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1 Introduction

A heterotic flux vacuum is a solution of the classical heterotic string equations of motion

with a non-trivial three-form field strength H. Solutions of this sort have a great deal to

teach us about the role of fluxes in stringy geometry and the landscape of string vacua, yet

despite being introduced very soon after the discovery of the heterotic string, there remain

many basic questions about their properties. For instance, even in cases where a dual

IIA or F-theory perspective might make it clear that a particular solution with flux should

exist, understanding the existence directly in the heterotic string requires a careful analysis

of the α′ expansion, and naive considerations can easily lead to incorrect interpretation and

results. The aim of this note is to explain some of these subtleties in a number of examples.

Our hope is that the lessons learned will be of use in charting the heterotic landscape.

We will be interested in perturbative heterotic compactifications that preserve super-

Poincaré invariance on R
1,3 with 4 or 8 supercharges. In this case both the world-sheet

theory, with its (0,2) superconformal invariance, and the effective space-time SUSY the-

ory act to constrain possible mechanisms that might destabilize a solution. We will also

consider SCFTs that can be described by a heterotic geometry, in other words a (0,2)

SUSY non-linear sigma model (NLSM). While a NLSM Lagrangian description is really

only applicable in a large radius limit, where the curvatures of all space-time fields can be

made small, we will also apply our considerations to geometries with string-scale cycles.

While this might seem a priori a formal exercise, experience has shown it to be useful.
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Most of the examples of heterotic flux vacua were found using space-time dualities applied

to large volume compactifications. Although a duality transformation can generate string

scale structures, by definition it also preserves the feature that the new background also

solves the space-time equations of motion. This is something we should be able to verify

explicitly. Our basic concern is therefore to correctly identify the geometric ingredients

necessary to obtain a formal solution to leading order in α′ to the supersymmetry condi-

tions and the Bianchi identity. To achieve our goal we consider the α′ expansion for both

the solution and the SUSY equations. Once this is done, we show that the leading terms

in the α′ expansion can be treated self-consistently.

There are two points that we would like to emphasize. First, one has to simultaneously

consider the α′ expansion for both the solution and the equations of motion. Once this is

done, the leading terms in the α′ expansion can be treated self-consistently. Second, it is

not physically correct to treat the heterotic space-time equations of motion, truncated to

include just the leading order α′ corrections, as a closed system. One can certainly study

solutions to this system of equations as a mathematics problem; however, such an analysis

misses essential changes to the system of equations from interactions that are higher order

in α′. For instance, as we discuss below, it would rule out a large class of N=1 space-time

heterotic flux compactifications.

There are special situations where treating the truncated system as an exact system

works better than one might expect, but those cases typically involve models that preserve

extended rather than minimal space-time supersymmetry. While perturbative solutions to

the space-time equations of motion are useful guides to some properties of string compact-

ifications, we should stress that developing world-sheet techniques is indispensable if we

are to properly understand the conformal field theories that define these string vacua.

Before we tackle the details, it is useful to catalogue the known heterotic geometries

of this type. By far the most studied and well-understood class is described by picking

a stable holomorphic bundle E over a Calabi-Yau 3-fold X. These solutions have a large

radius limit in the moduli space, where the flux H remains of order α′ as we take the limit.

The classic work of [1] described how to incorporate O(α′) corrections to solve at least some

of the equations of motion at O(α′).1 In this work we will show that the leading order

Calabi-Yau and bundle geometry can be perturbed to satisfy all of the supersymmetry

conditions and the heterotic Bianchi identity at O(α′).

Another class of examples is offered by topologically non-Kähler heterotic compacti-

fications. It is reasonable to expect that such compactifications will describe the generic

heterotic geometry,2 but we lack techniques to build large classes of examples of such

spaces. See, however, [3, 4] for very recent progress. The basic technical challenge comes

from having to work with the (comparatively poorly understood) complex geometry, as

opposed to the more familiar Kähler setting. It is also important to keep in mind that

such constructions come with an important caveat: the presence of H-flux means that the

1While equations of motion are dealt with in some detail in [1], the discussion of the supersymmetry

conditions is limited to checking some consistency conditions and is incomplete.
2Dual perspectives also suggest that there is a larger landscape of non-geometric heterotic flux vacua [2],

so the geometric setting is by no means exhaustive.
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typical solutions will have string-scale cycles, and the world-sheet NLSM will be strongly

coupled.3 Given the dual F/M-theory constructions of such vacua we can be reasonably

confident that the vacua exist [5], but it is not a priori clear that the heterotic geometric

description based on an α′ expansion will give sensible results. We will show that the O(α′)

“corrections” can be incorporated in a self-consistent fashion, provided that we keep track

of α′ factors in the solution as well as in the equations.

The plan of the rest of the note is as follows: we will warm up by examining the O(α′)

corrections to the SUSY equations for heterotic vacua with a large radius limit. We will

then tackle the same issue in known heterotic flux vacua, making a distinction between

configurations that preserve N=1 and N=2 space-time SUSY. We will wrap up with some

concluding remarks.
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2 The Calabi-Yau warm-up

2.1 Conditions for supersymmetry

Consider a heterotic compactification that preserves N=1 d=4 super-Poincaré invariance.

The supersymmetry conditions are known since the seminal work of [6] and can be stated

in the language of G-structures [7, 8]. This can also be seen as a consequence of one-loop

Weyl invariance of the world-sheet theory [9, 10]. As this is familiar, we simply state

the conditions. The target space X must be a complex manifold with SU(3) structure

and trivial canonical bundle. The Hermitian form ω ∈ Ω2(X) and the (3,0) holomorphic

form in Ω ∈ Ω3(X) must have the same exact Lee form β ∈ Ω1(X), and this determines

both the gauge-invariant torsion H ∈ Ω3(X), as well as the dilaton ϕ up to a constant.

The heterotic gauge bundle is in general some principal G-bundle P with G ⊂ E8×E8

or G ⊂ Spin(32)/Z2, and the corresponding curvature F satisfies zero-slope Hermitian

Yang-Mills (HYM) equations.

3It may be possible to find families of solutions (perhaps labeled by some discrete parameter related to

the flux), where the curvatures can be made arbitrarily small compared to the string scale. An example of

such is given by AdS3 × S
3 × T

4. However, the example is, strictly speaking, not a compactification since

the size of the S
3 is tied to the radius of curvature of AdS3. We are not aware of any compactifications to

Minkowski space-time with these properties.
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In terms of the α′ expansion the conditions are, up to O(α′2) corrections [11],

ω3 =
3i

4
ΩΩ , ωΩ = 0 , Ω2 = 0 ,

d
(
e−ϕω2

)
= 0 , d

(
e−ϕΩ

)
= 0 , H = i

(
∂̄ − ∂

)
ω ,

FΩ = 0 , FΩ = 0 , ω2F = 0 . (2.1)

Note that we suppress the ∧ in these form equations. In addition we need to satisfy the

Bianchi identity

dH = 2i∂∂̄ω =
α′

4

(
trR2

+ − trF2
)
+O

(
α′2
)
. (2.2)

Here R+ is the curvature of the H-twisted connection on the tangent bundle. In terms

of a real coordinate basis we can write the twisted connection 1-form S+ in terms of the

Levi-Civita connection Γ and H:

dxBSA
+BC = dxB

(
ΓA

BC +
1

2
HA

BC

)
. (2.3)

The trace of the gauge bundle term is written a bit imprecisely, but the normalization

is easily fixed in terms of the index of embedding describing G as a subgroup of E8×E8

or Spin(32)/Z2. The Bianchi identity of leads to the famous Green-Schwarz cancellation

condition equating the Pontryagin classes p1(TX) and an appropriate multiple, determined

by the index of the embedding, of p1(P). This topological condition is independent of a

particular choice of connections in (2.2); however, it is important to keep in mind that to

find SUSY vacua to this order in α′ we must use the indicated connections.

2.2 Leading corrections to Calabi-Yau geometry

Consider the text-book example of a space-time SUSY heterotic compactification: a Calabi-

Yau 3-fold X with (ω0,Ω0) defining a Kähler Ricci-flat metric, and a stable holomorphic

vector bundle E → X satisfying the anomaly cancellation condition, which now simplifies

to ch2(E) = ch2(TX). Let A0 be corresponding HYM connection with curvature F0. For

simplicity we will take c1(E) = 0 and assume that E is irreducible. Clearly this data,

together with a constant dilaton ϕ = ϕ0, solves (2.1) and (2.2) at O(α′0). As we will now

show, we can suitably modify ω, Ω and A so as to solve all of the conditions at O(α′).4

Specifically, we make an Ansatz

ω=ω0+α′

[
4

3
ϕ1ω0+η

]
, Ω=

(
1+2α′ϕ1

)
Ω0 , ϕ=ϕ0+α′ϕ1 , A=A0+α′A1 . (2.4)

4For this to be sensible we need to know the equations at O(α′). Thanks to [11] we know the ten-

dimensional SUSY variations up to O(α′2) terms, and on six-dimensional bosonic backgrounds they are

given by (2.1) and (2.2).
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Plugging these into our equations, we are left with

ω2
0η = 0 ,

ω0d

[
1

3
ϕ1ω0 + η

]
= 0 ,

i∂∂̄

[
4

3
ϕ1ω0 + η

]
=

1

8

[
trR2

0 − trF2
0

]
= i∂∂̄σ ,

ω2
0 ∂̄A1 = −2ω0ηF0 . (2.5)

The first equation, a left-over of the SU(3) structure requirements, says that η is a primitive

(1,1) form; the second ensures that ω remains conformally balanced to this order in α′. To

derive the third equation we used ω to obtain H and plugged it into the Bianchi identity;

furthermore, since R0 and F0 are both (1,1) forms, the right-hand side of the Bianchi

identity is both d-exact and pure (2,2), and hence we can use the ∂∂̄-lemma on X to write

it as i∂∂̄σ for some real (1,1) form σ.

A little Lefschetz decomposition. We will show that (2.5) have solutions for ϕ1, η and

A1. The solution depends on properties of Laplacians for the Kähler structure (ω0,Ω0) on

X, and while it can be obtained by wading through a mire of indices, we prefer to use some

basic facts about the Lefschetz decomposition to simplify the equations and find solutions.

To that end we now review some of those techniques. More details can be found in [12].

A compact complex n-fold X with Kähler structure (ω0,Ω0) can be equipped with

the differentials ∂, ∂̄ and d = ∂ + ∂̄. Constructing adjoint operators we obtain Laplacians

∆∂ , ∆∂̄ , and ∆d — e.g. ∆∂ = ∂∂† + ∂†∂. The forms Ωk(X) =
⊕

p+q=k Ω
p,q(X) can be

decomposed according to the sl2C algebra generated by

L : Ωk(X) → Ωk+2(X) ,

L : τ 7→ ω0τ (2.6)

and its adjoint L† : Ωk(X) → Ωk−2(X), which satisfy

[
L†, L

]
Ωp,q(X) = (n− p− q)Ωp,q(X) . (2.7)

We have isomorphisms

Lk : Ωn−k → Ωn+k , kerLk+1 ∩ Ωn−k ≃ kerL† ∩ Ωn−k . (2.8)

These relations can be refined to Ωp,q in the obvious fashion and allow us to define primitive

forms as those annihilated by L† or, equivalently, by an appropriate power of L. This

decomposition descends to cohomology, giving us a notion of primitive classes. Another

key property is that L (L†) commutes with ∂, ∂̄ (∂†, ∂̄†), while

[
L†, ∂̄

]
= −i∂† ,

[
L†, ∂

]
= i∂̄† ,

[
L, ∂̄†

]
= −i∂ ,

[
L, ∂†

]
= i∂̄ . (2.9)
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As a consequence, we obtain ∆∂ = ∆∂̄ = 1

2
∆d, {∂, ∂̄†} = 0, and the ∂∂̄-lemma.5 Another

useful result is
[
L†, ∂∂̄

]
= i∂̄†∂̄ − i∂∂† ,

[(
L†
)2
, ∂∂̄

]
= 2i

(
∂̄†∂̄ − ∂∂†

)
L† + 2∂̄†∂† . (2.10)

We will need one more simple consequence of this structure: any real (1,1) form σ may be

decomposed as σ = hω0 + κ, where κ is a real (1,1) form satisfying ω0∂∂̄κ = 0. To prove

this, we simply need to solve ω0∂∂̄σ = ∂∂̄hω2
0 for a real function h and set κ = σ − hω0.

We have

ω0∂∂̄σ − ∂∂̄hω2
0 = 0 ⇐⇒

(
L†
)3 (

ω0∂∂̄σ − ∂∂̄hω2
0

)
= 0 . (2.11)

Using the commutators of L†, L and ∂∂̄ just described, we find this is equivalent to

∆∂̄h =
1

2
∆∂̄L

†σ − i

2
∂̄†∂†β . (2.12)

Since the right-hand side is orthogonal to all harmonic forms there exists a requisite h.

Solution to O(α′). We now have the tools to show that (2.5) has solutions. Using the

last result from the previous section, we decompose the source in the Bianchi identity as

σ = hω0 + κ with ∂∂̄κω0 = 0. We can take both h and κ to be orthogonal to all harmonic

forms. We can solve the Bianchi equation by setting

η = σ − 4

3
Lϕ1 + ∂ξ + ∂̄ξ + i∂∂̄f , (2.13)

where f is any real function and ξ any (1,0) form. Setting aside for a moment the HYM

equation, we then need to solve

L†

(
σ − 4

3
Lϕ1 − ∂̄ξ − ∂ξ + i∂∂̄f

)
= 0 ,

Ld
(
Lh+ κ− Lϕ1 − ∂̄ξ − ∂ξ

)
= 0 . (2.14)

The first of these is a Laplace equation for f with a source orthogonal to harmonic functions,

and it has a solution f for any ξ and ϕ1. The second equation is a 5-form equation that

can be decomposed into complex conjugate (3,2) and (2,3) components. Concentrating on

the first of these, and setting ϕ1 = h, we need to solve

L
(
∂κ− ∂∂̄ξ

)
= 0 (2.15)

for ξ for a κ satisfying L∂∂̄κ = 0. Applying
(
L†
)2

we have

0 =
(
L†
)2
L
(
∂κ− ∂∂̄ξ

)
= 2L†

(
∂κ− ∂∂̄ξ

)
=⇒ i∂̄†κ+ ∂

(
L†κ

)
− i
(
∂̄†∂̄ − ∂∂†

)
ξ . (2.16)

We can simplify this by observing that ∂̄†ξ = 0, so that
(
∂̄†∂̄ − ∂∂†

)
ξ =

(
∆∂̄ − ∂∂†

)
ξ = ∂†∂ξ . (2.17)

5A complex manifold with a ∂∂̄-lemma need not be Kähler, but every Kähler manifold has a ∂∂̄-lemma.
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Thus, we need to find ξ satisfying

∂†∂ξ =
(
∂̄†κ− i∂L†κ

)
. (2.18)

Since L∂∂̄κ = 0 is equivalent to ∂†(∂̄†κ− i∂L†κ) = 0, the (1,0) form on the right-hand side

is ∂†-closed, and hence on our Calabi-Yau is ∂†-exact. But, any ∂†-exact (1,0) form can be

written as ∂†∂τ , and setting ξ = τ we solve (2.18).

The remaining supersymmetry condition is the correction to HYM — the last equa-

tion in (2.5). To see that there is a solution, we first note that for an irreducible bundle

H0,0

∂̄
(X,End E) = 0, where End E ⊂ E ⊗ E∗ denote the traceless endomorphisms. Since

End E ≃ End E∗, Poincaré duality implies H3,3

∂̄
(X,End E) = H0,0(X,End E∗) = 0. There-

fore, ω0ηF0 = ∂̄π for some π ∈ Ω3,2(X,End E). Since L2 : Ω1,0(X,End E) → Ω3,2(X,End E)
is an isomorphism, any such π can be written as π = ω2

0µ for a µ ∈ Ω1,0(X,End E), so that

the linearized HYM equation becomes

ω2
0 ∂̄A1 = ω2

0

(
−2∂̄µ

)
. (2.19)

Clearly A1 = −2µ yields the desired solution.

We have shown that, as expected, a large radius Calabi-Yau heterotic compactification

can be deformed to obtain a solution to the SUSY conditions and Bianchi identity to O(α′).

It turns out that one can do more [13, 14]. Suppose we consider a different system of

equations where the SUSY conditions (2.1) and the Bianchi identity are assumed to hold

without any additional α′ corrections. It can then be shown that the full system has a

solution provided the curvature R+ satisfies the subsidiary condition of being HYM. This

subsidiary condition can be motivated by the result [15] that the O(α′) solution to SUSY

and Bianchi conditions is a solution of the heterotic equations of motion if and only if R+

obeys HYM up to O(α′).

It is not clear what one is to make of this interesting result. While it is possible,

as suggested in [16], that this structure persists at O(α′2), the explicit α′3 corrections

to the equations of motion [17, 18] already known for heterotic vacua with (2,2) world-

sheet supersymmetry certainly violate HYM for the tangent bundle curvature. Aside from

exceptional cases, it is not physically sensible to demand an exact solution to the truncated

heterotic space-time equations of motion.

3 Heterotic flux solutions

We now turn to the flux vacua without large radius limit. In this case the geometry is

rather more involved: not only constructions of admissible topologies few and far between,

but we also lack the analogues of Yau’s and Donaldson-Uhlenbeck-Yau’s theorems, which

in the Calabi-Yau case yield necessary and sufficient conditions on complex structure and

Kähler class in order to have a solution of the leading order supergravity equations of

motion. It would be extremely useful to have such conditions, but without them we must

proceed by examining a class of examples.

Essentially all known heterotic flux vacua are variations on a single theme inspired

by a dual F/M-theory compactification on K3 × K3 [5]. There have been a number of

– 7 –
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generalizations, including attempts to check that the equations of motion are satisfied; see,

for example, [7, 19–24]. For simplicity we will focus on a particularly simple configuration

and comment on the additional bells and whistles below.

3.1 Review of geometric set-up

The target space X is a principal T 2 bundle π : X → M over a K3 base M with each

fiber a square torus of fixed area. The topology and complex structure of such X is nicely

described in [25]. The topology of X is fixed by a choice of two linearly independent

nowhere vanishing real 1-forms ΘI ∈ Ω1(X) dual to the vertical vector fields ∂
∂θI

, I = 1, 2.

In general these are not closed but satisfy

dΘ1,2 = π∗
(
F 1,2

)
, F 1,2 ∈ H2(M, 2πZ) . (3.1)

In what follows we will leave off the explicit pull-back π∗ unless it is likely to cause confu-

sion. Unless otherwise noted, we will also assume that the F I are linearly independent in

H2(M, 2πZ).

The complex structure of X is determined by a choice of complex structure on M

compatible with a complex fiber. Let U ∈ M be an open neighborhood with complex

coordinates zi, i = 1, 2. The corresponding local structure of X is given by U × T 2, where

θI ∼ θI + 2π are coordinates on T 2. We write ΘI = dθI + AI , where the gauge-fields

AI are horizontal 1-forms on U . We can take θ = θ1 + iθ2 as the holomorphic coordinate

on the square T 2 fiber.6 This gives an almost complex structure on X, with (1,0) forms

Θ = Θ1 + iΘ2 and dzi. This is integrable if and only if dΘ has no (0,2) component its

decomposition. From above we see that if we set F = F 1 + iF 2, we need

F = F + F ′ , F ∈ H1,1(M) , F ′ ∈ H2,0(M) . (3.2)

The complex conjugate forms satisfy F 1 − iF 2 = F + F
′
, with F ∈ H1,1(M) and F

′ ∈
H0,2(M). It is useful to write the F and F ′ in terms of various components of the F I :

F = F
1,1
1 + iF 1,1

2 , F ′ = 2F 2,0
1 , F = F

1,1
1 − iF 1,1

2 , F
′
= 2F 0,2

1 . (3.3)

We used
(
F 1 + iF 2

)0,2
= 0.

The SUSY conditions of (2.1) are satisfied in a straightforward manner. Let (ω0,Ω0,A)

denote a Calabi-Yau structure on the K3 base M supplemented by a HYM connection A
for a stable holomorphic bundle E ′ → M . In particular, ω0 and Ω0 are closed and satisfy

the usual SU(2) structure relations

ω2
0 =

1

2
Ω0Ω0 , ω0Ω0 = Ω2

0 = 0 . (3.4)

Suppose we choose the complex structure on M such that F = F 1 + iF 2 satisfies

ω0F = 0 Ω0F = 0 . (3.5)

6More generally we could set θα = θ
1

α + τθ
2

α. The case of constant τ is a simple modification, while τ

varying holomorphically over the base is a bit more subtle. See [21] for a discussion.
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The second condition is just that F has no (0,2) component. In that case, denoting the

constant area of the T 2 fiber by a, we find that

ωX = e2ϕω0 +
ia

2
ΘΘ , ΩX = e2ϕ

√
aΩ0Θ , F = π∗∂̄A (3.6)

satisfy (2.1) on X with bundle E = π∗E ′. The torsion is determined to be

H = i
(
∂̄ − ∂

)
ωX = iω0

(
∂̄ − ∂

)
e2ϕ +

a

2

(
F

′ − F
)
Θ+

a

2

(
F ′ − F

)
Θ

= Hhor +HIΘ
I = Hhor + a

(
F

2,0
I + F

0,2
I − F

1,1
I

)
ΘI . (3.7)

Finally, we have the Bianchi identity

dHhor + a
[
F ′F

′ − FF
]
+ a∂F

′
Θ+ a∂̄F ′Θ =

α′

4

[
trR2

+ − trF2
]
+O

(
α′2
)
. (3.8)

3.2 Comments on flux solutions

Having presented the basic geometry, we are ready to describe some of the properties

of these solutions. This will help us to frame a discussion of some of their features and

subtleties.

T 2
×K3 compactification. The reader who went through the Calabi-Yau 3-fold warm-

up above may have wondered what happens if we ask the same sort of question of K3

compactification: can we perturb the O
(
α′0
)
solution to obtain an O(α′) result? Indeed

we can. Consider the trivial fibration T 2 × K3 obtained by setting F I = 0. In that case,

we just need to solve (3.8) for the dilaton profile. Using the same sort of reasoning as in

the 3-fold case, we can write the source as

trR2
+ − trF2 = i∂∂̄fω0 (3.9)

for some real function f and solve (3.8) to O(α′) by setting ϕ = α′f/16 +O
(
α′2
)
. In this

case the perturbed solution is much less involved than in the 3-fold case: the α′-corrected

metric on M remains conformally Calabi-Yau.

N=2 versus N=1 solutions. A generic choice of the F I fluxes will have F ′ 6= 0 and

only preserve 4 supercharges in space-time. However, we can also make a less generic

choice, where F I ∈ H1,1(M) and ω0F
I = 0, i.e. F I are both HYM. In this case the SUSY

equations are actually symmetric under SU(2) rotations of ω0,ReΩ0, ImΩ0, and this SU(2)

signals the preservation of 8 supercharges in space-time.

This geometric set-up is natural, in fact required, in the context of heterotic compact-

ification with 8 supercharges: if the requisite world-sheet supersymmetries [26] are realized

geometrically, then X must be a principal T 2 bundle of a K3 surface M with a fiber of

constant area, B-field and complex structure [27, 28].

On the other hand, the class of solutions with just 4 supercharges obtained by taking

fluxes with F ′ 6= 0 are rather special in the landscape of heterotic vacua. For instance,

an elliptically fibered Calabi-Yau three-fold also has a fibration structure, but it is neither

principal nor over a K3. Still, the principal T 2 bundles are certainly an interesting distin-

guished class. One may hope that their relation to backgrounds with 8 supercharges might

make them more amenable to analysis.
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Consequences of flux quantization. It is an oft-repeated stringy mantra that flux

quantization fixes parameters of supergravity solutions. While this is familiar in the case

of type II fluxes valued in appropriate de Rham cohomology groups, it is not so obvious

for heterotic torsion since in general dH 6= 0. By decomposing the flux into horizontal

and vertical components and a judicious reparametrization of space-time Lorentz, gauge,

and B-field gauge transformations, it is possible to identify quantization conditions that

are obeyed by the HI — the 2-forms appearing in the horizontal-vertical decomposition

of H [28]:

HI ∈ H2
(
M, 2πα′

Z
)
. (3.10)

This has a key consequence for the solution: the “parameter” a — the area of the fiber T 2

— is in fact quantized in units of α′.7

One can also show that there is a similar quantization condition on the B-field carried

by the T 2 fiber. The quantization conditions become a little bit more subtle in the presence

of Wilson lines for the gauge bundle, but that complication can be addressed. More details

are given in section 2.5 of [28].

T-duality orbits and lift to 8 dimensions. While the area of the T 2 fiber is fixed,

we do have the freedom to take the base K3 to be arbitrarily large. In this large radius

K3 limit we recover an 8-dimensional theory — the compactification on T 2. While this is

obviously not a large radius limit, it still offers a useful way of thinking about the theory.

In particular we can look for a possible dual F-theory description in terms of a fibered

8-dimensional duality.

The 8-dimensional perspective makes it apparent that there is a large redundancy in

the nominal classification of solutions — this is simply a consequence of the O(2, 18) duality

of the T 2-compactification: there are O(2, 18) transformations that allow us to exchange

the “physical” U(1)s associated to the Kaluza-Klein reduced metric and B-field with the

“gauge” U(1)s. Such T-duality relations have been explored in [30, 31]. This does not

mean that every compactification with a non-trivial T 2-fibration is on a T -duality orbit of

a T 2 × K3 compactification. Clearly an N=1 vacuum cannot be obtained in this fashion,

but the statement holds for N=2 vacua as well: while T 2 × K3 vacua necessarily have a

gauge group8 with rank r ≥ 3, we can find examples of fibered solutions with r < 3.

Another property that is made clear from the 8-dimensional point of view is the cor-

relation between U(1) space-time gauge symmetries and global world-sheet symmetries of

the T 2 NLSM. If the fibration is trivial then there are four Kac-Moody (KM) algebras

associated to the heterotic string on T 2: two come from the left, non-supersymmetric side

of the string, while two more arise from the supersymmetric side. The latter give rise to

the graviphoton in the gravity multiplet and the gauge boson in the axio-dilaton vector

multiplet in 4 dimensions. Turning on a non-trivial fibration breaks at least some of these

symmetries. Examination of the NLSM Lagrangian shows that aFI −HI 6= 0 breaks the

left-moving chiral currents, while aFI + HI 6= 0 breaks the right-moving chiral currents.

7In general the torus need not be at a point of enhanced symmetry. When it is, a fibered WZW model

of the sort discussed in [28, 29] can provide a more appropriate description.
8We do not count the graviphoton here.
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From (3.3) we then see

broken left symmetries : aF I −HI = 2aF 1,1
I 6= 0 ,

broken right symmetries : aF I +HI = 2a
(
F

2,0
I + F

0,2
I

)
6= 0 . (3.11)

This fits perfectly with the SUSY variations of the d = 8 supergravity theory and under-

scores the different roles played by the (1,1) and (2,0) components of F : the former is

associated to breaking left-moving symmetries that are very much like the remaining het-

erotic gauge symmetries, while the latter is invariably tied to the gravity sector associated

to the supersymmetric side of the string.

4 Torsional connection and the Bianchi identity

The reader has no doubt noticed that while we have discussed many aspects of the known

heterotic flux solutions, we have stopped short of showing that the Bianchi identity holds

to O(α′). It was observed already in [6] that solving (2.2) can be relatively easy or difficult,

depending on which connection is used to compute the trR2 term. Given any connection,

say the Levi-Civita Γ, a shift of Γ → Γ + T , where T ∈ Ω1(X,TX ⊗ T ∗
X), leads to

R → R+R+DT + T 2 , trR2 → trR2 + d tr

(
2TR+ TDT +

2

3
T 3

)
. (4.1)

While this causes no issues at the level of topology, it wreaks havoc on the complex structure

decomposition of trR2. On a 3-fold we have

trR2 =
(
trR2

)2,2
+
(
trR2

)3,1
+
(
trR2

)1,3
. (4.2)

On the other hand, trF2 is necessarily (2, 2), as is the left-hand side of (2.2). For this

reason it was suggested in [6] that one should use the Chern connection on TX , which is

guaranteed to produce a (1,1) curvature form.

The connection is not arbitrary: it is tied to a choice of field redefinitions involved

in describing the higher order curvature corrections to supergravity.9 From the world-

sheet point of view we have two particularly nice choices dictated by the Green-Schwarz

anomaly cancellation and its compatibility with world-sheet SUSY. If we wish to preserve

manifest (0,1) world-sheet supersymmetry, we can work with a covariant Hermitian metric

G on the space-time and then necessarily the Bianchi identity should be computed with

the S+ = Γ + 1

2
H connection on TX . On the other hand, we can also try to preserve

manifest (0,2) world-sheet SUSY. This is possible and leads to the Chern connection in

the Bianchi identity, but it requires that G picks up non-trivial space-time Lorentz and

gauge transformations of the same sort as familiar for the B-field. This makes the geometry

a bit more obscure to say the least! Moreover, we expect that with such a choice the analysis

of [11] will also be modified and produce O(α′) shifts in the space-time SUSY conditions.

9A recent discussion in the context of (0,2) GLSMs was given in [3]; it was based on earlier anomaly

cancellation studies [32–34].
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Hence, if we wish to work with a metric tensor and keep the space-time SUSY condi-

tions in the form of (2.1), we must necessarily work with the S+ connection. What is then

to be done about the (3,1) and (1,3) terms in the Bianchi identity? A clue is provided

by the Calabi-Yau case, where we have S+ = Γ0 + O(α′), where Γ0 is the Kähler (and

in particular Chern) connection of the Calabi-Yau metric: while (1,3) and (3,1) terms are

generated in the Bianchi identity, they are all O(α′2). We will now show that the resolution

is similar in heterotic flux vacua, but with a twist.

4.1 The torsional connection for heterotic fluxes

Let us now consider S+ for the heterotic flux solutions just described. Since the Chern

connection has particularly nice properties, it is useful to write S+ = Σ+T , where Σ is the

Chern connection. In terms of 6-dimensional complex coordinates dxµ dxµ, µ, µ = 1, 2, 3,

we have

Σ =

(
Σµ
ν 0

0 Σ
µ
ν

)
=

(
dzλgνλ,λg

λµ 0

0 dzλgλν,λg
µλ

)
,

T =

(
0 Tµ

ν

T
µ
ν 0

)
=

(
0 dzλHµ

λν

dzλHµ

λν
0

)
. (4.3)

Explicit computations turn out to be ugly in this basis, and rather than working with (1,0)

forms dzi, dθ, we prefer to work with dzi,Θ. This leads to simplifications. For instance,

the six-dimensional metric takes the form

g =
(
dzk dθ

)(gkk + aAkAk aAk

aAk a

)(
dzk

dθ

)
=
(
dzk Θ

)(gkk 0

0 a

)(
dzk

Θ

)
. (4.4)

Here gkk is the metric corresponding to the horizontal component of ωX , i.e. the metric on

the base M corresponding to Hermitian form e2ϕω0, while A = A1+iA2 is the complexified

connection 1-form for the T 2 fibration.

It is not much more difficult to evaluate the resulting Chern connection and torsion.

We introduce a basis for TX dual to the
{
dzi,Θ

}
basis for T ∗

X as follows: while the dual

basis to
{
dzi, dθ

}
is
{

∂
∂zi

, ∂
∂θ

}
, the dual to

{
dzi,Θ

}
is {Ei, EΘ} with

(
Ei

EΘ

)
=

(
δki −Ai

0 1

)(
∂

∂zk
∂
∂θ

)
,

(
∂
∂zi
∂
∂θ

)
=

(
δki Ai

0 1

)(
Ek

EΘ

)
. (4.5)

With this choice of frame straightforward computation yields

Σ =
(
dzp Θ

)
⊗
(

dzmΓq
mp dzmAp,m

adzmFmg
q 0

)
⊗
(
Eq

EΘ

)
. (4.6)

Here dzmΓq
mp = dzmgpp,mgpq is the Chern connection on the base M with respect to g.

The remaining term in the connection in (4.3) is

T =
(
dz Θ

)
⊗
(
dzkHnkg

ni + a
2
ΘF

′

ng
ni −1

2
dzkFk

a
2
dzkFkng

ni 0

)
⊗
(
Ei

EΘ

)
. (4.7)

– 12 –



J
H
E
P
0
6
(
2
0
1
4
)
1
7
4

Thus, we see that most of the terms in the connection are horizontal 1-forms, the only

exception being

T ⊃ dz ⊗
[a
2
ΘF

′

ng
ni
]
⊗ Ei . (4.8)

The full R+ curvature is then

R+ =

(
∂̄Σ− TT ∂̄T − ΣT

∂T − ΣT ∂Σ− TT

)
+

(
0 ∂T − TΣ

∂̄T − ΣT 0

)
. (4.9)

While the first term is (1,1), the second contains (2,0) and (0,2) components. So, in general

the curvature of the S+ connection need not be (1,1), and there are in general (3,1) and

(1,3) components in trR2
+.

4.2 Solving the Bianchi identity

Taken naively, (4.8) suggests that unless F
′
= 0, i.e. we restrict to fluxes preserving N=2

space-time SUSY, there is simply no solution to the Bianchi identity. Two observations

make it clear that this is not the case: first, we only know the Bianchi identity up to O(α′2)

corrections, and second, as we discussed above, a is quantized in units of α′. Hence, to the

order that we know the equation, we can neglect the terms proportional to a in Σ and T .

This leads to a purely horizontal connection, which has a (2,2) and horizontal trR2
+.

Coming back to (3.8), we see that we need to solve

2i∂∂̄e2ϕω0+a∂F
′
Θ+a∂̄F ′Θ =

α′

4

[
trR2

+ − trF2 +
4a

α′

(
FF − F ′F

′
)]

+O
(
α′2
)
. (4.10)

The right-hand side is a horizontal (2,2) form, whence we conclude that we need

∂̄F ′ = 0 =⇒ F ′ = λΩ0 (4.11)

for some constant λ. Note that this also implies ∂F = 0. Finally, we solve the remaining

equation in exactly the same manner as we obtained the O(α′) correction to T 2 × K3

compactification above. As long as anomaly cancellation is satisfied,

α′

4

[
trR2

+ − trF2 +
4a

α′

(
FF − F ′F

′
)]

= iα′∂∂̄fω0 , (4.12)

we find an O(α′) solution by setting ϕ = α′f/16. Note that ϕ also appears in S+, but this

just gives an O(α′2) contribution to the Bianchi identity that can be ignored to this order.

A comment on the Bianchi identity for N=2 solutions. So far what we have said

applies equally well to solutions with both N=1 and N=2 space-time SUSY. However,

in the latter case we observe that the connection S+ is purely horizontal without any α′

expansion, and hence trR2
+ is (2,2) and horizontal. In this case one may attempt to solve

the Bianchi identity for ϕ without any α′ expansion. This leads to a non-linear PDE for

ϕ, and it is not a priori clear that a smooth solution exists. A similar equation, where

trR2 is evaluated for the Chern connection, was studied in [35, 36] and shown to possess

the requisite solutions. Examining the proof given in [35] it is clear the the result is easily
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modified to apply to the equation with the S+ connection: the details of the connection

choice are all incorporated into a single function g that appears in the PDE for ϕ, and g is

not required to have any special properties besides being C∞.

It would be interesting to understand whether this full non-linear solution has any phys-

ical significance. In the most optimistic case it may be that for N=2 SUSY backgrounds,

the higher order α′ corrections to the Bianchi identity and SUSY variations vanish, so that

the leading order non-linear solution is in fact exact. If the higher order corrections do not

vanish, perhaps it is possible to show that they can all be incorporated into a correction

of the function g. Such a result would be akin to [37], which shows that the Calabi-Yau

metric can be corrected order by order to solve the all orders beta function for a (2,2)

NLSM with Calabi-Yau target space. For heterotic flux backgrounds with N=2 space-time

supersymmetry such a program may be feasible.

HYM for R+. There is one more observation we would like to make. A number of

works have emphasized that in order for a configuration satisfying the SUSY conditions

and Bianchi identity to be a solution to the heterotic equations of motion to O(α′), the

curvature R+ appearing in the Bianchi identity must satisfy HYM equations on X up to

O(α′) corrections [15, 38]. In the case of Calabi-Yau compactification this is obviously

satisfied, since R+ = R0 +O(α′), where R0 is the Calabi-Yau curvature 2-form. In case of

the heterotic flux vacua we considered, this condition is obeyed as well. To see this, note

that since a is quantized and ϕ is also of order α′, to leading order

R2,0
+ =

(
0 ∂T

0 0

)
+O(α′) T = dz ⊗

[
−1

2
dzkFk

]
⊗ EΘ +O(α′) . (4.13)

Since ∂F = 0, we see that R2,0
+ = O(α′). We can also check that

ω2
XR1,1

+ =
ia

2
ΘΘω0R

1,1
+ = O

(
α′2
)
. (4.14)

To see this, we work out the various components of R1,1
+ and find that up to O(α′) R1,1

+ is

horizontal, and every component is proportional to either R̂, the curvature of the base Ricci-

flat metric ĝ on the base or a ĝ-covariant derivative of F . All these terms are annihilated

by ω0, and the result follows.

5 The (dis)connection between N=2 and N=1 flux vacua

A well-known fact about Minkowski SUSY string vacua is that motion on the moduli

space preserves space-time supersymmetry. In perturbative heterotic string theory this

has been made very concrete [26, 39]: an N=1 SUSY vacuum corresponds to a (0,2) SCFT

with integral U(1)R charges; every marginal heterotic deformation must preserve (0,1)

superconformal invariance since this is a left-over gauge symmetry of the heterotic string,

and it is easy to show that every (0,1) marginal deformation of a (0,2) SCFT with integral

U(1)R charges preserves the full (0,2) superconformal invariance. This is easily extended

to perturbative heterotic vacua with N=2 SUSY. In this case the c = 9 right-moving
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Nws = 1 superconformal algebra10 (SCA) splits as a sum of a c = 3 Nws = 2 and c = 6

Nws = 4 SCAs, and any Nws = 1 marginal deformation preserves the split into Nws = 2

and Nws = 4 SCAs.11 This is familiar from the space-time point of view: partial SUSY

breaking cannot be achieved by motion on the moduli space; rather it requires deforming

the SUSY current algebra and hence the UV physics.

This simple point seems to lead to a small paradox for the flux solutions described

above. We saw that the distinction between N=2 and N=1 solutions has to do with

whether the complex curvature 2-form F = F 1 + iF 2 has a (2,0) component on the base

K3, and we also saw that this (2,0) component takes the form F ′ = λΩ0 for some complex

constant λ. It is well-known that the decomposition of a 2-form on a K3 surface M is not

a topological condition: small changes in the complex structure of M can produce small

(2,0) and (0,2) components of a (1,1) form in the original complex structure. Naively, this

suggests that λ is a continuous parameter that interpolates between N=2 (λ = 0) and N=1

solutions.

Dual M-theory perspective. To resolve this conundrum, we first consider the dual

perspective, where we build a d = 3 compactification of M-theory on a product of two K3s,

Y = M1×M2. To find such solutions we must turn on a non-trivial G-flux on Y . Anomaly

cancellation requires
1

2

∫

Y

G

2π

G

2π
=

χ(Y )

24
= 24 (5.1)

with 1

2π
G ∈ H4(Y,Z), and supersymmetry requires that it is (2,2) and primitive with

respect to the Kähler form ωY = ω1 + ω2 [5, 40]. In general, a solution of this sort will

break the hyper-Kähler symmetries of M1,2 which act on ω1,2,Ω1,2,Ω1,2. On the other

hand, a flux G compatible with the hyper-Kähler symmetries, i.e. one satisfying

ω1,2G = 0 , Ω1,2G = 0 , Ω1,2G = 0 (5.2)

is necessarily (2,2) and primitive on Y . This flux preserves 8 supercharges in three dimen-

sions, while the more generic choice only preserves 4 supercharges [5].

In this case again, one might naively think that infinitesimal deformations of complex

structure of M1 and M2 could possibly transform the special form of G-flux to a less generic

one. Here it is easy to see that this is not the case. For simplicity, consider a flux of the form

1

2π
G = ξ1ξ2 , (5.3)

where ξ1,2 are integral anti-self-dual classes in H2(M1,2,Z). Evidently such a flux satis-

fies (5.2). Under a small perturbation of complex structure of M1 and M2 we have

ξ1 = η1 + ǫ1ω1 + λ1Ω1 + λ1Ω1 , (5.4)

10The subscript “ws” is used to lessen confusion between space-time SUSY and the right-moving world-

sheet superconformal algebras.
11The proof uses the result of [26] that a diagonal c = 9 Nws = 2 SCA is necessarily preserved, and

one can show that Nws = 2 marginal deformations must preserve the SU(2)R Kac-Moody algebra of the

Nws = 4 theory. From that it easily follows that all marginal deformations preserve the full Nws = 2 and

Nws = 4 SCAs and hence the full space-time SUSY.
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where ǫ1 and λ1 are infinitesimal parameters and η1 is anti-self-dual and similarly for ξ2.

Plugging this into G, we find that its (3,1) component is given by

1

2π
G3,1 = δ1Ω1(η2 + ǫ2ω2) + (η1 + ǫ1ω1)δ2Ω2 . (5.5)

We see that this vanishes if and only if δ1 = δ2 = 0 — no cancellation is possible between

the two factors. Similarly, primitivity with respect to ωY requires ǫ1 = ǫ2 = 0. Hence, for

all allowed infinitesimal deformations the flux satisfies (5.2). This is easily generalized to

any deformations of the most general flux satisfying (5.2). A deformation with non-zero δ

or ǫ necessarily breaks all supersymmetry and will have a non-trivial potential.

Thus, in this dual frame it is clear that the solutions do have the expected behavior:

infinitesimal deformations preserve the space-time SUSY. This has two important lessons

for understanding the “puzzle” in the heterotic frame. First, the conundrum is resolved at

the level of the eleven-dimensional SUSY conditions on the flux; second, it is the interplay

between the two K3s that eliminates the paradoxical deformations. In the heterotic frame

this strongly suggests that the resolution also involves the ten-dimensional SUSY condi-

tions, and in particular the interplay between the base K3 geometry and the 3-form flux.

As we will now show, that is the case.

Deformations of complex structure and H. Returning to the heterotic frame, we

consider an N=2 space-time solution, where ω0F = Ω0F = 0, and we examine the form of

the H flux as we deform the complex structure of the base K3. Let s ∈ H1(M,TM ) be an

infinitesimal complex structure deformation on M . This lifts to an infinitesimal complex

structure deformation on the full six-dimensional X if and only if

sxF =
1

2

(
siF ik − si

k
F i

)
dzdzk = 0 . (5.6)

This is just the condition that under the deformation F does not acquire a (0,2) component.

In this case we can make a gauge transformation so that the T 2 fibration connection A1+iA2

is a local (1,0) form and Θ is a global (1,0) form on Y in the new complex structure.

Using such an s we construct the projectors Πp,q
s onto Ωp,q(M) in the deformed complex

structure. With these, we have

F = Π1,1
0 F = Π1,1

s F +Π2,0
s F . (5.7)

The 3-form flux for the undeformed N=2 solution then takes the form

H = Hhor −
a

2

(
Π1,1

0 F
)
Θ− a

2

(
Π1,1

0 F
)
Θ . (5.8)

Under the deformation we then have

Hdef = (Hhor)def −
a

2

(
Π1,1

s F +Π2,0
s F

)
Θ− a

2

(
Π1,1

s F +Π0,2
s F

)
Θ. (5.9)

Comparing this with the form of flux required to preserve N=1 space-time supersymmetry,

we find a crucial difference in the signs of the (2,0) and (0,2) contributions:

HN=1 = Hhor −
a

2

(
Π1,1

s F −Π2,0
s F

)
Θ− a

2

(
Π1,1

s F −Π0,2
s F

)
Θ . (5.10)
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We therefore see that a variation of complex structure of the N=2 solution either breaks or

preserves all supersymmetry. In the former case we expect a space-time potential will ensure

that the deformation is not in fact marginal. This difference in signs again underscores the

rather different roles played by the (1,1) and (2,0) components of the T 2 curvature 2-form

as already observed above in (3.11).

6 Discussion

We have seen that, as far as supergravity is concerned, if we are careful about the conse-

quences of flux quantization, there is no trouble in solving the SUSY and Bianchi conditions.

This success must be taken with a large grain of salt: the fact that a is quantized means

that neglecting the higher α′ corrections is a rather formal exercise. Indeed, from this

perspective it is remarkable that the α′ expansion seems to give any sensible results at all.

For the case at hand we had a number of additional tools that may not be available in

general. First, while these flux solutions do not have a ten-dimensional large radius limit,

they do have an eight-dimensional large radius limit, and the fact that we have a good

understanding of heterotic compactification on T 2 allows us to discuss the solutions from

that point of view. Second, we have a class of solutions that preserve N=2 space-time

supersymmetry, so that if they exist, any quantum corrections (whether in α′ or gs) are

severely constrained. Finally, we have a rather explicit dual description in terms of F/M-

theory compactification on K3 × K3, which again strongly suggests that these solutions

should exist as bona fide vacua of string theory. As for Mallarmé’s ptyx [41], while some

properties of the N=2 flux solutions are obscure, there is little doubt that they exist.

It would be interesting to determine to what extent these sorts of techniques are

applicable to more general N=1 heterotic flux vacua. That is difficult to establish given

the lack of concrete examples of admissible topologies and complex geometries. It would

be instructive to have a large class of admissible topologies, ideally something akin to the

Kreuzer-Skarke list of Calabi-Yau hypersurfaces in toric varieties.

Given that a solution exists, the next step is to identify its basic properties. For

N=2 solutions the special properties just mentioned give a great deal of control. For

instance, it is easy to describe the full massless spectrum and identify various branches of

the moduli space via the space-time super-Higgs mechanism. For instance, many examples

were examined at this level in [28]. Moreover, one can also find dual IIA compactifications

on K3-fibered Calabi-Yau three-folds, and it should be in principle possible to use the IIA

and heterotic descriptions to actually determine the full quantum-corrected metric on the

moduli space.12

More generally, for N=1 flux backgrounds even identifying the massless spectrum is

a great challenge even at the formal level of α′-corrected supergravity. Recent progress

in this direction has been made in [16, 43, 44], but it rather begs the question of why an

α′ expansion should be at all sensible in these more general backgrounds. As we noted

above, both in the Calabi-Yau and heterotic flux case it turns out to be possible to find

all order solutions to the O(α′) SUSY and Bianchi equations. It would be interesting to

12This is by no means an easy task to carry out in practice! See [42] for a recent review.
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understand whether these solutions have any physical significance, and a detailed study of

O(α′2) corrections may be illuminating.

Finally, if we can make sense of the all orders α′ expansion, then we will need to

consider non-perturbative corrections in α′. It is known in Calabi-Yau compactifications

that world-sheet instantons do contribute to space-time potentials and modify spectra, but

it is not known how to make sense of such configurations in the presence ofH-flux, where the

instanton action is necessarily complex, and the imaginary contribution is not topological.

It is likely that one must examine more general saddle points in a suitably continued field

space of the NLSM. Making sense of an expansion in terms of such saddle points would be

a very significant development in extracting quantitative space-time physics from heterotic

geometries.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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