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Abstract. In this article, we study the application of Multi-Level Monte
Carlo (MLMC) approaches to numerical random homogenization. Our ob-
jective is to compute the expectation of some functionals of the homoge-
nized coefficients, or of the homogenized solutions. This is accomplished
within MLMC by considering different levels of representative volumes
(RVE), and, when it comes to homogenized solutions, different levels of
coarse-gridmeshes. Many inexpensive computations with the smallest RVE
size and the largest coarse mesh are combined with fewer expensive com-
putations performed on larger RVEs and smaller coarse meshes. We show
that, by carefully selecting the number of realizations at each level, we can
achieve a speed-up in the computations in comparison to a standard Monte
Carlo method. Numerical results are presented both for one-dimensional
and two-dimensional test-cases.

1. Introduction

Many multi-scale problems have uncertainties at the smallest scales, that
are due to the incomplete knowledge one has of the microstructure. For
example, when considering porous materials, the microstructure is often
generated based on some limited statistical information. This can lead
to large uncertainties in terms of microscale heterogeneities. These un-
certainties at micro-scales need to be mapped onto the simulations on a
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coarse-grid, and this typically leads to considering large representative vol-
umes (RVE) for these microstructures.
In practice, the upscaled quantities that are used at the macroscopic

level are computed using the solution of some local problems posed on
these microstructures. It is often needed to solve many such local prob-
lems (corresponding to many different random realizations, or snapshots,
of the microstructure), each of which being expensive due to the presence
of small scales. The resulting amount of computational work may thus be
prohibitively expensive. In this article, our objective is to design a com-
putational approach that allows for fast calculations of the coarse-scale
quantities based on fewer realizations.
Our idea is to apply the Multi-Level Monte Carlo (MLMC) framework

to multi-scale simulations. The MLMC approach was first introduced by
Heinrich in [23] for finite- and infinite-dimensional integration. Later on, it
was applied to stochastic ODEs by Giles (see [21, 20]). More recently, this
approach has been used for PDEs with stochastic coefficients by several
authors, see [4, 16, 1, 14, 27]. To compute an approximation of the expec-
tation E(X) of some random variable X , the MLMC approach consists in
considering several random variables Xl, at different levels l, that approx-
imate X with various accuracies. The main idea is then to use different
numbers of samples (i.e. independent realizations) at different levels. More
precisely, many samples are used at the coarsest, less accurate level where
the computation for each realization is inexpensive, while fewer samples are
used at the finest, most accurate level that is expensive to compute. Com-
bining the results of these computations by carefully selecting the number
of realizations at each level can speed-up the computations in comparison
to a standard Monte Carlo (MC) approach, where only one level (that of
the quantity of interest itself) is considered. See Section 2.2 below for more
details on the MLMC approach.

In the framework of numerical stochastic homogenization, local problems
are solved on representative volumes (RVE), and apparent effective prop-
erties are next defined as averages of the solutions of these local problems
over the RVEs. The computations on the RVEs are usually expensive,
because large RVEs need to be considered to obtain effective properties
with a reasonable accuracy. In the framework of MLMC approaches, our
idea is to use RVEs of different sizes, and to consider many independent
realizations of the smaller ones, for which the associated local problem is
inexpensive to solve, and fewer realizations of the larger ones.
The convergence of the MLMC approach depends on the accuracy of

the computations at each level. Assessing how this accuracy improves
when more expensive computations are considered is critical to determine
how to choose the number of realizations at each level. In our case, we
thus have to determine how the accuracy of apparent effective properties
depend on the RVE size. Such estimations are not easy to obtain, both
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from a theoretical and a practical viewpoint. In this work, we use the fact
that, under some assumptions on the heterogeneous coefficients, it is known
that the accuracy of the effective property approximation scales as (ǫ/η)β

for some β > 0, where η is the RVE size and ǫ is the characteristic small
lengthscale of the heterogeneities (see e.g. [3, 8, 9, 11, 17, 19, 22, 24, 28]).
When the MLMC approach is used to compute the expectation of some

functionals of the homogenized solution (rather than the homogenized co-
efficient), we can use RVEs of different size to compute the homogenized
coefficients, and also coarse grids with various size to solve the coarse scale
equation. In addition to assessing the accuracy of the approximation of
the effective properties in each RVE, we need to assess the accuracy when
solving the coarse-scale equation. Standard FEM results are then useful.
An important remark is that MLMC approaches are interesting when ef-

fective properties are stochastic (otherwise, such approaches are as efficient
as a standard MC approach). This situation appears in many applications,
although homogenization theories for this case are less studied. Most ho-
mogenization theories are indeed developed for ergodic coefficients that
vary over a single scale. In this case, the apparent homogenized quantities,
when computed on infinitely large RVEs, are deterministic. In the sequel,
we briefly discuss homogenization results when the homogenized coefficient
is stochastic (even when infinitely large RVEs are considered), and we use
these results in our MLMC approach to adequately select the number of
realizations at each level (namely, for each RVE size and each coarse grid
size).

Consider now the specific question of computing homogenized solutions
with several grids of different size. For each of these grids, we first need
to precompute the effective properties, say at each Gauss point of the
macroscopic grid. Assume that these coarse grids are nested. Then, once
the effective properties have been computed at the finest level (i.e. for the
Gauss points of the finest grid), no additional precomputation is needed to
compute effective properties for the coarser grids (since their Gauss points
are a subset of the Gauss points of the finest grid). In this case, we propose
to use a weighted MLMC approach, where we give different weights to each
level, so as to optimize the accuracy at a given cost.

Our article is organized as follows. In Section 2, we briefly review theo-
retical homogenization results and describe in details the MLMC approach
in a general context. In Section 3, we next describe how to apply the
MLMC approach to compute an approximation of the homogenized coef-
ficients, and assess the accuracy of the proposed approach. We next turn
in Section 4 to the computation of the homogenized solutions, using ei-
ther the MLMC or the weighted MLMC approaches. Numerical results
are collected in Section 5. We consider the case of the effective coefficients
in Section 5.2, and of the homogenized solutions in Section 5.3. In both
cases, we show that the MLMC approach yields a significant speed-up in
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comparison to a standard MC approach.

2. Preliminaries

2.1. Numerical homogenization

In this section, we describe the numerical homogenization procedure we
use. Consider the problem

− div(Aǫ(x, ω)∇uǫ) = f in D, (1)

where D is an open bounded subset of Rd, Aǫ(x, ω) is a heterogeneous
random field (with a small characteristic length scale ǫ), ω designates a
random realization and f ∈ L2(D) is a non-random function. We com-
plement the problem (1) with some boundary conditions that we do not
specify, such that its solution uǫ is well defined (for instance, uǫ = 0 on ∂D
almost surely). Furthermore, we assume that Aǫ is uniformly bounded and
coercive, in the sense that there exists two positive deterministic numbers
0 < amin ≤ amax such that, for any ǫ, any ξ ∈ Rd and any 1 ≤ i, j ≤ d,

amin|ξ|2 ≤ ξTAǫ(x, ω)ξ,
∣∣∣[Aǫ(x, ω)]ij

∣∣∣ ≤ amax,

almost everywhere in D and almost surely.
For almost all realizations ω, we consider a numerical homogenization

procedure as follows. Given a representative volume centered at a macro-
scopic point x with size η,

Y x
η =

(
x− η

2
, x+

η

2

)d
,

we solve, for any 1 ≤ i ≤ d, the local problems

div(Aǫ(y, ω)∇χi(y, ω)) = 0 in Y x
η , χi(y, ω) = yi on ∂Y x

η . (2)

Note that the precise boundary conditions used in these local problems
are not essential when there is a scale separation. Rather than Dirichlet
boundary conditions as in (2), it is also possible to use Neumann boundary
conditions, or periodic boundary conditions (see [11, 25]).
Then, we define the apparent homogenized matrix A∗

η(x, ω) by

∀1 ≤ i ≤ d, A∗
η(x, ω)ei =

1

ηd

∫

Y x
η

Aǫ(y, ω)∇χi(y, ω) dy,

where ei is the unit vector in the direction i (i = 1, . . . , d). We denote this
local homogenization procedure by Hη, i.e.

A∗
η(x, ω) = Hη(Aǫ(x, ω)).
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RVE

x+

−div(Aǫ∇χi) = 0

η

Figure 1: Illustration of the numerical homogenization procedure.

This procedure is repeated at every macroscopic point (see Figure 1 for
illustration). Then, the coarse-scale equation associated to (1) is

− div(A∗
η(x, ω)∇u∗) = f in D, (3)

with the same boundary conditions on u∗ as in (1).

2.1.1. Random microstructure and deterministic homogenized
coefficients

Homogenization of elliptic equations with random coefficients has been
extensively studied in the literature, and we refer to [26, 24, 7, 15] for
classical textbooks (see also the review article [2]). It is shown there that,

if Aǫ(x, ω) = A
(x
ǫ
, ω
)

for some ergodic statistically homogeneous (i.e.

stationary) random field A(x, ω) ∈ Rd×d (see e.g. [26, 24] for definitions),
then the random solution uǫ(·, ω) to (1) converges, weakly in H1(D) and
almost surely, to a deterministic function u∗, solution to

−div(A∗∇u∗) = f in D,

with appropriate boundary conditions (say u∗ = 0 on ∂D if (1) is comple-
mented by uǫ(·, ω) = 0 on ∂D). The homogenized coefficient, denoted A∗

in the above equation, is a deterministic, constant matrix.
In addition, the numerical procedure outlined above is a practical way

to obtain a converging approximation of the homogenized matrix, in the
sense that

lim
η→∞

A∗
η(x, ω) = A∗, (4)

almost surely, and for almost all x (see [11]). Note that (4) can be equiva-
lently written lim

ǫ→0
A∗

η(x, ω) = A∗ for any fixed η > 0.

The only assumptions of ergodicity and stationarity do not allow for a
precise convergence rate in (4). If, in addition, one assumes that the matrix
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A(x, ω) decorrelates at large distances at some given rate, then one can also
obtain a convergence rate in (4) (see e.g. [28, 11]). A typical result is that

E

[∣∣A∗
η(x, ·)−A∗

∣∣2
]
≤ C

(
ǫ

η

)β

a.e., (5)

for some β > 0 and C > 0 that depend on the decorrelation rate, but are
independent of x, η and ǫ, and where |·| is any norm on the d× d matrices.
Note that, in the absence of ergodicity, the homogenized coefficients are

a priori random matrices, that are invariant under the group of actions
representing homogeneous statistical fields.

2.1.2. Stochastic homogenized coefficients

As we mentioned in the introduction, the Multi-Level Monte Carlo method
is more efficient than a standard Monte Carlo method when the exact ho-
mogenized coefficients are stochastic (otherwise, both methods are equally
efficient). In stochastic homogenization, if no ergodicity is assumed, then
the homogenized coefficients can be stochastic. In this work, we consider
various cases in that setting.
The first case we consider is when the coefficient in (1) has the form

A
(
x,

x

ǫ
, ω, ω′

)
= Ã(x, ω)B

(x
ǫ
, ω′
)
Id,

where Ã andB are two random scalar valued functions and Id is the identity
matrix. We thus see that ω corresponds to a randomness at the macroscopic
scale, while ω′ corresponds to a randomness at the microscopic scale. Let
A∗(x, ω, ω′) be the homogenized matrix, which depends on the macroscopic
variables (x, ω), and also on the microscopic randomness ω′ as no ergodicity
is assumed on B. We will assume that

Eω′

[∣∣∣A∗(x, ω, ω′)−Hη

(
A
(
x,

x

ǫ
, ω, ω′

))∣∣∣
2
]
≤ C

(
ǫ

η

)β

,

where the constant C and the rate β are independent of ω, x, ǫ and η.
A second, more general case we consider is when the randomness does

not explicitely split into a randomness at the macroscopic and the micro-

scopic scales. The heretogeneous field in (1) then writes A
(
x,

x

ǫ
, ω
)
. We

assume that A is scalar-valued, that we can do homogenization at every
macroscopic point, and that the following assumption holds:

E

[∣∣∣A∗(x, ω)−Hη

(
A
(
x,

x

ǫ
, ω
))∣∣∣

2
]
≤ C

(
ǫ

η

)β

for some constant C and rate β independent of x, ǫ and η. This assump-
tion is similar to the known results for ergodic homogeneous stochastic
homogenization recalled in (5).
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2.2. Multi-Level Monte Carlo approach

We now briefly introduce the Multi-Level Monte Carlo (MLMC) approach
in a general context. The reader familiar with this approach can directly
proceed to Section 2.3.
Let X(ω) be a random variable. We are interested in the efficient compu-

tation of the expectation ofX , denoted by E(X). In our calculations below,
X is a function of the homogenized coefficients or of the homogenized solu-
tions. For example, we are interested in the expectation of the homogenized
coefficients E(A∗), or in the two-point covariance function. In this case,
we choose the random variable as X(ω) = [A∗(x1, ω)]ij [A∗(x2, ω)]qp for
some x1 ∈ D and x2 ∈ D (and some components ij and qp of the homog-
enized matrices). Other quantities of interest include e.g. statistics of the
homogenized solution.
To compute an approximation of E(X), a standard approach is the Monte

Carlo (MC) method. One first calculates a number M of independent
realizations of the random variable X (denoted X i, 1 ≤ i ≤ M), and next
approximates the expected value E(X) by the arithmetic mean (also called
empirical estimator):

EM (X) :=
1

M

M∑

i=1

X i.

In this article, we are interested in Multi-Level Monte Carlo (MLMC)
methods. The idea is to consider the quantity of interest Xl on different
levels l. In our case, levels denote various representative volume sizes, or
different mesh sizes. We assume that L is the level of interest, and that
computing many realizations at this level is too computationally expensive.
We introduce levels smaller than L, namely L− 1, . . . , 1, and assume that
the lower the level is, the cheaper the computation of Xl is, and the less
accurate Xl is with respect to XL. Setting X0 = 0, we write

XL =

L∑

l=1

(Xl −Xl−1) .

The standard MC approach consists in working with M realizations of the
random variable XL at the level of interest L. In contrast, within the
MLMC approach, we work with Ml realizations of Xl at each level l, with
M1 ≥ M2 ≥ · · · ≥ ML. We write

E [XL] =

L∑

l=1

E [Xl −Xl−1] ,

and next approximate E [Xl −Xl−1] by an empirical mean as above:

E [Xl −Xl−1] ≈ EMl
(Xl −Xl−1) =

1

Ml

Ml∑

i=1

(
X i

l −X i
l−1

)
,
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where X i
l is ith realization of the random variable X computed at the level

l (note that we have Ml copies of Xl and Xl−1, since Ml ≤ Ml−1). The
MLMC approach consists in approximating E(XL) by

EL(XL) :=

L∑

l=1

EMl
(Xl −Xl−1) . (6)

As will be seen below, the realizations of Xl used with those of Xl−1 to
evaluate EMl

(Xl −Xl−1) do not have to be independent of the realizations
of Xl used with those of Xl+1 to evaluate EMl+1

(Xl+1 −Xl) (see also
Remark 5.1 below).
In the following, we are interested in the root mean square errors

eMLMC(XL) =

√
E

[
‖E(XL)− EL(XL)‖2

]
, (7)

eMC(XL) =

√
E

[
‖E(XL)− EML

(XL)‖2
]
, (8)

with an appropriate norm depending on the quantity of interest (e.g. the
absolute value for any entry of the homogenized coefficient, the L2(D) norm
for the homogenized solution). For the error estimation, we will use (see
e.g. [13]) that, for any random variable X , and any norm associated to a
scalar product,

E

[
‖E(X)− EM (X)‖2

]
=

1

M
E

[
‖X − E(X)‖2

]
. (9)

2.3. Definition of meshes and representative volume sizes

In our application, we will be dealing with various representative volume
sizes, and also possibly various sizes of coarse meshes (see Figure 2 for
illustration). In the framework of MLMC approaches, choosing a level
l thus corresponds to choosing a particular RVE size, . . .We denote the
hierarchy of coarse meshes on which we solve (3) by

H1 ≥ H2 ≥ · · · ≥ HL.

The number of realizations used at the level i for the coarse mesh size Hi

is denoted Mi. We take

M1 ≥ M2 ≥ · · · ≥ ML.

As for the representative volumes, we take their sizes according to

η1 ≤ η2 ≤ · · · ≤ ηL

and the corresponding number of realizations is denoted

m1 ≥ m2 ≥ · · · ≥ mL.
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One could also use various fine-scale meshes for solving the local represen-
tative volume problems (2). We do not go in this direction in this work.
Note that the level L always corresponds to the most expensive choice

(large RVE, or fine mesh), and thus the smallest number of realizations.
Note also that one does not have to take the same number of levels L for
coarse-grid sizes and RVEs.

���
���
���
���

���
���
���
���

H

η coarse grid block

RVE

fine mesh

Figure 2: Parameters in the numerical homogenization procedure.

3. MLMC approach for the upscaled coefficients

In this section, we describe how to use the MLMC approach to compute the
upscaled coefficients defined in Section 2.1 and the two-point correlation
functions. We focus on how to choose RVE sizes for the problems (2), and
thus assume that these problems are exactly solved. Setting

δl(x) =

√
E

[
|A∗(x, ·) −A∗

l (x, ·)|
2
]
,

where |·| is some matrix norm, we assume, following Section 2.1.2, that

δl(x) ≤ C

(
ǫ

ηl

)β/2

, (10)

for some β > 0 and C > 0 independent of l, ǫ, η and of the macroscopic
point x ∈ D (in what follows, we keep the dependency with respect to x
implicit in our notation). For some special cases, one can obtain an estimate
for β rigorously. For more complicated cases, we suggest in Section 5.1
below a pre-computation strategy that can provide an estimate for β. Note
that a Central Limit Theorem type result corresponds to β = d (see e.g. [8]
for such estimates in a weakly stochastic case).

For clarity, we summarize now our MLMC algorithm for the upscaled
coefficients:

1. Generate m1 random variables ω1, . . . , ωm1
.

2. For each level l, 1 ≤ l ≤ L, and each realization ωj , 1 ≤ j ≤ ml ≤ m1,

9



• Solve the RVE problems (2) on Y x
ηl
: for any i = 1, . . . , d,

div(Aǫ(y, ωj)∇χi(y, ωj)) = 0 in Y x
ηl
, χi(y, ωj) = yi on ∂Y x

ηl
.

• Compute the homogenized matrix A∗
l (x, ωj) with

∀1 ≤ i ≤ d, A∗
l (x, ωj)ei =

1

ηld

∫

Y x
ηl

Aǫ(y, ωj)∇χi(y, ωj) dy.

3. For each level l, 1 ≤ l ≤ L, compute

Eml
(A∗

l −A∗
l−1) =

1

ml

ml∑

j=1

[
A∗

l (x, ωj)−A∗
l−1(x, ωj)

]
, with A∗

0 = 0.

4. Compute the MLMC approximation EL(A∗
L) of the expected value

E(A∗
L(x, ·)) following (6):

EL(A∗
L) :=

L∑

l=1

Eml
(A∗

l −A∗
l−1).

Let us now estimate the error in the approximation of E
(
[A∗

L]ij

)
, for

any entry ij (1 ≤ i, j ≤ d) of the matrix A∗
L. To simplify the notation, we

write the calculations below as if A∗
l were a scalar quantity independent

of x. These calculations are to be understood as calculations on the entry
[A∗

l (x, ·)]ij ∈ R.
For the MLMC approach, the error reads

eMLMC(A
∗
L) =

√
E

[
(E(A∗

L)− EL(A∗
L))

2
]

=

√√√√√E



(
E

(
L∑

l=1

(
A∗

l −A∗
l−1

)
)

−
L∑

l=1

Eml

(
A∗

l −A∗
l−1

)
)2



=

√√√√√E



(

L∑

l=1

(E− Eml
)
(
A∗

l −A∗
l−1

)
)2



≤
L∑

l=1

√
E

[(
(E− Eml

)
(
A∗

l −A∗
l−1

))2]

=

L∑

l=1

1√
ml

√
E

[(
A∗

l −A∗
l−1 − E(A∗

l −A∗
l−1)

)2]

10



where we have used (9). Writing that A∗
l −A∗

l−1 = (A∗
l −A∗)+(A∗−A∗

l−1),
and since ml ≤ ml−1, we deduce that

eMLMC(A
∗
L) ≤

1√
mL

√
E

[
(A∗

L −A∗ − E (A∗
L −A∗))

2
]

+

L−1∑

l=1

2√
ml+1

√
E

[
(A∗

l −A∗ − E (A∗
l −A∗))

2
]
+

1√
m1

√
E [(A∗)2]

≤
L∑

l=1

2√
ml+1

√
E

[
(A∗

l −A∗)
2
]
+

1√
m1

√
E [(A∗)2]

≤
L∑

l=1

2√
ml+1

δl +
1√
m1

√
E [(A∗)2],

where, for ease of notation, we have introduced some mL+1 ≤ mL. Us-
ing (10), we deduce that

eMLMC(A
∗
L) ≤ C

L∑

l=1

1√
ml+1

(
ǫ

ηl

)β/2

+
1√
m1

√
E [(A∗)2].

For a fixed error, the optimal choice for the number ml of realizations
at level l (namely for the RVE of size ηl) is reached when these error parts
are equilibrated. Therefore, we choose

ml =





(ηL
ǫ

)β
E
[
(A∗)2

]
α−2
1 , l = 1,

(
ηL
ηl−1

)β

α−2
l , 2 ≤ l ≤ L+ 1,

(11)

for some parameters αl, and we check that indeed mL+1 ≤ mL, provided
αL+1 = αL. We then have

eMLMC(A
∗
L) ≤ C

(
ǫ

ηL

)β/2 L∑

l=1

αl. (12)

For comparison, we consider the error if we calculate the approximated
upscaled coefficient only for the largest RVE (of size ηL), using a standard
MC method with m̂L independent samples. Using (9), we find that the
MC error reads

eMC(A
∗
L) =

√
E

[
(E (A∗

L)− Em̂L
(A∗

L))
2
]
=

1√
m̂L

√
E

[
(A∗

L − E (A∗
L))

2
]
.

As pointed out above, A∗ is assumed to be a random quantity, with some
positive variance. It is thus natural to assume that the variance of A∗

L is

11



roughly independent of L, and hence that the MC error is of the order of
C/

√
m̂L. To have an error of the same order as that given by the MLMC

approach, we take m̂L = O

((ηL
ǫ

)β)
independent realizations.

Now that we have chosen the number of realizations for both approaches
so that they reach the same accuracy, we are in position to compare their
cost. Let Nl denote the cost of solving the RVE problem (2) on the domain
Y x
ηl

of size ηdl . The number of degrees of freedom needed is of the order

of (ηl/ǫ)
d. Assuming that Nl = (ηl/ǫ)

d, the MLMC cost is WMLMC
RVE =

L∑

l=1

mlNl, hence

WMLMC
RVE =

L∑

l=2

(
ηL
ηl−1

)β

α−2
l

(ηl
ǫ

)d
+
(ηL

ǫ

)β
E
[
(A∗)2

]
α−2
1

(η1
ǫ

)d
.

In the case of the MC approach, the cost reads

WMC
RVE = m̂LNL = C

(ηL
ǫ

)β (ηL
ǫ

)d
= C

(ηL
ǫ

)β+d

.

On Figure 3, we plot the ratio
WMLMC

RVE

WMC
RVE

for different numbers of levels L

and rates β, with the choice ηl = 2l−L. Note then that the largest RVE
is always of size ηL = 1, independently of L, and that the smallest RVE
size depends on L, and is η1 = 21−L. On the right plot, we consider the
case when ǫ is fixed at a very small value independent of L. This value
is sufficiently small to ensure that, even for the largest considered L, the
smallest RVE is larger than ǫ (thereby ensuring scale separation). On the
left plot, we consider a more practical situation (which is the regime we
choose for our numerical experiments of Section 5), when ǫ depends on
L and is always 10 times smaller that the smallest RVE. This leads to
values of ǫ that are larger (and thus easier to handle numerically) than
that considered on the right plot.
As we can see, for a given number L of levels, the larger the rate β is, the

smaller the cost ratio is, at equal accuracy. Otherwise stated, the faster
the convergence of the apparent homogenized matrix with respect to the
RVE size, the more efficient the MLMC approach is. We also observe on
the right plot that, at fixed β and ǫ, the gain in terms of cost first increases
when L increases and then reaches a plateau for large L.

Remark 3.1

In the above calculations, we have assumed that the cost of solving a local
problem scales linearly with the number N of degrees of freedom. This is
true if one uses iterative solvers and the condition number of the precondi-
tioned system is independent of the small scale ǫ. One can also compare the
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Figure 3: RVE cost ratio
WMLMC

RVE

WMC
RVE

for different numbers of levels L and rates β (we

work with ηl = 2l−L, αl = 1/L for all l, d = 2 and E
[
(A∗)2

]
= 1).

cost between the MLMC and MC approaches under different assumptions
(e.g. when the cost of solving a local problem scales as C(ǫ)N 1+γ for some
γ ≥ 0).

Remark 3.2

To compute the optimal number of realizations following (11), one needs to
know the value β of the rate in (10). In general, this rate is not analytically
known. To address this difficulty, we propose in Section 5.1 below some
means to estimate the value of β based on a priori, offline computations.

We have shown above how to estimate E(A∗
L(x, ·)) at any macroscopic

point x. Another important quantity is the two-point correlation function

CorA∗(x, y) := E

(
[A∗(x, ω)]ij [A∗(y, ω)]qp

)

between the components ij and qp of the homogenized matrix at points x
and y (note that we work with non-centered values of A∗). For simplicity,
we only consider two fixed locations x and y. Consider ml independent
realizations of the homogenized matrix A∗,k

l at level l (1 ≤ k ≤ ml). We
define

Corml
(A∗

l ) :=
1

ml

ml∑

k=1

[
A∗,k

l (x)
]
ij

[
A∗,k

l (y)
]
qp

as an empirical estimator of E

(
[A∗

l (x, ω)]ij [A∗
l (y, ω)]qp

)
. The MLMC

13



approximation of the two-point correlation function CorA∗(x, y) then reads

CorL(A∗
L) :=

L∑

l=1

(
Corml

(A∗
l )− Corml

(A∗
l−1)

)
.

Remark 3.3

We have considered above that we could exactly solve the RVE problems (2).
In practice, these problems are solved numerically, within some accuracy.
A natural extension of assumption (10) is to assume that the error in the
approximation of A∗ (due to working on a truncated domain Yηi

of size ηi
with a finite discretization on a mesh of size hj) satisfies

δij ≤ C

√(
ǫ

ηi

)β

+

(
hj

ǫ

)γ

,

for some constant C independent of hj, ηi and ǫ. An analysis similar to
the one above then follows. Note also that it may be possible to solve the
local problems on some RVEs with a coarser approximation and correct
this using the nearby RVEs, computed at full accuracy, in the spirit of the
strategy proposed in [12] in another context. The adaptation of such an
idea to our context goes beyond the scope of the current work.

4. MLMC for the homogenized solution

In this section, we show how to estimate the expectation of the homoge-
nized solution using the MLMC approach. We also introduce an extension
of that approach, namely the weighted MLMC approach, in Section 4.2.

4.1. Separable case

In this section, we assume that the coefficient in (1) reads

Aǫ(x, ω, ω
′) = Ã(x, ω)B

(x
ǫ
, ω′
)
Id

for two scalar valued functions Ã and B, and therefore satisfies a separation
of scales assumption. The coarse-scale problem associated to the highly
oscillatory problem (1) is

−div
[
Ã(x, ω)B∗(ω′)∇u∗

]
= f in D.

We expect most of the randomness of the coefficient at the coarse-scale to
be in Ã(x, ω). We thus use a simplistic treatment for averaging over ω′ and
approximate the above equation by

− div
[
Ã(x, ω)Eω′ [B∗]∇u∗

]
= f in D. (13)
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We are going to compute an approximation of E(u∗), using the tuples
(Hl,Ml, ηl,ml) for 1 ≤ l ≤ L.
We first need to calculate the homogenized coefficient B∗(ω′). To do so,

we solve in each direction, 1 ≤ j ≤ d, and for each realization Bi
(y
ǫ
, ω′
)

of the coefficient, 1 ≤ i ≤ ml, the RVE problem

−div
[
Bi
(y
ǫ
, ω′
)
∇χi

j

]
= 0 in Yηl

,

χi
j(y, ω

′) = ej · y on ∂Yηl
,

(14)

and calculate the corresponding homogenized coefficient:

[
B∗i

l

]
n,m

=
1

|Yηl
|

∫

Yηl

∇χi
n ·Bi∇χi

m.

Note that we have kept implicit the dependency of χi
j with respect to the

level l. We then introduce

Eml
(B∗

l ) =
1

ml

ml∑

i=1

B∗i
l ,

which is an approximation (at level l) of Eω′ [B∗]. We correspondingly
introduce ul, solution to

−div
[
Ã(x, ω)Eml

(B∗
l )∇ul

]
= f in D.

In turn, this equation is solved on a mesh of size Hl, for several realizations
of Ã(x, ω). We thus eventually define uk

l (with 1 ≤ l ≤ L and 1 ≤ k ≤ Ml),
solution (on a mesh of size Hl) to the coarse-scale equation

− div
[
Ãk(x, ω)Eml

(B∗
l )∇uk

l

]
= f in D. (15)

The expected value E(ul) is approximated in a standard Monte Carlo fash-
ion by

E(ul) ≈ EMl
(ul) :=

1

Ml

Ml∑

k=1

uk
l ,

where uk
l is the solution to (15).

To approximate our quantity of interest, E(uL), we can first perform the
above procedure only at the level L. This yields a standard Monte Carlo
approximation of E(uL).
An alternative approximation is that provided by the MLMC approach,

which reads

EL(uL) :=

L∑

l=1

EMl
(ul − ul−1) with u0 = 0.
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Introducing the norm

‖X‖ =
[
E

(
‖X(ω)‖2H1(D)

)]1/2
,

the MLMC error is estimated following the same lines as in Section 3. We
obtain

‖E(uL)− EL(uL)‖ .

L∑

l=1

1√
Ml

‖u∗ − ul‖+
1√
M1

‖u∗‖ .

To bound from above ‖u∗ − ul‖, we introduce u∗
Hl
, approximate solution

to (13) on a mesh of size Hl. It follows that

‖u∗ − ul‖ ≤
∥∥u∗ − u∗

Hl

∥∥+
∥∥u∗

Hl
− ul

∥∥ .

The first term is a discretization error, which typically satisfies (e.g. if we
use a P1 Finite Element method) the bound

∥∥u∗ − u∗
Hl

∥∥ . Hl. For the
second term, it holds (all expectations are taken w.r.t. ω′)

∥∥u∗
Hl

− ul

∥∥ .

√
E

[
|Eml

(B∗
l )− E (B∗)|2

]

≤
√
E

[
|Eml

(B∗
l )− E(B∗

l )|
2
]
+ |E(B∗

l )− E (B∗)|

.
1√
ml

√
E

[
|B∗

l − E(B∗
l )|

2
]
+ δl.

Using our assumption (10), that is δ2l .

(
ǫ

ηl

)β

for some β > 0, and

assuming that the variance of B∗
l is essentially independent of l, we get

‖E(uL)− EL(uL)‖ .

L∑

l=1

1√
Ml

(
Hl +

(
ǫ

ηl

)β/2

+
C√
ml

)
+

1√
M1

.

For the standard MC approach (with M̂ independent samples), the error
reads ∥∥E(uMC)− E

M̂
(uMC)

∥∥ .
1√
M̂

,

provided the variance of uMC is of order one.

4.2. General, non-separable case

In general, the coefficient in (1) is of the form A
(
x, ω,

x

ǫ

)
, where there is no

separation between the macroscopic and the microscopic randomness. In
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this case, the RVE problems are parameterized by the macroscale position
x, and thus need to be solved in each coarse-grid block (in contrast to the
separable case considered in Section 4.1, where the local RVE problem (14)
is independent of x).
At any level l, let Nl ∝ H−d

l be the number of coarse-grid blocks. We
denote by Pl the set of the macroscale grid points at which we solve a
RVE problem, with Card Pl = Nl. We assume that the coarse grids are
nested from one level to the other, so that P1 ⊂ P2 ⊂ · · · ⊂ PL. As before,
on each grid of size Hl, we solve Ml coarse grid problems. To calculate
the effective coefficient, we solve the RVE problems at each coarse grid
point and for each realization of A, and we next average the energy over
the spatial domain. Since the sets Pl are nested, once we have computed
A∗

ηl,Hl
(using RVEs of size ηl) at the macroscopic points of the coarse mesh

of size Hl, we readily get A∗
ηl,Hj

for j < l (see Table 1). Thus, at each
level l < L, and at each point of the grid of mesh size Hl, we only have
to solve Ml−Ml+1 RVE problems (associated to independent realizations)
on RVEs of size ηl, and not Ml of them.

HL HL−1 · · · H1 # coefficients to calculate
with RVE size ηl

η1 A∗
η1,H1

M1 −M2

...
...

...
ηL−1 A∗

ηL−1,HL−1
· · · A∗

ηL−1,H1
ML−1 −ML

ηL A∗
ηL,HL

A∗
ηL,HL−1

· · · A∗
ηL,H1

ML

# coefficients
on grid size Hl ML ML−1 · · · M1

Table 1: Calculating the coefficients on the diagonal (shown in blue) will automatically
give the lower triangular values in the matrix.

We denote u∗
ηj ,Hi

the solution to the coarse-scale equation discretized on
a grid of size Hi, and where the effective coefficient is computed from local
problems set on RVEs of size ηj .
To approximate E(u∗

ηL,HL
), we can use a MLMC approach based on the

solutions u∗
ηj ,Hj

, 1 ≤ j ≤ L. However, such an approach discards the
solutions u∗

ηj,Hi
for i < j, which are however easy to compute. Indeed,

once the coefficient A∗
ηj ,Hj

has been obtained at some level j, computing
the solutions u∗

ηj ,Hi
for all meshes i ≤ j is as inexpensive as computing

u∗
ηj,Hj

only for the mesh j.

To benefit from this fact, we can approximate E(u∗
ηL,HL

) using a weighted
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MLMC approach, which is defined as

EL∗
weighted :=

L∑

l=1

αlE
∗
Ml

(u∗
l − u∗

l−1), (16)

where αl (1 ≤ l ≤ L) are parameters to be determined, and

E∗
Ml

(u∗
l − u∗

l−1) :=
1

Ml

L∑

j=l




Mj−Mj+1∑

i=1

(
u∗
ηj ,Hl

− u∗
ηj ,Hl−1

)
(ωi)




=
1

Ml

L∑

j=l

(Mj −Mj+1)EMj−Mj+1
(u∗

ηj ,Hl
− u∗

ηj ,Hl−1
),

where we have set ML+1 = 0 and uηj,H0
= 0 for any 1 ≤ j ≤ L. Note that

if αl = 1 for all l, we recover the standard MLMC approach.
Errors associated to the weighted MLMC approach are estimated in

Appendix A.

5. Numerical results

We consider the problem

−div
[
A
(
x, ω,

x

ǫ
, ω′
)
∇uǫ

]
= f in D = (0, 1)d,

complemented by boundary conditions that will be made precise below.
Likewise, the function f will be given below. Note that the exact homog-
enized coefficient is independent of these choices.
In what follows, we compare our MLMC results with standard MC re-

sults at the highest level. We equate the cost for calculating the coefficient
and the solution separately and compare the errors (in contrast to the the-
oretical analysis of Sections 3 and 4, where we have equated the accuracies
and compared the costs).
We will consider both one-dimensional and two-dimensional examples.

For the one-dimensional cases, we have implemented the method in Mat-
lab, and used the analytical solutions of the various PDEs. In the two-
dimensional cases, we use a rectangular mesh with cell-centered finite vol-
umes. To solve the PDEs, we use the modular toolbox DUNE, the Dis-
tributed and Unified Numerics Environment [6, 5, 18, 10].
When we use the MLMC approach to approximate the homogenized

coefficient, we consider L = 3 different RVE sizes ηl, unless specified oth-
erwise. Likewise, when we compute the homogenized solution, we also use
L = 3 different coarse grids of mesh size Hl. For all the computations,
we have used the same fine grid (see Table 2). We have made sure that
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l Hl hl ηl # cells in RVE of size ηl

1
1

16

1

128
0.125 256

2
1

32

1

128
0.25 1024

3
1

64

1

128
0.5 4096

Table 2: Parameters for the MLMC approach (two-dimensional cases).

the smallest RVE we consider is much larger than the characteristic length
scale ǫ (given below for each example) of the field A.
We explain in Section 5.1 how to numerically estimate the rate of con-

vergence β in (10). In Section 5.2, we present numerical results for the
homogenized coefficients. Next, in Section 5.3, we present numerical re-
sults for homogenized solutions.

5.1. Numerical study of the convergence rate

In our theoretical study described above, we have assumed that

E

[
|A∗

l −A∗|2
]
≤ C

(
ǫ

ηl

)β

for some constant C and rate β independent of ǫ and η (see (10)). In this
section, we numerically estimate the parameter β on a practical example.

The considered scalar coefficient A
(x
ǫ
, ω′
)
(defined for x ∈ D ⊂ R

2) is

a random field with expected value E(A) = 10 (independent of x and ǫ)
and Gaussian covariance function

cov(x, x′) = Cov

[
A
(x
ǫ
, ·
)
, A

(
x′

ǫ
, ·
)]

= σ2 exp

(
−|x− x′|2

ǫ2τ20

)
,

with σ =
√
2, τ0 =

√
2 and τ = ǫτ0 = 0.04 (recall that |x − x′| denotes

the Euclidean distance in R2). We generate samples of the coefficient with
the Karhunen-Loève expansion. By construction, the characteristic length
scale ǫ is related to the correlation length in cov(x, x′), which is of the order
of ǫτ0.
For any 1 ≤ l ≤ L, we calculate the effective coefficients A∗

l (ω
′
j) for the

RVE [0, ηl]
2 (with ηl = 0.5L−l) for various realizations ω′

j , 1 ≤ j ≤ ml.

The theoretical reference value is A∗ = lim
η→∞

E
(
A∗

η

)
, to which we cannot
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access in practice. We thus define the reference value as

A∗
ref :=

1

L

L∑

l=1

1

ml

ml∑

j=1

A∗
l (ω

′
j),

where we have taken into account all the realizations on the RVEs [0, ηl]
2,

1 ≤ l ≤ L, in order to decrease as much as possible the statistical er-
ror. In practice, we work with L = 4 and m = (m1,m2,m3,m4) =
(2000, 1000, 300, 140). For each RVE of size ηl, 1 ≤ l ≤ L, we expect
from (10) that

1

ml

ml∑

j=1

∣∣A∗
l (ω

′
j)−A∗

ref

∣∣2 ≈ E

[∣∣A∗
l −A∗

ref

∣∣2
]
≈ C

(
ǫ

ηl

)β

,

hence

ln


 1

ml

ml∑

j=1

∣∣A∗
l (ω

′
j)−A∗

ref

∣∣2

 ≈ β ln

(
ǫ

ηl

)
+ lnC. (17)

Results are shown on Figure 4, where we plot the computed data points
(with error bars) and the corresponding linear regression line. We see that
we find a straight line with slope β = 1.53 and intercept lnC = 1.059 in the
asymptotic regime η ≫ 1. Note that the value of β is smaller than, but close
to, the value βtheo = d = 2 that would be obtained using a Central Limit
theorem argument (see discussion below (10)). In the numerical tests that
follow, we will often consider only the three smallest RVE (η = 0.5, 0.25
and 0.125), for computational cost reasons. The slope of the regression line
computed on the basis of these three smallest RVE decreases to β = 1.0095.
These estimations will be useful in Section 5.2.2 below (see Example 1).

5.2. Computation of the homogenized coefficient

We first consider the one-dimensional situation (Section 5.2.1) and next
turn to two-dimensional test cases in Section 5.2.2.

5.2.1. One dimensional examples

Since the local problems (2) are analytically solvable, we can afford to take
many levels and many realizations at each level.

Example 1 (separable coefficient) As a first test-case, we consider a

coefficient A
(x
ǫ
, ω, ω′

)
such that its inverse reads

A−1
(x
ǫ
, ω, ω′

)
=

[
C +

N∑

i=1

χi(ω
′) sin2

(
2πxϕi

ǫ

)]
exp(ω),
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Figure 4: Using (17) to estimate β: computed data points (along with error bars) and
the corresponding linear regression line with slope β = 1.53.

where ω and χi are i.i.d. random variables, uniformly distributed in [0, 1],
ϕi are fixed random numbers in [0.2, 2], and C > 0 is a deterministic con-
stant. Note that A−1 is uniformly bounded away from 0. This coefficient
is separable in the sense that A−1 writes as a product of a function of ω
times a function of ω′. For a fixed realization ω, it is well known that, in
the one-dimensional situation, the homogenized coefficient is the harmonic
mean. Therefore the apparent homogenized coefficient on the RVE [a, b] is

A∗
a,b(ω, ω

′)

=

(
1

b− a

∫ b

a

A−1
(x
ǫ
, ω, ω′

))−1

=

(
exp(ω)

b− a

[
C(b − a) +

N∑

i=1

χi(ω
′)

(
b− a

2
− sin (4πbϕi/ǫ)− sin (4πaϕi/ǫ)

(8πϕi)/ǫ

)])−1

.

In our simulation, we use the values C = 1, N = 20 and ǫ =
0.5L

10
(which

ensures that the smallest RVE considered in the MLMC approach, of size
0.5L, is much larger than ǫ, the characteristic length of the heterogeneous
coefficient). As reference, we use the MC approach with 1000 realizations
of the apparent coefficient on the largest RVE [aL, bL] = [0, 0.5]. In what
follows, a realization is determined by the tuple (ω, χ1(ω

′), . . . , χN (ω′)).
Likewise, expectations are taken with respect to ω and ω′.
For the MLMC approach, we use the RVEs [al, bl] = [0, 0.5L+1−l]. For

this case, we expect that β = 2. Following (11), we hence take m =
(4L−lmL, · · · , 4mL,mL) realizations. For comparison, we calculate the er-
ror of the standard MC approach on the large RVE [aL, bL] = [0, 0.5], with

m̂L =

∑L
l=1 ml bl
bL

samples, so that both approaches share the same cost.
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We are interested in comparing the relative mean square errors

(
erelMLMC

)2
(A∗

L) =
(eMLMC(A

∗
L))

2

(E(A∗
L))

2 ,
(
erelMC

)2
(A∗

L) =
(eMC(A

∗
L))

2

(E(A∗
L))

2 ,

where eMLMC(A
∗
L) and eMC(A

∗
L) are defined by (7) and (8). Since the

errors depend on the set of chosen random numbers, we repeat the com-
putations Nb = 10000 times and calculate the corresponding confidence
intervals for the errors:
[
mean[(erel)2]− 1.96 std[(erel)2]√

Nb
,mean[(erel)2] +

1.96 std[(erel)2]√
Nb

]
.

We take L = 3, and show on Figure 5 the relative mean square errors on
the expected value and the two-point correlation of the effective coefficient.
For both quantities, we observe that the MLMC approach yields errors 2.5
times smaller than the MC approach at equal computational work.
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(a) Relative mean square errors on the expected
value of the effective coefficient.
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(b) Relative mean square errors on the two-point
correlation of the effective coefficient.

Figure 5: Relative mean square errors with equated costs and m = (16m3, 4m3,m3),
for the Example 1 (separable coefficient).

Example 2 (separable stationary coefficient) We now consider an ex-
ample where the effective coefficient does not depend on ω′, in the limit of
infinitely large RVEs. We take A with inverse given by

A−1(x, ω, ω′) =

(
C +

∑

i∈Z

χi(ω
′) 1[i,i+1)(x) sin

2(2πx)

)
exp(ω),

where ω and χi are i.i.d. random variables, uniformly distributed in [0, 1],
C = 1 and 1[i,i+1)(x) denotes the indicator function which is equal to 1 for
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x ∈ [i, i+ 1) and to zero elsewhere. The apparent homogenized coefficient
on the RVE [a, b] (to simplify, we choose a and b in Z) is

A∗
a,b(ω, ω

′) =

(
1

b− a

∫ b

a

A−1(x, ω, ω′)dx

)−1

=

(
exp(ω)

b − a

[
C(b − a) + 0.5

b−1∑

i=a

χi(ω
′)

])−1

.

In this case, the coefficient A is stationary in the variables (x, ω′), hence
the standard stochastic homogenization theory holds: the exact effective
coefficient is independent from ω′ and reads

A∗(ω) =

[
Eω′

∫ 1

0

A−1(x, ω, ω′)dx

]−1

= [exp(ω) (C + 0.5E(χ))]
−1

.

Remark that, as expected, lim
b−a→∞

A∗
a,b(ω, ω

′) = A∗(ω) almost surely in ω′.

In addition, the Central Limit Theorem holds for this case, thus β = 1
in (10).
Following Section 3, the theoretical reference value is E [A∗

L(ω, ω
′)], where

A∗
L(ω, ω

′) is the apparent homogenized coefficient on the largest RVE. How-
ever, this theoretical reference value is not easy to compute. We prefer to
work with a different reference value, which is analytically computable, and
which is very close to E [A∗

L(ω, ω
′)] when the RVE at level L is large. In

the sequel, we use as reference

A∗
ref := E [A∗(ω)] = (C + 0.5E(χ))−1

E [exp(−ω)] =
1− 1/e

C + 0.25
.

By construction, A∗
ref = lim

ηL→∞
E [A∗

L(ω, ω
′)].

For the MLMC approach, we use the RVEs [al, bl] = [0, 100× 2l−1] with
m = (2L−lmL, · · · , 2mL,mL) realizations (recall that β = 1 in this case,
and hence this choice for m agrees with (11)). Note that the smallest RVE
is again much larger than the characteristic length scale of the field A. We
compare this approach with a standard MC approach on the largest RVE

[aL, bL] = [0, 100×2L−1] that uses m̂L =

∑L
l=1 ml bl
bL

samples (so that both

approaches share the same cost).
For this example, we have considered the choices L = 3, 5 or 7. On Fig-

ure 6, we compare the relative mean square errors
(
erelMLMC

)2
and

(
erelMC

)2
on the expected value and the two-point correlation of the effective coef-
ficient (along with the corresponding confidence intervals obtained from
Nb = 10000 different sets of random numbers). We again observe that the
MLMC approach is more accurate (for the same amount of work), and that
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the gain in accuracy increases if we increase the total number L of levels
(this observation is consistent with Figure 3). For L = 3, the gain is equal
to 1.5 for both quantities, whereas it is equal to 3 for L = 5 and to 8 when
L = 7.

Remark 5.1

On this example, we have also considered a MLMC approach where the
realizations of Xl used in EMl

(Xl −Xl−1) are independent from the real-
izations of Xl used in EMl

(Xl+1−Xl). More precisely (assuming L = 3 for
the sake of simplicity), this approach consists in approximating E(XL=3)
by

EL=3
ind (XL=3) :=

1

M3

[
M3∑

i=1

(X3(ωi)−X2(ωi))

]

+
1

M2 −M3

[
M2∑

i=1+M3

(X2(ωi)−X1(ωi))

]
+

1

M1 −M2

M1∑

i=1+M2

X1(ωi),

(18)

rather than by

EL=3(XL=3) =
1

M3

[
M3∑

i=1

(X3(ωi)−X2(ωi))

]

+
1

M2

[
M2∑

i=1

(X2(ωi)−X1(ωi))

]
+

1

M1

M1∑

i=1

X1(ωi), (19)

as in (6). We compare on Figure 7 this method with a standard MC method,
where the number of samples has been chosen to again equate the costs. We
again observe that the MLMC approach (18) (with independent samples)
is more accurate than the MC approach. We also observe that, at equal
cost, a better accuracy is obtained when one uses (19) (with samples that
are not necessarily independent) rather than (18).

Example 3 (non separable coefficient) We now consider the coefficient
defined by its inverse as

A−1
(x
ǫ
, ω, ω′

)
= C(1 + ω) + exp

(
ωω′ sin

(x
ǫ

))
cos
(x
ǫ

)
,

where ω and ω′ are i.i.d. random variables uniformly distributed in [0.5, 1],

ǫ =
0.5L

10
(the smallest RVE is thus large compared to ǫ) and C = 2e

(which ensures that A is uniformly bounded away from 0). This example
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(a) Relative mean square errors of the expected
value of the effective coefficient (L = 3).
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(b) Relative mean square errors of the two-point
correlation of the effective coefficient (L = 3).
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(c) Relative mean square errors of the expected
value of the effective coefficient (L = 5).
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(d) Relative mean square errors of the two-point
correlation of the effective coefficient (L = 5).
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(e) Relative mean square errors of the expected
value of the effective coefficient (L = 7).
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(f) Relative mean square errors of the two-point
correlation of the effective coefficient (L = 7).

Figure 6: Relative mean square errors with equated costs and m =
(2L−lmL, · · · , 2mL,mL), for the Example 2 (separable stationary
coefficient).
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Figure 7: Relative mean square errors for the Example 2 (separable stationary co-
efficient). The MLMC results have been computed following (19) with
(M1,M2,M3) = (16m3, 4m3,m3). Results following the approach described
in Remark 5.1, labeled as ’MLMC ind’, have been computed following (18)
with (M1,M2,M3) = (16m3, 4m3,m3). The MC results have been computed
with m̂MC samples so that the costs of ’MLMC’, ’MLMC ind’ and ’MC’ are
equal. We work here with Mj−1 = 4Mj (rather than Mj−1 = 2Mj as in
Figure 6) to ensure that the number of samples per level decreases.

is more challenging than the two previous ones as it is not separable. The
apparent effective coefficient on [a, b] is

A∗
a,b(ω, ω

′)

=

(
1

b− a

∫ b

a

A−1
(x
ǫ
, ω, ω′

))−1

=

(
1

b− a

[
C(1 + ω)(b− a) +

ǫ

ωω′

(
exp

(
ωω′ sin

(
b

ǫ

))
− exp

(
ωω′ sin

(a
ǫ

)))])−1

.

As for the previous example, we use the practical reference value

A∗
ref := lim

η→∞
E
[
A∗

η(ω, ω
′)
]
=

2 ln 4/3

C
.

As for Example 1, we expect in this case that β = 2 and use the RVEs
[al, bl] = [0, 0.5L+1−l] with m = (4L−lmL, · · · , 4mL,mL) realizations for
the MLMC approach, and compare its accuracy (at equal cost) with MC
results on the RVE [aL, bL] = [0, 0.5]. Choosing L = 3, we show on Figure 8

the relative mean square errors
(
erelMLMC

)2
and

(
erelMC

)2
on the expected

value and the two-point correlation of the effective coefficient (confidence
intervals have again been obtained from Nb = 10000 different sets of ran-
dom numbers). Again, the MLMC approach yields an accuracy gain (here
of the order of 2) over the MC approach, for both quantities.
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(a) Relative mean square errors of the expected
value of the effective coefficient.
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(b) Relative mean square errors of the two-point
correlation of the effective coefficient.

Figure 8: Relative mean square errors with equated costs and m = (16m3, 4m3,m3),
for the Example 3 (non separable coefficient).

5.2.2. Two dimensional examples

We have seen in the previous section that the MLMC approach is efficient
in the one dimensional case. We turn here to two dimensional test cases.

Example 1 (separable coefficient) We first study the case when there is a
separation in the randomness at the macroscopic level and the microscopic
level. We set

A
(
ω,

x

ǫ
, ω′
)
= Ã(ω)B

(x
ǫ
, ω′
)
,

where Ã and B are both scalar valued. The random field B has expected
value E(B) = 10 and a Gaussian covariance function:

cov(x, x′) = Cov

[
B
(x
ǫ
, ·
)
, B

(
x′

ǫ
, ·
)]

= σ2 exp

(
−|x− x′|2

ǫ2τ20

)
,

with σ =
√
2, τ0 =

√
2 and τ = ǫτ0 = 0.04. We generate samples of the

coefficient with the Karhunen-Loève expansion. We take Ã(ω) = exp(ω),
where ω is distributed according to the Gaussian law N(0, 1). The ef-

fective matrix is A∗(ω, ω′) = Ã(ω)B∗(ω′). We only define levels l to
approximate the expectation of B∗. Thus, at each level l, we define
A∗

l (ω, ω
′) = Ã(ω)B∗

l (ω
′). Using ml independent samples at the micro-

scopic level
{
ω′
j

}
1≤j≤ml

and n × ml independent samples at the macro-

scopic level
{
ωi
j

}
1≤j≤ml, 1≤i≤n

, we define, for any 1 ≤ i ≤ n,

Eml
(A∗

l )(ω
i) :=

1

ml

ml∑

j=1

A∗
l (ω

i
j , ω

′
j) =

1

ml

ml∑

j=1

Ã(ωi
j)B

∗
l (ω

′
j).
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To approximate expectations at the microscopic level, we use the MLMC
approach, and introduce, for any 1 ≤ i ≤ n,

EL(A∗
L)(ω

i) :=

L∑

l=1

Eml
(A∗

l −A∗
l−1)(ω

i)

=
L∑

l=1

1

ml

ml∑

j=1

Ã(ωi
j) (B

∗
l (ω

′
j)−B∗

l−1(ω
′
j)).

Expectations at the macroscopic level are approximated using a standard
MC approach on the macroscopic random variable ω. The reference quan-
tity we are after is

A∗
ref =

1

L

L∑

l=1

E(A∗
l ),

which is in practice approximated by

A∗
ref =

1

L

L∑

l=1

1

n

n∑

i=1

1

mref
l

mref

l∑

j=1

Ã(ωi
j)B

∗
l (ω

′
j).

In this case, the errors read

eMLMC(A
∗
L) =

√√√√ 1

n

n∑

i=1

[
A∗

ref − EL (A∗
L) (ω

i)
]2
,

eMC(A
∗
L) =

√√√√ 1

n

n∑

i=1

[
A∗

ref − Em̂L
(A∗

L)(ω
i)
]2
,

where m̂L is the number of samples used in the MC approach. As men-
tioned above, we equate the computational work of the MLMC approach,

which is

L∑

l=1

ml

(ηl
ǫ

)2
, with that of the MC approach, which is m̂L

(ηL
ǫ

)2
.

This leads to taking

m̂L =

∑L
l=1 ml (ηl/ǫ)

2

(ηL/ǫ)
2 .

We next compare the errors. We choose to work with L = 3 levels,
n = 500 and, to compute the reference value A∗

ref , we used mref =

(mref
1 ,mref

2 ,mref
3 ) = (2000, 1000, 300). We also adopt the parameters

of Table 2. On Figure 9, we show the errors on the first entry of the effec-
tive matrix, eMC([A

∗
L]11) and eMLMC([A

∗
L]11), for m = (4m3, 2m3, m3)

(this choice is consistent with the value β = 1 in (10); in turn, this as-
sumption for β is consistent with our empirical estimation detailed in Sec-
tion 5.1). We observe from these simulations that the MLMC approach
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provides (roughly twice as) smaller errors than the standard MC approach
for the same amount of computational work. Similar conclusions hold for
the other entries of the effective matrix.
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Figure 9: Errors eMC([A
∗
L]11) and eMLMC([A

∗
L]11) for m = (4m3, 2m3,m3), for the

Example 1 (separable coefficient).

Example 2 (non-separable coefficient) We now consider a more difficult
case, where there is no separation between uncertainties at the macro- and
the microscopic levels. In general, such cases are difficult to handle, since
having a sufficiently large number of samples to appropriately reduce the
statistical noise is very expensive. We consider below a specific example for
A such that we can solve the local problems (and thus compute the effective
coefficient) analytically, due to the specific choice of boundary conditions
in the local problem. Note that, in the limit of infinitely large RVEs, the
effective coefficient does not depend on the precise choice of the boundary
conditions set on the local problems (see [11]).
We consider the scalar coefficient (x = (x1, x2))

A
(
x, ω,

x

ǫ
, ω′
)
= A1

(
x1, ω,

x1

ǫ
, ω′
)

A2

(
x2, ω,

x2

ǫ
, ω′
)
,

and write the local problems with Dirichlet and no-flow boundary condi-
tions:

−div
(
A
(
x, ω,

x

ǫ
, ω′
)
∇χi

)
= 0 in Yη = (0, η)d,

χi(x, ω, ω
′) = xi on ∂Y D

η ,

n · ∇χi = 0 on ∂Yη \ ∂Y D
η ,

with ∂Y D
η = {x ∈ ∂Yη |xi = 0 or xi = η}. With these choices, the local

problem reduces to a one-dimensional problem in the direction xi for the
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function χi that only depends on xi. For the first entry of the upscaled
coefficient, we get

A∗
11(ω, ω

′) =

(
1

η

∫ η

0

A−1
1

(
x1, ω,

x1

ǫ
, ω′
)
dx1

)−1
1

η

∫ η

0

A2

(
x2, ω,

x2

ǫ
, ω′
)
dx2.

(20)
In our example we choose

A−1
1

(
ω,

x1

ǫ
, ω′
)

= C(1 + ω) + exp
(
ωω′ sin

(x1

ǫ

))
cos
(x1

ǫ

)
,

A2

(
x2, ω,

x2

ǫ
, ω′
)

= C(1 + exp(5ω))x2

+(1 + x2) exp
(
(1 + x2)ωω

′ sin
(x2

ǫ

))
cos
(x2

ǫ

)
,

where ω and ω′ are i.i.d. random variables uniformly distributed in [0.5, 1]
and C = 2e. In this case, we see that (10) holds with β = 2. To ensure

scale separation even for the smallest RVE, we take ǫ =
η1
10

.

To define the reference value of the effective coefficient, we run a MC
approach on the RVE [0, 0.5]2 with m̃ = 400000 realizations. It is possible
to compute such a large number of samples in this two-dimensional test
case thanks to the specific analytical expression (20).
The MLMC approach is run with L = 3 different levels, and m =

(16m3, 4m3,m3) realizations at each level (a choice which is consistent
with (11) and the fact that β = 2). To determine a confidence interval, we
repeat the overall procedure with Nb = 2000 different sets of realizations.
We compare on Figure 10 the accuracies of the MC and MLMC approaches
at equal computational cost. Again, the MLMC approach is more accurate,
here by a factor roughly equal to 5.

5.3. Computation of the homogenized solution

5.3.1. One dimensional example

As in Section 5.2, we start with the one dimensional situation where we
know the reference solution exactly. To make the computations even sim-
pler, we assume that, at the coarse-scale, the problem is subjected to ho-
mogeneous Neumann boundary conditions. The coarse problem thus reads

d

dx

(
A∗(x, ω, ω′)

du∗

dx

)
= f(x), (u∗)′(0) = (u∗)′(1) = u∗(0) = 0, (21)

where the right-hand side satisfies

∫ 1

0

f = 0. The exact solution is

u∗(x, ω, ω′) =

∫ x

0

(A∗(t, ω, ω′))
−1

F (t) dt, F (t) =

∫ t

0

f(z) dz.
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(a) Relative mean square errors of the expected
value of the effective coefficient.
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(b) Relative mean square errors of the two-point
correlation of the effective coefficient.

Figure 10: Relative mean square errors with equated costs and m = (16m3, 4m3,m3),
for the Example 2 (non-separable coefficient).

Let xi denote the vertices of the grid, 0 ≤ i ≤ N . The numerical ap-
proximation of u∗ is a piecewise constant function, equal, on the interval
(xi−1, xi), to

u∗
i =

i∑

j=1

(A∗(xj , ω, ω
′))−1

∫ xj

xj−1

F (x) dx.

In the spirit of the Example 3 in Section 5.2.1, we assume that the apparent
homogenized coefficient, obtained by solving the local RVE problem on
[a, b], reads

(A∗(x, ω, ω′))−1 = C(1 + exp(5ω))x

+
1

b− a

ǫ

ωω′

[
exp

(
(1 + x)ωω′ sin

(
b

ǫ

))
− exp

(
(1 + x)ωω′ sin

(a
ǫ

))]

where ω and ω′ are i.i.d. random variables uniformly distributed in [0.5, 1]
and C = 2e. We take f(x) = ex − (e − 1).
The reference quantity is the expectation of the solution to (21), com-

puted with the coefficient A∗
∞ obtained by considering an infinitely large

RVE:
(A∗

∞(x, ω, ω′))−1 = C(1 + exp(5ω))x.

This reference quantity reads

E (u∗
∞) = C

(
exp(x)x− exp(x) − (e− 1)

x3

3
− x2

2
+ 1

)

where C = C

(
1 + 2

∫ 1

1/2

e5ωdω

)
.
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To compute an approximation of E (u∗
∞), we use the MLMC approach

with L = 3 levels. The RVEs are defined by [al, bl] = [0, 0.5L+1−l] and the
grid sizes are H = (0.25, 0.125, 0.0625). To ensure scale separation even for

the smallest RVE, we take ǫ =
b1
100

.

On Figure 11, the accuracy of the MLMC approach is compared with
that of the MC approach at equal computational cost (error bars have been
computed using Nb = 20000 different independent realizations of the whole
computation), for two choices of the numberM of realizations at each level.
We see that the choice M = (16M3, 4M3,M3), which is consistent with the
rate β = 2, yields the best results (and an accuracy gain of 33 %).
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(a) M = (16M3, 4M3,M3)
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(b) M = (4M3, 2M3,M3)

Figure 11: Relative errors (in L2 norm) of the solution (one dimensional example).

5.3.2. Two dimensional example

We now turn to an example in dimension two. The reference problem (1)
is complemented with homogeneous (zero) Dirichlet boundary conditions,
and the source term is f(x) = f(x1, x2) = 100(x1 + x2).

In the spirit of the Example 1 of Section 5.2.2, we take

A
(
x, ω,

x

ǫ
, ω′
)
= Ã(x, ω)B

(x
ǫ
, ω′
)
,

where Ã and B are scalar-valued, B is a log-normal distributed random
field, B = eK , with E(K) = 0 and where the covariance function ofK(x, ω′)

is cov(x, x′) = σ2 exp
(
− |x−x′|2

τ2
0

)
, with σ = τ0 =

√
2. The parameter ǫ is

such that ǫτ0 = 0.04. The macroscopic random field is given by

Ã(x, ω) = 2 + |ω1 sin(2πx1)|+ |ω2 sin(2πx2)|+ |ω3 sin(πx1)|
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with independent and normally distributed ωk, 1 ≤ k ≤ 3.
Since the coefficient is separable, we are in the setting described in Sec-

tion 4.1. In particular, the RVE problems are independent of the macro-
scopic point x, and we can use the MLMC approach. For each level
1 ≤ l ≤ L, we hence solve the coarse problem (15) on a grid of size Hl, for

Ml realizations of Ã. This defines the solutions u
k
l , 1 ≤ k ≤ Ml, 1 ≤ l ≤ L.

The MC approach consists in working only at the level L, and thus
solving, on a grid of size HL, the problems

−div
(
Ãk(x, ω)Em̂(B∗

L)∇uk
L

)
= f in D, 1 ≤ k ≤ M̂.

The reference solution is built as follows. At each level l, we first solve (15)

with ml = m̃ and 1 ≤ k ≤ Ml = M̃ . The reference value is defined as
the mean over both the levels and the number of realizations of all these
solutions:

Eref
M̃,L

=
1

L

L∑

l=1

1

M̃

M̃∑

k=1

uk
l .

In practice, we take M̃ = 1000 and m̃ = 50.
We again work with L = 3 different levels and we equate the costs

of the MC and the MLMC approaches for the computation of the ho-
mogenized coefficients as well as that of the coarse scale solutions. This
respectively implies that the parameters of the MC approach are m̂ =
η−2
3

(
m1η

2
1 +m2η

2
2 +m3η

2
3

)
and M̂ = H2

3

(
M3H

−2
3 +M2H

−2
2 +M1H

−2
1

)
.

On Figure 12, we show the relative L2-errors

eMLMC(uL) =
‖Eref

M̃,L
(uL)− EL(uL)‖L2(D)

‖Eref
M̃,L

(uL)‖L2(D)

eMC(uL) =
‖Eref

M̃,L
(uL)− E

M̂
(uL)‖L2(D)

‖Eref
M̃,L

(uL)‖L2(D)

computed with the parameters M = (M1,M2,M3) = (32, 32, 16) and
m = (m1,m2,m3) = (50, 40, 20). Note that M is chosen based on the
calculations presented in [4] (we have checked that these calculations also
hold for finite volume methods).
We actually repeat the whole procedure 200 times, and show on Figure 12

the 200 values of the relative errors that we found. We see that these errors
are essentially the same for all the realizations. A gain in accuracy of the
order of 5 is obtained when using the MLMC approach, for an equal cost:

E(eMLMC) ≈ 0.1411, E(eMC) ≈ 0.6851.

The standard deviation of the MLMC error is also smaller:

stdMLMC = 0.0324, stdMC = 0.0565.
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Figure 12: Relative L2-errors eMC and eMLMC on the homogenized solution. We show
the results for 200 different independent realizations.
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A. Appendix: weighted MLMC approach
analysis

We estimate here the error associated to the weighted MLMC approach
introduced in Section 4.2. To this aim, it is useful to introduce the function

ũ =

L∑

l=1

αl

Ml

L∑

j=l

(Mj −Mj+1)
(
u∗
ηj ,Hl

− u∗
ηj ,Hl−1

)
.

We indeed note that E

(
EL∗

weighted

)
= E(ũ). The error between the com-

puted quantity EL∗
weighted and the exact quantity E(u∗) is thus composed

of a statistical error (the expectation of EL∗
weighted is only approximately

estimated) and of a systematic error, due to the fact that E
(
EL∗

weighted

)
=

E(ũ) 6= E(u∗). We successively estimate these two contributions.
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Systematic error estimation Following the same lines as in Section 3, we
obtain that

‖α1u
∗ − ũ‖ ≤

L∑

l=1

El,l [αl − αl+1]

where we have set αL+1 = 0 and Ej,l :=
∥∥∥u∗ − u∗

ηj ,Hl

∥∥∥. Choosing now

αl =

L∑

j=l

α̃j
EL,L

Ej,j
(22)

to equilibrate the terms in the above error bound, we get

‖α1u
∗ − ũ‖ ≤ EL,L

L∑

l=1

α̃l with α1 =

L∑

j=1

α̃j
EL,L

Ej,j
.

As shown in Section 4.1, we have Ej,l . Hl +

(
ǫ

ηj

)β/2

+
1

√
mj

.

For the standard MC approach, the systematic error reads

‖u∗ − uη̂,Ĥ‖ . Ĥ + δ̂.

To have the same systematic error, we choose the coarse grid size Ĥ =
L∑

l=1

(αl−αl+1)Hl and RVEs of size η̂ so that δ̂ =

(
ǫ

η̂

)β/2

=

L∑

l=1

(αl−αl+1)δl.

Statistical error estimation The statistical error of the weighted MLMC
approximation satisfies

∥∥∥∥∥E(ũ)−
L∑

l=1

αlE
∗
Ml

(u∗
l − u∗

l−1)

∥∥∥∥∥ .

L∑

l=1

αl√
Ml

(Hl + δl) +
α1√
M1

.

To equate the error terms in the above sum, we choose

Ml = C

(
αl(Hl + δl)

γl(Ĥ + δ̂)

)2

for l ≥ 2, M1 = C

(
α1

γ1(Ĥ + δ̂)

)2

, (23)

for some constant C and some parameters γl. The statistical error then
satisfies ∥∥E

(
EL∗

weighted

)
− EL∗

weighted

∥∥ = O(Ĥ + δ̂).

For the MC approach, we choose M̂ = C(Ĥ+δ̂)−2 independent realizations
and thus get a statistical error of the same order.
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Cost comparison Now that we have chosen parameters such that the MC
and the weighted MLMC approaches share the same accuracy, we are in
position to compare their cost.
As above, the cost of solving the coarse scale problems is

Ww−MLMC
coarse =

L∑

l=1

MlH
−2
l and WMC

coarse = M̂Ĥ−2.

The dominating part of the computational cost however lies in solving the
local RVE problems. For the MC approach, we assume that we need to
solve these problems at N̂ macroscopic points x. We thus have

WMC
RVE = M̂N̂

(
η̂

ǫ

)2

= C
N̂η̂2

ǫ2(Ĥ + δ̂)2
.

For the weighted MLMC approach, we assume that, at each level l, we solve
local RVE problems at Nl ≤ H−2

l macroscopic points (with N1 < N2 <
· · · < NL). At each of these points, we only need to consider Ml −Ml+1

realizations. The computational work thus reads

Ww−MLMC
RVE =

L∑

l=1

(Ml −Ml+1)
(ηl
ǫ

)2
Nl.

On Figure 13, we show the ratio of the works for solving the coarse problems
and the RVE problems, as a function of the number of levels L. The figure
is made with the parameter β = 2 (which corresponds to a Central Limit
Theorem type convergence, see discussion below (10)). As on Figure 3,
we consider two possible regimes for ǫ. We see that a significant gain is
achieved even for moderate values of L.
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