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Abstract
A great many phenomena in physics can be traced back to the zeros of a function
or a functional. Eigenvalue or variational problems prevalent in classical as well
as quantum mechanics are examples illustrating this statement. Continuous
descent methods taken with respect to the proper metric are efficient ways to
attack such problems. In particular, the continuous Newton method brings out
the lines of constant phase of a complex-valued function. Although the patterns
created by the Newton flow are reminiscent of the field lines of electrostatics and
magnetostatics they cannot be realized in this way since in general they are not
curl-free. We apply the continuous Newton method to the Riemann zeta function
and discuss the emerging patterns emphasizing especially the structuring of the
non-trivial zeros by the separatrices. This approach might open a new road
toward the Riemann hypothesis.
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1. Introduction

In ocean navigation, it has long been known [1] that traveling on a sphere with a constant
oblique angle, relative to meridians, one is led eventually to one of the two poles. The resulting
course of the ship is a spherical spiral which has been called a loxodromic curve (loxos+dromos
from Greek, oblique+running). In complex analysis [2], following a line of constant phase of an
analytic function one is led eventually to a zero or a pole of this function where several of these
lines intersect. The continuous Newton method [3] takes advantage of this feature and
represents an efficient algorithm to find the zeros of the function. In this article we apply this
technique to the Riemann zeta function [5] and gain new insight into the overall structure of its
zeros.

1.1. The Riemann zeta function in number theory and physics

The Riemann zeta function ζ is central to number theory [4], and in particular, in the
distribution of the prime numbers p in the sea of natural numbers n. It is intimately connected to
the function π = π (n) which counts the number π of primes p below an integer n, and therefore
increases by unity at p and is constant for a non-prime integer. Indeed, the analytical properties
[5, 39] of ζ determine π. For example, the pole at z = 0 is responsible for the overall trend of π,
and the non-trivial zeros provide us with the stair-case behavior of π and thereby distinguish the
primes from the non-primes. However, even today, more than a hundred years after the
discovery of this connection between the functions ζ and π expressed by the prime number
theorem [6], the location of these zeros has not been proven mathematically. Notwithstanding
the fact that by numerical techniques it has been shown to hold true for the first 10 billion of
zeros [8, 9], the Riemann hypothesis [7] that all non-trivial zeros lie on an axis in the complex
plane parallel to the imaginary axis with real part 1/2 is still an open mathematical question.

Nevertheless, the Riemann zeta function also plays an important role in physics. Indeed, it
appears in many physical phenomena ranging from quantum chaos [10] via nuclear physics [11]
to Bose–Einstein condensates [12]. From the wealth of articles we only highlight three
prominent examples of the appearance of ζ in physics. For a comprehensive review of this topic
we refer to [13].

The statistics of the non-trivial zeros of ζ is identical to the one of energy levels of a
nucleus, or of the eigenvalues of an appropriate classically chaotic system [14]. Moreover, it has
also been shown that the Riemann zeta function emerges in quantum mechanics when one
considers an appropriately prepared wave packet moving in a potential with a logarithmic
energy spectrum [15]. Finally the Mellin transformation which is at the basis of the Riemann
zeta function can be generalized [16] to a quantum Mellin transformation using the inverted
harmonic oscillator.

Indeed, the last two connections have given rise to suggestions for the experimental
implementation of the Riemann zeta function. With the help of a logarithmic analogue of the
Jaynes–Cummings model and appropriate joint measurements we [17, 18] can obtain ζ in the
critical strip. In this scheme the entanglement of the quantum systems plays a crucial role. On
the other hand, the Mellin transform allows a representation of ζ in the far field of a radiation
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field described by classical electrodynamics. This technique has already been realized by van
der Pol [19] in 1947 and has been refined recently in [20].

1.2. Lines of constant phase and steepest descent

Contour plots are a popular and efficient technique to visualize complex functions. However,
such diagrams reflect only part of the information since they bring out only lines where the
amplitude, that is the absolute value, of the function remains constant; plots of lines along
which the phase remains constant, which constitutes the complementary information, are
extremely rare. It is the continuous Newton method [3] which provides us with these lines.

The continuous Newton method is a steepest descent method [21] to locate the zeros of a
complex function. It has found wide applications in many different physical situations due to
the fact that many phenomena in physics are governed by partial differential equations the
solutions of which can be found by casting the problem into one seeking the minimum of a
function. The Tricomi partial differential equation [22] which is a simple model for transonic
flow, or the Gross–Pitaevskii equation which governs superconductivity [23], describes the
phase transition of a laser [24], and rules the macroscopic wave function of a Bose–Einstein
condensate [25, 26] are only two of many such examples from the class of problems converted
into a search of zeros.

The efficiency of the continuous Newton method results from the gradient being taken
with respect to a well-chosen metric. Such generalized gradients, so-called Sobolev gradients
[27] lead not only to substantial advantages, both numerically and conceptually, but also
provide us with more insight into the underlying physics of the considered phenomena.
Moreover, these techniques are useful in simplifying rather complex and lengthy proofs of
mathematical theorems such as the Nash–Moser theorem [28].

1.3. Relation to other work

Besides the contour reliefs of many special functions, the classic book by Jahnke and Emde [29]
displays already in its first edition of 1933 several curves in the complex plane where the
Riemann zeta function is real and thus its phase vanishes.

Curves where ζ assumes real values have been studied in more detail in the Doktorarbeit
by Utzinger [30] in 1934 and are at the very heart of an equivalent formulation of the Riemann
hypothesis put forward by Speiser [31] in the same year. Based on the topology of the lines of
vanishing imaginary part of ζ he claims that all non-trivial zeros of the first derivative ζ′ of ζ are
located to the right of the critical line. Needless to say, there are also zeros of ζ′ along the
negative real axis situated between each pair of trivial zeros of ζ. Since they can be understood
analytically Speiser refers to them as the trivial zeros of ζ′.

The work closest to ours is [32] which analyzes the curves in the complex plane where ζ is
purely real or purely imaginary. The crossing of these lines defines the zeros of ζ. Since the
emerging picture resembles the skeleton of a body under an x-ray this work carries the
suggestive title ‘x-ray of Riemann zeta function’. Motivated by this analogy we refer to the lines
with ζ =Im 0 as ‘bones’.

It is interesting to compare and contrast our approach to the above mentioned ones.
Throughout our article we focus exclusively on the lines of constant phase of ζ brought to light
by the corresponding Newton flow. The resulting flow pattern shows that there are special lines,
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the separatrices, which define the basins of attraction given by the zeros of ζ. The separatrices
act like ‘continental divides’ for the flow.

Separatrices are lines of constant phase that pass through the zeros of the derivative ζ′ of ζ.
Since the phase of the separatrix is determined by the phase of ζ at the point where ζ′ vanishes,
the separatrices are in general not the bones shown in the x-ray [32].

We conclude by mentioning that [33] investigates the phase of the Riemann zeta function
with the help of an Argand diagram. In contrast, we show the full lines of constant phase in the
complex plane. Moreover, in [34] the flow of ζ is analyzed in great detail. However, we
calculate the flow of the reciprocal of the logarithmic derivative, that is, the Newton quotient
of ζ.

1.4. Outline of our article

Our article is organized as follows: in section 2 we first briefly review the continuous Newton
method and show that the Newton quotient is the gradient with respect to the Riemannian
metric given by the first derivative of the function. We then dedicate section 3 to a discussion of
several examples of complex-valued functions visualizing the continuous Newton method. Here
we illustrate especially the role of separatrices and emphasize their importance for the location
of the zeros. We devote section 4 to an application of the continuous Newton method to the
Riemann zeta function. In the conclusions of section 5 we summarize our main results.

In appendix A we identify the Newton quotient as the gradient with respect to the
Riemannian geometry imposed by the complex function F. We then show in appendix B that in
general there is no direct connection between electric and magnetic field lines. Finally,
appendix C examines the origin of separatrices in the Newton flow and appendix D gives a
short description how to generate the pictures of the Newton flow.

2. Continuous Newton method: essentials

In this section we briefly describe the continuous Newton method of finding zeros of a function
by following the lines of constant phase. Moreover, we make contact with continuous descent
methods.

2.1. Lines of constant phase terminate in a zero

We consider a function  →F: which has a continuous derivative in an open set G
containing a point z0 such that ′ ≠F z( ) 0 for all ∈z G. We define a flow by the solution z of the
differential equation

= −
′

z t
F z t

F z t
˙ ( )

( ( ))
( ( ))

(1)

for all t in the interval b[0, ) with >b 0 and subjected to the initial condition ≡z z(0) 0.
This equation which involves on the right-hand side the inverse of the logarithmic

derivative of F, that is, the Newton quotient, implies

′ = −F z t z t F z t( ( )) ˙ ( ) ( ( )).
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Hence, for ∈t b[0, ] the derivative of the composition reads

= −F z t F z t( ( ))˙ ( ) ( ( ))

which upon integration yields

= −F z t F z( ( )) ( ) e . (2)t
0

This solution shows that for = ∞b , F z t( ( )) decays exponentially to zero, that is,

=
→∞

F z tlim ( ( )) 0
t

provided that →∞z tlim ( )t exists.
Granted that ′ ≠F z( ) 00 , F is invertible in some neighborhood of z0, the trajectory is given

there by

= − −( )z t F F z( ) ( ) e . (3)t1
0

A key observation from (2) is that the phase of F z t( ( )) is fixed by F z( )0 for the whole
trajectory. These Newton trajectories are such that the phase remains constant on a trajectory.
Hence, the trajectories are lines of constant phase. A consequence of this property is that on a
Newton trajectory, the real part of F z t( ( )) is a constant times the imaginary part.

The totality of Newton trajectories forms the Newton flow and (2) gives it a sense of
direction. Indeed, the trajectories always go from the initial condition to a zero of the function.
This feature is built into the differential equation (1). Here the minus sign is a mere convention.
If we would have chosen the plus instead of the minus sign the field lines would have still been
the same but the direction would have been inverted.

2.2. Newton flow is steepest descent in a special metric

Along its contour lines a function is constant and the gradient which is orthogonal to them
points at the steepest descent. We now motivate using heuristic arguments that the continuous
Newton method is a steepest descent method, however with respect to a different metric.

Throughout this section we restrict ourselves to real-valued functions F r( ) in three
dimensions with arguments r in two space dimensions. For a more rigorous treatment including
complex functions we refer to appendix A.

We consider the function

ϕ ≡r F r( )
1
2

( ) 2

and determine the largest directional derivative, that is, we find the direction in which the
gradient of ϕ is largest. The familiar approach evaluates the derivative of ϕ at r in the direction
of h as

ϕ = h r h F r F r[( · ) ]( ) [( · ) ]( ) · ( ), (4)

where the dots indicate the familiar scalar product in two and three dimensions.
According to the Riesz representation theorem [35] a linear real-valued function can

always be represented by any scalar product of two elements of the domain of this function.
Hence, we can replace the scalar product in the directional derivative of ϕ given by (4) by the
scalar product h g( · )S, where g will be chosen in a way that is convenient for the problem at
hand. This additional freedom is made possible by the fact that we have introduced a new scalar
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product indicated by the subscript S which is different from the one in two and three dimensions
denoted solely by a dot.

Many different choices of a scalar product offer themselves. However, one is well-suited
for the problem of finding a gradient with fastest descent. It is defined in terms of derivatives of
F and reads

≡  h g h F r g F r( · ) [( · ) ]( ) · [( · ) ]( ). (5)S

When we compare (4) and (5) and assume that the inverse ′−F 1 of the first derivative ′F of F
exists we immediately obtain the identity

=g F r F r[( · ) ]( ) ( ),

which implies the Newton quotient

= ′−g F F.1

Hence, the continuous Newton method uses a Riemannian geometry whereas the gradient for
ordinary continuous steepest descent is taken with respect to the ordinary Euclidean metric.
From the theory of Sobolev gradients [21], there are many possible gradients in between, and
issues such as numerical efficiency finally make the decisive choice.

3. Building blocks of continuous Newton method

We now illustrate the continuous Newton method for several examples of complex functions F.
These cases form the building blocks for more complicated functions and will reemerge in
section 4 when we apply this technique to the Riemann zeta function.

3.1. Sinks and sources

We start the discussion by considering a simple zero, a simple pole and the Möbius
transformation to illustrate the origin of the sinks and sources of the Newton flow. The resulting
patterns are reminiscent of electric or magnetic field lines. It is therefore intriguing to think of
the lines of constant phase of a complex function as being generated by an appropriate
arrangement of electric charges or magnetic dipoles, or more generally, complex functions
being visualized by electro- or magnetostatics.

This analogy might not even be that far-fetched since properties of complex analysis [2]
and, in particular, the Cauchy–Riemann differential equations are frequently used to solve
boundary value problems in electrostatics [36]. However, the example of the Möbius function
shows that there is no one-to-one correspondence between the field lines in electricity and the
ones in the Newton flow of complex functions.

3.1.1. Simple zero. We start our discussion with the linear function

≡F z z( ) (6)l

which according to (2) leads to the trajectories

= −z t z( ) (0)e . (7)t
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Needless to say, we could have also integrated the equation

= −z z˙ (8)

defining the Newton flow for Fl given by (6) directly to find the trajectory (7).
Each trajectory approaches the origin z = 0 of the complex plane which is the zero of Fl.

Hence, a simple zero attracts the Newton flow and serves for it as a sink.
It is interesting to analyze this approach toward the origin in more detail. Indeed, the

trajectories tend toward z = 0 in the radial direction with an angle fixed by the phase of the
initial position z (0). Therefore, the radial lines are the lines of constant phase of Fl. All lines,
independent of the values of their phases meet and thereby terminate at the origin. In other
words, a straight line through the origin really consists of two parts: the one with a positive real
part corresponds to the phase β whereas the one with a negative real part has the phase β π+ .
This feature is a consequence of the sense of direction introduced by (1).

The trajectories of the Newton flow of Fl are reminiscent of the electric field lines of a
negative charge. We recall that in electrostatics the electric field =E E E( , )x y is always curl-
free, that is,

≡
∂
∂

−
∂
∂

≡ − =E
E

x

E

y
E Ecurl 0.

y x
y x x y, ,

Here we have introduced a comma between the two subscripts to separate the components from
the variables of differentiation.

The Newton field in the complex plane ≡ +z x yi defined by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟≡ −

′
= − ≡ −

′
= −N

F

F
x N

F

F
yRe and Imx

l

l
y

l

l

of the linear function Fl is curl-free, that is

= − =N N Ncurl 0.y x x y, ,

3.1.2. Simple pole. Next we analyze a simple pole at the origin of the complex plane given by

≡F z
z

( )
1

.p

Since ′ = −F z z( ) 1p
2 the Newton flow equation (1) reads

=z z˙

and differs from (8) representing a simple zero just by a sign. As a result, the Newton flow
given by the trajectories

=z t z( ) (0)et

points radially away from the pole at z = 0. We can therefore consider the pole as a source of the
trajectories, very much in the spirit of a positive charge in electrostatics. Again, the Newton
field is curl-free.

3.1.3. Simple zero plus simple pole. So far the patterns formed by the Newton flow have been
curl-free. However, this feature is not true for an arbitrary function F as we show in appendix B.
This fact stands out most clearly for the Möbius transformation
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≡ +
−

F z
z

z
( )

1
1

(9)M

which displays a simple zero at = −z 10 and a simple pole at = +z 1p . These points serve as the
sink and the source of the Newton flow of FM represented in the complex plane ≡ +z x yi in
figure 1.

Throughout the article red and black dots denote zeros and poles, respectively. Blue lines
represent the Newton flow, that is, lines of constant phase of the function at hand. By virtue of
(1) the flow lines have a sense of direction as indicated by the arrows.

Moreover, we have marked in violet the only line where the Möbius function is real. The
dashing indicates negative values of FM.

The pattern in figure 1 is reminiscent of the field lines of an electric dipole. However, in
contrast to the electric field the Newton flow is not curl-free. Indeed, the first derivative

′ = −
−

F z
z

( )
2

( 1)
M 2

of FM (9) and the Newton flow defined by

= −
′

= −( )z
F z

F z
z˙

( )

( )
1
2

1 (10)M

M

2

Figure 1. The Newton flow (10) for the Möbius transformation FM defined by (9) and
represented in the complex plane ≡ +z x yi is reminiscent of the field lines of an
electric dipole. The simple pole at z = 1 (black dot) serves as a source of the Newton
trajectories. The simple zero at = −z 1 (red dot) is the sink. Despite this close analogy,
the Newton flow is not curl-free as shown in (11). Moreover, FM is real only along the
real axis with negative values on the dashed, and positive values on the solid violet
curves, respectively.
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leads us to the components

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟≡ −

′
= − − ≡ −

′
=( )N

F

F
x y N

F

F
xyRe

1
2

1 and Imx y
M

M

2 2 M

M

and we find

= − =N N N ycurl 2 . (11)y x x y, ,

Hence, the curl is vanishing only along the real axis. It is only there that the Newton field is
curl-free.

3.2. Separatrices as continental divides of the flows

Next we show that a vanishing first derivative of F gives rise to lines in the complex plane
which control the Newton flow. In four examples we illustrate these separatrices, and compare
and contrast them with the lines where the functions are real. By studying the Newton flows of
the asymptotic expansions of the Riemann zeta function ζ for arguments with large positive, or
large negative real parts we lay the groundwork for our corresponding analysis of ζ presented in
section 4.

3.2.1. Vanishing derivative as origin of separatrices. An additional ingredient of the Newton
flow emerges from the functions

≡ − ≡ −F z z F z z( ) 1 and ( ) 1 (12)d
2

t
3

Figure 2. Newton flow lines in the complex plane ≡ +z x yi for the functions Fd (left)
or Ft (right) defined by (12) identify the simple zeros (red dots) at = ±z 1 or at

= πz e k2 i 3 with k = 1, 2 and 3, respectively. We emphasize the special role of the origin
(green dot), where two or three incoming flow lines (green dashed) meet. When one of
these trajectories hits the origin, there is a choice in how to reach the zeros, illustrating
the loss of forward uniqueness for (1). Along these separatrices the values of Fd and Ft

are negative, whereas the positive values lie on the solid violet lines.
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which in contrast to the other examples either contain two or three zeros located at = ±z 1 or at
= πz e2 ik 3 with k = 1, 2 and 3, respectively.

In figure 2 we show the Newton flow of both functions. We note three characteristic
features: (i) the zeros represent basins of attractions for the trajectories, (ii) lines in the complex
plane separate these domains, and (iii) the origin seems to repel the trajectories.

In order to analyze each of these properties in more detail we now have a closer look at the
Newton flow

= − −z
z

z
˙

2
1
2

(13)

of Fd and note that the Newton trajectories

⎡⎣ ⎤⎦= ± − +−z t z( ) (0) 1 e 1 (14)t2

following from (3) approach the zeros for → ∞t as expected.
However, we also draw attention to the different signs in (14) in front of the square root.

They result from inverting the function Fd and the trajectories are the mirror images of each
other with respect to the real and imaginary axis.

This example also points out another important feature of Newton trajectories. At least for
polynomials, but from computational evidence much more generally, when the function F has
two or more zeros the complex plane is divided in such a way that each point in an individual
domain leads to the same zero. The domains are separated from each other by lines in the
complex plane. In the case of Fd these separatrices are the imaginary axis and parts of the real
axis as we shall show now.

For this purpose we consider as an initial condition a position z (0) on the imaginary axis,
that is, =z y(0) i 0. In this case the trajectory following from (14) reads

= ± − + −( )z t y( ) 1 1 e . (15)t
0
2

Since for ⩽ < ≡ +t t y0 ln (1 )0 0
2 the argument of the square root is negative, we first follow

the imaginary axis and approach the origin which we reach at t0. For <t t0 the argument of the
square root is positive and we now move along the real axis toward one of the two zeros.
Indeed, due to the plus and minus signs in (15) we have two choices: we can either go to the
right and follow the positive real axis toward the zero = +z 1, or we can move on the negative
real axis toward = −z 1. In both cases the Newton trajectories terminate at the respective zero.

The bifurcation of the trajectory is a consequence of the vanishing of the first derivative

′ =F z2d

of Fd at the origin which manifests itself in a non-uniqueness of the forward solution as shown
in appendix C. In figure 2 and throughout this article we indicate the points where the first
derivative of a function vanishes by green dots and the resulting separatrices by green lines.

In this context it is interesting to note that [37] contains a chapter on semigroups for which
the underlying trajectories do not have forward uniqueness. These include the semigroups
generated by Newton flows for complex polynomials and likely the one corresponding to the
Newton flow for the Riemann zeta function ζ. However, this question of the semigroup of ζ
goes beyond the scope of the present paper.
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We now turn to the function Ft for which not only the first derivative ′Ft but also the second
derivative ″Ft vanishes at the origin. This feature produces three incoming and three outgoing
separatrices as shown on the right of figure 2. Hence, the number of incoming and outgoing
separatrices depends on the order of the first non-vanishing derivative at this point as
demonstrated in appendix C.

Due to the fact that = −F (0) 1d and = −F (0) 1t the separatrices in these examples are the
lines where the functions are negative indicated in figure 2 by the dashed green curves. Along
the solid violet lines the functions are positive.

3.2.2. Complex phases. The function

χ π Γ
Γ

≡ −−
z

z

z
( )

((1 ) 2)
( 2)

(16)
z 1

2

with the gamma function Γ Γ= z( ) plays an important role in the functional equation of the
Riemann zeta function and is therefore central to our analysis in section 4.

Due to the poles of Γ z( /2) in the denominator χ has zeros at the origin, and at the negative
even integers, whereas the poles determined by the numerator are located at the positive odd
integers as shown by the Newton flow in figure 3. Apart from the ‘trivial’ zeros of the derivative

Figure 3. Newton flow lines of the function χ defined by (16) in the complex plane with
positive imaginary part. On the separatrices (dot–dashed green lines) through the ‘non-
trivial’ zero of χ′ at ≅ +z 0.5 i 6.23 the phase of χ is approximately π 4. These non-
trivial separatrices divide the Newton flow into four domains: the flow lines which (i)
come from−∞ and end in a zero at = − −z k2 40 with =k 0, 1, 2 ,..., (ii) start at a pole

= +z k2 5p and approach +∞, (iii) go from the pole zp = 1 into the zero at =z 00 ,
from zp = 3 into = −z 20 , or from zp = 5 into = −z 40 , and (iv) reach from minus to plus
infinity. In the domains (i), (ii) and (iii) the values of χ on the separatrices are negative
(dashed green lines) or positive (solid green lines) in an alternating sequence. In region
(iv) we find lines where χ is positive (solid violet) or negative (dashed violet), but these
lines are not separatrices. The orange line marks the critical axis =x 1 2.
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χ′ which are located on the real axis between two adjacent zeros and between two poles, there
are two ‘non-trivial’ zeros of χ′ on the critical line =x 1 2 (orange) with imaginary part

≅ ±y 6.23. In each of them two separatrices cross.
The dot–dashed green lines in figure 3 indicate the ‘non-trivial’ separatrices in the part of

the complex plane with positive imaginary part where the phase of χ is approximately π 4. They
divide the Newton flow into four domains: (i) On the left of the non-trivial zero, the flow lines
come from −∞ and terminate in the trivial zeros of χ with ⩽ −z 4, whereas (ii) on the right the
flow lines start at the poles with ⩾z 5 and end at +∞. (iii) Below the non-trivial zero of χ′ we
find flow lines emerging from the poles at zp = 1, zp = 3 or zp = 5 and terminating in the zeros

=z 00 , = −z 20 or = −z 40 , respectively. (iv) Above the two separatrices the flow lines cross
the complex plane from −∞ to +∞.

Since the values of χ are real on the real axis but with alternating signs for neighboring
trivial zeros of χ′, the function χ is real with alternating signs on the separatrices in the regions
(i), (ii) and (iii). The separatrices in the third domain connect the trivial zero of χ′ at ′ ≅z 3.75
with ′ ≅ −z 2.75, as well as ′ ≅z 1.45 with ′ ≅ −z 0.45 and enclose the Newton flow between
the poles and zeros. In the fourth region, we find of course flow lines where χ is positive (solid
violet) or negative (dashed violet) but which do not represent separatrices.

It remains to be mentioned that we have neglected on purpose to draw the non-trivial
separatrices in the complex plane with negative imaginary part since there the phase of χ is
approximately π− 4 due to the property χ χ− = − +x y x yarg[ ( i )] arg[ ( i )].

3.2.3. Influence of infinity. We now show that separatrices may also occur if the zeros of the
derivative of the function are located at infinity. Indeed, the function

Figure 4. The Newton flow of the function Fe defined by (17) originates from −∞ and
either goes directly into the zeros (red dots) located at π= ± +z ki (2 1) ln 2 with

∈k , or passes them and turns around to finally get back to them. However, the
separatrices between the zeros are straight lines which extend from −∞ to +∞ and the
zeros of the derivative ′Fe, indicated by the green circles, are located at +∞ with the
imaginary parts π= ±y k2 ln 2. Since at these points =F 1e , the function Fe is positive
along these curves (solid green lines). The separatrices which tend toward the zeros of
Fe, marked by green arrows, are the only ones starting at +∞. The fact that Fe is also
positive along these lines indicates that they are connected to the zeros of ′Fe although
their imaginary part is the same as the one of the zeros of Fe. The dashed violet lines
mark the curves where Fe is negative.
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≡ + −F z( ) 1 e (17)z
e

ln 2

possesses besides the zeros at π± +ki (2 1) ln 2 with ∈k , zeros of ′Fe for → ∞x and
π= ±y ki 2 ln 2, depicted in figure 4 by the green circles.

For the function Fe the lines separating the flows are parallel to the real axis and we can
identify two different types: (i) The ones coming from −∞ go straight into the corresponding
zero of ′Fe at +∞. (ii) The others start at +∞ but with an imaginary part which is identical to the
one of the zero of Fe they are ending in.

The fact that Fe is positive on both types of these lines shows that the ones emerging from
+∞ are actually the continuations of the ones from −∞ which approach the zeros of ′Fe,
where =F 1e .

We emphasize that this feature stands out most clearly when we represent the complex
plane by the Riemann sphere and consider the Newton flow of the Riemann zeta function in this
representation. The separatrices which correspond to the ones of Fe emerge from the north pole
to the left, circumvent a non-trivial zero of ζ and return to the north pole from the right only to
reappear again to the right. For a more detailed discussion we refer to [38].

To stress that the lines of type (ii) are the only ones which really come from +∞ we mark
them by green arrows. All other flow lines start at −∞.

3.2.4. Forward uniqueness exists at a double zero. In the preceding subsection we have
shown that the points z where the first derivative of F vanishes play a crucial role for the
Newton flow since here the separatrices split up. However, such a bifurcation does not occur
when also F vanishes at this point.

In order to bring out this fact most clearly, we consider the function

≡F z z( )2
2

which gives rise to the Newton flow

= −z z˙
1
2

and the trajectory

= −z t z( ) (0) e .t 2

As a result, a double zero is also a sink despite the fact that ′F vanishes. However, we approach
it with a speed which is half of that of a simple zero.

4. Newton flow of Riemann zeta function

In the present section we apply the continuous Newton method to the Riemann zeta function ζ.
For the sake of completeness we first summarize important features of ζ and then discuss the
emerging patterns using the elementary building blocks outlined in the preceding section. In
particular, we focus on the grouping of the non-trivial zeros within their individual basins of
attraction, and the appearance of separatrices fencing off the individual groups of zeros from
each other. Moreover, we make contact with the ‘bones’ of the x-ray of ζ discussed in [32].
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4.1. Riemann zeta function in a nutshell

For a complex argument ≡ +z x yi with < x1 the Riemann zeta function ζ follows from the
Dirichlet sum

∑ζ =
=

∞

z
n

( )
1

, (18)
n

z
1

which in this part of the real axis is convergent.
Since for z = 1 the Dirichlet sum reduces to the harmonic sum which is divergent, we find a

simple pole of ζ at z = 1.
In his seminal article [7] Riemann was able to provide an analytical extension of ζ onto the

domain of the complex plane left of z = 1 and today many such expressions exist [39]. In
particular, the representation

ζ χ ζ= −z z z( ) ( ) (1 ) (19)

shows that at the negative even integers simple zeros of ζ appear due to the negative zeros of the
function χ defined by (16) and shown in figure 3. At z = 0 the zero of χ is canceled by the pole
of ζ at z = 1. Since the location of these zeros are known they are called ‘trivial zeros’.

Moreover, it was shown [40] that the only real zeros of the derivative ζ′ lie on the negative
real axis, one between two adjacent trivial zeros of ζ. Hence, we call them ‘trivial zeros of the
derivative’.

More interesting are the so-called ‘non-trivial’ zeros of the zeta function. According to the
Riemann hypothesis they all have real part 1 2 which is in complete analogy to the statement
that ζ′ has no non-real zeros for <x 1 2 [31, 40].

However, so far this conjecture has not been verified yet and is one of the one-million
dollar questions of the Clay Mathematics Institute [41]. Needless to say, in the present paper we
are not going to solve the Riemann hypothesis either but apply the continuous Newton method
to study the lines of constant phase of ζ which bring out structures in the grouping of the non-
trivial zeros.

4.2. Flow lines

In section 3 we have introduced the building blocks of the continuous Newton method. We now
apply this technique to the Riemann zeta function. We start with the behavior of ζ for → ±∞x ,
then analyze the neighborhood of the real axis and finally work our way up the critical axis
where the non-trivial zeros are located.

4.2.1. Approximations for large real parts of the argument. For large positive real parts x the
Riemann zeta function can be approximated by the function Fe defined by (17) which consists of
the first two terms of the Dirichlet series (18), that is

ζ ≅ + =−z F z( ) 1 e ( ).z ln 2
e

As a result, in the right picture of figure 5 the separatrices of ζ come from → −∞x and end in
the zeros of the derivative ζ′, that is at π= ±y k2 ln 2 and positive infinite x, marked by green
circles. The green arrows indicate the only lines coming from +∞ with imaginary
parts π± +k(2 1) ln 2.
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The left picture of figure 5 shows the Newton flow of ζ for → −∞x . In this domain we get
from the functional equation (19) the expression

ζ χ≅ + − −( )z z( ) 1 e ( ), (20)z(1 ) ln 2

where we have approximated ζ on the right-hand side of (19) by the first two terms of the
Dirichlet series.

Hence, the behavior there is mainly given by the function χ which produces the trivial
zeros of ζ. Moreover, the trivial zeros of the derivative of ζ′ located between two trivial zeros of

Figure 5. Newton flow of the Riemann zeta function in three different regions of the
complex plane. Since for → −∞x we can approximate ζ by χ, and for → + ∞x by Fe,
the flow lines in the left and right pictures are similar to the ones of χ and Fe shown in
figures 3 and 4. Hence, in the right picture the separatrices (green lines) run parallel to
the real axis from left to right into the vanishing derivative ζ′ at → + ∞x with
imaginary part π= ±y k2 ln 2 (green circles) and continue from right to left at
imaginary parts π= ± +y k(2 1) ln 2 (green arrows). In contrast, we find in the
domain of the complex plane with large negative real parts separatrices along which ζ is
real but with alternating signs. They divide the complex plane such that the Newton
flow reaches the trivial zeros at = −x k2 . The middle picture shows ζ for intermediate
negative values and in the critical strip which illuminates the connection between the
outside regions and is discussed in detail in the remainder of this subsection.
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ζ are not identical to the trivial zeros of χ′. Indeed, they are slightly shifted to the right due to
the influence of the remnant − − zexp[ (1 ) ln 2] of the Dirichlet sum in (20).

Nevertheless, along the separatrices through these points ζ is real with alternating signs.
These separatrices are displayed by solid or dashed lines for positive or negative values,
respectively.

In the middle of figure 5 we depict the Newton flow of ζ for − ⩽ ⩽x10 1 which illustrates
the connection between the asymptotic behaviors on the left and on the right. A detailed
description of the structures in this intermediate domain follows in the remainder of this
subsection. However, it is interesting to note that the zeros of the approximation of ζ given by
(20) are located on the line x = 1, which defines the right border of the critical strip, whereas Fe

has zeros on the left border x = 0. According to the Riemann hypothesis the non-trivial zeros of
ζ are at =x 1 2.

4.2.2. Neighborhood of simple pole and trivial zeros. In figure 6 we show the Newton flow in
the neighborhood of the real axis around the origin of the complex plane. Here we display the
behavior for positive imaginary parts up to y = 9 and focus on a small domain along the
negative imaginary axis. However, we emphasize that the structure of the Newton flow of ζ is
symmetric with respect to the real axis but the phase of ζ for negative imaginary parts has the
complementary sign due to ζ ζ− = − +x y x yarg[ ( i )] arg[ ( i )].

In this excerpt of the complex plane we include the simple pole of ζ at z = 1 and the first
two trivial zeros at = −z 2 and = −z 4. The field lines emerge from the pole and converge

Figure 6. Newton flow lines for ζ in the neighborhood of the real axis show the source
point at the simple pole z = 1 (black dot) and two sinks represented by the trivial zeros at

= −z 2 and = −z 4 (red dots). The zeros of ζ′ at ′ ≅ −z 2.72 and ′ ≅ −z 4.938 (green
dots) are unstable equilibria for the Newton flow. Like χ in figure 3, ζ is real on the
separatrices (green lines) in this region and negative (dashed green line) on the one left
to the zero at = −z 4 which starts at −∞. Although, ζ is positive on the separatrix
between −4 and −2 this separatrix now emerges from π+∞ + i 3 ln 2 due to the
Dirichlet series. This influence also causes a tiny shift of the trivial zeros of ζ′ to the
right compared to the zeros of χ′ at ′ ≅ −z 2.75 and ′ ≅ −z 4.943.
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toward the first trivial zero in a way reminiscent of the Newton flow of the Möbius
transformation shown in figure 1. However, in the case of ζ there is a slight asymmetry with
respect to the center at −0.5 with more weight toward the source. This effect is caused by the
influence of the Dirichlet series in the functional equation (19).

In the right half of the complex plane we have a separatrix starting at the pole which ends
at the zero of ζ′ at +∞ indicated by the green circle. Here ζ is positive. Likewise on the
separatrix into the zero of ζ′ at ′ ≅ −z 2.72 which starts at π+∞ + i 3 ln 2 we find positive
values for ζ.

In contrast, on the separatrix to the left of the trivial zero = −z 4 through the trivial zero of
ζ′ at ′ ≅ −z 2.72 the values of ζ are negative. This separatrix is the one of χ which runs through
′ ≅ −z 2.75 but is shifted to the right due to the Dirichlet series in the functional equation (19).

4.2.3. Neighborhood of critical line. We now turn to analyze the Newton flow in the
neighborhood of the critical line and the non-trivial zeros. In figure 7 we show the Newton flow
around the first non-trivial zero at ≅ +z 1 2 i 14.135.

The upper green solid line partitions the flow going down to the first non-trivial zero from
the one going up to the second one. Likewise, the lower green solid line separates the flow
going up to the first non-trivial zero from the one going down to the real axis shown on the top
of figure 6. Both come from the left and aim for the zeros of ζ′ at π+∞ + i 4 ln 2 and

π+∞ + i 2 ln 2, respectively. Hence, the values of ζ on these lines are positive.

Figure 7. Newton flow lines for ζ in the neighborhood of the critical line (orange) and
the first non-trivial zero at ≅ +z 1 2 i 14.135 (red dot). The green lines represent the
separatrices of ζ. The upper and lower one cross the critical line from the left to the right
ending at the zeros of the derivative ζ′ with → ∞x at imaginary parts π=y (2 ln 2)
and π=y (4 ln 2), respectively, indicated by the green circles. Hence, the values of ζ on
these lines are real and positive. Along the middle separatrix which starts at

π+∞ + i (3 ln 2) and approaches the zero from the right ζ is also positive. This
separatrix is connected by the zero to a line coming from the left, marked by the dashed
violet line, where ζ is negative. In the domain of the complex plane displayed here the
derivative of ζ does not vanish.
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These two separatrices are reminiscent of the first two solid violet lines above the
separatrix through the non-trivial zero of χ′ shown in figure 3. However, we emphasize that not
all positive real lines of χ which start at −∞ are separatrices for the Riemann zeta function.

Nevertheless, we recognize that almost all field lines approach from the left and either
converge directly toward the zero, or first pass it by going far to the right and then turn around
to eventually also arrive at the zero. The only exception is the separatrix starting at

π+∞ + i 3 ln 2, indicated by the middle solid green line. It reaches the zero from the right.
We have to note here that the ‘x-ray’ [32] already studies the ‘bones’ of ζ, that is the lines

where ζ is real and interprets all which reach from minus to plus infinity as a single entity. Yet,
we emphasize that those which go through a non-trivial zero of ζ really consist of two parts: (i)
the one approaching the zero from the right on which ζ is positive and (ii) the one coming from
the left on which ζ is negative. In figure 7 we have indicated by the dashed violet curve the part
(ii) of the ‘bone’ through the first non-trivial zero.

It would be interesting to see which consequences arise from this new interpretation of
lines of this kind brought to light by the Newton flow when applied to the argumentation in
[32]. However, we have to postpone a more detailed discussion of this question to a future
publication.

In the domain of the complex plane shown in figure 7 there is no point, where ζ′ vanishes.
In contrast, the Newton flow depicted in figure 8 in the neighborhood of the next two non-trivial
zeros clearly experiences the consequences of ζ′ vanishing at ′ ≅ +z 2.46 i 23.4. The flows
coming from the right approach the two zeros above or below of this point of non-equilibrium.
Likewise, the flow from the left splits up into two parts. The resulting separatrix on which the

Figure 8. Newton flow lines for ζ in the neighborhood of the critical line (orange) and
the second and third non-trivial zero (red dots). There is a zero of ζ′ (green dot) between
them which determines the dot–dashed green separatrix dividing the flow between the
two zeros. On this line the argument of ζ is approximately π0.01 whereas on the other
two separatrices (solid green lines) ζ is positive. The upper one divides the complex
plane and ends at the zero of ζ′ at π+∞ + i 6 ln 2 while the lower one comes from

π+∞ + i 5 ln 2 and approaches the second non-trivial zero of ζ from the right. The
violet curves indicate the other lines where ζ is positive (solid) or negative (dashed).
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phase of ζ is approximately π0.01 is indicated by the dot-dashed green line. It explains the
attraction of the lines where ζ is real (violet and green solid curve) to the zero of the derivative
of ζ mentioned in [32].

In figure 9 we present an overview of the Newton flow of ζ for the domain
− × −[ 5, 9] [ 1, 30] of the complex plane which summarizes the details contained in the
previous pictures.

Figure 9. Newton flow lines for ζ along the real axis and the critical line (orange) on a
larger scale combining figures 6–8. We recognize the pole at z = 1 (black dot), the first
two trivial zeros and the first three non-trivial zeros (red dots), together with the trivial
and the non-trivial zeros (green dots) of ζ′. The separatrices (green lines) cross the zeros
of ζ′ at plus infinity (green circles) and return as flow lines (green arrows) starting at
+∞. The phase of ζ along the separatrices is determined by the value of ζ at the zero of
the derivative ζ′ which they cross. Along the solid and dashed green lines, as well as
along the violet curves ζ is real.
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Figure 10. Newton flow of ζ along the critical axis in the domain of − ⩽ ⩽y1 300
represented in three consecutive panels with increasing imaginary part. For an
interactive and much expanded version of these figures see the supplementary data.
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So far we have only shown small excerpts of the rich structure contained in the Newton
flow of ζ. In the supplementary data we show a figure with a much larger domain of the
complex plane accessible by scrolling up and down the imaginary axis. In order to give a flavor
of this picture we display in figure 10 the first three consecutive parts of this scroll which bring
out a structure of the grouping of the non-trivial zeros along the critical line. Indeed, it arises
from the separatrices which pass the complex plane from minus to plus infinity along which ζ is
positive. The non-trivial zeros of ζ in one of these groups are separated by separatrices through
the zeros of ζ′ where ζ is not real. There is always one zero of the derivative less than zeros of ζ.

The pictures also show that the real lines starting at minus infinity have alternating signs
for increasing imaginary part and all negative lines (dashed violet) end directly at a zero of ζ
without ever crossing the critical line.

4.3. More insights into ζ from the Newton flow

The present article is meant to be an appetizer for a more detailed application of the Newton
flow to unravel the unique properties of the Riemann zeta function which is so prominent in
physics. Many further developments come to mind. Here we only briefly mention three since a
more elaborate discussion would go beyond the scope of our article.

4.3.1. Universality theorem. In 1975 Mikhailovitch Voronin [42] showed that any non-
vanishing holomorphic function in a circle with radius less than1 4 can be approximated by the
Riemann zeta function somewhere in the strip defined by ⩽ ⩽x1 2 1. Indeed, figure 10 and
especially the scroll version of it demonstrates that this domain of the complex plane is
continuously changing as the imaginary part increases. It is therefore reasonable that there ζ can
approximate every non-vanishing holomorphic function. However, a more detailed study of this
visualization of the universality theorem is needed.

4.3.2. Appearance and disappearance of zeros. Another interesting application of the
Newton flow emerges from the representation

∑ζ ≡
−

−
−

=

∞

z
n

( )
1

2 1

( 1)
z

n

n

z1
1

of ζ in the critical strip < <y0 1 in terms of an alternating sum [39].
Here one might investigate how the locations of the zeros depend on the truncation

parameter when we realize ζ by a finite rather than an infinite sum. The motion of the zeros in
the complex plane as we take more terms and their appearance and disappearance might shine
some light onto the Riemann hypothesis and the results of Turán [43] and Montgomery [44].

4.3.3. Riemann hypothesis. Newton flows may also offer a possible new approach to the
Riemann hypothesis. Our figures indicate that in the critical strip the zeros are grouped in a
natural way by roughly horizontal separatrices on which ζ is positive. The first group contains
just one zero. The next two groups have two zeros each, and the later ones have three or more
zeros, all separated by separatrices on which ζ assumes complex values.

Hence, the denial of the Riemann hypothesis would lead to a pair of zeros situated
symmetrically about the critical line with an additional zero of the derivative separating the
Newton flow into these zeros. The pattern of groups of zeros would likely be severely disturbed.
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If the supposition of such a disturbance were to lead to a contradiction, the Riemann hypothesis
might be established.

We do not express any particular expectation that such a program might be successfully
completed, but the present work suggests a qualitative, topological approach to the Riemann
hypothesis.

5. Conclusion

A wide class of partial differential equations arising in physics can be posed as zero-finding
problems. Gradient continuous descent methods [21, 27] present a means for dealing with many
of them, but it is becoming increasingly clear that in a given situation, a gradient taken with
respect to a well-chosen metric provides substantial advantages, both numerically and
theoretically. An understanding of the paths followed by the continuous descent often yields
important information. An extensive discussion of Sobolev gradients reveals [21] how gradient
choices impact issues in the study of partial differential equations.

In the present article we have applied a special example of a gradient continuous descent
method, that is the continuous Newton method to several complex functions. Four results stand
out most clearly: (i) The continuous Newton method is an effective tool to find the lines of
constant phase of a complex-valued function F since the Newton quotient represents a gradient
taken with respect to a natural Riemannian metric which naturally produces these lines. (ii) The
sinks and sources of the Newton flow identify the zeros and poles of F, respectively. (iii) The
flow lines from or into the individual poles or zeros are separated by separatrices which cross
each other in the point where the derivative ′F vanishes. (iv) The number of crossing
separatrices is determined by the order of the first non-vanishing derivative.

The Newton flow of the Riemann zeta function formed by the lines of constant phase puts
‘flesh’ on the ‘bones’ visible in Arias-de-Reynas x-ray [32] which are the lines where ζ is real.
However, throughout the article we have emphasized the importance of the separatrices rather
than of the bones for the distribution of the zeros of ζ. Indeed, separatrices which are lines of
constant phase that go through the zeros of the derivative ζ′ represent ‘continental divides’ for
the Newton flow and control in this way the appearance of the zeros.

We have identified two kinds of separatrices: (i) On the ones which run from minus to plus
infinity where they cross a zero of ζ′ and then continue from plus infinity to a non-trivial zero, ζ
is positive. (ii) In contrast, on the separatrices through a non-trivial zero of ζ′ in the
neighborhood of the critical line, ζ is complex.

Indeed, the topology of the separatrices might open a new approach toward the
longstanding question of the Riemann hypothesis. If there were to be a counter-example to the
Riemann hypothesis, there would have to be a separatrix running between two very close zeros,
on opposite sides of the critical line. Such a separatrix might have no legitimate way to go to the
Edge of Infinity, thus providing a negation of a supposition that there are two such zeros.
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Appendix A. Riemann–Sobolev–Newton (RSN)

In section 2.2 we have used heuristic arguments to motivate the fact that the Sobolev gradient
associated with F and taken with respect to the natural Riemannian metric is the Newton
quotient. In the present appendix we provide the mathematical foundation for this statement. In
particular, we now deal with a complex-valued function F.

We begin with some comments on Riemannian geometry which is partially rooted in
thoughts of Gauss. We suppose that n is a positive integer and F is a function from  →n n

which in an open subset G of n is such that the Jacobian derivative ′F z( ) exists and has an
inverse for all ∈z G. Moreover, we denote the image of G under F by M.

For each ∈z G and ∈g h, n there is a metric

≡ ′ ′g h F z g F z h, ( ) , ( ) (A.1)z

on n induced by the tangent space to M. Here ′F z g( ) denotes the derivative of F in the
direction of g at the point z and 〈 〉· , · is the standard inner product (dot product) on the
complex n-dimensional space.

Given ∈z G, the norm associated with the inner product in (A.1) is denoted by || · || z

whereas the standard norm in n is abbreviated simply by || · ||. For fixed ∈z n, the norm of a
linear transformation  →T: n indicated by | · | is defined by



≡
∈ =

T Twsup .
w w, 1n

z

Next, we provide a geometric interpretation of this second inner product of the two elements
∈g h, n which according to (A.1) is the standard inner product of the directional derivatives

′F z g( ) and ′F z h( ) . Due to the explicit appearance of ′F we get a variable metric, one which
changes from point to point in M, as is common in Riemannian geometry.

We now turn to the second character S in the title RSN of this appendix and illustrate the
notion [21] of a Sobolev gradient, that is, the gradient of a function with respect to a varying
metric. There is no need to invoke the concept of Sobolev spaces here to which Sobolev gradients
are usually applied but rather we use the following fact: The derivative ϕ′ z h( ) of the function

ϕ ≡z F z( )
1
2

( ) 2

in the direction of ∈h n at ∈z G is given by

⎜ ⎟⎛
⎝

⎞
⎠ϕ′ = ′ + ′z h F z h F z F z F z h( )

1
2

( ) , ( ) ( ), ( ) . (A.2)

Now, fixing ∈z G, we seek a gradient of ϕ at z, that is we seek a vector ∈h n which
maximizes the function

Φ ϕ≡ ′
h

z h

h
( )

( )
(A.3)

z

over all ∈h n different from zero. We emphasize that this is only one of several equivalent
definitions, but note that it gives the standard gradient for ϕ only when the norm || · || z is the
standard norm || · ||. In this case we get the usual list of partial derivatives for a gradient.

In order to solve this maximum problem we first provide an upper bound for Φ and then
present the specific choice of h for which this bound is assumed. For this purpose we apply the
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Cauchy–Schwartz inequality to the scalar products on the right-hand side of (A.2) which yields

ϕ′ ⩽ ′z h F z F z h( ) ( ) ( ) . (A.4)

Moreover, we find from the definition (A.1) of the second scalar product the identity

∥ ∥ = ∥ ′ ∥h F z h( ) . (A.5)z

When we combine (A.4) and (A.5) we obtain from the definition (A.3) of Φ the inequality

Φ ⩽h F z( ) ( ) .

Next we choose hS such that

′ ≡F z h F z( ) ( ) (A.6)S

which yields from (A.2) the relation

ϕ′ =z h F z( ) ( ) .S
2

Moreover, due to the special choice (A.6) of hS we obtain with (A.5)

=h FS z

which provides with the definition (A.3) the expression

Φ =( )h F z( ) .S

Consequently the choice of hS gives the maximizing element for (A.2) and the Newton quotient

= ′ −h F z F z( ( )) ( )S
1

following from (A.6) is the required gradient. Thus we realize that the Sobolev gradient of ϕ
relative to the natural Riemannian metric is the Newton quotient, thus leading to N in RSN. For
complex numbers with n = 1 the continuous Newton method gives a flow with respect to the
natural Riemannian metric.

With a pedigree like RSN, it should not be a wonder that flows from the continuous
Newton method have remarkable properties.

Appendix B. Curl of Newton flow does not vanish in general

In this appendix we calculate with the help of the Cauchy–Riemann differential equations [2]
the curl of the Newton flow N of the function F. We present an explicit expression for the curl
of N and compare and contrast it to the corresponding equation of electrostatics and
magnetostatics.

B.1. Definition of Newton field

We start by defining the components of the Newton flow of a function

= + = +F z F x y u x y v x y( ) ( i ) ( , ) i ( , ) (B.1)

of complex argument ≡ +z x yi and represented by its real and imaginary parts u and v.
From (B.1) and the identity

= ∂
∂

= +F

z

F

x
u v

d
d

i ,x x
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where the subscript x now indicates the partial derivative with respect to x, we find the ratio

′
= +

+
=

+ −
+
( )F

F

u v

u v

u v u v

u v

i
i

( i ) i

x x

x x

x x
2 2

or

′
=

+
+

−
−
+

F

F

uu vv

u v

uv u v

u v
i . (B.2)x x

x x

x x

x x
2 2 2 2

With the help of the Cauchy–Riemann differential equations

= = −u v u vand (B.3)x y y x

we establish the identity

− = − + = − + = −( ) ( )( )uv u v uu vv u v F
1
2

1
2

x x y y
y y

2 2 2

which together with the relation

+ = + =( ) ( )uu vv u v F
1
2

1
2

x x
x x

2 2 2

reduces (B.2) to

′
= +( ) ( )F

F D
F

D
F

1
2

i
1

2
,

x y
2 2

where we have introduced the abbreviation

≡ +D u v . (B.4)x x
2 2

As a result we can identify the individual components

⎜ ⎟
⎛
⎝

⎞
⎠≡ −

′
= − ( )N

F

F D
FRe

1
2

, (B.5)x
x

2

and

⎜ ⎟
⎛
⎝

⎞
⎠≡ −

′
= − ( )N

F

F D
FIm

1
2

(B.6)y
y

2

of the Newton field N .

B.2. Partial derivatives

We are now in the position to determine the curl

≡ −N N Ncurl y x x y, ,

of N . Here we have introduced a comma between the two subscripts to separate the components
from the variables of differentiation.

From (B.5) and (B.6) we find

⎜ ⎟ ⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥= − −( ) ( )N

D
F

D
Fcurl

1
2

1 1

x y y x
2 2
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and when we recall the definition (B.4) of D we obtain

⎜ ⎟⎛
⎝

⎞
⎠ = − +

D D
u u v v

1 2
( )

x
x xx x xx2

and similarly

⎜ ⎟⎛
⎝

⎞
⎠ = − +( )

D D
u u v v

1 2
.

y
x xy x xy2

In the last step we have applied the Cauchy–Riemann differential equations (B.3) and the
resulting Laplace equation for u and v.

With the help of the relations

= +F uu vv( ) 2( )x x x
2

and

= +( ) ( )F uu vv2
y

y y
2

we arrive at

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= − + − + − + −{ }( ) ( )N
D

u u v v v u u v u v u v u vcurl
2

2 2 . (B.7)x x x x xx x x x x xx2
2 2 2 2

It is interesting to note, that the curl of N vanishes at points where F or ′F vanishes. Moreover,
if F is real on the whole real axis, or purely imaginary on the imaginary axis the curl vanishes
there [18].

B.3. Summary and comparison to Maxwell field

In the preceding section we have established by a direct calculation for all points z of the
complex plane the identity (B.7) which in general is non-vanishing. The deeper reason for this
fact can be traced back to the Cauchy–Riemann differential equations discussed above and valid
for a holomorphic function

  = + = +U VRe i Im i .

When we recall that the ratio of two holomorphic functions such as F and ′F is also a
holomorphic function which implies the Cauchy–Riemann differential equations

= = −U V U Vandx y y x

for

= −
′

= +N
F

F
U Vi ,

the curl of the Newton field reads

= −N Vcurl 2 . (B.8)x

A feature common to electrostatics and magnetostatics is the fact that the electric field
=E E E( , )x y and the magnetic induction =B B B( , )x y have a vanishing curl, that is

= − =E E Ecurl 0y x x y, ,
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and

= − =B B Bcurl 0.y x x y, ,

Due to (B.8) in general there is no analogy between the Newton flow and electricity since the
curl-free property of the E- or B-field is violated.

Appendix C. Separatrices

In section 3.2.1 we have used two elementary examples to illustrate the loss of forward
uniqueness at a point ′z0 where the first derivative ′F of F vanishes. We now discuss in more
detail the Newton trajectories entering and leaving a simple zero of ′F . We conclude by briefly
providing an outlook for higher order zeros of ′F , in particular, we apply our results to the case
of a cubic polynomial.

C.1. Simple zero

We start by analyzing the Newton trajectories entering ′z0, where ′ ′ =F z( ) 00 but ″ ′ ≠F z( ) 00 .
The Taylor expansion

≅ ′ + ″ ′ − ′[ ]( ) ( )F z t F z F z z t z( ( ))
1
2

( ) (C.1)0 0 0
2

of F around ′z0 yields

⎧⎨
⎩

⎡⎣ ⎤⎦
⎫⎬
⎭≅ ′ ±

″ ′
− ′

( ) (z t z
F z

F z t F z( )
2

( ( )) ) .0
0

0

1 2

When we recall the solution

= ′ −(F z t F z( ( )) ) e t
0

of the differential equation (1) defining the Newton flow, we find

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥≅ ′ ±

′
″ ′

−−( )( )
( )

z t z
F z

F z
( ) 2 e 1 ,t

0
0

0

1 2

which reduces for ≪t 1 to

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥≅ ′ ± −

′
″ ′
( )
( )

z t z
F z

F z
t( ) 2 . (C.2)0

0

0

1 2

Since ′ ≡ =z z t( 0)0 , there are two trajectories crossing at t = 0, that is at the zero of the
derivative F′. Hence, negative times close to zero lead to trajectories entering ′z0, whereas small
positive times correspond to trajectories leaving it.

Moreover, for = −t t| | the trajectories

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥− ≅ ′ ±

′
″ ′

= ′ ±
′

″ ′
φ( )

( )
( )
( )

z t z
F z

F z
t z

F z

F z
t( ) (2 ) e 20

0

0

1 2

1 2
0

i 0

0

1 2
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where

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎫
⎬
⎭

φ ≡
′ ″ ′

′ ″ ′
( ) (
( ) (

F z F z

F z F z

1
2

arctan
Im )

Re )

0 0

0 0

enter ′z0 under the angles φ and φ π+ . Here we have used the fact that the square root of unity
is π π=l lexp (i 2 2) exp (i ) with l = 1 and l = 2, that is −1 and 1.

For < =t t0 | | we obtain from (C.2) with the help of the relation

− = π( 1) e1 2 i 2

the trajectories

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥≅ ′ ±

′
″ ′

φ π+ ( )
( )

z t z
F z

F z
t( ) e 2 .0

i( 2) 0

0

1 2

As a consequence, the trajectories leaving ′z0 are orthogonal to the incoming ones.

C.2. Higher order zero

We now turn to a zero of ′F of mth order. In this case the Taylor expansion corresponding to
(C.1) reads

≅ ′ + ′ − ′[ ]( ) ( )F z t F z
m

F z z t z( ( ))
1
!

( )m m
0

( )
0 0 0

where F m( ) denotes the mth derivative of F with respect to the argument z of the function F.
Thus, we arrive at

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥≅ ′ +

′
′

( )
( )

z t z m
F z

F z
t( ) ! . (C.3)

m

m

0
0

( )
0

1

Since there are m solutions πl mexp (i 2 ) with ⩽ ⩽l m1 for the mth root of unity we obtain m
trajectories entering ′z0 and m trajectories that are leaving.

We conclude by illustrating this behavior for the function

≡ −F z z( ) 1 (C.4)t
3

which has the three zeros πlexp (i 2 3) for l = 1, 2 and 3. The origin is a double zero of ′Ft , and
(C.3) predicts the three incoming trajectories

⎜ ⎟⎛
⎝

⎞
⎠

π= ′ +z t z l t( ) exp i
2
3

,l
(in)

0
1 3

and the three outgoing trajectories

⎜ ⎟⎛
⎝

⎞
⎠

π π= ′ + +z t z l t( ) exp i
2
3

i
2

.l
(out)

0
1 3

The Newton flow of Ft shown in figure 2 confirms these predictions.
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Appendix D. Generation of pictures with Mathematica

The pictures of the Newton flow are generated with Wolfram Mathematica 8 and the commands
[3]

⎡⎣ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎤⎦

=
= − + ′ +
= − + ′ +

− −

− −

{ } { } { }

F z
N x y F x Iy F x Iy
N x y F x Iy F x Iy

N x y N x y x x x y y y

[ _] : ...
1[ , ] : Re[ [ ] [ ]]
2[ , ] : Im[ [ ] [ ]]

StreamPlot 1 , , 2 , , , , , , ,0 1 0 1

The first lines define the function F(s) and the individual components (B.5) and (B.6) of the
Newton field N, respectively, whereas the last command produces the Newton flow of F in the
intervals x ∈ [xo, xl] and y ∈ [yo, yl]. Here, I is the Mathematica code for the imaginary unit i.
The zeros, poles and hyperbolic points as well as the separatrices and flow lines on which the
function is real are first computed and then indicated by the appropriate symbols.
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