibacache, Zapata Muñoz & O’Higgins (2015) found broad 

535 similarities between two notably distinct human cranial FEMs. Our finding that the ALL-HUM 

536 models exhibit low levels of mechanical variation supports the functional significance of the 

537 comparisons of shape-related mechanical performance made between our CHIMPED human 

538 FEMs and our previously analyzed chimpanzee FEMs (Smith et al., 2015a,b), which focused 

539 purely on mechanical differences resulting from geometrical/architectural variation in the 

540 craniofacial skeleton.

541

542 Mechanical performance in humans and chimpanzee

543 Craniofacial strength: Is the human face weak?

544 Our results suggest that the modern human craniofacial skeleton is structurally less 

545 strong, in terms of resistance to masticatory stress, than that of chimpanzees when subjected to 

546 identical loading conditions (i.e., same properties and constraints, muscle forces scaled to model 

547 size). In the CHIMPED variants of our human FEMs, most of the locations analyzed experienced 

548 von Mises strain magnitudes that were elevated relative to chimpanzees, in particular the 
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549 working nasal margin, the postorbital bars, the working zygomatic root, and the working dorsal 

550 orbital region. Exceptions to this pattern include the zygomatic arches, where strains were 

551 bracketed by the range of values seen in chimp FEMs, and the prominence of the zygomatic 

552 body (i.e., the “cheek bone”), which is apparently strong in modern humans. 

553 During unilateral P3 biting, the nasal margin of modern humans experienced von Mises 

554 strains that were on average more than 350% greater than chimpanzees. Similarly, previous 

555 investigations identify the “root” of the nasal margin to be an area of high stress and strain 

556 during masticatory loading in humans (Endo, 1965, 1966; Arbel, Hershkovitz & Gross, 2000; 

557 Szwedowski, Fialkov & Whyne, 2011; Maloul et al., 2012). This region is often described as a 

558 pillar-like structure (Benninghoff, 1925; Bluntschili, 1926), or section of a frame-like structure 

559 (Görke, 1902; Endo, 1965, 1966), that resists mainly compression during anterior tooth biting. 

560 The results of our analysis are in general agreement with these findings, except that tension at the 

561 nasal margin was also found to be high in magnitude, indicating intense bending and shearing of 

562 the lower maxillary region during anterior tooth biting (see Fig. 7 and Fig. 9).

563 In addition to the nasal margin, the postorbital bars of the human FEMs were also found 

564 to experience highly elevated von Mises strain magnitudes compared to chimpanzees. However, 

565 adjacent regions, including the zygoma/zygomatic body (“cheek bone”) region and zygomatic 

566 arch, were found to be similar in strength to the lower end of the chimpanzee range. Mechanical 

567 analyses of Paranthropus boisei and Australopithecus africanus (Smith et al., 2015a) show a 

568 similar pattern of relatively low strains in the zygomatic body. Smith et al. (2015a) suggest that 

569 the structural strength of the zygomatic body in australopiths could be adaptively significant, 

570 offering as one possibility that it serves to reduce strains in the nearby zygomatico-maxillary 

571 suture. In pigs, it has been demonstrated that unfused sutures can fail at relatively modest stress 
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572 levels (e.g., Popowics & Herring, 2007), so some bony facial regions may serve to shield nearby 

573 sutures from masticatory stresses rather than bone itself (Wang et al., 2012). Among smaller-

574 faced modern human crania, the zygomatico-maxillary suture may be especially prone to 

575 experiencing relatively large masticatory stresses. In our FEMs, the largest strains in this region 

576 of the mid-face were generated medial to the zygomatico-maxillary suture. The location of these 

577 elevated strain magnitudes corresponds roughly to the location of facial fractures experienced 

578 commonly during physical altercations (Ellis, El-Attar & Moos, 1985). Facial fractures are also 

579 common at the postorbital bar, as opposed to the zygomatic body or zygomatico-maxillary 

580 suture, when the zygomatic body is exposed to traumatic blows (Ellis, 2012; Pollock, 2012). 

581 Therefore, it is possible that the strength of the human zygomatic body, and perhaps the relative 

582 weakness of the postorbital bar, is related to diverting stress from sutures that might otherwise 

583 fail under relatively lower stress magnitudes.

584 In addition to the zygomatic body (“cheek bone”) region, humans were found to exhibit 

585 lower average von Mises strains and markedly lower peak strains than chimpanzees at the mid-

586 zygomatic arch, although human values were bracketed by the range of chimp values. This 

587 potentially reflects differences in arch length. Specifically, the size of the temporalis muscle, 

588 which is correlated with the area of the infratemporal fossa (Weijs & Hillen, 1984), is 

589 significantly reduced in humans compared to that of chimpanzees (Taylor & Vinyard, 2013). 

590 Demes & Creel (1988) show that the area of the infratemporal fossa is nearly half that of 

591 chimpanzees, meaning that the total length of the zygomatic arch is also reduced. Bone strain 

592 analyses demonstrate that the arch is subjected to sagittal bending, as well as torsion along its 

593 long axis (e.g., Hylander, Johnson & Picq, 1991; Hylander and Johnson, 1997; Ross, 2001; Ross 

594 et al., 2011). Predictions based on beam theory therefore suggest that a decrease in the length of 
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595 the arch will lessen these bending and torsional moments, whereas a reduction in the height 

596 and/or breadth of the arch will weaken it under bending and shear, respectively.

597 Functional interpretations based on the morphology of the zygomatic arch are 

598 complicated by the fact that the temporalis fascia has been hypothesized to stabilize it from the 

599 inferiorly-directed pulling action of the masseter muscle (Eisenberg & Brodie, 1965). Curtis et 

600 al. (2011) tested this hypothesis using FEA and found that models that do not include the 

601 temporalis fascia will overestimate strains in the arch and surrounding regions, including the 

602 postorbital bar and infraorbital. However, they also found that their models lacking a fascia 

603 generated strains more similar in magnitude to those collected during in vivo experiments 

604 (Hylander, Johnson & Picq, 1991; Hylander and Johnson, 1997; Ross, 2001; Ross et al., 2011). 

605 Similarly, previous FEA studies on primate crania that have not included a modeled fascia (e.g., 

606 Ross et al., 2005, 2011; Strait et al., 2005) also find broad agreement with in vivo data. 

607 Therefore, we did not feel that it was necessary to include this structure in our FEMs. 

608 Importantly, Curtis et al. (2011) did not actually model the temporalis fascia, rather, they applied 

609 external forces along the margin of the attachment of the fascia. This procedure assumes that the 

610 load transferred to bone by the fascia is evenly distributed around its perimeter. However, the 

611 fascia is subjected to load by the inferiorly directed force produced by those temporalis fibers 

612 that arise off of the deep surface of the fascia. This force should elevate tension in the fascia 

613 along its superior margin (i.e., where it arises off of the superior temporal line) while reducing 

614 tension along its inferior margin (i.e., along the arch).  This factor may mitigate the role of the 

615 fascia in resisting the contraction of the masseter muscle. 

616 Although the brow ridges are not thought to play an important role in masticatory stress 

617 resistance (e.g., Picq & Hylander, 1989; Hylander, Johnson & Picq, 1991; Ravosa, 1991a,b; 
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618 Ravosa et al., 2000) it is interesting to note that our human FEMs experienced higher von Mises 

619 strain magnitudes than chimpanzees at all three of the supraorbital sites examined, particularly 

620 during premolar biting. Between the human and chimpanzee samples, differences were found to 

621 be greatest at the working and balancing dorsal orbitals, not the dorsal interorbital, supporting the 

622 idea that the brow ridge cannot be modeled as a bent beam (Picq & Hylander, 1989; see also 

623 Chalk et al., 2011). The fact that the smaller brows of humans experienced elevated strain 

624 magnitudes during biting could be interpreted as meaning that large brow ridges are an 

625 adaptation to resist masticatory loads. However, a wealth of experimental data on humans and 

626 non-human primate species has shown (e.g., Hylander, Johnson & Picq, 1991; Ravosa et al., 

627 2000; Szwedowski, Fialkov & Whyne, 2011; Ross et al., 2011; Maloul et al., 2012) that strains 

628 along the supraorbital margin are relatively low during biting and chewing, which is supported 

629 by the results presented here. Therefore, it is more reasonable to interpret differences in 

630 supraorbital morphology between humans and chimpanzees as being related to some non-dietary 

631 function, and that the resulting increases in brow ridge strain among humans are experienced as a 

632 secondary byproduct. For example, Moss and Young (1966) suggest that a large separation is 

633 formed posterior to the orbits when brain size is small, forming a supraorbital ridge. When brain 

634 size is large, the frontal bone is more steeply inclined posterior to the orbits, forming a vertical 

635 forehead rather than a large torus. A byproduct of this missing bar of bone above the orbits 

636 among modern humans could be that strain magnitudes are mildly elevated in that region.

637 Overall, our findings show that the human craniofacial skeleton is weaker than that of 

638 chimpanzees when subjected to feeding loads. These findings support the hypothesis that dietary 

639 changes involving a shift to softer and/or more processed foods along the modern human lineage 

640 has led to masticatory gracilization and reduced structural strength of the bony facial skeleton 
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641 (e.g., Lieberman et al., 2004). However, in their biomechanical analysis, Wroe et al. (2010) 

642 recently found that although the human cranium is less robust, it experiences low peak strains 

643 and an even distribution of facial strain magnitudes compared to extant apes and fossil 

644 australopith species. Differences between our results and those of Wroe et al. (2010) could 

645 reflect differences in the way muscle loads were applied to the models in each analysis and/or the 

646 manner in which models were constrained. For example, we applied both normal and tangential 

647 tractions over entire muscle areas using Boneload (Grosse et al., 2007), whereas Wroe et al. 

648 (2010) loaded their models with muscles modeled as straight pre-tensioned beam elements. 

649 However, we conducted a sensitivity analysis to explore this possibility further (see 

650 Supplementary Information) and found that these differences in methodology only resulted in 

651 small differences in strain magnitude at most locations across the craniofacial skeleton.

652 Another possible explanation for the differences between our study and the study by 

653 Wroe et al. (2010) relates to the magnitudes of the applied muscle forces. Wroe et al. (2010) 

654 subjected their FEMs to three sets of simulated biting on various teeth. In their first simulation of 

655 the three, FEMs were assigned a set of species-specific muscle forces (or muscle force estimates) 

656 from the literature. In a second simulation, models were scaled to the surface area of their 

657 chimpanzee model and re-loaded using chimpanzee muscle forces. Lastly, in the third 

658 simulation, models were scaled to the surface area of their chimpanzee model and loaded with 

659 muscle loads required to generate an equivalent bite force. In this third simulation, the high 

660 biting leverage offered by the retracted human face meant that the forces required to generate a 

661 bite compared to the other hominoids examined were relatively low. Therefore, Wroe et al. 

662 (2010) concluded that the human facial skeleton may in fact be well-adapted to resist masticatory 

663 stresses generated during high magnitude biting. Importantly, however, mean element von Mises 
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664 stresses were found to be relatively high in their human FEM during the second simulation, 

665 where FEMs were scaled to the same surface area and loaded with equivalent muscle forces. 

666 This is the most similar of their three scaling procedures to the scaling performed here (scaling 

667 muscle forces to model volume2/3), which we believe is the best means for removing the effects 

668 of size on comparisons of mechanical performance (e.g., Dumont, Grosse & Slater, 2009; Strait 

669 et al., 2010). 

670

671 Bite force production and efficiency: are humans suited to produce large biting forces?

672 When analyzed using human bone and muscle properties (i.e., ALL-HUM models), our 

673 human FEMs produced bite forces of 333-507 N at the premolar (P3) and 496-756 N at the molar 

674 (M2). These results are similar to, but lower than, previous estimates of human bite force 

675 production using both 2D and 3D modeling techniques (e.g., Wroe et al., 2010; Eng et al., 2013). 

676 For example, using skeletal measurements and data on muscle cross-section, Eng et al. (2013) 

677 recently estimated that humans are capable of producing approximately 660-1106 N of M2 bite 

678 force, while Wroe et al. (2010) estimated a maximum unilateral M2 bite force of 1109-1317 N 

679 using FEA. However, our M2 bite force results are bracketed by bite force transducer data 

680 collected from various western populations, which range from approximately 368 N (Sinn, de 

681 Assis & Throckmorton, 1996) to around 911 N (Waltimo, Nystram & Kananen 1994), although 

682 Inuit males have been shown to produce an average of 1277 N in M2 bite force (Waugh, 1937). 

683 Therefore, our results for bite force production lie within and do not exceed the known range of 

684 in vivo variation exhibited by recent human populations.

685 Because chimpanzees have absolutely and relatively larger jaw adductor muscles than 

686 humans (e.g., Taylor & Vinyard, 2013), it is no surprise that the chimp FEMs were capable of 
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687 producing more forceful bites than our human FEMs when loaded with species-specific muscle 

688 forces (compare data in Table 9 to Smith et al., 2015b, Table 4). However, when loaded with 

689 muscle forces scaled to remove differences in size (as in the CHIMPED model variants), we 

690 found that humans are more efficient producers of bite forces, in terms of biting leverage, 

691 consistent with the findings of Wroe et al. (2010). Specifically, the mechanical advantage (MA) 

692 for P3 biting in humans ranged 0.39-0.47, compared to 0.32-0.42 in chimpanzees (Smith et al., 

693 2015b), with only two chimps overlapping the human range. Humans were found to exhibit even 

694 more elevated leverage during M2 biting (0.60-0.71), with only one individual overlapping the 

695 chimpanzee range (0.49-0.61). When comparing these data using statistical analysis as a 

696 heuristic guide, humans were found to be significantly more efficient at producing bite forces at 

697 both mesial and distal bite points. The CHIMPED humans were even found to exhibit a biting 

698 efficiency similar to that observed in australopiths (Smith et al., 2015a). In fact, P3 MA in P. 

699 boisei (0.40) and A. africanus (0.41) were near the lower end observed in humans. The FEM of 

700 A. africanus also generated M2 bites with similar efficiency (0.62) to humans, whereas P. boisei 

701 produced more mechanically efficient (0.75) molar bites (Smith et al., 2015a).

702 Our data on bite force efficiency in humans support previous findings that have 

703 demonstrated the mechanical advantage of modern human bony facial architecture compared to 

704 both non-modern humans and non-human primate species (e.g., Spencer & Demes, 1993; 

705 O’Connor, Franciscus & Holton, 2005; Lieberman, 2008, 2011; Wroe et al., 2010; Eng et al., 

706 2013). Using estimates of muscle leverage from 2D measurements (Lieberman, 2008, 2011), 

707 humans have been shown to achieve high biting leverage through a marked degree of facial 

708 retraction (orthognathism), which reorients the muscles of mastication relative to the tooth rows. 

709 As noted above, we found that our human FEMs produced bite forces with leverage ratios 
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710 similar to those observed in A. africanus and P. boisei (Smith et al., 2015a). However, 

711 australopiths achieve high biting leverage through an anterior positioning of the chewing muscles 

712 relative to the tooth rows (Rak, 1983; Strait et al., 2009, 2010; Smith et al., 2015a). In humans, 

713 the midfacial region is “tucked” beneath the anterior cranial fossa (Lieberman, McBratney & 

714 Krovitz, 2002; Lieberman et al., 2004; Lieberman, 2008, 2011), which similarly places bite 

715 points in a position that offers higher mechanical advantage to the jaw adductors. 

716 Although the human cranium can theoretically produce mechanically efficient bite forces, 

717 the production of unilateral molar (M2) bite force is limited by the risk of temporomandibular 

718 joint (TMJ) distraction, as predicted by the constrained lever model (Greaves, 1978; Spencer, 

719 1998, 1999). Specifically, we found that all seven of the CHIMPED human FEMs experienced a 

720 highly distractive (tensile) reaction force at the working-side joint during molar biting. These 

721 forces have the effect of “pulling” the mandibular condyle from the jaw joint, increasing the risk 

722 of joint dislocation (Spencer, 1998, 1999). As noted in the introduction, the soft tissues of the 

723 mammalian jaw joint are well suited to resist compressive joint reaction forces, but are poorly 

724 configured to resist distractive joint forces that “pull” the mandibular condyle from the cranial 

725 base (Greaves, 1978; Spencer, 1998, 1999). In contrast, only one of the six chimpanzee FEMs 

726 analyzed by Smith et al. (2015a) generated a tensile force at the working TMJ, and this reaction 

727 was only very weakly tensile (12.7 N). Similarly, Smith et al. (2015b) found that their FEMs of 

728 P. boisei and A. africanus lacked working-side distraction and were able to produce “stable” 

729 bites on both the premolars and molars, offering these species the ability to produce maximally 

730 forceful molar bites with limited risk of causing pain and/or damage to the TMJ capsule.

731 Interestingly, when loaded with human muscle forces (i.e., ALL-HUM), two of the 

732 human FEMs (TIGA and WAFR) were capable of maintaining weakly compressive reaction 
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733 forces at both TMJs during molar biting. Additionally, balancing side force reductions required 

734 to eliminate distraction in the remaining models were proportionately less (5-15%) than when 

735 applying chimpanzee forces (15%-30%). Comparisons of the muscle loads applied to the models 

736 and their force ratios in the ALL-HUM and CHIMPED models (see Tables 9 and 11) reveal that 

737 chimpanzees devote a higher proportion of muscle strength to anteriorly-positioned muscle 

738 compartments (superficial masseter and anterior temporalis) compared to more posteriorly-

739 positioned ones (deep masseter and medial pterygoid). Therefore, it is tempting to suggest that 

740 changes in human jaw muscle force ratios may have coincided with the retraction of the lower 

741 face during human evolution in order to reduce the risk of TMJ distraction. Likewise, if the 

742 repositioning of cranial elements for reasons other than food processing (Lieberman, 2008; 

743 Lieberman & Zink, 2016) led to an increase in biting efficiency but the generation of working 

744 side joint distraction during molar biting, the overall reduction of chewing muscle size in Homo 

745 could also be viewed as a result of positive selection rather than relaxed selection so as to lessen 

746 these distractive forces.

747 Our findings that humans are limited in their ability to produce forceful unilateral molar 

748 bites are supported by data on bite force and muscle activity in humans. Spencer (1995, 1998) 

749 tested some predictions of the constrained lever model and found that humans produced bite 

750 forces that increased as the bite point moved from the incisors to the first molar. Moving from 

751 M1 to M3, bite forces were found to decrease as a result of the decreasing balancing force muscle 

752 recruitment required to avoid joint distraction. Spencer (1995) also notes that most of the 

753 participants (8 of 10) in his analysis reported pain near the working-side TMJ when biting 

754 forcefully using the back molars. In addition to this study, Hylander (1977) suggests that 

755 specialized anterior tooth biting and increased masticatory muscle leverage may be related to the 
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756 high incidence of third molar reduction and agenesis among modern Inuit due to the increased 

757 risk of distraction when biting on these teeth, although the results of our single pre-historic 

758 Arctic FEM (TIGA) provide no support for this hypothesis. Similarly, Spencer (2003) 

759 demonstrates that seed predating New World primates with adaptations for increased anterior 

760 bite force have relatively small third molar roots.

761 As discussed above, Wroe et al. (2010) analyzed human feeding biomechanics within a 

762 comparative context. One of the principal findings of their analysis, supported by the data 

763 presented here, is that humans are capable of generating bite forces with higher mechanical 

764 efficiency than chimpanzees. Wroe et al. use this as evidence to argue that human craniofacial 

765 evolution may have been influenced by selection for powerful biting behaviors. However, the 

766 results of this study showing the comparative weakness of the human cranium combined with the 

767 increased risk of jaw joint distraction during molar biting leads us to interpret the increased 

768 biting leverage exhibited by humans, which is particularly high among recent populations 

769 (Spencer & Demes, 1993; O’Connor, Franciscus & Holton, 2005), to be a byproduct of human 

770 facial orthognathism, which may be at least partly related to facial size reduction. Human facial 

771 flatness may also have been acquired through selection for some non-dietary function. For 

772 example, Lieberman (2008, 2011) suggests that the marked degree of facial retraction exhibited 

773 by modern human crania could be related to changes in brain size and cranial base flexion. 

774 However, Ross (2013) shows that basicranial flexion cannot produce significant facial retraction 

775 on its own. Alternatively, Holton et al. (2010) propose that dietary shifts leading to reduced 

776 facial strain magnitudes among early human species may have led to reduced facial growth and 

777 earlier fusion of the maxillary sutures, and thus smaller and more retracted facial skeletons. 
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778 Although the majority of the morphological and mechanical evidence is not consistent 

779 with the hypothesis that the human masticatory apparatus has experienced recent selection for 

780 high magnitude biting, the results of our analysis cannot reject the hypothesis that, in addition to 

781 changes in diet and tool use, increases in muscle force efficiency during human evolution could 

782 have led to relaxed selection for large chewing muscle size and reductions in facial size (Wroe et 

783 al., 2010) or that humans benefited from increased biting leverage when using submaximal 

784 forces by exerting less energy per bite. Our results for premolar biting leverage also do not 

785 conflict directly with the hypothesis that anterior tooth biting could have been selectively 

786 important in humans. However, the reduced size of the premolar teeth in humans increases the 

787 risk of tooth crown fracture (Constantino et al., 2010). Therefore, studies on premolar size and 

788 strength are not consistent with the hypothesis that humans are particularly well adapted for 

789 forcefully loading their anterior teeth, but such studies have yet to be conducted on incisors or 

790 canines, which are the more likely to be used during paramasticatory activities. For example, 

791 Hylander (1977) identifies features of the modern Inuit craniofacial skeleton that he argues to be 

792 adaptations for powerful biting behaviors using the incisors, although our single pre-historic 

793 Arctic FEM (TIGA) was not found to be exceptional in this regard. Additionally, Spencer & 

794 Ungar (2000) show that incisor bite force leverage varies in relation to the intensity of incisor 

795 tooth use among some Native American populations. Similarly, it is possible that differences in 

796 anterior tooth use among “archaic” members of the genus Homo are reflected in mechanical 

797 differences between the species. In particular, the Neanderthals (H. neanderthalensis) exhibit a 

798 number of derived characteristics hypothesized to be adaptations for forceful incisor biting (e.g., 

799 Brace, 1962; Smith, 1983; Trinkaus, 1983, 1987; Rak, 1986; Demes, 1987). Notably, Spencer & 

800 Demes (1993) show that Neanderthals exhibit high incisor bite force leverage relative to H. 
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801 heidelbergensis (but not modern H. sapiens). In order to maintain functional use of the posterior 

802 dentition (i.e., avoid TMJ distraction), Spencer & Demes (1993) further show that the molar 

803 tooth row in Neanderthals was anteriorly shifted, resulting in the characteristic retromolar gap. 

804 Data on enamel thickness seemingly contrasts with the hypothesis that humans have 

805 experienced relaxed selection for powerful biting behaviors. Specifically, a number of studies 

806 find that recent human populations exhibit thick molar enamel (e.g., Martin, 1983, 1985; 

807 Olejniczak et al., 2008; Smith et al., 2006; Vogel et al., 2008), which has been interpreted as a 

808 primitive retention. However, notwithstanding disagreements over the significance of enamel 

809 thickness (Grine, 2005), Smith et al. (2012) recently show that “thick” molar enamel in humans 

810 is primarily the result of small coronal dentine areas. They found that enamel area in humans is 

811 reduced, but there was a disproportionately large reduction in dentine to enamel as human teeth 

812 were evolving smaller size, resulting in a relatively “thick” enamel cap. Thus, Smith et al. (2012) 

813 argue that the dichotomy between thick and thin enamel is an oversimplification.

814

815 CONCLUSIONS

816 We examined the biomechanical consequences of human masticatory gracilization and 

817 intraspecific variation within the constrained lever model of feeding biomechanics (Spencer, 

818 1999) and tested the hypothesis that the human face is well configured to generate and withstand 

819 high biting forces relative to chimpanzees. We found that our biomechanical models of human 

820 crania were, on average, less structurally stiff than the crania of chimpanzees when assigned 

821 equivalent bone properties, constraints, and physiologically-scaled muscle forces. These results 

822 are consistent with the facial reduction exhibited by modern humans. We also found that modern 

823 humans are efficient producers of bite force, consistent with previous analyses (Spencer & 
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824 Demes, 1993; O’Connor, Franciscus & Holton, 2005; Lieberman, 2008, 2011; Wroe et al., 2010; 

825 Eng et al., 2013), but that distractive (tensile) reaction forces are generated at the working 

826 (biting) side jaw joint during M2 biting. In life, such a configuration would have increased the 

827 risk of joint dislocation and constrained the maximum recruitment levels of the masticatory 

828 muscles, meaning that the human cranium is poorly suited to produce forceful unilateral molar 

829 bites. Our results do not conflict directly with the hypothesis that premolar biting could have 

830 been selectively important in humans, although the reduced size of these teeth in humans has 

831 been shown to increase the risk of tooth crown fracture. We interpret our results to suggest that 

832 human craniofacial evolution was probably not driven by selection for high magnitude biting, 

833 and that increased masticatory muscle efficiency in humans is likely to be a byproduct of 

834 selection for some non-dietary function (Lieberman, 2008) or perhaps related to reduced 

835 masticatory strain and sutural growth restrictions (Holton et al., 2010). 

836 Our results provide support for the hypothesis that a shift to the consumption of less 

837 mechanically challenging foods and/or the innovation of extra-oral food processing techniques 

838 (e.g., stone tool use, cooking) along the lineage leading to modern Homo sapiens relaxed the 

839 selective pressures maintaining features favoring forceful biting and chewing behaviors, 

840 including large teeth and robust facial skeletons, leading to the characteristically small and 

841 gracile faces of modern humans (e.g., Brace, Smith & Hunt, 1991; Wrangham et al., 1999; 

842 Lieberman et al., 2004; Ungar et al., 2006a,b; Wood, 2009). To contribute to our further 

843 understanding, future studies should aim to identify the ecological changes that may have led to 

844 the emergence of such shifts in dietary behavior. Were these changes initiated by changes in 

845 climate, competition, resource availability, or some combination of these factors? To what extent 

846 is craniofacial gracilization part of a general pattern of skeletal gracilization in humans (Ruff et 
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847 al, 1993, 2015; Chirchir et al, 2015; Ryan & Shaw, 2015)? These questions will be addressed by 

848 gaining further insight into the dietary ecology and feeding adaptations of species near the 

849 origins of the modern human lineage through work on biomechanics, paleoecology, archaeology, 

850 bone chemistry, and dental wear, each of which inform key components necessary to obtaining a 

851 more complete understanding of human craniofacial evolution.  
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Table 1(on next page)

Landmarks used in the geometric morphometric analysis of human craniofacial shape.

Coordinate data on these landmarks were collected by Baab and colleagues (Baab, 2007;

Baab et al., 2010). The landmarks chosen for the analysis performed here are a subset of

those used by Baab and colleagues, consisting mainly of facial landmarks. Landmark

numbers and descriptions correspond to those in Baab (2007).
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Landmark Number1 Landmark Number1
Alare (R, L) 13, 40 Lingual canine margin (R, L) 124, 115
Alveolare 11 M1-M2 contact (R, L) 119, 128
Anterior nasal spine 10 M2-M3 contact (R, L) 120, 129
Anterior pterion (R, L) 24, 51 Malar root origin (R, L) 31, 58
Basion 67 Mid post-toral sulcus 6
Bregma 5 Midline anterior palatine 70
Canine-P3 contact (R, L) 116, 125 Mid-torus inferior (R, L) 21, 48
Center of mandibular fossa (R, L) 97, 103 Mid-torus superior (R, L) 22, 49
Dacryon (R, L) 16, 43 Nasion 8
Distal M3 (R, L) 121, 130 Opisthion 66
Frontomalare orbitale (R, L) 20, 47 Orbitale (R, L) 18, 45
Frontomalare temporale (R, L) 19, 46 P3-P4 contact (R, L) 117, 126
Frontosphenomalare (R, L) 23, 50 P4-M1 contact (R, L) 118, 127
Frontotemporale (R, L) 35, 62 Porion (R, L) 27, 54
Glabella 7 Postglenoid (R, L) 94, 100
Hormion 68 Rhinion 9
Incisivon 71 Root of zygomatic process (R, L) 32, 59
Inferior entoglenoid (R, L) 95, 101 Spheno-palatine suture (R, L) 108, 112
Inferior zygotemporal suture (R, L) 72, 78 Staphylion 69
Infraorbital foramen (R, L) 12, 39 Stephanion (R, L) 34, 61
Inion 1 Superior zygotemporal suture (R, L) 25, 52
Jugale (R, L) 26, 53 Supraorbital notch (R, L) 17, 44
Lambda 3 Temporo-sphenoid suture (R, L) 109, 113
Lateral articular fossa (R, L) 96, 102 Zygomaxillare (R, L) 14, 41
Lateral prosthion (R, L) 114, 123 Zygoorbitale (R, L) 15, 42

1 1Landmark numbers correspond to those in Baab (2007).

2

3

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2113v1 | CC BY 4.0 Open Access | rec: 8 Jun 2016, publ: 8 Jun 2016



Table 2(on next page)

Geographic distribution of human specimens included in the analysis of craniofacial
shape variation.

All specimens are housed at the American Museum of Natural History (AMNH).
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Region/Population N
Aboriginal Australian 9
Khoe-San, South Africa 3
China 6
East Africa 7
Grand Gulch, Utah 10
Greifenberg, Carinthia, Austria 6
Heidenheim, Germany 1
Kakoletri, Peloponnesus, Greece 1
Maori, Waitakeri, New Zealand 4
Mongolia 1
Point Hope, Alaska 12
Southeast Asia 12
Tarnapol, Galicia, Poland 2
Tasmanian 4
Tierra del Fuego, Argentina 3
West Africa 7

1

2
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Table 3(on next page)

Human crania sorted by their Euclidean distance from the group centroid.

The first 25 specimens represent the most distant from the group centroid, whereas the

bottom row represents an “average” representative of human cranial shape based on its

close proximity to the centroid. Values in parentheses represent the distances expressed in

units of the mean pairwise distance (0.068), which provides information on how much farther

a particular cranium is from the centroid than the mean distance. Specimens are coded here

following American Museum of Natural History (AMNH) catalog numbers.
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Specimen Region/Population Distance from centroid
VL/24631 Khoe-San, South Africa 0.1011 (1.49)
VL/38781 Greifenberg, Austria 0.0939 (1.38)
99/78891 Malay Archipelago, SE Asia 0.0918 (1.35)
VL/3818 Greifenberg, Austria 0.0885 (1.31)
VL/269 Tasmanian 0.0881 (1.30)
VL/229 Kalmuk, Western Mongolia 0.0876 (1.29)
VL/408 Mhehe, East Africa 0.0871 (1.28) 
99.1/5111 Point Hope, Alaska 0.0871 (1.28)
99/8155 Aboriginal Australian 0.0842 (1.24)
99/6562 Māori, New Zealand 0.0830 (1.22)
VL/271 Tasmanian 0.0824 (1.22)
VL/24701 Khoe-San, South Africa 0.0788 (1.16)
VL/1902 Māori, New Zealand 0.0777 (1.15)
99.1/490 Point Hope, Alaska 0.0770 (1.14)
99/8165 Aboriginal Australian 0.0767 (1.13)
VL/272 Tasmanian 0.0750 (1.11)
VL3619 Greifenberg, Austria 0.0745 (1.10)
99/7333 Grand Gulch, Utah 0.0741 (1.09)
99/8177 Aboriginal Australian 0.0740 (1.09)
VL/2267 Kakoletri, Greece 0.0733 (1.08)
VL/1729 Tientsin, China 0.0728 (1.07)
VL/16021 Ashanti, West Africa 0.0727 (1.07)
VL/274 Tasmanian 0.0721 (1.06)
VL/2389 Ashanti, West Africa 0.0721 (1.06)
99/8171 Aboriginal Australian 0.0720 (1.06)
99/73651 Grand Gulch, Utah 0.0496 (0.73)

1 1 Specimens selected to be modeled using FEA.
2
3
4
5
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Table 4(on next page)

Pairwise distances between the 6 human cranial specimens selected for use in finite
element analysis.

Values in parentheses represent the distances expressed in units of the mean pairwise

distance (0.068). Specimens are coded here following American Museum of Natural History

(AMNH) catalog numbers.
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VL/2463 VL/3878 99/7889 99.1/511 VL/2470 VL/1602
VL/2463 0.1634 (1.70)1 0.0938 (0.97) 0.1534 (1.59)1 0.1083 (1.12) 0.1145 (1.19)
VL/3878 0.1469 (1.52) 0.1304 (1.35) 0.1230 (1.28) 0.1385 (1.44)
99/7889 0.1526 (1.58)1 0.1178 (1.22) 0.1029 (1.09)
99.1/511 0.1330 (1.38) 0.1256 (1.30)
VL/2470 0.1049 (1.09)
VL/1602

1 1These represent the greatest pairwise distances in the final sample.

2
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Table 5(on next page)

Muscle force scaling for the ALL-HUM and CHIMPED models of modern human crania.

Muscle forces in Newtons (N) were scaled by model size, where size is represented by model

volume in mm3. Models are shown here ordered from smallest to largest in size. AT =

anterior temporalis, SM = superficial masseter, DM = deep masseter, MP = medial pterygoid.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2113v1 | CC BY 4.0 Open Access | rec: 8 Jun 2016, publ: 8 Jun 2016



Muscle Force (N)
Variant Model Volume (mm3) Volume2/3 AT SM DM MP
ALL-HUM KSAN2 331466 4789.53 128.41 105.15 53.29 108.64

MALP 364129 5099.22 136.72 111.95 56.73 115.67
KSAN2 433331 5726.38 153.53 125.72 63.71 129.89
WAFR 475555 6092.57 163.35 133.75 67.79 138.20
BERG 489588 6211.84 166.55 136.37 69.11 140.90
GRGL 557223 6771.52 181.55 148.66 75.34 153.60
TIGA 655320 7544.59 202.28 165.63 83.94 171.14

CHIMPED KSAN2 331466 4789.53 556.13 572.02 85.07 189.02
MALP 364129 5099.22 592.09 609.00 90.57 201.24
KSAN2 433331 5726.38 664.91 683.90 101.71 225.99
WAFR 475555 6092.57 707.43 727.64 108.22 240.44
BERG 489588 6211.84 721.28 741.88 110.34 245.15
GRGL 557223 6771.52 786.26 808.73 120.28 267.24
TIGA 655320 7544.59 876.02 901.05 134.01 297.74

1
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Table 6(on next page)

Results of in vitro validation analysis.

Average values and standard deviations for maximum (MaxPrin) and minimum (MinPrin)

principal strain magnitudes recorded during three in vitro loading trials on the left P3 biting ,

the results of a specimen-specific in silico (FEA) loading analysis, and an estimate of the error

in the FEA, where “error” is represented by the difference between in vitro (observed) and in

silico (expected) results, divided by the expected results. See Fig. S3 – Fig. S7 for site

locations. Units are in microstrain (με).
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Site Exp. MaxPrin MinPrin Site Exp. MaxPrin MinPrin
1. In vitro 15.00 (4.36) -10.33 (2.08) 8. In vitro 42.33 (2.08) -109.67 (3.06)

In silico 14 -15 In silico 37 -105
Error 6.67% 45.16% Error 12.60% 4.26%

2. In vitro 13.00 (1.00) -11.67 (0.58) 9. In vitro 7.67 (0.58) -2.67 (2.08)
In silico 10 -10 In silico 8 -4
Error 23.08% 14.29% Error 4.35% 50.00%

3. In vitro 3.33 (0.58) -5.00 (1.00) 10. In vitro 45.33 (2.08) -22.33 (1.15)
In silico 6 -7 In silico 23 -20
Error 80.00% 40.00% Error 49.26% 10.45%

4. In vitro 30.67 (1.15) -36.00 (0.00) 11. In vitro 23.67 (0.58) -10.67 (3.06)
In silico 29 -34 In silico 22 -13
Error 5.43% 5.56% Error 7.04% 21.88%

5. In vitro 15.00 (2.00) -14.67 (1.53) 12. In vitro 108.00 (2.65) -281.67 (8.33)
In silico 19 -12 In silico 115 -238
Error 26.67% 18.18% Error 6.48% 15.50%

6. In vitro 11.67 (0.58) -7.33 (0.58) 13. In vitro 38.67 (1.15) -22.00 (1.00)
In silico 11 -10 In silico 39 -17
Error 5.71% 36.36% Error 0.86% 22.73%

7. In vitro 42.33 (1.53) -23.33 (2.25) 14. In vitro 27.67 (2.08) -42.33 (3.01)
In silico 42 -17 In silico 38 -25
Error 0.79% 27.14% Error 37.35% 40.94%

1

2
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Table 7(on next page)

Variation in strain and strain energy density in the ALL-HUM models.

Coefficients of variation for maximum principal strain (MaxPrin), minimum principal strain

(MinPrin), shear strain (Shear), von Mises strain, and strain energy density (SED) at the 14

locations examined during premolar (P3) and molar (M2) biting in the ALL-HUM models of

modern human crania. Site numbers follow Figure 4.
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Site Bite MaxPrin MinPrin Shear von Mises SED
1 P3 56.01 34.39 28.49 27.88 59.08

M2 43.20 28.62 20.78 22.82 50.07
2 P3 28.35 41.61 30.51 29.27 78.82

M2 27.61 44.20 29.50 29.04 60.38
3 P3 23.83 26.53 22.94 22.97 52.39

M2 25.16 24.29 24.66 24.16 49.48
4 P3 15.30 21.39 14.75 14.28 27.78

M2 34.43 22.83 22.73 21.46 36.89
5 P3 14.32 13.06 12.77 13.24 26.98
     M2 12.50 14.22 11.70 12.06 24.53
6 P3 21.74 12.21 11.77 11.89 23.52

M2 17.43 13.56 11.13 12.05 25.11
7 P3 12.53 8.26 8.09 7.93 15.97

M2 11.27 6.05 5.78 5.32 11.98
8 P3 19.73 2.58 13.87 12.50 25.96

M2 20.48 12.04 12.62 11.88 23.36
9 P3 20.78 21.84 18.18 19.30 39.77

M2 12.59 9.28 8.23 8.66 19.36
10 P3 11.70 33.05 12.32 11.72 21.21

M2 35.51 22.16 25.60 25.86 50.44
11 P3 24.44 37.84 24.15 21.83 36.54

M2 25.53 43.20 28.88 26.73 52.39
12 P3 51.04 35.54 39.39 37.44 64.43

M2 52.66 34.33 41.78 40.46 76.44
13 P3 28.41 34.42 26.48 25.60 51.87

M2 14.11 20.80 14.37 13.50 28.05
14 P3 35.54 22.56 31.16 31.33 68.31

M2 39.93 26.73 35.19 35.33 80.97
1

2

3
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Table 8(on next page)

Variation in von Mises strain magnitudes: Human vs. Chimpanzee.

Comparisons of the coefficients of variation (CVs) for von Mises strain recorded in the

CHIMPED human models and the chimpanzee results from Smith et al. (2015b) at each of the

14 craniofacial sites examined. Results of Fligner-Killeen tests for equal CVs between the

species are also presented (α=0.05). Comparisons that yielded significant results are shown

in bold typeface.
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Site  P3 M2  Site  P3 M2

1 CV - Human 29.04 22.68 8 CV - Humans 10.14 12.27
    CV - Chimp 25.91 23.63 CV - Chimps 16.54 25.58

p (same CV) 0.065 0.141 p (same CV) 0.143 0.130
2 CV - Humans 24.34 23.05 9 CV - Humans 14.12 8.03
    CV - Chimps 46.61 47.07     CV - Chimps 25.7 23.58

p (same CV) 0.122 0.050 p (same CV) 0.069 0.052
3 CV - Humans 19.71 17.75 10 CV - Humans 8.8 15.46

CV - Chimps 19.81 20.10       CV - Chimps 17.36 15.30
p (same CV) 0.386 0.369 p (same CV) 0.039 0.290

4 CV - Humans 13.51 21.12 11 CV - Humans 10.6 14.34
CV - Chimps 29.98 33.20      CV - Chimps 27.76 28.11
p (same CV) 0.176 0.359 p (same CV) 0.056 0.100

5 CV - Humans 12.89 11.50 12 CV - Humans 38.05 38.76
    CV - Chimps 27.56 29.40       CV - Chimps 28.23 43.35

p (same CV) 0.156 0.060 p (same CV) 0.147 0.396
6 CV - Humans 18.15 16.51 13 CV - Humans 24.54 10.39
    CV - Chimps 64.99 66.99       CV - Chimps 17.95 17.52

p (same CV) 0.022 0.022 p (same CV) 0.157 0.207
7 CV - Humans 11.96 12.07 14 CV - Humans 22.78 23.11

CV - Chimps 55.83 56.63 CV - Chimps 51.99 55.84
p (same CV) 0.022 0.022 p (same CV) 0.222 0.166

1
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Table 9(on next page)

Bite force production, biting efficiency, and joint reaction forces in the ALL-HUM model
variants of human crania.

Bite force (BF), mechanical advantage (MA), working-side TMJ reaction force (RF-WS), and

balancing-side TMJ reaction force (RF-BS) for premolar and molar biting. Five of seven ALL-

HUM models generated distractive (tensile) reaction forces during molar loading. Therefore,

balancing side muscle forces were iteratively reduced by 5% and re-run until distractive

forces were eliminated. Bite forces and TMJ reaction forces are in Newtons (N).
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Model Muscle Premolar Bite Molar Bite
Force BF MA RF-WS RF-BS BF MA RF-WS RF-BS

GRGL 1118 441 0.39 167.42 349.25 658 0.59 -11.74 329.79
GRGL1 1090 642 0.59 -1.37 311.18
GRGL2 1062 625 0.59 8.98 292.58
BERG 1026 439 0.43 147.72 281.55 663 0.65 -6.98 249.09
BERG1 1000 647 0.65 1.29 234.72
KSAN1 946 378 0.40 121.76 295.69 538 0.57 -17.49 280.57
KSAN12 898 511 0.57 0.07 249.74
KSAN2 791 333 0.42 106.83 240.30 496 0.63 -18.86 222.80
KSAN22 751 471 0.63 -4.26 197.88
KSAN23 732 459 0.63 3.04 185.41
MALP 842 344 0.41 131.09 277.66 537 0.64 -19.85 274.49
MALP2 800 510 0.64 -0.99 242.97
TIGA 1246 507 0.41 187.96 373.24 756 0.61 13.68 336.84
WAFR 1006 341 0.34 149.36 298.77 529 0.53 12.64 273.79

1 1Model re-run using muscle forces reduced by 5% on the balancing side.
2 2Model re-run using muscle forces reduced by 10% on the balancing side.
3 3Model re-run using muscle forces reduced by 15% on the balancing side.

4
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Table 10(on next page)

Von Mises strain magnitudes: Human vs. Chimpanzee.

Results of pairwise comparisons (Mann-Whitney U-test) of von Mises strain magnitudes at the

14 locations examined between CHIMPED variants of human FEMs and data on chimpanzees

from Smith et al. (2015b). Because of small sample sizes, the ‘‘exact’’ variant of p is reported

(Mundry and Fischer, 1998). Comparisons that yielded significant results following Holm-

Bonferroni correction are shown in bold typeface. When significant, humans were found to

exhibit the higher average value, with the exception of locations 13 and 14, where humans

were found to exhibit significantly lower strain magnitudes.
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Site Bite U z Exact p
1. Dorsal interorbital Premolar 9 -1.65 0.0967

Molar 10 -1.50 0.1265
2. Working dorsal orbital Premolar 0 -2.93 0.0012

Molar 0 -2.93 0.0012
3. Balancing dorsal orbital Premolar 4 -2.36 0.01401

Molar 7 -1.93 0.0513
4. Working postorbital bar Premolar 0 -2.93 0.0012

Molar 1 -2.79 0.0023
5. Balancing postorbital bar Premolar 0 -2.93 0.0012

Molar 0 -2.93 0.0012
6. Working zygomatic arch Premolar 14 -0.93 0.3660

Molar 14 -0.93 0.3660
7. Balancing zygomatic arch Premolar 14 -0.93 0.3660

Molar 14 -0.93 0.3660
8. Working zygomatic root Premolar 0 -2.93 0.0012

Molar 0 -2.93 0.0012
9. Balancing zygo root Premolar 18 -0.36 0.7308

Molar 11 -1.36 0.1807
10. Working infraorbital Premolar 2 -2.64 0.0047

Molar 7.5 -1.86 0.0565
11. Balancing infraorbital Premolar 6 -2.07 0.03501

Molar 12 -1.21 0.2343
12. Working nasal margin Premolar 0 -2.93 0.0012

Molar 1 -2.79 0.0023
13. Working zygomatic body Premolar 0 -2.93 0.0012

Molar 1 -2.79 0.0023
14. Balancing zygomatic body Premolar 0.5 -2.86 0.0017

Molar 1 -2.79 0.0023
1 1Result is significant at p≤0.05.
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Table 11(on next page)

Bite force production, biting efficiency, and joint reaction forces in the CHIMPED model
variants of human crania.

Bite force (BF), mechanical advantage (MA), working-side temporomandibular joint reaction

force (RF-WS), and balancing-side temporomandibular joint reaction force (RF-BS) for

premolar and molar biting. All seven CHIMPED models generated highly distractive (tensile)

reaction forces during molar loading that would have increased the chances of joint

dislocation and/or injury. Therefore, balancing side muscle forces were iteratively reduced by

5% and re-run until distractive forces were eliminated. Bite forces and TMJ reaction forces are

in Newtons (N).
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Model Muscle Premolar Bite Molar Bite
 Force BF MA RF-WS RF-BS BF MA RF-WS RF-BS
GRGL 3965 1724 0.43 499.82 1189.57 2570 0.65 -208.16 1113.51
GRGL1 3569 2316 0.65 -31.26 841.64
GRGL2 3469 2252 0.65 12.96 773.68

BERG 3637 1720 0.47 405.08 935.03 2599 0.71 -185.65 819.81

BERG2 3183 2277 0.71 -6.72 560.17

BERG3 3092 2213 0.71 29.07 508.24

KSAN1 3353 1462 0.44 343.26 1030.37 2080 0.62 -187.95 975.38

KSAN12 2934 1822 0.62 -0.30 687.33

KSAN13 2850 1771 0.62 37.23 629.72

KSAN2 2804 1272 0.45 311.70 821.79 1895 0.68 -163.75 757.22

KSAN22 2454 1658 0.68 -11.46 529.80
KSAN23 2384 1610 0.68 18.99 484.32
MALP 2986 1358 0.45 384.41 966.38 2118 0.71 -203.31 963.66
MALP2 2613 1851 0.71 -2.01 667.11
MALP3 2538 1797 0.71 38.25 607.81
TIGA 4418 1941 0.44 564.13 1288.46 2896 0.66 -107.59 1143.16
TIGA4 4197 2750 0.66 -13.27 997.33
TIGA5 4086 2678 0.66 33.89 924.42
WAFR 3567 1383 0.39 489.34 1103.22 2146 0.60 -61.09 1006.50
WAFR6 3478 2091 0.60 -24.01 946.69
WAFR4 3389 2036 0.60 13.07 886.88

1 1Model re-run using muscle forces reduced by 20% on the balancing side.
2 2Model re-run using muscle forces reduced by 25% on the balancing side.
3 3Model re-run using muscle forces reduced by 30% on the balancing side.
4 4Model re-run using muscle forces reduced by 10% on the balancing side.
5 5Model re-run using muscle forces reduced by 15% on the balancing side.
6 6Model re-run using muscle forces reduced by 5% on the balancing side.
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1

The constrained lever model of jaw biomechanics.

During biting, the bite point (b) and the temporomandibular joints on the working side (ws)

and balancing side (bs) form a “triangle of support” that changes shape when biting on

different teeth. During a premolar bite (A), the resultant vector of the jaw adductor muscles

(v) passes through the triangle, producing compression (green circles) at all three points.

However, during some molar bites (B), the vector falls outside the triangle when the muscles

are being recruited equally on both sides of the head, producing compression at the bite

point and bs joint, but distraction (red circle) at the ws joint. The recruitment of the balancing

side muscles must be lessened in order to eliminate this distraction, thereby causing the

vector to shift its position towards the working side and back into the triangle (yellow arrow).
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2

Principal component analysis (PCA) of human craniofacial shape variation.

Panels show (A) PC1 by PC2, (B) PC1 by PC3, and (C) wireframes illustrating craniofacial

shape change associated with the first three principal components in right lateral, superior,

and frontal views. The left and right columns of wireframes represent the negative and

positive ends of each component, respectively, scaled to their respective axes. The 10

unique landmarks with the highest loadings for each component are highlighted using a red

ellipse on the midline and right side. A single ellipse was used to circle multiple landmarks if

they were located close together. Shape differences toward the positive end of PC 1 include:

a vertically shorter face with a more projecting brow ridge, a longer and more projecting

palate, a more vertical frontal bone that is narrower at pterion, a vault that is expanded

posteriorly, and a lower temporal line at stephanion. Shape differences toward the positive

end of PC 2 include: a longer cranium with a wider frontal bone, a vault that is angled more

postero-inferiorly, wider orbits and a superiorly shifted nasal aperture, and an antero-

posteriorly shorter temporal bone. Shape differences toward the positive end of PC 3 include:

higher temporal lines at stephanion, a shorter and more orthognathic subnasal region with a

less projecting palate, a more inferiorly positioned temporomandibular joint, and a more

inferiorly positioned midline cranial base.
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3

Human models analyzed in the current study.

Models include one “average” cranium, GRGL (A), and six “extreme” specimens that differ

notably in shape, BERG (B), KSAN1 (C), KSAN2 (D), MALP (E), TIGA (F), and WAFR (G).
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4

Key to locations where strains were sampled in finite element models.

Strain data were collected from ALL-HUM and CHIMPED variants of human FEMs from 14

craniofacial sites, following Smith et al. (2015a,b).
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5

Strain and SED generated by the ALL-HUM models.

Box-and-whisker plots show the minimum, first quartile, median, third quartile, and

maximum for strain and SED magnitudes (y-axis) generated by the ALL-HUM models at the

14 sampled locations (x-axis) during premolar (P3) and molar (M2) biting. Site numbers follow

Fig. 4.
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6

Strain mode in the ALL-HUM models.

Distribution of strain mode (log of ratio of maximum to minimum principal strain, y-axis)

plotted by location (x-axis) in the ALL-HUM models. Plots show (A) premolar (P3) and (B)

molar (M2) biting. Logging the data listed in Tables S2 and S3 centers strain mode data

around zero. Values above zero indicate mainly tension, while values below zero indicate

mainly compression. Site numbers follow Fig. 4.
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7

Strain distributions in the ALL-HUM models: P3 biting.

Color maps of strain distributions in the ALL-HUM variants of “extreme” and “average”

modern human cranial FEMs during premolar (P3) biting. Scales are set to range from -150 –

150 με for both maximum principal strain (MaxPrin) and minimum principal strain (MinPrin),

from 0 – 300 με for both maximum shear strain (Shear) and von Mises strain (von Mises), and

from 0 – 0.5 J/mm3 for strain energy density (SED). White regions exceed scale. Models are

shown at the same height.
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8

Strain distributions in the ALL-HUM models: M2 biting.

Color maps of strain distributions in the ALL-HUM variants of “extreme” and “average”

modern human cranial FEMs during molar (M2) biting. Scales are set to range from -150 – 150

με for both maximum principal strain (MaxPrin) and minimum principal strain (MinPrin), from

0 – 300 με for both maximum shear strain (Shear) and von Mises strain (von Mises), and from

0 – 0.5 J/mm3 for strain energy density (SED). White regions exceed scale. Models are shown

at the same height.
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9

Relative strain distributions.

Color maps of “relative” maximum (MaxPrin) and minimum (MinPrin) principal strains in the

CHIMPED model variants during premolar (P3) and molar (M2) biting. The scales range from -x̄

to x̄, where x̄ differs in each image as follows: P3, MaxPrin/MinPrin: GRGL, 612/644; BERG,

500/534; KSAN1, 508/603; KSAN2, 593/724; MALP, 520/610; TIGA, 455/498; WAFR, 672/742;

M2, MaxPrin/MinPrin: GRGL, 505/546; BERG, 468/525; KSAN1, 441/473; KSAN2, 505/546;

MALP, 433/458; TIGA, 419/420; WAFR, 530/553. White regions exceed scale.
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10

Line plots of von Mises microstrain generated during simulated biting in finite element
models of humans and chimpanzees.

Strain data correspond to (A) left premolar (P3) and (B) left molar (M2) biting, recorded from

14 homologous locations in the CHIMPED variants of “extreme” and “average” modern

human cranial FEMs. The gray region brackets the range of variation observed for

chimpanzees by Smith et al. (2015b).
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Biting efficiency: humans vs. chimpanzees.

Box-and-whisker plots show the minimum, first quartile, median, third quartile, and

maximum biting efficiency, as quantified using the mechanical advantage (MA), in the

CHIMPED variants of human cranial FEMs vs. chimpanzees at (A) premolar (P3) and (B) molar

(M2) bite points. Chimpanzee data is from Smith et al. (2015b).
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