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Abstract: We study intersecting brane systems that realize a class of singular monopole

configurations in four-dimensional Yang–Mills–Higgs theory. Singular monopoles are solu-

tions to the Bogomolny equation on R3 with a prescribed number of singularities corre-

sponding to the insertion of ’t Hooft defects. We use the brane construction to motivate a

recent conjecture on the conditions for which the moduli space of solutions is non-empty.

We also show how branes provide physical intuition for various aspects of the dimension

formula derived in [1], including the contribution to the dimension from the defects and

its invariance under Weyl reflections of the ’t Hooft charges. Along the way we uncover

and illustrate new dynamical phenomena for the brane systems, including a description of

smooth monopole extraction and bubbling from ’t Hooft defects.
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1 Introduction and summary

Intersecting brane systems in string theory provide one with a great deal of intuition about

field theory phenomena. The basic idea is to realize the field theory of interest as the low

energy description of the degrees of freedom on a brane worldvolume. Then many field

theory features such as moduli spaces of vacua, internal symmetries, and solitonic particles

can be understood in terms of geometric properties of the brane system in the remaining

spatial directions orthogonal to the worldvolume. Oftentimes a given field theory can be

engineered in more than one way, leading to additional insights. See e.g. [2] for an extensive

review on the engineering and analysis of gauge theories via branes.

In this paper we consider the simplest possible intersecting brane system that realizes

singular monopole configurations in 1 + 3-dimensional gauge theory. The gauge theory
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is obtained as the low energy description of a system of N parallel D3-branes. Each

smooth fundamental monopole is represented by a finite length D1-string stretched between

consecutive D3-branes, each of which can move in three directions and has a fourth modulus

dual to turning on electric charge. Studying this system from the D1-string point of view

leads to the ADHM–N description of monopoles through Nahm’s equation [3], but we will

not make use of this result here.

Taking the brane picture as motivation, we obtain a prescription for constructing

singular monopole field configurations as a certain limit of smooth monopole configurations

in a higher rank gauge group. In the context of branes this limit corresponds to making

some of the D1-strings semi-infinite, an idea that was first pointed out in a T-dual context

in [4].1 Our prescription involves a projection of the Lie algebra-valued fields to a sub-

algebra, followed by a limit on the Higgs vev.

Our goal is to understand and interpret the dimension formula derived in [1] in the

context of these brane systems. This formula gives the dimension of the moduli space of

solutions to the Bogomolny equation, F = ?DΦ, on oriented Euclidian three-space with

some number Nt of points removed, R3 \ {~xn}Ntn=1, subject to certain boundary conditions

at the ~xn and at infinity. The pertinent details of this result will be reviewed below in

section 2. Here we simply note that the dimension of this space depends on three types

of data, all of which are simultaneously valued in a Cartan subalgebra t ⊂ g. These

are the magnetic charge and asymptotic Higgs vev, (γm; Φ∞), and the ’t Hooft charges

Pn. We henceforth refer to t as the Cartan subalgebra. We denote the moduli space as

M = M
(

(~xn, Pn)Ntn=1; γm; Φ∞

)
.2 We restrict to the case of regular Φ∞, corresponding

to maximal symmetry breaking where the gauge group G is broken to the Cartan torus

T . More precisely, the dimension formula only depends on the Weyl orbit, [Pn] of Pn;

it gives the same value for any pair Pn, P
′
n related by a Weyl transformation. This is

expected, since Weyl transformations of an ’t Hooft charge can be implemented by local

gauge transformations and hence it is only the Weyl orbit that is physical.

We want to interpret the dimension of the moduli space as four times the number of

mobile, finite-length D1-strings, just as one can do in the case of smooth monopoles. We

find that the simplistic picture of semi-infinite D1-strings ending on D3-branes is sufficient

for this purpose in some simple examples, but for ’t Hooft defects with generic charges this

naive counting gives the wrong answer. We show how the apparent discrepancy is resolved

when the more precise picture of brane bending is taken into account, where semi-infinite

D1-strings are replaced with a “BIon” spike [9, 10].

The bent brane representation of ’t Hooft defects provides insight into why the naive

counting of D1-string segments fails. One finds that there is an important distinction

between ’t Hooft defects for which the BIon spikes of different D3-branes intersect each

other and defects for which they do not. In the former case, the intersection of the spikes

1This in turn motivates the study of singular monopoles and their moduli spaces via the Nahm equation

on a semi-infinite interval. Explicit results for singular su(2) monopole moduli spaces have been obtained

in this way in [5–8].
2The moduli space itself, as a Riemannian manifold, will depend on both the locations and charges of

’t Hooft defects. The dimension, however, only depends on the charges.
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can be interpreted as the presence of some number of smooth monopoles centered on the

defect. Allowing all such monopoles to move off the defect results in a new configuration

of the latter type, where the BIon spikes do not intersect. This configuration represents

an ’t Hooft defect whose charge has changed by a Weyl transformation. Since the new

’t Hooft charge is physically equivalent to the original one, and since the asymptotic data

does not change, this process, which we refer to as monopole extraction, can be viewed as

motion on a fixed moduli space.

’t Hooft charges for which the corresponding BIon spike has no brane intersections

have the property of being in the closure of the anti-fundamental Weyl chamber. Here

the notion of positive roots, α ∈ ∆+, used to define this chamber, is determined from the

asymptotic Higgs field: α ∈ ∆+ ⇐⇒ 〈α,Φ∞〉 > 0. We denote the representative of [Pn]

in the closure of the anti-fundamental chamber by P−n . It has the property 〈α, P−n 〉 ≤ 0,

for all α ∈ ∆+, and it plays a special role.3 Using it, we define the relative magnetic charge

γ̃m := γm−
∑

n P
−
n . One can argue [1] that this quantity sits in the co-root lattice Λcr ⊂ t,

and our conjecture for when the moduli spaceM is non-empty is that γ̃m is a non-negative

linear combination of simple co-roots: γ̃m =
∑ rnk g

I=1 m̃IHI , with m̃I ≥ 0, ∀I. Thus, in

analogy with [12], we interpret the m̃I as the number of smooth fundamental monopoles

of type I, in the presence of the defects Pn. Indeed, our dimension formula takes the

simple form
∑

I 4m̃I in terms of these coefficients. These numbers are also the numbers of

D1-string segments in the brane setup, once the process of monopole extraction has been

carried out.4

We distinguish the process of monopole extraction, where the Weyl orbit [Pn] does not

change, from that of monopole bubbling [13], where the ’t Hooft defect emits or absorbs a

smooth monopole, such that the Weyl orbit does change. We show how monopole bubbling

can also be understood in terms of brane motion, in some simple examples. This leads to

some discussion about the structure of possible singular loci of the moduli space M.

Finally, the dimension formula exhibits interesting jumping behavior as the Higgs vev

Φ∞ is varied. In fact, in [1] we derived a more general formula for the dimension of a certain

vector bundle overM. This is the index bundle of the Dirac operator constructed from the

singular monopole configuration [14, 15], acting on matter fermions in a representation ρ of

G. The fiber over a point on moduli space representing a singular monopole configuration

is identified with the kernel of the Dirac operator; (there is a vanishing theorem for the

kernel of the adjoint operator). When ρ is the adjoint representation, the vector bundle is

related to the tangent bundle, and twice its dimension gives the dimension ofM. We give

3Similar observations were made in the study of supersymmetric boundary conditions for N = 4 SYM

on the half-space [11], where a closely related brane set-up was used, and the relevance of the BIon spike

picture was also noted.
4One may wonder why we do not simply restrict consideration to singular monopole configurations where

all ’t Hooft charges satisfy Pn = P−n , since these are physically equivalent charges. While the charges are

equivalent, two field configurations in which we simply exchange Pn for P−n are not physically equivalent.

Rather one must make a local gauge transformation that acts as a Weyl transformation on Pn at ~x = ~xn,

while going to the identity at infinity. Such a gauge transformation might produce a field configuration

that is less convenient to work with. The study of the Cartan-valued solutions in [1] provides an excellent

example of this.
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a brane interpretation of the jumping phenomena of the index in the case of the adjoint

representation and the fundamental representation. For the fundamental representation

this involves the addition of a “flavor” D7-brane. The matter fermions are realized as low

energy degrees of freedom of strings stretched between the D7-brane and the D3-branes.

A brief outline of the paper is as follows. In section 2 we define the singular monopole

moduli spaceM and recall necessary results from [1]. We refer the reader to that paper for

derivations, as well as a summary of previous results in the literature on singular monopoles

and motivation for their study. In section 3 we briefly recall how smooth monopoles are

represented as configurations of D3-branes and D1-strings. In section 4 we describe the

projection and limiting procedure for producing singular monopole configurations from

smooth ones, and interpret it in terms of brane motion. In sections 5 and 6 we apply the

procedure to some simple examples, first for g = su(3) and then g = su(N), comparing

the resulting brane picture with expectations from the dimension formula. At the end

of section 6 we point out an apparent mismatch between the dimension formula and the

brane picture for the generic ’t Hooft defect. This discrepancy is resolved in section 7 by

considering the BIon description of ’t Hooft defects, where we also describe the processes

of monopole extraction and bubbling. Finally in section 8 we discuss the wall-crossing

properties of the index in terms of brane realizations.

2 Singular monopoles and the dimension formula

Singular monopoles on R3 are solutions to the Bogomolny equation, F = ± ? DΦ, on

U := R3 \ {~xn}Ntn=1, satisfying specific boundary conditions as ~x → ~xn and as |~x| → ∞.

Here F = dA + A ∧ A and DΦ = dΦ + [A,Φ]. (A,Φ) are a g-valued gauge field and

scalar field, where g is the Lie algebra of a simple compact gauge group G. We work

in geometric conventions where elements of g are represented by anti-Hermitian matrices.

Further details on our Lie algebra and Lie group conventions can be found in appendix

A of [1]. In the absence of ’t Hooft defects, one can take either sign in the Bogomolny

equation. The plus sign, say, corresponds to studying monopole configurations, while the

minus corresponds to anti-monopoles. Let us denote this sign by σ, so that the Bogomolny

equation reads F = ?D(σΦ).

The insertion of an ’t Hooft defect at position ~xn is defined by the specification of

boundary conditions [16, 17]. The boundary conditions depend on three pieces of data:

the position ~xn, the charge Pn, and a sign choice σ. They are given by

σΦ = −Pn
1

2rn
+O(r−1/2

n ) , F =
1

2
Pn sin θndθndφn +O(r−3/2

n ) , as rn → 0 , (2.1)

where (rn = |~x − ~xn|, θn, φn) are standard spherical coordinates centered on the defect.

Here, Pn is a covariantly constant section of the adjoint bundle over the infinitesimal two-

sphere surrounding ~xn. However, by making patch-wise local gauge transformations, we

can conjugate Pn to a constant, valued in the Cartan sub-algebra t. We will assume this

has been done. Pn ∈ t then determines the transition function, g , on the overlap of the

northern and southern patches of the infinitesimal two-sphere, g = exp(Pnφn). Single-

valuedness of the transition function implies exp(2πPn) = 1G, the identity element in G
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and thus, by definition, Pn resides in the co-character lattice ΛG ⊂ t of G. We may think

of the ’t Hooft defect as a Dirac monopole embedded into the gauge group G, where Pn
determines the embedding U(1) ↪→ T ⊂ G of U(1) into a Cartan torus of G. The sign σ in

(2.1) must be the same as the one appearing in the Bogomolny equation, and if we have

multiple defects we must choose the same sign for each in order for solutions to exist.

In [1] we showed how to derive (2.1) from a variational principle. One takes the

standard action for Yang–Mills–Higgs theory in the BPS limit of vanishing potential [18,

19], and adds certain boundary terms localized at the defects. The boundary terms are

chosen so as to render the variational principle well-defined, and this also provides an

explanation of the allowed subleading behavior in (2.1). As a bonus, the boundary terms

in the action imply boundary terms in the Hamiltonian that give a regularized definition of

the energy. With this definition, singular monopole configurations will have finite energy

under precisely the same asymptotic conditions that are imposed on smooth monopoles.

These conditions are

Φ = Φ∞ −
σ

2r
γm +O(r−(1+δ)) , F =

1

2
γm sin θdθdφ+O(r−(2+δ)) , as r →∞ , (2.2)

for any δ > 0 and where (r, θ, φ) are standard spherical coordinates on R3. Here Φ∞, γm are

covariantly constant, commuting sections of the adjoint bundle restricted to the two-sphere

at infinity, but by making patch-wise (global) gauge transformations we may assume them

to be constants valued in the Cartan subalgebra.

The magnetic charge γm determines a transition function g∞ = exp(γmφ) for the G-

bundle restricted to the two-sphere at infinity. As with the case of the ’t Hooft charges,

single-valuedness implies γm ∈ ΛG. In the absence of ’t Hooft defects, the requirement

that this transition function be extendable over all of R3 leads to the stronger quantization

condition that γm is an element of the co-root lattice, γm ∈ Λcr. This is in general a

coarser lattice, and is equal to the co-character lattice when G is simply-connected; we

have ΛG/Λcr
∼= π1(G). When ’t Hooft defects are present we conclude instead that the

difference γ̃m ≡ γm −
∑

n Pn ∈ Λcr.

The moduli space M is the space of gauge equivalence classes of solutions to F =

?D(σΦ) satisfying (2.1) and (2.2):

Mσ

(
(~xn, Pn)Ntn=1; γm; Φ∞

)
:={

(A,Φ)

∣∣∣∣ F = ?D(σΦ) ,
Φ = − σ

2|~x−~xn|Pn +O(|~x− ~xn|−1/2) , ~x→ ~xn ,

Φ = Φ∞ − σ
2|~x|γm +O(|~x|−(1+δ)) , |~x| → ∞

}/
G{Pn} . (2.3)

A comment is due regarding the group of local gauge transformations, G{Pn} . As usual,

these are gauge transformations that go to the identity at infinity. Furthermore we take

them to leave the ’t Hooft charges invariant. If g ∈ G{Pn} and gn is the restriction of g to

the infinitesimal two-sphere surrounding ~xn, then we require the adjoint action of gn on

Pn to leave Pn fixed. See [1] for further details. Although two ’t Hooft charges related by

a Weyl transformation are physically equivalent, it is more convenient to work with fixed

representatives than to define M in terms of Weyl orbits directly. This is what we have

done in (2.3).
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We have defined the space for either choice of sign σ, however one notices that the

definition only depends on the combination σΦ∞. This motivates defining a new Higgs

field:

X := σΦ , (2.4)

in terms of which the definition of the moduli space is

M
(

(~xn, Pn)Ntn=1; γm;X∞

)
:={

(A,X)

∣∣∣∣ F = ?DX ,
X = − 1

2|~x−~xn|Pn +O(|~x− ~xn|−1/2) , ~x→ ~xn ,

X = X∞ − 1
2|~x|γm +O(|~x|−(1+δ)) , |~x| → ∞

}/
G{Pn} . (2.5)

We work mostly with the definitions (2.4) and (2.5) in the remainder of the paper.

In order to determine the dimension ofM, one studies the linear deformation problem

for the Bogomolny equation. For this purpose it is convenient to repackage the gauge and

Higgs field into a four-component gauge field, Âa = (Ai, X). We can define Â = Âadx
a

as a gauge field on a four-dimensional Euclidean space, U × S1, which is invariant under

translation of the circle coordinate x4. We choose the orientation on this four-dimensional

space such that d3x∧dx4 is positive, and we take the metric to be flat, ds2 = dxidx
i+(dx4)2.

Then the Bogomolny equation on U is equivalent to the self-dual instanton equation on

U × S1, ?̂F̂ = F̂ . If δÂ is an infinitesimal deformation, then Âa + δÂa will be a solution

when Âa is, provided the deformation satisfies the linearized equation

D̂[aδÂb] =
1

2
ε cd
ab D̂cδÂd , (2.6)

where D̂ is the covariant derivative with respect to the background solution Â. However,

this deformation will only correspond to a tangent vector δ ∈ T[Â]M, if it is not pure

gauge. In order to formulate this condition it is useful to introduce a metric on the space

of finite-energy field configurations and require δÂa to be orthogonal to infinitesimal gauge

transformations. There is a natural metric that is induced from the flat metric on field

configuration space, with respect to which the gauge orthogonality condition is

D̂aδÂa = 0 . (2.7)

Then the dimension of T[Â]M is given by the number of linearly independent square-

normalizable modes δÂ ∈ L2[U ,R4 ⊗ g] that are simultaneous solutions of (2.6) and (2.7).

This comprises a set of four linearly independent equations that can be repackaged into

a Dirac equation on U as follows. Introduce Euclidean sigma matrices τa = (σi,−i12) and

τ̄a = (σi, i12), where the σi are Pauli matrices. Define the bi-spinor δÂ with components

δÂαβ̇ := (τa)αβ̇δÂa and the Dirac operator L := iτ̄aD̂a. Then one can show that (2.6) and

(2.7) hold if and only if LδÂ = 0. The adjoint of the operator L, acting on the Hilbert

space L2[U ,C2⊗ g], is L† = iτaD̂a. For each ψ ∈ kerL, one gets two solutions to (2.6) and

(2.7) by taking either ψα = δÂα1̇ or ψα = δÂα2̇. One can also show that LL† = −D̂2, a

positive-definite operator, and hence kerL† = kerLL† = 0. It follows that

dimT[Â]M = 2 dim kerL = 2
(

dim kerL− dim kerL†
)

= 2 indL . (2.8)
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In [1] we recalled Weinberg’s computation of the dimension in the case of smooth

monopoles [12, 20] and generalized it to the case with ’t Hooft defects. This uses techniques

of Callias [21] to write the index of L as the integral over U of the divergence of a certain

current, J i, constructed from the Green’s function of a closely related operator. The index

reduces to a sum of boundary terms, one for the asymptotic two-sphere and one each of the

infinitesimal two-spheres surrounding the ’t Hooft defects. Near each of the boundaries,

using the limiting form of the Dirac operator, one can explicitly determine the leading

behavior of the current J i that contributes to the index.

We generalized the computation further, by considering an arbitrary finite-dimensional

representation ρ of G and the Dirac operator

Lρ = iσi ⊗ (∂i + ρ(Ai))− 12 ⊗ ρ(X) . (2.9)

Taking ρ to be the adjoint representation, we recover the operator that is relevant for the

dimension of the moduli space, Lad = L, but Lρ is also a physically interesting operator in

general. If we couple fermions to the Yang–Mills–Higgs theory in a way that is consistent

with N = 2 supersymmetry, Lρ is the operator that controls the spectrum of these fermions

in the background of the (singular) monopole configuration. In particular, L2-normalizable

zero-modes of Lρ play an important role in the semiclassical analysis of such theories

[15, 22–25]. One can again show that kerL†ρ = {0} and thus the dimension of the kernel

of Lρ is given by the index. Geometrically, over each point [Â] ∈ M, kerLρ is a finite-

dimensional vector space. These vector spaces patch together to form a vector bundle,

which is precisely the index bundle of the operator Lρ, [14, 15]. For ρ = ad, and in the

N = 2 theory, the index bundle is isomorphic to the tangent bundle.5

To construct the current that appears in the index theorem, let

Γa =

(
0 τa

τ̄a 0

)
, (2.10)

and define

i /̂Dρ := iΓaρ(D̂a) =

(
0 iτaρ(D̂a)

iτ̄aρ(D̂a) 0

)
=

(
0 L†ρ
Lρ 0

)
. (2.11)

i /̂Dρ is a self-adjoint operator on a dense domain of the Hilbert space L2[U ,C4⊗Vρ], where

Vρ is the representation space for ρ, ρ : G → GL(Vρ). Let Gλ(~x, ~y) be the integral kernel

for the resolvent (i.e. Green’s function),

Gλ :=
(

(i /̂D)ρ + λ
)−1

. (2.12)

Then the current J i is

J iz,ρ(~x, ~y) := i trC4⊗Vρ

{
Γ̄ΓiGi

√
z(~x, ~y)

}
, (2.13)

5This is possible in the N = 2 theory because there is a doublet of fermions that satisfy a reality

condition.
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where Γ̄ = Γ1Γ2Γ3Γ4, and the index theorem takes the form

indLρ = lim
z→0

Iρ(z) , where

Iρ(z) =
1

2

(
lim

r=|~x|→∞
−

Nt∑
n=1

lim
r=|~x−~xn|→0

)∫
S2

volS2r2r̂ · ~Jρ,z(~x, ~x) . (2.14)

The minus sign takes into account the relative orientation of the boundary components of

U , volS2 is the volume form on the unit two-sphere, and we are using a spherical coordinate

system centered on ~x = 0 for the asymptotic sphere and ~x = ~xn for the infinitesimal ones.

The asymptotic term was evaluated by Weinberg [12, 20], and in [1] we evaluated the

terms associated with defects. The final result is expressed purely in terms of the data

({Pn}; γm;X∞).

Let ∆ρ denote the set of weights of the representation ρ and let nρ(µ) denote the

degeneracy of the weight µ ∈ ∆ρ. Then our formula for the index is

indLρ = lim
z→0+

1

2

∑
µ∈∆ρ

nρ(µ)

{
〈µ,X∞〉〈µ, γm〉√
〈µ,X∞〉2 + z

+

Nt∑
n=1

|〈µ, Pn〉|

}
. (2.15)

This formula is derived under the assumption 〈µ,X∞〉 6= 0 for all µ 6= 0. Thus we can

write

indLρ =
1

2

∑
µ∈∆ρ

nρ(µ)

{
sgn (〈µ,X∞〉) 〈µ, γm〉+

Nt∑
n=1

|〈µ, Pn〉|

}
, (2.16)

where we understand the contribution of the zero weight to be zero. The term involving the

asymptotic data (γm;X∞) originates from the asymptotic two-sphere boundary term, while

the term involving Pn originates from the boundary term associated with the infinitesimal

two-sphere surrounding ~xn. Note that
∑

µ∈∆ρ
|〈µ, Pn〉| is the trace of the diagonal matrix

|ρ(Pn)| and is thus Weyl invariant. This is consistent with the fact it is only the Weyl

orbit of Pn that is physical. In particular we are free to replace Pn with P−n in the above

expression.

Now consider the adjoint representation, where the nonzero weights are the roots. X∞
defines a half-space that splits the roots into positive and negative, ∆ = ∆+ ∪∆−, where

α ∈ ∆+ ⇐⇒ 〈α,X∞〉 > 0. Furthermore α ∈ ∆+ ⇐⇒ −α ∈ ∆− and n(α) = 1 for all

roots α. Under these circumstances the expression (2.16) can be replaced with twice the

sum over positive roots, in which case the sgn(〈α,X∞〉) factor can be dropped. Thus for

the dimension we find

dimRM = 2 indL = 2
∑
α∈∆+

{
〈α, γm〉+

Nt∑
n=1

|〈α, P−n 〉|

}

= 2
∑
α∈∆+

{
〈α, γm〉 −

Nt∑
n=1

〈α, P−n 〉

}
= 2

∑
α∈∆+

〈α, γ̃m〉

= 4〈%, γ̃m〉 = 4

rnk g∑
I=1

m̃I . (2.17)
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Here we first replaced Pn with P−n in (2.16) using Weyl invariance and then we noted that

|〈α, P−n 〉| = −〈α, P−n 〉 for all positive roots α. Next we recalled the definition of the relative

magnetic charge, and then the definition of the Weyl vector, % := 1
2

∑
∆+ α. We expanded

γ̃m =
∑

I m̃
IHI and used the property 〈%,HI〉 = 1 for all simple co-roots HI .

More generally, for an arbitrary representation ρ, we showed in [1] that (2.16) can be

written in the form

indLρ =
∑
µ∈∆ρ

〈µ,X∞〉>0

nρ(µ)〈µ, γ̃m〉+

Nt∑
n=1

1

2

∑
µ∈∆ρ

nρ(µ)
(
〈µ, P−n 〉+ |〈µ, P−n 〉|

)
, (2.18)

and this makes it manifest that the index is an integer. In fact we know that (2.16), and

hence (2.18), must be non-negative as well, since kerL†ρ = {0}.
Finally, we note that (2.16) possesses wall-crossing properties, as we vary the Higgs

vev X∞ across walls where 〈µ,X∞〉 = 0 for some weight in the representation ρ. Consider

such a wall and let µa be the (parallel) weights which all define the same wall. As X∞
crosses this wall some quantities sgn(〈µa, X∞〉) change from −1 to +1 and some change

from +1 to −1. Let χa = +1 in the former case and χa = −1 in the latter case. Then the

difference in the index after the wall minus before the wall is

∆ indLρ =
∑
a

χanρ(µa)〈µa, γm〉. (2.19)

This has some interesting physical and geometrical implications and interpretations. If we

are considering matter fermions in a representation ρ, this corresponds to some L2 nor-

malizable modes (i.e. bound states of the fermions coupled to the monopole configuration)

leaving or entering the spectrum. Geometrically, the rank of the index bundle jumps. In

the case of the adjoint representation the rank of the tangent bundle jumps; in other words

the moduli space itself changes.

This concludes our review of [1]. Now we are ready to discuss D-brane realizations

of (singular) monopole configurations, which provide physical insight into the index and

dimension formulae. In addition we will use them to provide a concrete physical realization

of the wall-crossing phenomena just discussed.

3 Monopoles from branes

First let us recall the story for smooth monopole configurations. A more extensive review

of this material can be found in the final chapter of [26]. The simplest and most natural

way to engineer a four-dimensional Yang–Mills–Higgs system in string theory is on the

worldvolume of D3-branes. The actual low energy gauge theory on N coincident D3-

branes is maximally supersymmetric N = 4 super Yang–Mills theory with gauge group

U(N). The field content consists of the gauge field, six adjoint-valued scalars, and four

adjoint-valued Weyl fermions. We take the D3-branes to span spacetime directions xµ,

µ = 0, . . . , 3. When N = 1 we have an Abelian theory and the six scalar fields, Φm,

m = 4, . . . , 9, describe the profile of the D3-brane in the six remaining directions of the
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ten-dimensional spacetime, transverse to the brane. Working classically and on-shell, when

N > 1 it is the N components of each Φm along the Cartan subalgebra that describe the

profiles of the N D3-branes.

Classically we can truncate the N = 4 theory to the Yang–Mills–Higgs system by

restricting consideration to field configurations where the fermions and all but one of the

six scalars are set to zero. We let Φm=4 be the remaining scalar and we set Φ := Φ4. This

is a consistent truncation because there are no source terms in the equations of motion for

the remaining fields that are built purely out of (Aµ,Φ). The vev iΦ∞ ∈ i · tu(N)
∼= RN

determines the asymptotic position of the branes in the x4 direction.6 As Lie algebras,

u(N) ∼= u(1) ⊕ su(N); the physical interpretation of the u(1) component of Φ is that it

represents the position of the center of mass of the brane system along x4. At the level of

the Lagrangian the center of mass factor decouples and we can focus on the su(N) theory

only. However at the level of Lie groups, π : U(1)×SU(N)→ U(N) is an N -fold covering,

and this will be important when we consider magnetic charge lattices below.

Turning to the description of monopoles, consider the simplest case of the Prasad–

Sommerfield solution [19] for a single monopole in su(2) gauge theory. Let H denote the

simple co-root and E± the raising and lowering operators, such that [iH,E±] = ±2E±. We

take the vev to be X∞ = mW
2 H, where mW > 0 denotes the W -boson mass. The solution

is

XPS =

(
mW

2
coth (mW r)−

1

2r

)
H ,

APS = AH +W (−iE+) +W (−iE−) , with

A =
1

2
(±1− cos θ)dφ , W =

mW r

2 sinh (mW r)
e±iφ (−idθ + sin θdφ) , (3.1)

in terms of spherical coordinates with r = |~x − ~x0|, and where the ± refer to the north-

ern/southern patch. The position ~x0 of the monopole gives three moduli; the fourth can

be generated by acting with a global gauge transformation that preserves the asymptotic

Higgs field. Recall that X = σΦ and the sign choice σ is related to whether we consider

monopoles (solutions to F = ?DΦ) or anti-monopoles (solutions to F = − ?DΦ).

The diagonal entries of the two-by-two matrix representation of ΦPS = σXPS describe

the profile of two D3-branes that bend towards each other and touch, as shown on the left

of Figure 1. As we dial up mW the bending becomes sharper and approaches the idealized

picture on the right of Figure 1. This picture suggests an alternative way of thinking about

the monopole, as a D1-string stretched between the D3-branes. Evidence in support of

this picture was provided in [27–29], where it was shown that D1-strings can end on D3-

branes, depositing the appropriate unit of magnetic charge in the D3-brane worldvolume

theory. This point of view was greatly bolstered by Diaconescu [3], who showed that the

BPS equations of the D1-string degrees of freedom are the Nahm equations describing the

6Here we are choosing the origin of the x4 coordinate such that all D3-branes are at x4 = 0 when

Φ∞ = 0. The D3-branes sit at a point in the remaining x5-x9 directions which we can take to be the origin.

Setting the remaining Higgs fields of the N = 4 theory to zero means we do not consider fluctuations in

these directions.
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x1, x2, x3

D3 D3

D1

HbL

Figure 1. Smooth SU(2) mononpole and D1-string idealization.

corresponding monopole in the ADHM–N construction. Deriving the boundary conditions

and jumping data of the Nahm construction from D-branes is subtle and has been discussed

in several works [3, 30–32]. Extensions of the construction to SO and Sp gauge groups

making use of orientifold planes have also been considered [33, 34].

In the following we will simply use the D1-D3 system as a device for gaining intuition

about monopoles and their moduli. For example, motion on the four-dimensional moduli

space of the SU(2) monopole is easy to visualize.7 It is well known that this moduli space is

R3×S1. The R3 factor corresponds to moving the monopole in the three spatial directions;

in the brane picture we are sliding the D1-string along the D3-branes. The fourth modulus

corresponds to the global gauge transformation along the U(1) ⊂ SU(2) preserving the

Higgs field. An electric field is generated in the D3-brane worldvolume theory when this

modulus becomes time-dependent. From the D1-string point of view this corresponds to

exciting fundamental string states along the D1 to produce a dyonic D1-F1 string. This is

consistent with the fact that the endpoint of a fundamental string in the D3-brane acts as

a source of electric charge.

Changing the sign of σ corresponds to interchanging the D3-branes in Figure 1-(a),

and reversing the orientation of the D1-string in Figure 1-(b). A D1-string with opposite

orientation is an anti-D1; if D1-strings represent monopoles then anti-D1-strings represent

anti-monopoles. We could denote this orientation choice by associating an arrow with each

D1-string, but we will not do this since we will only consider brane configurations where

all D1-strings have the same orientation (except in section 8). We will declare that the D1

corresponds to σ = +, so that X = Φ for all D-brane configurations in the following.

7Note that while the gauge theory on the two D3-branes is a U(2) theory, the monopole field configuration

will be valued in su(2) ⊂ u(2) provided we choose the origin of the x4 direction to coincide with the center

of mass position of the D3-branes, and that there is no net charge being deposited on them.
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D3 D3 D3 D3D3

4 3 2 1N

D1

a1a2a3a4+...+aN

HaL

D3 D3 D3 D3D3

4 3 2 1N

D1

HbL

Figure 2. (a) Embedding the Prasad–Sommerfield solution along the simple root α2. (b) Embed-

ding along the (non-simple) root α13 = α1 + α2 + α3. aI denotes the distance between the Ith and

(I + 1)th D3-brane.

We can construct monopole configurations in a higher rank gauge group, G, by em-

bedding the Prasad–Sommerfield solution along a root [12]. Let % : SU(2) ↪→ G such

that

%∗(H) = Hα , %∗(E±) = E±α , (3.2)

for some fixed α ∈ ∆+ ⊂ g∗. The basic idea is to take A = %∗(A
PS) and X = %∗(X

PS) +

∆X∞, where ∆X∞ ∈ t is a constant “correction factor” so that X asymptotes to some

specified X∞ as r → ∞. To determine mW and ∆X∞ note that ∆X∞ must commute

with %∗(A
PS) in order that the Bogomolny equation is satisfied. This leads to a nontrivial

condition coming from the W -bosons that

[E±α,∆X∞] = ±i〈α,∆X∞〉E±α = 0 . (3.3)

Therefore we take

∆X∞ = X∞ −
〈α,X∞〉
〈α,Hα〉

Hα = X∞ −
1

2
〈α,X∞〉Hα , (3.4)

Now we must choosemW so that %∗(X
PS) makes up the difference. Since limr→∞ %∗(X

PS) =
mW

2 Hα, this means we should take mW = 〈α,X∞〉, which is indeed the mass of the W -

boson along root α. In summary we have the following G-monopole solution:

X =

(
1

2
〈α,X∞〉 coth(〈α,X∞〉r)−

1

2r

)
Hα +X∞ −

1

2
〈α,X∞〉Hα ,

A = AHα +W (−iEα) +W (−iE−α) , with

A =
1

2
(±1− cos θ)dφ , W =

〈α,X∞〉r
2 sinh(〈α,X∞〉r)

e±iφ(−idθ + sin θdφ) , (3.5)

with asymptotic Higgs field X∞ and magnetic charge γm = Hα.
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Figure 3. A generic smooth monopole configuration in SU(N) gauge theory with magnetic charge

γm =
∑N−1

I=1 mIHI .

If α is a simple root then the dimension of the moduli space is four, while if α is

non-simple this solution represents a spherically symmetric locus in a higher-dimensional

moduli space corresponding to several fundamental monopoles sitting atop each other.

The D-brane picture of these two situations for gauge group G = SU(N) is extremely

intuitive and is described in Figure 2. Note that positive roots for SU(N) are in one-

to-one correspondence with strings of simple roots, αIJ := αI + αI+1 + · · · + αJ , for

1 ≤ I ≤ J ≤ N − 1. The cases I = J correspond to the simple roots. The fact that

the moduli space is higher-dimensional in the non-simple case is obvious: the D1-string

can break into smaller segments stretching between consecutive D3-branes which can move

independently and carry their own electric charge.

Although we cannot write explicit field configurations, it is easy to draw an intersecting

brane configuration describing a generic point on the moduli space of G = SU(N) Yang–

Mills–Higgs theory with specified asymptotic data (γm;X∞). See Figure 3. Requiring X∞
to be in the fundamental Weyl chamber means that we have an ordering of the D3-branes

going from right (largest x4-value) to left (smallest x4-value). The distance8 between the

Ith and (I + 1)th brane is given by aI := 〈αI , X∞〉. There are mI D1-strings stretching

between these branes, where γm =
∑N−1

I=1 mIHI . The condition that mI ≥ 0, ∀I, in order

for solutions to the Bogomolny equation to exist is also natural: the D1-strings carry an

orientation and all D1-strings should have the same orientation in order for the brane

8Measured in units of the string length.
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configuration to be BPS.

4 Singular monopoles as limits of smooth ones

Singular monopoles—i.e. configurations involving ’t Hooft defects—also have a natural re-

alization via branes. Consider a U(N + 1) configuration with a D1-string stretched from

the Ith to the (N + 1)th brane. If we send the x4-position of the leftmost D3-brane to

minus infinity, the D1-string becomes semi-infinite. It was first pointed out in [4] (in a T-

dual context) that this should produce a singular monopole configuration. This motivated

the construction of some singular SU(2) monopole moduli spaces in [5], where the authors

considered Nahm data for an SU(3) theory with one of the intervals being semi-infinite. In-

tuitively speaking, as the leftmost brane is sent off to infinity the corresponding W -bosons

get infinitely heavy and what’s left, given the form of (3.5), is the Dirac monopole gauge

field and singular Higgs field of an ’t Hooft defect. In addition to taking the limit there

clearly needs to be some sort of projection to a gauge group whose rank is reduced by one.

Using the brane picture as a guide, our goal in this section is to give a precise prescrip-

tion for constructing singular monopole configurations from smooth ones. A subtlety when

defects are present that we will need to address is how to “factor out” the center-of-mass

U(1) to obtain a singular monopole configuration for a simple gauge group G with Lie

algebra g = su(N).

Let us begin by thinking about the brane motion depicted in Figure 4 which corre-

sponds to strongly breaking u(N+1)→ u(N)⊕u(1). We are not interested in the decoupled

u(1) factor corresponding to the gauge and Higgs field on the brane being sent to infinity,

so we project it out. Representing the fields as anti-Hermitian matrices, this corresponds

to the projection C : u(N + 1)→ u(N) given by

UN+1 =

 UN v

−v† w

 C7−−−→ UN , (4.1)

where UN is the N ×N upper left block of the u(N + 1) matrix UN+1. We would like to

relate this to a projection su(N + 1) → su(N). However what we have canonically is an

isomorphism u(N) ∼= u(1)⊕ su(N), defined by

Φ : u(N)
∼=−→ u(1)⊕ su(N) ,

Φ(U) =

(
trN(U)

N
, U − trN(U)

N
· 1N

)
, (4.2)

where trN denotes the trace in the fundamental representation. Thus we can construct a

projection Π′ : u(1) ⊕ su(N + 1) → u(1) ⊕ su(N) by requiring that the following diagram

commute:

u(N + 1)
C //

Φ
��

u(N)

Φ
��

u(1)⊕ su(N + 1)
Π′ // u(1)⊕ su(N) .

(4.3)
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Figure 4. (a): A smooth monopole configuration in su(N + 1) gauge theory. (b): sending the

leftmost D3-brane to x4 = −∞ to produce a singular monopole configuration in su(N) gauge

theory.

We can always start in the lower left corner of (4.3) with an element that has trivial u(1)

component, (0, VN+1) ∈ u(1)⊕ su(N + 1). Mapping to u(n+ 1) with Φ−1, this corresponds

in the brane picture to choosing the center of mass position of the N + 1 D3-branes to be

at x4 = 0, and starting in Figure 4-(a) with no semi-infinite D1-strings. Applying C and

then Φ we find

(0, VN+1)
Π′7−−−−→

(
trN(VN )

N
, VN −

trN(VN )

N
· 1N

)
, (4.4)

where VN is the upper-left N × N block of VN+1. Note that, although we started with

a configuration that had trivial u(1) component in u(N + 1), we will generally have a

nontrivial u(1) component in the reduced theory. In terms of branes, after pulling the

leftmost brane to −∞, the remaining branes generally will carry a net charge. This charge

is due to the resulting semi-infinite D1-strings. There will be no net charge if there were

no D1-strings attached to the leftmost D3-brane to begin with, such that the net charge

on the subsystem of the other N D3-branes was zero.

At the level of local field configurations—i.e. Lie algebras—there is no problem with

simply projecting out the u(1); let us denote this projection p : u(1) ⊕ su(N) → su(N).

Thus we can construct our desired projection map Π : su(N+1)→ su(N), via Π = p◦Π′◦ι,
where ι : su(N + 1) ↪→ u(1)⊕ su(N + 1) is the inclusion map. It acts according to

VN+1 =

 VN v

−v† − trN(VN )

 Π7−−−→ VN −
trN(VN )

N
· 1N . (4.5)

An equivalent characterization of this map is as follows. Given a root decomposition of

su(N+1) in terms of raising and lowering operators E±α, let ∆heavy denote the set of those

roots that have αN in their expansion in the basis of simple roots:

∆heavy =

{
α ∈ ∆

∣∣∣∣ α =
∑
I

nIαI with nN > 0

}
⊂ ∆ . (4.6)
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Furthermore let hN ∈ t denote the magnetic weight dual to αN , such that 〈αI , hN 〉 = δI
N .

Then we define the projection map by its action on the Eα and its action on the Cartan

subalgebra:

Π(Eα) =

{
Eα , α /∈ ∆heavy

0 , α ∈ ∆heavy
; Π(H) = H − (hN , H)

(hN , hN )
hN , ∀H ∈ t . (4.7)

It is straightforward to check that the definitions (4.5) and (4.7) are equivalent for

su(N + 1) → su(N). The second definition is perhaps more physical. In particular the

projection onto the space orthogonal to hN in t may be viewed as a projection onto the

space orthogonal to the component of the asymptotic Higgs field that is becoming infinite.

This is because we can always write X∞ =
∑

I〈αI , X∞〉hI , and we recall that the 〈αI , X∞〉
have the physical interpretation as the distance between the Ith and (I+1)th D3-brane. The

second definition also clearly generalizes to any compact simple g, where αN → αheavy ∈ ∆,

some fixed root along which the Higgs vev will get an infinitely large component. In this

case we denote the projection Π : g→ ǧ. We generally use a “ˇ” to distinguish quantities

in the reduced theory.

Note that the map Π is not a Lie algebra homomorphism: Π([V, V ′]) 6= [Π(V ),Π(V ′)].

This is easiest to see from (4.5). Π([V, V ′]) will have pieces originating from vv† that are not

present in [Π(V ),Π(V ′)]. This is not necessarily a problem because the projection is only

part of the operation that we must perform to construct a singular monopole configuration

from a smooth one. We additionally have to take the limit 〈αN , X∞〉 → −∞. For the field

configurations (A,X) we are applying the map to, this is equivalent to sending v → 0, since

v represents the W -bosons that are becoming infinitely massive. Hence in this case the

combined projection and limiting procedure does produce a Lie algebra homomorphism

su(N + 1) → su(N). We will use this method to construct several examples of singular

monopole configurations from smooth ones in the following sections.

First, however, we must discuss global issues associated with the analogous projection

at the Lie group level. This is important because both the ’t Hooft charge and asymptotic

charge of a singular monopole configuration sit in lattices that are sensitive to the global

structure of the Lie group. As we mentioned previously U(1)×SU(N) is a ZN covering of

U(N). The central extension

1→ ZN → U(1)× SU(N)
π−→ U(N)→ 1 , (4.8)

does not split: the N -fold covering is nontrivial and there is no way to “factor out” the U(1)

from U(N) and recover SU(N). What we get instead is PU(N) := U(N)/U(1), which is

isomorphic to PSU(N) := SU(N)/ZN . At the level of Lie algebras Φ : u(1) ⊕ su(N)
∼=−→

u(N) exponentiates to a homomorphism Φ̂ : U(1)×SU(N)→ U(N). The inverse image of

the U(1) subgroup of U(N) of scalar matrices is a nontrivial N -fold covering with elements

in SU(N). “Factoring out the U(1)” corresponds to descending that homomorphism to an

isomorphism (U(1)× SU(N))/U(1) ∼= PSU(N) ∼= U(N)/U(1). Although one can “factor

out” the Lie algebra summand u(1) in the field configurations this is not possible for the

transition functions of the bundles, and hence the appropriate gauge group associated with
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singular monopole configurations constructed from the projection and limiting procedure

described above is Ǧ = PSU(N).

One can quickly see that this is indeed the case by considering a simple example.

Suppose we start with a configuration consisting of N + 1 D3-branes and a single D1-

string stretched between the two leftmost branes. In terms of the su(N + 1) theory this

configuration has asymptotic magnetic charge γm = HN . We apply the projection map

(4.7) using the normalization of the Killing form (A,B) = − trN+1(AB) for g = su(N +1).

Since ihN = (N + 1)−1 diag(1, . . . , 1,−N), we have (hN , HN ) = 1 and (hN , hN ) = N/(N +

1). Thus

Π(HN ) = HN −
N + 1

N
hN

= HN −
1

N
(H1 + 2H2 + · · ·NHN )

= − 1

N
H1 −

2

N
H2 − · · · −

N − 1

N
HN−1

= − ȟN−1 , (4.9)

where in the last step we introduced the (N − 1)th magnetic weight for su(N). Thus

Π(HN ), which is both the ’t Hooft and asymptotic magnetic charge in this example, sits in

the magnetic weight lattice of su(N), which is the co-character lattice of the adjoint group,

Π(HN ) ∈ ΛPSU(N).

It is well known that specifying a gauge group G and the dynamical field content does

not fully define a Yang–Mills theory. Rather, one must also specify the allowed defects in

the theory. The distinction between theories based on line defects was recently emphasized

in [35, 36]. For the various theories based on groups whose universal cover is SU(N) one

can define the distinct theories using the brane pictures we are using in this section. The

distinction between the theories emerges from different consistent ways of factoring out the

U(1) center of mass degree of freedom. (These are based on different consistent sets of

semi-infinite F1-D1 dyonic strings defined by defining zm, the sum of the magnetic charges

modulo N together with ze, the sum of the electric charges modulo N , and choosing a

maximal Lagrangian subgroup of ZN ⊕ZN with elements (ze, zm).) It would be interesting

to discuss the semiclassical framed states in this general class of theories, but in this paper

we will limit our scope to the pure ’t Hooft defects. Hence the relevant PSU theory, in the

notation of [36], is the (PSU)0 theory.

Now we are ready to apply the projection and limiting procedure discussed above to

construct some singular monopole configurations from smooth ones. The usefulness of this

procedure is that it has a clear interpretation in terms of branes (Figure 4). Thus we can

read off from the picture what the dimension of the singular monopole moduli space should

be, and compare this with what we get by applying the dimension formula.

5 Smooth to singular for SU(3)→ PSU(2)

We begin with the simplest possible set of nontrivial examples, taking g = su(3). Let

{H1, H2} denote the basis of simple co-roots for the Cartan subalgebra. There are raising
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Case 1 Case 2 Case 3

SUH3L
b ® ¥ a

H1aL H2aL H3aL

PSUH2L
a

H1bL H2bL H3bL

Figure 5. Three cases of the smooth → singular limit for SU(3)→ PSU(2). In case 1 we obtain

a smooth monopole in the reduced theory, in case 2 we obtain a pure ’t Hooft defect, and in case

3 we obtain a smooth monopole sitting on top of a pure ’t Hooft defect.

and lowering operators for the corresponding simple roots, E±α1 , E±α2 , as well as raising

and lowering operators for the non-simple root α1 + α2, E±(α1+α2). We have 〈α1, H1〉 =

〈α2, H2〉 = 2, while 〈α1, H2〉 = 〈α2, H1〉 = −1. Let a, b ∈ R+ parameterize the Higgs vev

as follows:

X∞ =
1

3
(2a+ b)H1 +

1

3
(a+ 2b)H2 = ah1 + bh2 = − i

3

 2a+ b 0 0

0 −a+ b 0

0 0 −a− 2b

 ,

(5.1)

where in the last step we expressed the vev in the fundamental representation. We have

〈α1, X∞〉 = a , 〈α2, X∞〉 = b , (5.2)

such that a corresponds to the distance between the center and right D3-brane and b

corresponds to the distance between the center and left D3-brane. We will be taking the

limit b→∞. We consider each of the three cases in Figure 5 in turn.

5.1 case 1: γm = H1

The first step is to write down the appropriate smooth monopole configuration correspond-

ing to Figure 5-(1a). This requires (3.4) and (3.5) with α = α1 and X∞ given by (5.1).

We find ∆X∞ = 1
6(a + 2b)(H1 + 2H2), which satisfies 〈α1,∆X∞〉 = 0 as it should. The
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monopole configuration is

X =

(
a

2
coth(ar)− 1

2r

)
H1 +

1

6
(a+ 2b)(H1 + 2H2) ,

A = AH1 +W (−iEα1) +W (−iE−α1) , with

A =
1

2
(±1− cos θ)dφ , W =

ar

2 sinh(ar)
e±iφ(−idθ + sin θdφ) . (5.3)

The next step is the projection, (4.7). We have (h2, H1) = 0, (h2, H2) = 1, and

(h2, h2) = 2/3. Thus acting on the co-roots we find

Π(H1) = H1 , Π(H2) = H2 −
3

2
· 1

3
(H1 + 2H2) = −1

2
H1 . (5.4)

It follows that the projected fields in this case are

Π(A) = A , Π(X) =

(
a

2
coth(ar)− 1

2r

)
H1 . (5.5)

The final step, sending b → ∞, is trivial in this case. This field configuration, with A

given in (5.3), is simply the Prasad–Sommerfield solution, (3.1). In particular we get a

smooth monopole configuration rather than a singular one. This is consistent with the

brane picture, Figure 5-(1b), where there are no semi-infinite D1-strings.

5.2 case 2: γm = H2

The smooth monopole field configuration corresponding to Figure 5-(2a) can be obtained

from the previous one by interchanging a↔ b and the labels 1↔ 2. The result is

X =

(
b

2
coth(br)− 1

2r

)
H2 +

1

6
(2a+ b)(2H1 +H2) ,

A = AH2 +W (−iEα2) +W (−iE−α2) , with

A =
1

2
(±1− cos θ)dφ , W =

br

2 sinh(br)
e±iφ(−idθ + sin θdφ) . (5.6)

We apply the same projection map as before. This time the W-bosons are eliminated.

Using (5.4) we find

Π(X) =

(
b

4
− b

4
coth(2br) +

1

4r

)
H1 +

a

2
H1 ,

Π(A) = A
(
−1

2
H1

)
= −1

4
(±1− cos θdφ)H1 . (5.7)

This configuration is not a solution to the Bogomolny equation; however, we have yet

to take the limit b→∞. Doing so, we find the solution

lim
b→∞

Π(X) =
1

4r
H1 +

a

2
H1 , lim

b→∞
Π(A) = −1

4
(±1− cos θdφ)H1 . (5.8)
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This is a ǧ = su(2) field configuration with ’t Hooft defect boundary conditions at the

origin. The ’t Hooft charge and asymptotic magnetic charge are both given by

P̌ = −1

2
H1 = γ̌m . (5.9)

As expected, this charge is not in the co-character lattice of SU(2) (which is equivalent to

the co-root lattice), but it is in the co-character lattice of PSU(2) ∼= SO(3).

Let us apply the dimension formula (2.17). This is an example of a Cartan-valued

solution where the asymptotic magnetic charge is in the anti-fundamental Weyl chamber:

γ̌m = P̌ = P̌−. Hence the relative charge is trivial, ˇ̃γm = 0, and the dimension of the

moduli space is zero. This is consistent with the brane picture; there are no mobile D1-

string segments present in Figure 5-(2b).

5.3 case 3: γm = H1 +H2

The moduli space of smooth monopoles in su(3) gauge theory with magnetic charge γm =

H1 + H2 is eight-dimensional, and the metric is explicitly known [37]. Two directions

correspond to global U(1) × U(1) ⊂ SU(3) gauge transformations, while the remaining

six directions are associated with the position of the two fundamental monopoles. This is

captured in the brane picture of Figure 5-(3a) by the fact that there are two finite D1-string

segments that can move and carry excited F1-string states independently.

As far as we are aware, the field configuration corresponding to a generic point on

this moduli space has not been written down, although it could apparently be extracted

from either the twistor analysis of [38, 39], or the ADHM–N analysis of [40]. It would be

interesting to do so and then apply our projection and limiting procedure to the result.

This should yield the explicit field configuration obtained in [41], describing one smooth

su(2) monopole in the presence of an ’t Hooft defect. Here we will content ourselves to

study the special four-dimensional sublocus of spherically symmetric solutions obtained by

embedding the Prasad–Sommerfield solution along the root α1 + α2. In the brane picture

this corresponds to aligning the two D1-string segments as depicted in Figure 5-(3a). For

this special situation we find the embedded solution

X =

(
a+ b

2
coth((a+ b)r)− 1

2r

)
(H1 +H2) +

1

6
(a− b)(H1 −H2) ,

A = A(H1 +H2) +W (−iEα1+α2) +W (−iE−(α1+α2)) , with

A =
1

2
(±1− cos θ)dφ , W =

(a+ b)r

2 sinh((a+ b)r)
e±iφ(−idθ + sin θdφ) . (5.10)

Applying the projection and taking the b→∞ limit yields the ǧ = su(2) Cartan-valued

solution

lim
b→∞

Π(X) = (a− 1

4r
)H1 , lim

b→∞
Π(A) =

1

4
(±1− cos θdφ)H1 . (5.11)

The ’t Hooft and asymptotic magnetic charge,

P̌ = γ̌m =
1

2
H1 , (5.12)
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Figure 6. Two cases of the smooth → singular limit for SU(N + 1) → PSU(N). In case 1 we

obtain a smooth (in general composite, if J > I+ 1) monopole, while in case 2 we obtain a singular

monopole configuration.

are again in the co-character lattice of PSU(2). In this case however P̌ is not in the anti-

fundamental Weyl chamber and the relative charge is non-zero: ˇ̃γm = γ̌m − P̌− = H1.

Note that ˇ̃γm ∈ Λcr as expected. The dimension formula states that there should be a

four-dimensional tangent space at this point in moduli space. This is confirmed by the

brane picture of Figure 5-(3b), as there is one remaining finite-length D1-string segment.

The spherically symmetric solution we have written corresponds to the special point in

moduli space where the finite length and semi-infinite D1-string segments are aligned.

It is worth noting that the ’t Hooft charges obtained in the previous two examples,

P̌ = ±1
2H1, are related by a Weyl transformation and thus represent the same physical

defect. However two asymptotic charges related by a Weyl transformation are not physi-

cally equivalent (if we hold the Higgs vev fixed), and therefore the two configurations are

physically distinct.

6 Smooth to singular for SU(N + 1)→ PSU(N)

Now that we have seen how things work in the simplest example, let us be slightly more

general. We will start with the system of N + 1 D3-branes and pull the leftmost brane off

to x4 = −∞, considering various choices for D1-string configurations. Let aI = 〈αI , X∞〉 ∈
R+, I = 1, . . . , N , denote the separation between the Ith and (I + 1)th brane. We also

denote the leftmost separation b ≡ aN , which will be sent to infinity.

The components of the Cartan matrix for su(N + 1) are CIJ := 〈αI , HJ〉. Thus,

denoting the components of the inverse of the Cartan matrix by CIJ , the asymptotic Higgs
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vev is

X∞ =
N∑
I=1

aIh
I =

N∑
I,J=1

CIJaIHJ . (6.1)

The Higgs field is acquiring an infinite component along the direction in t spanned by the

N th fundamental magnetic weight,

hN =
N∑
J=1

CNJHJ =
1

N + 1
(H1 + 2H2 + · · ·NHN ) =

−i
N + 1


1 0 · · · 0

0 1 0 · · · 0
...

. . .
...

1 0

0 · · · 0 −N

 .

(6.2)

We also recall that the full set of positive roots is given by ∆+ = {αIJ :=
∑J

K=I αK , for 1 ≤
I ≤ J ≤ N}, with αII = αI the simple roots. We denote the corresponding co-roots

HIJ := HαIJ . Indices Ǐ , J̌ will run over the values 1, . . . , N − 1.

We will consider two types of magnetic charge. In the first case we take γm = HǏJ̌ ,

a co-root that does not contain HN in its decomposition, corresponding to the brane

configuration depicted in Figure 6-(1a). In this case we expect the projection and limiting

procedure to produce a smooth monopole in the reduced theory. In the second case we

take γm = HIN , a co-root that does contain HN , corresponding to the brane configuration

depicted in Figure 6-(2a). Here we expect to obtain a singular monopole configuration.

In both of these cases we are considering magnetic charges that have all mI equal to

zero or one. Again the metric on moduli space is explicitly known for such configurations

[37], and although explicit field configurations representing a generic point on the moduli

space have not been written down, it should be possible to obtain them via the Nahm

transform [40]. Our reason for choosing charges of this type is that the moduli space has

a locus of spherically symmetric solutions where the field configurations are obtained by

embedding the SU(2) solution along the root.

In the last part we will discuss the most generic brane configuration describing a

PSU(N) singular monopole, where it is not possible to write explicit field configurations.

We will discuss how to appropriately assign ’t Hooft and asymptotic magnetic charges, and

compare the quaternionic dimension of the moduli space computed from these charges with

the number of mobile D1-string segments.

6.1 case 1: γm = HǏJ̌

This is the situation depicted in Figure 6-(1). The field configuration when all fundamental

monopoles are coincident (all D1-string segments are aligned) is

X =

(
aǏJ̌
2

coth(aǏJ̌r)−
1

2r

)
HǏJ̌ +X∞ −

aǏJ̌
2
HǏJ̌ ,

A = AHǏJ̌ +W (−iEαǏJ̌ ) +W (−iE−αǏJ̌ ) , where

A =
1

2
(±1− cos θ)dφ , W =

aǏJ̌r

2 sinh(aǏJ̌r)
e±iφ(−idθ + sin θdφ) , (6.3)
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where aǏJ̌ := 〈αǏJ̌ , X∞〉 = aǏ + · · ·+ aJ̌ . For the projection we note that (hN , HǏ) = 0, so

Π(HǏJ̌) = HǏJ̌ . The W -bosons also survive since αǏJ̌ /∈ ∆heavy. Therefore the projection

only acts nontrivially on the vev, X∞. Using (6.1) and (4.9) we have

Π(X∞) =

N∑
I,J=1

CIJaIΠ(HJ) =

N∑
I,J=1

CIJaIHJ −
N + 1

N

N∑
I=1

CINaIh
N

=
N∑

I,J=1

(
CIJ − N + 1

N
CINCNJ

)
aIHJ

=
N−1∑
Ǐ,J̌=1

(
C ǏJ̌ − N + 1

N
C ǏNCNJ̌

)
aǏHJ̌ =

N−1∑
Ǐ,J̌=1

Č ǏJ̌aǏHJ̌ ≡ X̌∞ . (6.4)

In going from the second to the third line we noted that, since CNN = N/(N+1), all terms

with either I = N or J = N drop out. We then observed that the quantity in parentheses

is simply the inverse of the Cartan matrix for SU(N). The reduced Higgs vev, X̌∞, is

in the fundamental Weyl chamber of ť, the Cartan subalgebra of su(N), since aǏ ∈ R+.

Hence the result of applying the projection is simply

Π(A) = A , Π(X) =

(
aǏJ̌
2

coth(aǏJ̌r)−
1

2r

)
HǏJ̌ + X̌∞ −

aǏJ̌
2
HǏJ̌ . (6.5)

Note that all dependence on b = aN has dropped out so the limit is trivial. The configu-

ration (6.5) is precisely the smooth field configuration one gets by embedding the Prasad–

Sommerfield solution into an SU(N) gauge theory with asymptotic Higgs vev X̌∞ along

the root α̌ǏJ̌ = αǏJ̌ , and this is what one expects from the brane picture.

6.2 case 2: γm = HIN

This corresponds to the brane configuration depicted in Figure 6-(2). A special case is

when I = N so that γm = HN ; this is the analog of γm = H2 in the previous section and

was discussed around (4.9).

The field configuration for the spherically symmetric solution is

X =

(
aI,N−1 + b

2
coth ((aI,N−1 + b))− 1

2r

)
HIN +X∞ −

aI,N−1 + b

2
HIN ,

A = AHIN +W (−iEαIN ) +W (−iE−αIN ) , where

A =
1

2
(±1− cos θ)dφ , W =

(aI,N−1 + b)r

2 sinh ((aI,N−1 + b)r)
e±iφ(−idθ + sin θdφ) , (6.6)

where aI,N−1 = aI + · · · + aN−1 for I < N and is equal to zero if I = N . In this case

αIN ∈ ∆heavy so the W -bosons are eliminated by the projection. The other new element

we need is

Π(HIN ) = Π(HI) + · · ·+ Π(HN ) =
N∑
J=I

HJ −
N + 1

N

N∑
J=1

CNJHJ

=

N−1∑
J̌=I

HJ̌ −
N−1∑
J̌=1

Č(N−1)J̌HJ̌ = HI(N−1) − ȟN−1 , (6.7)
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where HI(N−1) is zero if I = N . Terms involving HN have cancelled out, so Π(HIN ) only

depends on the first N − 1 simple co-roots, which we identify with the simple co-roots of

su(N): HǏ = ȞǏ . Thus the projected fields are

Π(X) =

[
aI,N−1 + b

2
coth ((aI,N−1 + b)r)− 1

2r
−
aI,N−1 + b

2

]
Π(HIN ) + X̌∞ ,

Π(A) = A Π(HIN ) . (6.8)

The b→∞ limit exists and is given by

lim
b→∞

Π(X) = − 1

2r
Π(HIN ) + X̌∞ , lim

b→∞
Π(A) = A Π(HIN ) . (6.9)

This is a Cartan-valued field configuration with line defect boundary conditions, with

’t Hooft and asymptotic magnetic charge

P̌ = γ̌m = Π(HIN ) . (6.10)

Let us apply the dimension formula (2.17):

dimR T[Â]M = 2
∑
α̌∈∆̌+

(
〈α̌, γ̌m〉+ |〈α̌, P̌ 〉|

)
=
∑
α̌∈∆̌+

〈α̌,P̌ 〉>0

4〈α̌, P̌ 〉 . (6.11)

We compute the pairing 〈α̌, P̌ 〉 for a generic positive root α̌ = α̌J̌Ǩ , 1 ≤ J̌ ≤ Ǩ ≤ N − 1,

using the identity [iP̌ , Ěα̌] = 〈α̌, P̌ 〉Ěα̌ and working in the fundamental representation.

From (6.7), the matrix components of P̌ in the fundamental representation are obtained

from those of the co-root ȞI(N−1) and the magnetic weight ȟN−1. The co-root iȞI(N−1)

is a diagonal matrix with zeros everywhere except for a one on the Ith diagonal entry

and a minus one on the N th diagonal entry. The magnetic weight has the form iȟN−1 =

N−1 diag(1, . . . , 1,−(N − 1)). Thus

(iȞI(N−1))mn = δImδIn − δNmδNn , (iȟN−1)mn =
1

N
δmn − δNmδNn . (6.12)

The matrix representation of the raising operator Ěα̌J̌Ǩ corresponding to the root α̌J̌Ǩ
has a single non-zero entry in the J̌-(Ǩ + 1) slot: (Ěα̌J̌Ǩ )mn = δJ̌mδ(Ǩ+1)n. A short

computation shows(
[iȞI(N−1), Ěα̌J̌Ǩ ]

)
mn

= (δIJ̌ − δI(Ǩ+1) + δ(Ǩ+1)N )δJ̌mδ(Ǩ+1)n ,(
[iȟN−1, Ěα̌J̌Ǩ ]

)
mn

= (δ(Ǩ+1)N )δJ̌mδ(Ǩ+1)n . (6.13)

Hence

〈α̌J̌Ǩ , ȞI(N−1)〉 = (δIJ̌ − δI(Ǩ+1) + δ(Ǩ+1)N ) , 〈α̌J̌Ǩ , ȟ
N−1〉 = δ(Ǩ+1)N , (6.14)

and therefore

〈α̌J̌Ǩ , P̌ 〉 = δIJ̌ − δI(Ǩ+1) . (6.15)
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Figure 7. The general configuration involving a single ’t Hooft defect at ~x0 with generic

’t Hooft charge, and some number of smooth monopoles. The D1-strings comprising the defect

have been artificially separated for clarity, but should be thought of as occupying the same point

in R3.

We are interested in those α̌J̌Ǩ for which this is a positive quantity. This will be the

case if and only if J̌ = I. (Note it is not possible to have J̌ = Ǩ + 1.) In particular, if

I = N there are no roots for which this is the case, while if I < N there are precisely

N − I such roots: α̌IǨ , with Ǩ ∈ {I, . . . , N − 1}. Each of these roots contributes four to

the dimension, (6.11), so we conclude that

dimR T[Â]M = 4(N − I) . (6.16)

In particular if I = N the dimension is zero. This result is consistent with the brane

picture, Figure 6-(2b), where we see that there are N − I D1-string segments that can

move independently.

6.3 The generic configuration

Finally let us consider the most generic configuration resulting in a single ‘t Hooft defect

and an arbitrary number of smooth monopoles of each type. In the su(N+1) theory we let

p1 D1-strings stretch between the first and last D3-brane, p2 between the second and last,

etc, up to pN stretched between the last two D3-branes. All of these strings are taken to be

coincident with respect to the R3 spanned by D3-branes. When we send the x4-position of

the last D3-brane to −∞ they will be responsible for creating the ’t Hooft defect. We also

let kǏ additional D1-strings stretch between the Ǐth and (Ǐ + 1)th D3-brane at arbitrary

positions in R3, for 1 ≤ Ǐ ≤ N − 1. See Figure 7.
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Although we cannot write down the explicit fields corresponding to this brane con-

figuration, it is clear that the projection and limiting procedure will produce a singular

monopole configuration with one ’t Hooft defect in the PSU(N) theory. The ’t Hooft charge

of the defect can be obtained by applying the projection to the magnetic charge generated

by the D1-strings that are becoming semi-infinite. Let us denote this charge γsi
m; it is given

by

γsi
m =

N∑
I=1

pIHIN , (6.17)

where recall HIN = HI +HI+1 + · · ·HN . The projection, using (6.7), is

P̌ = Π(γsi
m) =


N−1∑
Ǐ=1

pǏ
(
HǏ(N−1) − ȟ

N−1
)− pN ȟN−1 , (6.18)

or in other words,

P̌ =
N−1∑
Ǐ=1

(pǏ − p̄)ȞǏ(N−1) , where p̄ :=
1

N

N∑
I=1

pI . (6.19)

The asymptotic charge will be the projection of the total initial charge, which is the semi-

infinite charge plus the extra
∑

Ǐ k
ǏHǏ . Since Π(HǏ) = HǏ , 1 ≤ Ǐ ≤ N − 1, we have

γ̌m = P̌ +

N−1∑
Ǐ=1

kǏHǏ . (6.20)

Knowing the charges is sufficient to determine the dimension of the moduli space (since

X̌∞ is in the fundamental Weyl chamber by construction). We have

dimR T[Â]M = 2
∑
α̌∈∆̌+

(
〈α̌, γ̌m〉+ |〈α̌, P̌ 〉|

)
= 4

N−1∑
Ǐ=1

kǏ +
∑
α̌∈∆̌+

〈α̌,P̌ 〉>0

4〈α̌, P̌ 〉 . (6.21)

Now consider 〈α̌J̌Ǩ , P̌ 〉 for some root with 1 ≤ J̌ ≤ Ǩ ≤ N − 1. With the aid of (6.14)

and (6.15) we find

〈α̌J̌Ǩ , P̌ 〉 = pJ̌ − pǨ+1 . (6.22)

Four times this quantity contributes to the dimension, but only if it is positive. We have

dimR T[Â]M = 4

N−1∑
Ǐ=1

kǏ + 2

N−1∑
J̌=1

N−1∑
Ǩ=J̌

(
pJ̌ − pǨ+1 + |pJ̌ − pǨ+1|

)
. (6.23)

This is our final result for the generic configuration and it is perhaps somewhat unex-

pected. In particular, to determine the contribution to the dimension from the D1-strings

associated with the defect, we do not simply count the number of finite length segments

that could naively be broken off based on the picture9 of Figure 7. Rather, for each ordered

9This would have been
∑
Ǐ(N − Ǐ)pǏ .
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pair of D3-branes, labeled by (J̌ , Ǩ + 1), we must compare the number of D1-strings origi-

nating on the J̌ th brane and the number originating on the (Ǩ + 1)th brane. If the former

is larger then the difference adds to the quaternionic dimension of the moduli space, while

if they are equal or the latter is larger, there is no contribution to the dimension.

Although this seems at first puzzling from the point of view of the brane picture, we

note that the result is perfectly consistent with our analysis of the Cartan-valued solutions

in [1]. As an extreme example, consider the case where p1 ≤ p2 ≤ · · · ≤ pN . Then we would

get no contribution to the dimension from the pI since 〈α̌, P̌ 〉 ≤ 0 for all positive roots

α̌. However this is precisely what we expect from [1] since such an ’t Hooft charge is in

the anti-fundamental Weyl chamber, and corresponds to a “pure” defect. In the following

section we interpret this result from the point of view of the branes. We are naturally led

to the notions of monopole extraction and bubbling.

7 Stuck branes, monopole extraction, and monopole bubbling

In this section we are only considering the reduced theory, after the projection and limiting

procedure, so we will drop the convention of puttingˇ’s on everything. Let us consider the

simplest scenario in which the naive counting of mobile brane segments gives a different

answer from the dimension formula: two D3-branes with p1 D1-strings coming in from

x4 = −∞ and ending on the right brane and p2 ≥ p1 D1-strings ending on the left brane.

See Figure 8-(a). Our methods above indicate that this configuration has asymptotic

magnetic charge and ’t Hooft charge

γm = P = p1H − (p1 + p2)h = (p1 − p2)h , (7.1)

where we used the relation H = 2h between the co-root and magnetic weight of the PSU(2)

theory. For any p2 ≥ p1 this is in the closure of the anti-fundamental Weyl chamber and

hence the dimension formula gives zero for the dimension of the moduli space.

We are led to the interpretation that the p1 D1-string segments stretching between the

two branes are “stuck,” and cannot break off from their semi-infinite continuations on the

other side of the left D3-brane.10 Intuition for this phenomenon is obtained by recalling

that these pictures of orthogonal rigid branes are an idealization of what really happens.

In this simple situation we can understand the brane bending precisely by writing down

the Cartan-valued Higgs field. For the purposes of visualization it is better to work with

the u(2)-valued configuration, which takes the form

X =

(
x1 − p1

2r 0

0 x2 − p2

2r

)
. (7.2)

This corresponds to the brane bending shown in Figure 8-(b); x1 > x2 as in the figure.

Observe that the world-volume of the right brane never touches that of the left brane as

long as p1 ≤ p2. Unlike the picture shown in Figure 1, the two branes never meet. The p1

10At the end of this section we will comment on the possibility of “un-sticking” stuck branes through the

process of monopole bubbling.
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Figure 8. (a) D1-string idealization of a u(2) ’t Hooft defect with charges (p1, p2) = (1, 3). (b)

The actual bending of the D3-branes as determined by the Higgs field configuration.

semi-infinite D1-strings originating on the right D3-brane never intersect the left D3, but

rather extend down the throat created by the p2 strings originating on the left brane.11 A

similar picture was employed by Gaiotto and Witten in Figure 11 of [11].

Now consider the situation p1 > p2, so that the dimension formula gives a dimension

for the moduli space of 4(p1 − p2). When p1 > p2 the brane world-volumes collide; see

Figure 9-(a). In this region the local value of the su(2) Higgs field (the separation between

the branes) is small and massless monopoles can be produced, represented by infinitesimal

length D1-strings connecting the D3-branes. The dimension formula suggests that p1 − p2

D1-strings should be able to escape the throat region and become macroscopic as depicted in

Figure 9-(b). The resulting configuration would have p1−p2 finite length D1 segments which

could move freely and independently and an ’t Hooft defect with U(2) charge (p′1, p′2) =

(p2, p1), or PSU(2) charge P ′ = 1
2(p2 − p1)H. Since p2 < p1 this new ’t Hooft charge is in

the anti-fundamental Weyl chamber and thus there are no degrees of freedom associated

with the defect; all are accounted for by the smooth mobile monopoles.

11The more accurate throat—or “BIon”—picture [9, 10] of Figure 8-(b) can be reproduced from the

D1-string point of view by considering the non-Abelian DBI action for multiple D1-strings [42].
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Figure 9. (a) When p1 > p2, the brane worldvolumes intersect. (b) Infinitesimal length D1-strings

can be created at the intersection and a maximum number of p1 − p2 can escape the throat region.

Figure 9-(b) is of course only a cartoon of what really happens; when the p1 − p2 D1-

strings are in the throat region it would be more appropriate to represent them as some

localized bending of branes. However there are good reasons to think that this picture is

qualitatively correct. The initial and final ’t Hooft charges of the defect are related by a

Weyl reflection. Thus, by making a local gauge transformation on the field configuration

representing Figure 9-(a), we can view it as a field configuration with the same defect

charge as Figure 9-(b). The asymptotic magnetic charge stays the same throughout the

process, and hence the regularized energy stays the same. The energy required to produce

the massive monopoles as they leave the throat region is obtained by adjusting the shape

of the throat. Since the ’t Hooft and asymptotic data are equivalent, these configurations

represent two points on the same moduli space M(P ; γm;X∞). If the moduli space is

connected as we assume, then there must be a path with these two configurations as its

endpoints.12

12Again, since the branes depicted in Figure 9-(b) are merely a cartoon of a Higgs field configuration

solving the Bogomolny equation, we can not say precisely which point in moduli space this figure corresponds

to. It is thus perhaps more accurate to say that this figure is representative of some region in the moduli

space. This is in contrast to to Figure 9-(a) which represents the Higgs field profile of an actual solution,

namely a Cartan-valued solution, and hence represents a specific point in moduli space.
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In Figure 10 we consider a more complicated example with an initial u(3) defect of

charges (p1, p2, p3) with p2 > p1 > p3. According to (6.23), the quaternionic dimension of

the moduli space receives contributions from two pairs and is given by (p1 − p3) + (p2 −
p3). In Figure 11 we depict two different processes by which this number of finite length

D1 segments can be emitted from the defect. The resulting defect charge is described

by (p′1, p′2, p′3) = (p3, p1, p2) and corresponds to the Weyl representative of the initial

’t Hooft charge in the anti-fundamental Weyl chamber. Again this process can be described

by motion on a moduli space M([P ]; γm;X∞).13 Depending on which path we follow we

pass through different Weyl representatives of [P ] at intermediate stages.

This example can clearly be generalized to understand the general form of (6.23).

Consider an ’t Hooft defect P with corresponding u(N) charges (p1, . . . pN ) as in Figure 7.

Any ordered pair of branes with charges (pI , pJ) such that I < J and pI > pJ will have

intersecting worldvolumes. At such an intersection pI − pJ finite length D1-strings can be

created and moved away from the throat region. We call this monopole extraction. After

all available D1-strings have moved away the remaining defect will be pure with charge in

the anti-fundamental Weyl chamber, P ′ = P−. In terms of U(N) charges, (p′1, . . . , p′N )

will be an increasing sequence of integers. This ’t Hooft charge does not contribute to the

dimension, and in the final configuration (6.23) is fully accounted for by the mobile branes.

The configurations considered in case 3 of Figure 5 and case 2 of Figure 6 can be viewed

as special cases where the initial charges are (p1, p2) = (1, 0) and pJ = δI
J respectively.

Now we can also understand the motivation for the conjecture stating whenM is non-

empty, at least in the case of g = su(N). Recall that this is when the relative charge, γ̃m =

γm −
∑

n P
−
n , is a sum of simple co-roots with non-negative coefficients: γ̃m =

∑
I m̃

IHI ,

with m̃I ≥ 0,∀I. After taking into account the effects of brane bending in the vicinity of

the defects as described above, we see that the coefficients m̃I are precisely the number of

mobile branes between the Ith and (I + 1)th D3-brane.

The processes we have described thus far should not be viewed as monopole bubbling.

In the phenomenon of monopole bubbling an ’t Hooft defect emits or absorbs smooth

monopoles, changing its charge in a physical way—i.e. not by a Weyl transformation. The

moduli spaces before and after the bubbling are different; in particular their dimension is

different. The picture of stuck branes we have developed can also be considered in such

situations, and this leads to some qualitative understanding of monopole bubbling, as we

now explain. A similar description of monopole bubbling within the context of the D3-D1

system has been given in [43].

13Since we defined the moduli space in (2.5) to depend on P and not the Weyl orbit, we should make a

local gauge transformation at each stage to a fixed Weyl representative, say P−, in order to describe this

process as motion on a fixed moduli space.
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p1p2p3

p1

p2p3

initial

p3p1p2

<< p1
-p388p2

-p3

p3

p1p2

p2
-p388 p1

-p3<<

final

Figure 10. A u(3) example with defect charges (p1, p2, p3) = (4, 6, 1). Two different sequences of

brane motion that lead from the initial configuration to the final one can be found in Figure 11

below.
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p1

p2p3

p1
-p3

Sequence 1-a

p1

p2p3

p2
-p3

Sequence 2-a

p3

p2
p1

p1
-p3

p1
-p3

p2
-p1

Sequence 1-b

p1p3
p2

p2
-p3

p1
-p3

Sequence 2-b

p3

p1p2

p1
-p3

p1
-p3

p2
-p1

Sequence 1-c

p3

p1p2 p1
-p3

p2
-p3

Sequence 2-c

Figure 11. Two sequences by which the maximal number of monopoles can be extracted from the

u(3) defect of Figure 10. Either way, in the final configuration we end up with a pure ’t Hooft defect,

p1−p3 D1-strings stretched between the first and second D3-brane, and p2−p3 D1-strings stretched

between the second and third D3-brane. Note in sequence 1-(a) the p1 − p3 D1-strings should be

thought of as infinitesimal strings located at the intersection locus of the left-most and right-most

brane. We have displaced them slightly from this locus for clarity. Similar remarks apply for

sequences 1-(b), 2-(a), and 2-(b).
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Let us return to the U(2) system of Figure 8 and let us assume that p2 ≥ p1 + 2.

Suppose there is a finite length D1-string representing a smooth monopole some distance

from the defect and we send it in towards the defect. With the D1-string at any finite

separation from the defect we expect a four-dimensional moduli space. However if the

D1-string is moved directly on top of the defect, we get a new configuration consisting of

a pure ’t Hooft defect with charge (p′1, p′2) = (p1 − 1, p2 + 1). The process is depicted

in Figure 12. This corresponds to a new su(2) charge that is still in the closure of the

anti-fundamental Weyl chamber and hence the dimension of the new moduli space is zero.

The D1-string we sent in has become stuck. The defect charge has changed and as a

consequence the dimension has changed in a way that is consistent with the description of

monopole bubbling given in [13].

This picture indicates that the lower-dimensional moduli space, in this case a point,

fills in a locus that has been cut out of the higher-dimensional moduli space. The motion

of the D1-string towards the defect can be described as motion towards a boundary of

the four-dimensional space created by the removal of a zero-dimensional submanifold. It

was found in [13] that the lower-dimensional space could be described as the fixed point

locus of an orbifold action on the higher-dimensional space. In the simplest case of one

smooth su(2) monopole in the presence of an SO(3) defect with twice the minimal charge,

(p1, p2) = (0, 2), (or more generally (p1, p2) = (p1, p1 + 2)) one can verify this picture

explicitly using results of Cherkis and Kapustin on the moduli space [5, 7]. They found

that the moduli space for this example is a degenerate two-centered Taub-NUT manifold,

with coincident centers. Sending the smooth monopole towards the defect corresponds to

approaching the nut point, the vicinity of which is an A1 singularity.

In contrast, the moduli space of one smooth su(2) monopole in the presence of a

minimal SO(3) ’t Hooft defect, (p1, p2) = (0, 1), is single-centered Taub-NUT, which is

perfectly smooth at the nut. This is consistent with the brane picture in that the finite-

length D1-string does not get stuck in this case: after sending it in we find an ’t Hooft defect

with (p′1, p′2) = (1, 0) as pictured in Figure 5-(3b). The field configuration of this defect

has a four-dimensional space of zero-modes corresponding to moving the D1-string back

off. The explicit field configurations corresponding to these situations are constructed and

compared in [41].

The general brane picture of Figure 7 suggests that in higher dimensional moduli spaces

this picture persists and is enhanced: there are different types of orbifold loci corresponding

to different types of fundamental monopoles being absorbed by the defect, and there are

loci within loci as multiple monopoles are absorbed. It would be interesting to explore this

rich global structure in more detail, but it is beyond the scope of this paper.

Notice in the example of Figure 12 that, although the initial and final configurations

correspond to points in different singular monopole moduli spaces, the asymptotic charges

of the configurations are the same and hence the regularized energy is the same. This

suggests that the process of the smooth monopole being absorbed by the defect, i.e. the

D1-string becoming “stuck,” should be reversible. An ’t Hooft defect can equally well emit

a smooth monopole, changing in the process the Weyl orbit of its charge. In other words,

stuck branes can become un-stuck. We can understand this possibility from the brane
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p1p2
p1

p2

Initial

p1
+1p2

-1
p1

+1
p2

-1

Final

Figure 12. An example of monopole bubbling in which an ’t Hooft defect of charge (p1, p2) absorbs

a smooth su(2) monopole, resulting in a new ’t Hooft defect of charge (p′
1
, p′

2
) = (p1+1, p2−1). In

the process one moveable brane joins to one of the p2 semi-infinite branes ending at x2 to become

a semi-infinite brane ending at x1.

bending point of view as follows. Although the D3-brane worldvolumes in the right-hand

diagrams of Figure 12 never collide, they do become arbitrarily close to each other as

x4 → −∞. The cost in energy to create a D1-string becomes infinitesimally small as we

go all of the way down the throat. Hence we can think of monopole bubbling as a mobile

D1-string coming up the throat from x4 = −∞.

8 Wall-crossing of the index and brane motion

As we noted below equation (2.19), the index jumps as a function of X∞. In the case

of gauge algebra g = su(N), the brane pictures we have been discussing can be used to
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interpret the jumping behavior. In this case changing X∞ is the same as changing the

asymptotic locations xI of the D3-branes.

8.1 Wall-crossing of the index for smooth monopoles

Let us first consider the case of the adjoint representation, where the index determines the

dimension of the moduli space and corresponds to the number of mobile D1-branes.14 In

this case the index (2.16) is

indL =
∑
α∈∆+

{
sgn(〈α,X∞〉)〈α, γm〉+

Nt∑
n=1

|〈α, Pn〉|

}
, (8.1)

twice which gives the dimension of the moduli space M, when it is non-empty. Let us

further suppose for the moment that there are no ’t Hooft charges present, so that Pn = 0.

Then the condition for the moduli space to be non-empty is that the components of γm

along the basis of simple co-roots determined by X∞ are non-negative, and at least one is

strictly positive.

The index jumps when 〈α,X∞〉 passes through zero and switches sign for some root

α. If we start with a configuration where X∞ is in the fundamental Weyl chamber—as we

have always assumed, and can be arranged by a global gauge transformation—and vary

X∞ continuously, then 〈α,X∞〉 will first go to zero for some simple root α = αI . The

difference in the index after the wall minus before the wall is

∆I indL = −2〈αI , γm〉 = −2
∑
J

CIJm
J , (8.2)

where we plugged in γm =
∑

J m
JHJ . We assume the initial magnetic charge γm is such

that the initial moduli space is non-empty. Then twice (8.2) is the change in dimension

provided that the new moduli space is also non-empty.

To determine whether or not the new moduli space is empty we need to determine the

magnetic charge with respect to the new system of positive co-roots obtained from the new

X∞. The relationship between the new and old X∞ can conveniently taken to be given by

a Weyl reflection about the root αI . If we set

Xnew
∞ = wαI (X

old
∞ ) := Xold

∞ − 〈αI , Xold
∞ 〉HI , (8.3)

this has the required property that sgn(〈αI , Xnew
∞ 〉) = − sgn(〈αI , Xold

∞ 〉) while the signs

for all other positive roots remain the same. This follows from the fact that CIJ ≤ 0 for

I 6= J . Now, if the old and new X∞ are related by a Weyl reflection, then so are the old

and new bases of positive co-roots. It follow that we can determine the components of the

magnetic charge with respect to the new basis by acting with the same Weyl reflection on

the magnetic charge. Here we are simply changing from a passive point of view, where it

is the basis of simple co-roots that is changing, to an active point of view where it is the

asymptotic magnetic charge that is changing relative to a fixed basis. (We should therefore

14Jumping behavior of a related index was observed and analyzed in [44].
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use the inverse Weyl transformation on the magnetic charge, but reflections square to one

so it is the same.) Thus we compute

wαI (γm) =
∑
J

(
mJHJ − CIJmJHI

)
=

(
mI −

∑
J

CIJm
J

)
HI +

∑
J 6=I

mJHJ

≡
∑
J

mJ
newHJ . (8.4)

The coefficient of each simple co-root is required to be non-negative, thus we require mI ≥∑
J CIJm

J and at least one mJ > 0 for J 6= I. Note if mJ = 0 for all J 6= I then

mI −
∑

J CIJm
J = −mI < 0, and the new moduli space is empty. In particular for

g = su(2) gauge theory the new moduli space will always be empty. We can determine the

dimension of the new moduli space directly from the formula dimMnew =
∑

J 4mJ
new and

we find a result consistent with (8.2):

dimMnew = dimMold − 4
∑
J

CIJm
J , if mI ≥

∑
J

CIJm
J &

∑
J 6=I

mJ > 0 ,

Mnew = ∅ , otherwise . (8.5)

Specializing to su(N) gauge theory, this result has a nice interpretation in terms of

brane motion. Starting with X∞ in the fundamental Weyl chamber means that we have

chosen an ordering of our N D3-branes such that their asymptotic x4-positions satisfy

x1 > x2 > · · · > xN . The distance between the Ith and (I + 1)th D3-brane is given by

xI − xI+1 ≡ aI = 〈αI , X∞〉. Thus sending 〈αI , X∞〉 through zero corresponds to the Ith

and (I + 1)th D3-branes passing through each other and exchanging order.

Monopoles are represented by D1-strings stretching between D3-branes, and these D1-

strings carry an orientation that we have so far suppressed. As we explained above formula

(3.2), this orientation is directly related to the sign choice in the Bogomolny equation.

In order for a configuration of D3-branes and D1-strings to represent a solution to the

Bogomolny equation, all D1-strings must carry the same orientation. However, when we

pass the Ith and (I + 1)th D3-brane through each other, any D1-strings that were initially

stretched between them will reverse orientation. The new configuration with anti-D1’s will

not represent a solution to the Bogomolny equation.

What happens next depends on what other types of D1-strings are present. The

expectation from D-brane dynamics is that these new anti-D1’s will attract and annihilate

D1’s of the same type—i.e. stretched between the same D3-branes so that they carry charge

along the same simple co-root. After the annihilation, if we are left with a system that

contains only D1-strings, this will represent a point in the new moduli space, the dimension

of which is determined by the number of remaining D1-strings. If on the other hand we

are left with a system that contains any anti-D1’s or no D1-strings of either orientation,

the new moduli space is empty. We depict the generic situation in Figure 13. Using the

explicit form of the Cartan matrix for su(N), the condition mI ≥
∑

J CIJm
J is equivalent

to mI
new = mI−1 + mI+1 −mI ≥ 0, and we see that this is the number of remaining D1-

strings stretched between the Ith and (I + 1)th D3-brane at the end of the process. If the
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Figure 13. Wall-crossing for smooth monopoles in g = su(N) theory. (a): we start with a

generic monopole configuration as in Figure 3, and we move the Ith D3-brane to the left, past the

(I + 1)th D3-brane, as indicated by the arrow. (b): after doing so we find a configuration with

both D1-strings and anti-D1’s stretched between the Ith and (I + 1)th D3-brane; they will attract

as indicated by the arrows and annihilate pairwise. (c): at the end of the process we are left with

mI
new = mI+1 +mI−1 −mI D1-strings stretched between this pair of D3-branes.

number is negative we interpret its absolute value as the number of anti-D1’s. In that case

the new brane configuration does not represent a solution to the Bogomolny equation and

the moduli space with the corresonding asymptotic data is empty.

8.2 Wall-crossing of the index for singular monopoles

Now we add ’t Hooft defects to the above story. Naively, they are represented by semi-

infinite D1-strings, but as we demonstrated above, this picture is too crude to account for

the dimensions of singular monopole moduli spaces in terms of mobile D1-strings. We have
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found that we can understand the dimension in this way once we take into account the

effects of brane bending, and replace the semi-infinite D1-strings by BIon spikes.

Thus it is essential to take into account brane bending—at least the bending corre-

sponding to the defect—when considering wall-crossing phenomena for singular monopoles.

Ideally, one would like to additionally take into account the localized bending due to the

finite-length D1-strings, as we described in Figure 1. However in all but the simplest sce-

narios this cannot be done precisely since it is tantamount to having explicit solutions of

the Bogomolny equation. One expects that for the case of smooth monopoles correspond-

ing to localized bending, the physics is faithfully represented by the finite-length D1-string

idealization.

For singular monopoles it is very instructive to begin by considering the extreme

example of the Cartan-valued solutions, where the asymptotic magnetic charge is the

’t Hooft charge, γm = P . We will consider a single ’t Hooft defect; the generalization

of the following to multiple defects is straightforward since the Cartan-valued solutions

obey a superposition principle. We consider the process of moving X∞ across a wall of

the fundamental Weyl chamber, where 〈αI , X∞〉 goes through zero for some simple root

αI . First we determine the change in the index, and hence the change in the dimension of

the moduli space, by making use of (8.1). Then we compare with the result obtained from

considering the corresponding brane motion.

Let us suppose that the initial configuration has ’t Hooft charge in the closure of the

anti-fundamental Weyl chamber, γm = P = P−. This corresponds to an isolated solution

of the Bogomolny equation, representing the point of a zero-dimensional moduli space.

Now we send X∞ to a wall such that 〈αI , X∞〉 switches sign. Since the basis of positive co-

roots determined from X∞ changes, the definition of the anti-fundamental Weyl chamber

changes, and hence the ’t Hooft charge will no longer be in the anti-fundamental chamber.

We then expect that the moduli space will have a positive dimension.

To determine the change in the index, we note that the old and new bases of simple

co-roots are related by a Weyl reflection about the root αI , and hence the components of

the ’t Hooft charge with respect to the new basis can be obtained by applying the same

Weyl transformation to P−. However, we know that the
∑

α∈∆ |〈α, P 〉| term of (8.1) is

invariant under Weyl reflections, so the change in the index is again given by (8.2), with

γm = P−.

We can give an expression for this in terms of the u(N) charges, pI , of the ’t Hooft defect,

that will be useful for comparing with the brane result. We recall from (6.19) that the

generic ’t Hooft charge has the form

P =

N−1∑
J=1

(pJ − p̄)HJ(N−1) , (8.6)

where HJ(N−1) = HJ + · · · + HN−1 is a co-root and p̄ = 1
N

∑N
I=1 p

I . Saying P = P−

corresponds to an ordering p1 ≤ p2 ≤ · · · ≤ pN . Then applying (6.22) in the case of a

simple root αI = αII , we find 〈αI , P−〉 = pI − pI+1 = −|pI − pI+1|. Therefore the change
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Figure 14. Wall-crossing for a Cartan-valued singular monopole in g = su(N) theory. (a): The

initial configuration with ’t Hooft charge (8.6), with P = P− such that p1 ≤ p2 ≤ · · · ≤ pN . We

interchange the positions of the Ith and (I + 1)th brane as indicated by the arrows, resulting in

configuration (b), where the branes now intersect. (c): we can view the intersection locus as the

position of some D1-strings of infinitesimal length; (in the figure we displace the D1-strings from the

locus slightly for clarity). (d): the infinitesimal D1-strings can be moved out of the throat region

as indicated by the arrows, resulting in a defect with the original charge P−, and pI+1 − pI finite

length mobile D1-strings.

in the dimension of the moduli space is

∆I dimM = 2∆I indL = −4〈αI , γm〉 = −4〈αI , P−〉 = 4|pI − pI+1| . (8.7)

This is also the dimension of the moduli space after the wall, since the dimension of the

moduli space before the wall is zero.
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The wall-crossing we have just described corresponds to the brane motion depicted in

Figure 14. If we start with a pure ’t Hooft defect of charge P = P− in G = PSU(N)

gauge theory, this corresponds to the brane configuration of Figure 14-(a), where for all

J = 1, . . . , N −1, the throat of the J th D3-brane stays inside and does not cross the throat

of the (J + 1)th D3-brane. Sending 〈αI , X∞〉 through zero corresponds to moving the Ith

D3-brane to the left and past the (I+1)th brane. The resulting configuration is depicted in

Figure 14-(b). It still represents a Cartan-valued solution, but with an ’t Hooft charge that

is no longer in the closure of the anti-fundamental Weyl chamber. We can see this from

the fact that the brane worldvolumes now intersect. As we have argued in the previous

section, the brane intersection is a locus from which mobile D1-strings can be extracted,

effecting in the process a local Weyl transformation of the ’t Hooft charge that sends it

back to the anti-fundamental Weyl chamber. This is depicted in Figures 14-(c), (d). The

number of mobile D1-branes that can be extracted is precisely |pI − pI+1| = pI+1− pI and

in this example they account entirely for the quaternionic dimension of the new moduli

space, matching onto (8.7) exactly.

With this example and the smooth monopole case of the previous subsection under-

stood, it is easy to describe wall-crossing in the general situation. Suppose that in addition

to the defect with charge P , (8.6), we have some numbers kI of smooth fundamental

monopoles of each type I. (This is depicted as a brane diagram with semi-infinite D1-

strings for the defect in Figure 7.) There is no loss of generality in taking the initial defect

charge to be in the closure of the anti-fundamental Weyl chamber. If it is not we make a

local Weyl transformation that puts it there, extracting the appropriate numbers of smooth

monopoles in the process. Then we redefine the kI to include these monopoles.

Now we decrease 〈αI , X∞〉 and send it through zero, for some simple root αI . By

the same arguments as in the previous example, this has the effect of conjugating the

’t Hooft charge by a Weyl reflection, and therefore the contribution of the
∑

α∈∆ |〈α, P 〉|
term to the index is the same before and after the wall. Therefore the change in the index is

still given by (8.2), and all we need to know is the asymptotic magnetic charge of the initial

configuration. This was written down in in (6.20) and is simply the ’t Hooft charge, (8.6),

plus the contribution from the mobile D1-strings,
∑

I k
IHI . Since the change in the index,

and hence dimension, is linear in γm, we get the sum of (8.7) and (8.5) with mI → kI when

the new moduli space is non-empty. Furthermore the criterion for the new moduli space to

be non-empty is that the numbers of mobile D1-strings all be non-negative: kJnew ≥ 0, ∀J .

The only kJ that changes value, and hence could cause a violation of this condition, is kI .

kInew receives a contribution from both the old kJ and the new mobile D1-strings extracted

from the defect. The former contribution is kI+1 + kI−1 − kI as in the smooth case, while

the latter contribution is |pI − pI+1| as in the previous example. Hence we arrive at

∆I dimM = 4(kI+1 + kI−1 − 2kI) + 4|pI − pI+1| ,
if kInew ≡ kI+1 + kI−1 + |pI − pI+1| − kI ≥ 0 ,

Mnew
= ∅ , if kInew < 0 . (8.8)

This result matches perfectly with the brane picture, which is a “superposition” of
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Figure 13, with mI → kI , and Figure 14. The mobile D1-strings that are present in the

initial configuration behave just like the mobile D1-strings of Figure 13, while the defect

behaves as in Figure 14. The condition for the new moduli space to be non-empty is also

easy to understand; it is again the requirement that there be no anti-D1’s left over at

the end of the process. kI anti-D1’s are created from the wall-crossing of the initial kI

D1-strings, as depicted in 13. Now, in addition to the kI+1 + kI−1 D1-strings, there are

also the |pI − pI+1| D1-strings extracted from the defect that can be used to annihilate the

anti D1’s. Thus as long as kInew = kI+1 + kI−1 + |pI − pI+1| − kI ≥ 0, there will be no

anti-D1’s left over.

8.3 Wall-crossing of the index for matter in the fundamental

The index formula (2.16) and its wall-crossing behavior (2.19) apply for any representation

ρ of G. Suppose we couple the Yang–Mills–Higgs system to fermions transforming in

representation ρ by adding to the action

Smat = − 1

g2
0

∫
d4x

{
ΨT
D

[
iγµ ⊗ (∂µ + ρ(Aµ)) + γ5 ⊗ (ρ(X)− imρ)

]
Ψ

}
. (8.9)

Here Ψ(x) is an anti-commuting C4 ⊗ Vρ-tuple, and ΨD is the usual Dirac conjugate, such

that ΨT
D = (ψ∗)Tγ0. The γµ satisfy {γµ, γν} = −2ηµν , and γ5 is the so(1, 3) chirality

matrix, γ5 = iγ0γ1γ2γ3. The coefficient of the Yukawa coupling to the Higgs field has

been chosen so that the Euclidean Dirac operator i /̂Dρ, (2.11), emerges, but it can also

be motivated from the point of view of N = 2 supersymmetry. The mass parameter mρ

is real; analogously to the Higgs field, X, it can be viewed as a real slice in a space of

complexified mass parameters in the N = 2 theory. If the representation ρ is reducible,

such that ρ = ρ1 ⊕ ρ2 ⊕ · · · in terms of irreducible representations, then mρ can take a

different value on each irreducible component: mρ = mρ11Vρ1
⊕mρ21Vρ2

⊕· · · . The chirality

matrix appears in the Yukawa coupling because X is a pseudo-scalar as evidenced by the

form of the Bogomolny equation, Bi = DiX, for example. We can choose a basis for the

Minkowski gamma matrices15 such that

γ0γi = Γi , −iγ0γ5 = Γ4 , (8.10)

in which case the equation of motion for Ψ can be written in the form(
i(∂0 + ρ(A0)) L†ρ − imρ

Lρ + imρ i(∂0 + ρ(A0))

)
Ψ = 0 , (8.11)

with Lρ as in (2.9). Consider (8.11) in the background of a (singular) monopole con-

figuration (A0 = 0, Ai, X). Let Ψ(x) = eiEtΨ(~x). Then an eigenfunction Ψ(~x) of the

Dirac operator (i /̂D)ρ, (2.11), with eigenvalue λ, corresponds to a mode with frequency

E = |mρ|+ λ.

In theories with N = 2 supersymmetry, the fermions of (8.9) will be accompanied

by scalar degrees of freedom. Solutions to (i /̂D)ρΨ = 0 play a special role, in that they

15Take γ0 = diag(12,−12) = σ3 ⊗ 12 and γi = iσ2 ⊗ σi.
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preserve half of the supersymmetry and saturate a generalization of the Yang–Mills–Higgs

BPS bound, that includes a contribution from the matter sector. This is the classical limit

of the exact quantum BPS bound obtained by Seiberg and Witten for N = 2 gauge theories

with matter, [45].

Geometrically, over each point [Â] ∈ M, the zero-modes of Lρ form a vector space

of dimension indLρ. These patch together to form a vector bundle over M which is in

fact the index bundle of the operator Lρ [14, 15]. Quantum states are represented by L2

sections of this bundle in the semiclassical quantization of the Yang–Mills–Higgs theory

with matter [15, 22–25].

Our goal here is to understand the inclusion of matter fermions, (8.9), their zero-modes,

and their wall-crossing behavior using an appropriate modification of the brane systems we

have been studying. We begin with our system of N D3-branes realizing Yang–Mills–Higgs

theory with g = u(N). We can obtain degrees of freedom in the fundamental representation

by considering open (fundamental) strings that stretch from the D3-branes to a new type

of D-brane. The new D-brane must wrap the same R1,3 as the D3-branes in addition to

other directions, and the low energy theory describing the interactions of the 3-3 strings

and the new strings should have SYMH + Smat as a consistent truncation. Using the fact

that SYMH + Smat can be embedded into an N = 2 supersymmetric theory, we are led to

consider D7-branes that extend in the xµ directions as well as x6,7,8,9. They will be placed

at the same x5 position as the D3-branes, (x5 = 0, say), and at some fixed values of x4.

Consider a single D7-brane. Quantization of 3-7 strings leads to scalars and fermions

that fill out anN = 2 hypermultiplet transforming in the fundamental plus anti-fundamental

representation ρ = N ⊕N, as well as excited string states that are neglected in the low

energy limit. Supersymmetry dictates the form of the low energy interactions between 3-3

and 3-7 strings; the 3-7 fermions will couple to the Yang–Mills–Higgs sector through Smat.

We get a direct sum of the fundamental and anti-fundamental representation because the

strings carry an orientation and can either begin or end on the D3-brane.

The mass parameter takes the form mρ = x4
D71N ⊕ (−x4

D7)1N), where x4
D7 gives the

displacement of the D7-brane from the origin in the x4 direction, (and where we have set

the string length to one). To see this, recall that the origin was defined to be the position

of the D3-branes when the u(N)-valued vev X
u(N)
∞ = 0. Furthermore the mass |x4

D7| of

the lightest 3-7 string mode is given by the length of the string connecting the D3-brane

to the D7-brane. Now suppose we turn on the vev X
u(N)
∞ . Let {eµ | µ ∈ ∆N} denote a

basis for the fundamental representation, so that {e−µ} is a basis for the anti-fundamental,

and expand Ψ =
∑

µ Ψ(µ)eµ + Ψ(−µ)e−µ. Then we have ρ(X
u(N)
∞ )eµ = −i〈µ,Xu(N)

∞ 〉eµ,

and it follows that the mass of the fermion Ψ(±µ) is ±(x4
D7 − 〈µ,X

u(N)
∞ 〉). The absolute

value of this quantity should be the length of a fundamental 3-7 string. Thus we wish to

identify the {〈µ,Xu(N)
∞ 〉 | µ ∈ ∆N} with the displacements of the D3-branes in x4. This

is completely consistent with our initial discussion in section 3 since the 〈µ,Xu(N)
∞ 〉 are

the diagonal components of iX
u(N)
∞ in the fundamental representation. As a quick check,

the highest weight can be taken as the first fundamental weight, µ = λI=1. We identify

〈λ1, X
u(N)
∞ 〉 with the position of the right-most D3-brane. Then the remaining weights of
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the fundamental representation are

∆N =

{
λ1 , λ1 − α1 , λ

1 − α1 − α2 , . . . , λ
1 −

N−1∑
I=1

αI

}
. (8.12)

Recalling that 〈αI , Xu(N)
∞ 〉 gives the distance between the Ith and (I + 1)th D3-brane,

〈λ1 −
∑I

J=1 αJ , X
u(N)
∞ 〉 = 〈λ1 − α1I , X

u(N)
∞ 〉 will be the x4 position of the (I + 1)th D3-

brane.

In order to get to the su(N) theory we must project out the central u(1) degree of

freedom. Recall the canonical isomorphism u(N) → u(1) ⊕ su(N), (4.2), with respect

to which we can decompose the adjoint-valued fields, Âu(N) = Âu(1) + Â, where Â is

su(N)-valued. In particular for the asymptotic vev, the u(1) component is literally the

center-of-mass position of the D3-branes:

iXu(1)
∞ =

1

N
trN

(
iXu(N)
∞

)
1N =

1

N

∑
µ∈∆N

〈µ,Xu(N)
∞ 〉1N ≡ x4

D3-cm1N . (8.13)

Thus we have 〈µ,Xu(N)
∞ 〉 = x4

D3-cm + 〈µ,X∞〉, and so 〈µ,X∞〉 measures the positions of the

D3-branes relative to the center of mass. When we had only the Yang–Mills–Higgs theory

we commented that the u(1) degrees of freedom decoupled from the rest and could simply

be neglected. Now, however, we see that they do couple to the matter fermions. In order

to reduce to the su(N) theory we should take their dynamics to be trivial.

Henceforth we focus on the case without defects. When defects are absent we take

Xu(1) = X
u(1)
∞ , Au(1) = 0. We choose to place the center of mass position at the location

of the D7-brane, x4
D3-cm = x4

D7. This is a convenience and is done so that the operator,

L
u(N)
ρ − imρ, that controls the spectrum of the matter fermions in the u(N) theory, (8.11),

reduces exactly to the operator we wish to study, L
u(N)
ρ − imρ = L

su(N)
ρ ≡ Lρ. Thus the

brane setup we are considering is Figure 15-(a), and our goal now is to understand the

physical mechanism that leads to indLρ zero-modes for the matter fermions represented

by 3-7 strings.

Let us recall the form of indLρ. From (2.18) we see that it can be expressed as

indLρ =
∑
µ∈∆ρ

〈µ,X∞〉>0

nρ(µ)〈µ, γm〉 , (8.14)

when ’t Hooft defects are absent. With ρ = N⊕N we simply get double the contribution

we would have gotten with ρ = N. Furthermore the degeneracies are all one, so

indLN⊕N = 2
∑
µ∈∆N
〈µ,X∞〉>0

〈µ, γm〉 . (8.15)

As is clear from the brane picture, the general case is that the first I weights of (8.12)

have 〈µ,X∞〉 > 0 while the remaining N − I have 〈µ,X∞〉 < 0, for some 1 ≤ I < N . Let
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HaL
N I+1 I I-1 1

D3 D3 D3 D3 D3D7

88mI <<mI-1

HbL
N I+1 I I-1 1

D3 D3 D3 D3 D3D7

Figure 15. (a) Adding a D7-brane to the D1-D3 system representing a generic smooth su(N)

monopole configuration. We place the D7-brane at the center of mass position of the D3-branes.

Fundamental strings (not drawn) that are stretched between the D7-brane and the D3-branes give

matter in the ρ = N ⊕ N representation. (b) We replace the D1-strings with the more precise

brane-bending representation of the monopoles. In order to keep the figure from becoming overly

cluttered we represent only the solid D1-strings of (a). We see that the D7-brane intersects the

D3-brane worldvolume. 3-7 strings can have infinitesimal length at these loci and the wavefunctions

of the L2 modes are localized in their vicinity. We represent these by black dots.

γm =
∑N−1

K=1m
KHK and consider 〈λ1 − α1J , HK〉. Using the same techniques as around

(6.13) we find

〈λ1 − α1J , HK〉 = δ(J+1)K − δJK , (8.16)

while 〈λ1, HK〉 = δ1K . Thus

〈λ1, γm〉 = m1 , 〈λ1 − α1J , γm〉 = mJ+1 −mJ . (8.17)

Summing over J from 1 to I − 1, corresponding to the first I weights,

indLN⊕N = 〈λ1, γm〉+

I−1∑
J=1

〈λ1 − α1J , γm〉

= 2
(
m1 + (m2 −m1) + · · ·+ (mI −mI−1)

)
= 2mI . (8.18)

Now let us interpret this result in terms of the brane system, Figure 15. Having the

first I weights satisfy 〈µ,X∞〉 > 0, with the remaining weights giving a negative value,

corresponds to having the D7-brane between the Ith and (I + 1)th D3-branes. The result

(8.18) suggests that the 3-7 strings corresponding to L2-normalizable modes are strings

that stretch from the D7-brane to the Ith or (I + 1)th D3-brane. The brane picture indeed

provides a dynamical mechanism to explain why these strings can have normalizable modes

while 3-7 strings ending on other D3-branes do not. This mechanism is easier to visualize
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when we represent the monopoles as a localized bending of branes, 15-(b), (and as we

discussed around Figure 1).

First note that a 3-7 string ending on a different D3-brane will necessarily pass through

one of the two D3-branes adjacent to the D7-brane; thus it can break into a shorter 3-7

string that ends on one of these D3-branes and a 3-3 string. (The amplitude for this process

is captured in the low energy limit by the cubic interaction terms in Smat.) We see why

it is dynamically preferable to do this when we consider the bending of the D3-branes.

Notice that the Ith or (I + 1)th D3-brane will intersect the D7-brane in the vicinity of a

fundamental monopole of type I. 3-7 strings that stretch between the D7-brane and one of

these two D3-branes will be able to shorten their length (and hence reduce their energy) by

approaching this intersection locus. This suggests that the L2 modes of 3-7 strings should

be thought of as states of the infinitesimal strings connecting the D3-branes and D7-brane

in the vicinity of the intersection locus.

It is harder to argue purely from the brane picture why there are precisely 2 normaliz-

able modes for each monopole of type I. However when the monopoles are well separated

we can give a heuristic argument. In this case the local potential trapping these zero-

modes possesses approximate spherical symmetry about the monopole. One suspects that

the wavefunction of the 3-7 fermion zero-mode will be in a singlet state of orbital angular

momentum and then the factor of two comes from having a 3-7 string of either orientation.

This suspicion is confirmed by the explicit solution to the Dirac equation in the background

of a single su(2) monopole [15, 46].

Having now a clear picture for the brane interpretation of the index formula (8.18), it

is easy to understand wall-crossing. There are now two types of wall-crossing phenomena

as we dial X∞, starting from a generic vector in the fundamental Weyl chamber. We can

encounter a wall of the fundamental Weyl chamber where 〈αJ , X∞〉 → 0 for some simple

root. This wall-crossing corresponds to exchanging the order of the J th and (J + 1)th D3-

brane and has already been discussed. However the second type of wall-crossing can occur

while keeping X∞ in the fundamental Weyl chamber and corresponds to 〈µ,X∞〉 → 0

for some fundamental weight. In the brane picture this happens when the corresponding

D3-brane crosses the D7-brane. Recall that we have placed the D7-brane at the center of

mass position of the D3-branes. Thus, wall-crossing of this type can only occur for the

middle N − 2 weights (branes).

Suppose that the Ith D3-brane crosses the D7-brane so that the D7-brane now lies

between the Ith and (I − 1)th D3-brane. Denote the Ith weight µI = λ1 − α1(I−1). The

change in the index, according to (2.19) will be

∆µI indLN⊕N = −2〈λ1 − α1(I−1), γm〉 = −2(mI −mI−1) , (8.19)

since there are no other weights parallel to this weight ,and since 〈µI , X∞〉 < 0 after the

wall. In the last step we used (8.17). Hence the new index is

indnewLN⊕N = 2mI − 2(mI −mI−1) = 2mI−1 . (8.20)

This result is perfectly consistent with our brane interpretation.
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Indeed, when we take into account the bending of the D3-branes as in Figure 15-(b),

we can visualize what happens to the L2 modes of the 3-7 strings. The wavefunctions for

these modes should be localized in the vicinity of the D3-D7 intersection. As the D7-brane

position approaches the asymptotic position of the Ith D3-brane, these loci move further

away from the monopoles until they disappear entirely or move out to infinity, whence

the wavefunctions fail to be L2. As the D7-brane position continues past the asymptotic

D3-brane position, there is a new set of intersection loci. The vicinity of these loci is where

the new L2 wavefunctions are localized. As the distance between the D7 and D3 continues

to increase the loci approach the locations of the mI−1 fundamental monopoles of type

I − 1.

This concludes our discussion of wall-crossing for matter in the fundamental represen-

tation in the case of smooth monopole configurations. We expect a similar analysis can be

carried out for singular monopole configurations. However there are a few extra issues to

understand concerning the decoupling of the u(1) degrees of freedom, and we will not work

out the details here.

9 Conclusions

In this paper we studied brane realizations of singular monopoles—that is, solutions to the

Bogomolny equation with singularities corresponding to the insertion of ’t Hooft defects—

using systems of D3- and D1-branes. We showed how the brane systems provide physical

intuition for the dimension formula, by identifying the motion of finite length D1-string

segments with motion on moduli space. In order to interpret the dimension formula in this

way, we found that it is important to represent ’t Hooft defects in terms of BIon spikes,

rather than as semi-infinite D1-strings. In other words it is important to take into account

the effects of brane bending.

We showed how one can make contact with the process of monopole bubbling by con-

sidering certain brane motions. More work needs to be done to gain a fuller understanding

of both the global structure and singularity structure of the moduli spacesM(P ; γm;X∞).

Also in this paper we considered only the case of g = su(N). Smooth monopoles for

so and sp Lie algebras have been considered in the context of branes [33, 34], and it would

be interesting to generalize those constructions to the case of singular monopoles.

Acknowledgements

We thank Sergey Cherkis, Kimyeong Lee, and Edward Witten for helpful discussions. GM

and ABR thank the Aspen Center for Physics and the NSF grant #1066293 for hospitality

during the completion of this work. DVdB is partially supported by TUBITAK grant

113F164 and BAP grant 13B037, GM is supported by the U.S. Department of Energy under

grant DE-FG02-96ER40959, and ABR is supported by the Mitchell Family Foundation.

GM also thanks the KITP for hospitality during the final phases of the preparation of this

paper (National Science Foundation under Grant No. NSF PHY11-25915); ABR thanks

the NHETC at Rutgers University.

– 46 –



References

[1] G. W. Moore, A. B. Royston, and D. V. d. Bleeken, “Parameter counting for singular

monopoles on R3,” JHEP 1410 (2014) 142, arXiv:1404.5616 [hep-th].

[2] A. Giveon and D. Kutasov, “Brane dynamics and gauge theory,” Rev.Mod.Phys. 71 (1999)

983–1084, arXiv:hep-th/9802067 [hep-th].

[3] D.-E. Diaconescu, “D-branes, monopoles and Nahm equations,” Nucl.Phys. B503 (1997)

220–238, arXiv:hep-th/9608163 [hep-th].

[4] A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and three-dimensional

gauge dynamics,” Nucl.Phys. B492 (1997) 152–190, arXiv:hep-th/9611230 [hep-th].

[5] S. A. Cherkis and A. Kapustin, “Singular monopoles and supersymmetric gauge theories in

three-dimensions,” Nucl.Phys. B525 (1998) 215–234, arXiv:hep-th/9711145 [hep-th].

[6] S. A. Cherkis and A. Kapustin, “D(k) gravitational instantons and Nahm equations,”

Adv.Theor.Math.Phys. 2 (1999) 1287–1306, arXiv:hep-th/9803112 [hep-th].

[7] S. A. Cherkis and A. Kapustin, “Singular monopoles and gravitational instantons,”

Commun.Math.Phys. 203 (1999) 713–728, arXiv:hep-th/9803160 [hep-th].

[8] S. A. Cherkis and B. Durcan, “Singular monopoles via the Nahm transform,” JHEP 0804

(2008) 070, arXiv:0712.0850 [hep-th].

[9] G. Gibbons, “Born-Infeld particles and Dirichlet p-branes,” Nucl.Phys. B514 (1998)

603–639, arXiv:hep-th/9709027 [hep-th].

[10] C. G. Callan and J. M. Maldacena, “Brane death and dynamics from the Born-Infeld

action,” Nucl.Phys. B513 (1998) 198–212, arXiv:hep-th/9708147 [hep-th].

[11] D. Gaiotto and E. Witten, “Supersymmetric Boundary Conditions in N=4 Super Yang-Mills

Theory,” J.Statist.Phys. 135 (2009) 789–855, arXiv:0804.2902 [hep-th].

[12] E. J. Weinberg, “Fundamental Monopoles and Multi-Monopole Solutions for Arbitrary

Simple Gauge Groups,” Nucl.Phys. B167 (1980) 500.

[13] A. Kapustin and E. Witten, “Electric-Magnetic Duality And The Geometric Langlands

Program,” Commun.Num.Theor.Phys. 1 (2007) 1–236, arXiv:hep-th/0604151 [hep-th].

[14] C. H. Taubes, “Monopoles and Maps from S(2) TO S(2): The Topology of the Configuration

Space,” Commun.Math.Phys. 95 (1984) 345–391.

[15] N. Manton and B. Schroers, “Bundles over moduli spaces and the quantization of BPS

monopoles,” Annals Phys. 225 (1993) 290–338.

[16] G. ’t Hooft, “On the Phase Transition Towards Permanent Quark Confinement,” Nucl.Phys.

B138 (1978) 1.

[17] A. Kapustin, “Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality,”

Phys.Rev. D74 (2006) 025005, arXiv:hep-th/0501015 [hep-th].

[18] E. Bogomolny, “Stability of Classical Solutions,” Sov.J.Nucl.Phys. 24 (1976) 449.

[19] M. Prasad and C. M. Sommerfield, “An Exact Classical Solution for the ’t Hooft Monopole

and the Julia-Zee Dyon,” Phys.Rev.Lett. 35 (1975) 760–762.

[20] E. J. Weinberg, “Parameter Counting for Multi-Monopole Solutions,” Phys.Rev. D20 (1979)

936–944.

– 47 –

http://dx.doi.org/10.1007/JHEP10(2014)142
http://arxiv.org/abs/1404.5616
http://dx.doi.org/10.1103/RevModPhys.71.983
http://dx.doi.org/10.1103/RevModPhys.71.983
http://arxiv.org/abs/hep-th/9802067
http://dx.doi.org/10.1016/S0550-3213(97)00438-0
http://dx.doi.org/10.1016/S0550-3213(97)00438-0
http://arxiv.org/abs/hep-th/9608163
http://dx.doi.org/10.1016/S0550-3213(97)00157-0
http://arxiv.org/abs/hep-th/9611230
http://dx.doi.org/10.1016/S0550-3213(98)00341-1
http://arxiv.org/abs/hep-th/9711145
http://arxiv.org/abs/hep-th/9803112
http://dx.doi.org/10.1007/s002200050632
http://arxiv.org/abs/hep-th/9803160
http://dx.doi.org/10.1088/1126-6708/2008/04/070
http://dx.doi.org/10.1088/1126-6708/2008/04/070
http://arxiv.org/abs/0712.0850
http://dx.doi.org/10.1016/S0550-3213(97)00795-5
http://dx.doi.org/10.1016/S0550-3213(97)00795-5
http://arxiv.org/abs/hep-th/9709027
http://dx.doi.org/10.1016/S0550-3213(97)00700-1
http://arxiv.org/abs/hep-th/9708147
http://dx.doi.org/10.1007/s10955-009-9687-3
http://arxiv.org/abs/0804.2902
http://dx.doi.org/10.1016/0550-3213(80)90245-X
http://arxiv.org/abs/hep-th/0604151
http://dx.doi.org/10.1007/BF01212403
http://dx.doi.org/10.1006/aphy.1993.1060
http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/10.1103/PhysRevD.74.025005
http://arxiv.org/abs/hep-th/0501015
http://dx.doi.org/10.1103/PhysRevLett.35.760
http://dx.doi.org/10.1103/PhysRevD.20.936
http://dx.doi.org/10.1103/PhysRevD.20.936


[21] C. Callias, “Index Theorems on Open Spaces,” Commun.Math.Phys. 62 (1978) 213–234.

[22] S. Sethi, M. Stern, and E. Zaslow, “Monopole and Dyon bound states in N=2

supersymmetric Yang-Mills theories,” Nucl.Phys. B457 (1995) 484–512,

arXiv:hep-th/9508117 [hep-th].

[23] M. Cederwall, G. Ferretti, B. E. Nilsson, and P. Salomonson, “Low-energy dynamics of

monopoles in N=2 SYM with matter,” Mod.Phys.Lett. A11 (1996) 367–380,

arXiv:hep-th/9508124 [hep-th].

[24] J. P. Gauntlett and J. A. Harvey, “S duality and the dyon spectrum in N=2 superYang-Mills

theory,” Nucl.Phys. B463 (1996) 287–314, arXiv:hep-th/9508156 [hep-th].

[25] M. Henningson, “Discontinuous BPS spectra in N=2 gauge theory,” Nucl.Phys. B461 (1996)

101–108, arXiv:hep-th/9510138 [hep-th].

[26] E. J. Weinberg and P. Yi, “Magnetic Monopole Dynamics, Supersymmetry, and Duality,”

Phys.Rept. 438 (2007) 65–236, arXiv:hep-th/0609055 [hep-th].

[27] A. Strominger, “Open p-branes,” Phys.Lett. B383 (1996) 44–47, arXiv:hep-th/9512059

[hep-th].

[28] M. B. Green and M. Gutperle, “Comments on three-branes,” Phys.Lett. B377 (1996) 28–35,

arXiv:hep-th/9602077 [hep-th].

[29] M. R. Douglas and M. Li, “D-brane realization of N=2 superYang-Mills theory in

four-dimensions,” arXiv:hep-th/9604041 [hep-th].

[30] A. Kapustin and S. Sethi, “The Higgs branch of impurity theories,” Adv.Theor.Math.Phys. 2

(1998) 571–591, arXiv:hep-th/9804027 [hep-th].

[31] D. Tsimpis, “Nahm equations and boundary conditions,” Phys.Lett. B433 (1998) 287–290,

arXiv:hep-th/9804081 [hep-th].

[32] X. Chen and E. J. Weinberg, “ADHMN boundary conditions from removing monopoles,”

Phys.Rev. D67 (2003) 065020, arXiv:hep-th/0212328 [hep-th].

[33] S. Elitzur, A. Giveon, D. Kutasov, and D. Tsabar, “Branes, orientifolds and chiral gauge

theories,” Nucl.Phys. B524 (1998) 251–268, arXiv:hep-th/9801020 [hep-th].

[34] C.-h. Ahn and B.-H. Lee, “SO / Sp monopoles and branes with orientifold three plane,”

Phys.Rev. D59 (1999) 026001, arXiv:hep-th/9803069 [hep-th].

[35] D. Gaiotto, G. W. Moore, and A. Neitzke, “Framed BPS States,” arXiv:1006.0146

[hep-th].

[36] O. Aharony, N. Seiberg, and Y. Tachikawa, “Reading between the lines of four-dimensional

gauge theories,” arXiv:1305.0318 [hep-th].

[37] K.-M. Lee, E. J. Weinberg, and P. Yi, “The Moduli space of many BPS monopoles for

arbitrary gauge groups,” Phys.Rev. D54 (1996) 1633–1643, arXiv:hep-th/9602167

[hep-th].

[38] R. Ward, “Deformations of the Imbedding of the SU(2) Monopole Solution in SU(3),”

Commun.Math.Phys. 86 (1982) 437–448.

[39] C. Athorne, “Cylindrically and Spherically Symmetric Monopoles in SU(3) Gauge Theory,”

Commun.Math.Phys. 88 (1983) 43.

– 48 –

http://dx.doi.org/10.1007/BF01202525
http://dx.doi.org/10.1016/0550-3213(95)00517-X
http://arxiv.org/abs/hep-th/9508117
http://dx.doi.org/10.1142/S0217732396000412
http://arxiv.org/abs/hep-th/9508124
http://dx.doi.org/10.1016/0550-3213(96)00035-1
http://arxiv.org/abs/hep-th/9508156
http://dx.doi.org/10.1016/0550-3213(96)00009-0
http://dx.doi.org/10.1016/0550-3213(96)00009-0
http://arxiv.org/abs/hep-th/9510138
http://dx.doi.org/10.1016/j.physrep.2006.11.002
http://arxiv.org/abs/hep-th/0609055
http://dx.doi.org/10.1016/0370-2693(96)00712-5
http://arxiv.org/abs/hep-th/9512059
http://arxiv.org/abs/hep-th/9512059
http://dx.doi.org/10.1016/0370-2693(96)00331-0
http://arxiv.org/abs/hep-th/9602077
http://arxiv.org/abs/hep-th/9604041
http://arxiv.org/abs/hep-th/9804027
http://dx.doi.org/10.1016/S0370-2693(98)00704-7
http://arxiv.org/abs/hep-th/9804081
http://dx.doi.org/10.1103/PhysRevD.67.065020
http://arxiv.org/abs/hep-th/0212328
http://dx.doi.org/10.1016/S0550-3213(98)00165-5
http://arxiv.org/abs/hep-th/9801020
http://dx.doi.org/10.1103/PhysRevD.59.026001
http://arxiv.org/abs/hep-th/9803069
http://arxiv.org/abs/1006.0146
http://arxiv.org/abs/1006.0146
http://arxiv.org/abs/1305.0318
http://dx.doi.org/10.1103/PhysRevD.54.1633
http://arxiv.org/abs/hep-th/9602167
http://arxiv.org/abs/hep-th/9602167
http://dx.doi.org/10.1007/BF01212178
http://dx.doi.org/10.1007/BF01206878


[40] E. J. Weinberg and P. Yi, “Explicit multimonopole solutions in SU(N) gauge theory,”

Phys.Rev. D58 (1998) 046001, arXiv:hep-th/9803164 [hep-th].

[41] S. A. Cherkis and B. Durcan, “The ’t Hooft-Polyakov monopole in the presence of an ’t

Hooft operator,” Phys.Lett. B671 (2009) 123–127, arXiv:0711.2318 [hep-th].

[42] N. R. Constable, R. C. Myers, and O. Tafjord, “The Noncommutative bion core,” Phys.Rev.

D61 (2000) 106009, arXiv:hep-th/9911136 [hep-th].

[43] D. Gang, E. Koh, and K. Lee, “Line Operator Index on S1 × S3,” JHEP 1205 (2012) 007,

arXiv:1201.5539 [hep-th].

[44] E. Poppitz and M. Unsal, “Index theorem for topological excitations on R**3 x S**1 and

Chern-Simons theory,” JHEP 0903 (2009) 027, arXiv:0812.2085 [hep-th].

[45] N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in N=2

supersymmetric QCD,” Nucl.Phys. B431 (1994) 484–550, arXiv:hep-th/9408099

[hep-th].

[46] R. Jackiw and C. Rebbi, “Solitons with Fermion Number 1/2,” Phys.Rev. D13 (1976)

3398–3409.

– 49 –

http://dx.doi.org/10.1103/PhysRevD.58.046001
http://arxiv.org/abs/hep-th/9803164
http://dx.doi.org/10.1016/j.physletb.2008.11.065
http://arxiv.org/abs/0711.2318
http://dx.doi.org/10.1103/PhysRevD.61.106009
http://dx.doi.org/10.1103/PhysRevD.61.106009
http://arxiv.org/abs/hep-th/9911136
http://dx.doi.org/10.1007/JHEP05(2012)007
http://arxiv.org/abs/1201.5539
http://dx.doi.org/10.1088/1126-6708/2009/03/027
http://arxiv.org/abs/0812.2085
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://arxiv.org/abs/hep-th/9408099
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.13.3398

	1 Introduction and summary
	2 Singular monopoles and the dimension formula
	3 Monopoles from branes
	4 Singular monopoles as limits of smooth ones
	5 Smooth to singular for SU(3) PSU(2)
	5.1 case 1: m= H1
	5.2 case 2: m= H2
	5.3 case 3: m= H1 + H2

	6 Smooth to singular for SU(N+1) PSU(N)
	6.1 case 1: m= H 
	6.2 case 2: m= HIN
	6.3 The generic configuration

	7 Stuck branes, monopole extraction, and monopole bubbling
	8 Wall-crossing of the index and brane motion
	8.1 Wall-crossing of the index for smooth monopoles
	8.2 Wall-crossing of the index for singular monopoles
	8.3 Wall-crossing of the index for matter in the fundamental

	9 Conclusions

