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Quantum-mechanical electronic structure computations were employed to explore initial steps towards a comprehensive
design of polycarborane architectures through assembly of molecular units. Aspects considered were (i) the striking
modification of geometrical parameters through substitution, (ii) endohedral carboranes and proposed ejection mechanisms
for energy/ion/atom/energy storage/transport, (iii) the excited state character in single and dimeric molecular units, and (iv)
higher architectural constructs. A goal of this work is to find optimal architectures where atom/ion/energy/spin transport within
carborane superclusters is feasible in order to modernize and improve future photoenergy processes.
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1. Introduction

The number of new borane and carborane molecules
and their crystal structures has increased enormously
due to the rich variety of synthetic routes discovered in
the last decades [1, 2]. We have utilized a bottom-to-
top approach and electronic structure computations to
design icosahedral borane and carborane molecular archi-
tectures by starting with single molecules as well as with
dimeric units connected directly or through bridges [3–16].
Knowledge of the electronic, magnetic, optical, and other
properties of such single and dimeric units illuminates
the evaluation of the global properties of 1D, 2D, or 3D
superclusters and nanostructures [17–22]. The use of light to
modify properties of nanostructures is at the heart of current
cutting-edge technology. Thus, the irradiation of photonic
crystals can change their conducting properties [23] and
control spin transport. [24, 25] We now use electronic
structure computations to explore the first design stages

of carborane-based architectures having potential uses in
molecular and nano-photochemistry.

2. Computational Methodology

For the computations of the electronic structure in the
compounds studied in this work, we employed different
methods. As a benchmark for triplet and other excited
states, we used the complete active space self-consistent field
(CASSCF) [26] and their perturbative methods (CASPT2)
[27], as implemented in the MOLCAS [28] program. For
the optimization of geometries in the groundstate and
triplet states, use was made of the well-known B3LYP
hybrid which combines Hartree-Fock and density functional
theory [29–31] as implemented in the Gaussian03 program
[32]. The Becke, three-parameter, Lee-Yang-Parr (B3LYP)
hybrid exchange-correlation (xc) functional is constructed
as a linear combination of the Hartree-Fock exact exchange
functional (EHF

x ) and a given number of exchange and
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(a)

C C

N N1.86 Å
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Figure 1: Optimized geometry of singlet ground states (total spin S = 0): (a) 1,2-C2B10H12, (b) 1,2-(NH2)2-1,2-C2B10H10, (c)
[1, 2-C2B10H10]2−, and (d) 1,2-(NH−)2-1,2-C2B10H10. Computations are carried out with the B3LYP/6-31G∗ model. All geometries
correspond to energy minima.

correlation explicit density functionals (x and c as subindex
correspond to exchange and correlation respectively): EB3LYP

xc

= ELDA
xc + 0.20{EHF

x − ELDA
x } + 0.72{EGGA

x − ELDA
x } +

0.81{EGGA
c −ELDA

c }, where LDA and GGA stand for local den-
sity approximation and generalized gradient approximation.
As regards to the computation of singlet-triplet energy
gaps in the biradicals presented in this work, we used
the CASSSCF/CASPT2 method as benchmark model—the
multireference wave functions being based on an active
space of six electrons distributed in six molecular orbitals
(6,6)—together with the broken-symmetry (U)B3LYP [33–
35] approach: in the latter, the singlet-triplet energy gaps are
estimated as ΔEBS = 2(EBS − ET)/(〈̂S2〉T − 〈̂S2〉BS), where
EBS, ET , 〈̂S2〉BS , and 〈̂S2〉T stand for energy of the broken-
symmetry solution, energy of the triplet state, and expec-
tation value of ̂S2(square of spin operator) for the broken-
symmetry and triplet states, respectively. In all studies we
have used the 6-31G∗ and 6-31+G∗ basis sets, which are
of double-zeta quality and contain polarization functions

for all nonhydrogen atoms (6-31G∗) and polarization plus
diffuse functions for all nonhydrogen atoms (6-31+G∗)
respectively. Larger basis sets have been used when necessary
for checking the validity and accuracy of the computed
properties.

3. Results and Discussion

A goal in the nanoscience of nD-dimensional (n =
{1, 2, 3}) networks made up of single 0D units (mol-
ecules/clusters/atoms/ions) is to ascertain the global or
local properties of the system as function of the building
units. What changes or modifications result from external
perturbations (e.g., a electromagnetic field)? If a single
unit can be modified, to what extent do the properties
of a network built from such units change, if at all? We
have addressed such questions by starting with the well-
known basic icosahedral ortho, meta, and para carborane
as well as borane B12H12

2− units [36] to construct nD
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Figure 2: Optimized geometry of triplet states (total spin S = 1): (a) 1,2-C2B10H12, (b) 1,2-(NH2)2-1,2-C2B10H10, (c) [1,2-C2B10H10]2−, and
(d) 1,2-(NH−)2-1,2-C2B10H10. Computations are carried out with the UB3LYP/6-31G∗ model. All geometries correspond to energy minima.

dimensional networks and to explore their properties [18,
19, 37–40]. While these compounds have been known
since the 1960s, the properties of nD dimensional networks
made up thereof are less known. This section describes
the changes in geometric and electronic properties, P, that
these systems undergo as a function of substituents R,
charges q, spins S, and the nature of the wave functions
Ψ, and thus P = P(q, S,R,Ψ). We also consider endohedral
and dimeric structures connected directly or with bridging
units.

We have established that striking variations (over 1 Å!)
in cage carbon-carbon distances (Cc · · ·Cc) occur in 1,2-
disubtituted o-carboranes and in the corresponding dianions
(formed formally by double proton abstraction) [8]. Figure 1
shows Cc · · ·Cc distances ranging from 1.6 Å to 2.5 Å as
a function of charge and substituent; the B3LYP/6-31G∗

model was used in the computations. Here we should
emphasize that the feeding of electronic charge into the cage
causes a gradual transformation from a closo toward a nido,

arachno, or hypho type of geometrical structure [41]. The
triplet states of such systems [9] (see Figure 2) also reveal rich
structural variety.

Figure 2 shows the optimized geometries of the triplet
states of the same o-carboranes and the dianions considered
in Figure 1 as singlet ground states; Figure 3 displays the cor-
responding spin density. The triplet states display interesting
distortions and geometrical arrangements: for instance, a
hexagonal window appears in the triplet state geometry of
o-carborane (Figure 2(a)) and the Cc · · ·Cc distance has
increased by ≈ 1 Å! The amino groups in triplet 1,2-(NH2)2-
1,2-C2B10H12 are essentially planar (Figure 2(b)) and the
Cc · · ·Cc distance has increased by ≈ 0.7 Å. After double
proton abstraction, the Cc · · ·Cc distances of the triplet
dianions (Figures 2(c) and 2(d)) remain similar for o-
carborane but increase up to 2.85 Å in the 1,2-(NH−)2-1,2-
C2B10H12 triplet state geometry (Figure 2(d)).

The spin density (Figure 3) in these clusters is concen-
trated mainly around the exo groups NH2 an NH− and on
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Figure 3: Spin densities ρTs (isovalue = ±0.01) for the triplet states (total spin S = 1) of carborane clusters from Figure 2. (a) ρTs {1,2-
C2B10H12}, (b) ρTs {1,2-(NH2)2-1,2-C2B10H10}, (c) ρTs {[1,2-C2B10H10]2−}, and (d) ρTs {1,2-(NH−)2-1,2-C2B10H10}. Computations are carried
out with the UB3LYP/6-31G∗ model.

the cage carbon atoms. For o-carborane (Figure 2(a)), the
spin density is spread around the “open” frontal hexagonal
window (Figure 3(a)).

With respect to electronic structure properties, results
of a comprehensive study [9] of the adiabatic singlet-
triplet energy gaps—ΔEST = (E

opt
T − E

opt
S )—in a series

of substituted o-carboranes are plotted in Figure 4. The
adiabatic singlet-triplet energy gap is computed as the energy
difference between the triplet and the singlet state optimized
geometries: ΔEST = (E

opt
T − E

opt
S ). For the results displayed

in Figure 4, computations at the (U)B3LYP/6-31G∗ level of
theory were used, the latter calibrated with the more accurate
CASPT2 method. As some of the gaps are within the visible
region of the electromagnetic spectrum, the corresponding
systems should display photochemical absorption/emission
properties, if intersystem crossing processes are plausible
[42].

Inserting endohedral atoms/ions inside the carborane
cage is another possibility for changing the properties of
the single units forming the nD networks [10–12, 43, 44].
Although endohedral carboranes have not been realized
experimentally, recent computational studies suggest than
an insertion/ejection mechanism should be plausible using
photon energies around 6.4 eV for Li+ and CB11H12

− [10]
(see Figure 5).

SiH−
2CH−

2PH−NH−S−O−R− → e−

SiH3CH3PH2NH2SHOHR → H

0
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Figure 4: Adiabatic singlet-triplet energy gaps (in eV) for a series
of 1,2-disubstituted icosahedral o-carboranes and their dianions
after double proton abstraction. Empty and full squares correspond,
respectively, to adiabatic singlet-triplet energy gaps in neutral—1,2-
(R)2-1,2-C2B10H10—and the corresponding dianionic carborane—
1,2-(R−)2-1,2-C2B10H10—after double proton abstraction. All com-
putations carried out with the (U)B3LYP/6-31G∗ method.

The implementation of ejection mechanisms similar to
that shown in Figure 5, in an nD-dimensional carborane
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Figure 6: Dimeric carborane systems combining neutral p-carborane and CB11H12
− or B12H12

2− units, connected through C–C and C–
B bonds, respectively. Dipole moments (in Debye) are computed at the B3LYP/6-31G∗ level of theory. (a) {Li@CB11H11}-{p-C2B10H11},
(b) {CB11H11}-{Li@p-C2B10H11}, (c) {Be@B12H11}-{p-C2B10H11}, and (d) {B12H11}-{Be@p-C2B10H11}. The arrows representing dipole
moments are not to scale for (c) and (d) since for the latter endohedral complex the dipole moment is ≈ 70 times larger as compared to the
complex from (c)!

network, opens up many opportunities for energy/atom/ion
transport via photochemical molecular switches in molecu-
lar and nano-photochemistry.

The possibilities of using endohedral boranes and
carboranes can be exploited further within nanoscience

applications. For instance, the dramatic changes in the dipole
moments of the dimeric units displayed in Figure 6, as
a function of the position of the endohedral atom, call
for potential applications such as molecular condensers or
largely orientable molecular devices in electric fields.
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Figure 7: Several examples of carborane single and dimeric biradical with almost degenerate singlet and triplet electronic states. (a) o-(3,6)
biradical derived from hydrogen abstraction on positions 3 and 6 in 1,2-C2B10H12 or o-carborane: adiabatic singlet-triplet energy gap for
this system ΔEST = 0.06 eV. (b) m-(2,4) biradical derived from hydrogen abstraction on positions 2 and 4 in 1,7-C2B10H12 or m-carborane:
adiabatic singlet-triplet energy gap for this system ΔEST = 0.04 eV. (c) p-(2,4) biradical derived from hydrogen abstraction on positions 2
and 4 in 1,12-C2B10H12 or p-carborane: adiabatic singlet-triplet energy gap for this system ΔEST = 0.04 eV. The dots on each system represent
“unpaired” electrons. Geometries and energies are computed with CASSCF and CASPT2 methods, respectively [13].

(a) (b)

Figure 8: (a) Spin density ρs for the triplet state (|ρs| = ±0.001). (b) Broken-symmetry singlet biradical spin density (|ρs| = ±0.001).
UB3LYP/6-31+G(d)//UB3LYP/6-31+G(d) computations. Different colours represent net α and β spin density.

These descriptions of (car)boranes from electronic struc-
ture computations illustrate the possibilities of changing
their properties by the effects of exo substitution—specifi-
cally in o-carboranes—or by endo insertion/ejection mech-
anisms. If such endohedral compounds can be prepared,
they surely will respond to external perturbations, such
as electromagnetic radiation. We are now exploring the
consequences of extending systems based on the units
considered above in different dimensions. What properties
of finite (infinite) aggregates will result? The answer is not
straightforward; several theoretical methodologies must be
applied.

Biradical systems with nearly degenerate singlet-triplet
energy gaps, such as those in Figure 7, are examples of how
the properties of single units can change with spin as the
parameter. The dimeric system built by joining two CB11H12

•

radicals by an acetylene bridge, •(HB)11 –C≡C–(BH)11
•,

illustrates this principle as well. High-level quantum chem-
ical computations showed that this biradical has a singlet
ground state with a triplet state very slightly higher in energy
(≈0.005 eV, on the order of kB · T at room temperature)

[15]. Figure 8 shows the spin density of the triplet and the
“broken-symmetry” singlet biradical states.

4. Conclusions

The properties of borane and carborane clusters can be
varied by changing (i) the exo substituents, (ii) the wave
function (e.g., singlet versus triplet states), and (iii) the
endohedral atoms or ions inserted into monomeric or
dimeric units, resulting in very large dipole moments. We
also have predicted a theoretical mechanism for atom/ion
ejection via a photochemical switch. Our electronic struc-
ture computations have established patterns for build-
ing higher architectural constructs starting from modified
carborane building units. Our goal, to control atom, ion,
spin, or energy transport inside borane and carborane
networks in different dimensions, aims at the very heart
of nanoscience and nanotechnology. The elaboration of
higher architectures depends on experimental breakthroughs
in assembling molecules, like those begun in the 1990s
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Figure 9: Different higher architectural constructs from r-carborane (r = ortho, meta, para) as building units. (a) A 1D z-finite/infinite
chain of C-linked para-carborane clusters. (b) A 1D finite/infinite chain of methylene-linked up-down ortho-carborane clusters through two
B-H moieties. (c) A “2D” neutral finite object, which can be extended to infinity along y and z, respectively, creating a 2D infinite network.
(d) A “3D” finite neutral object consisting of H, B, C, and O atoms and forming an oxygen-connected carborane supercluster. The object can
be extended to infinity following the x, y, and z directions. The geometries in (c) and (d) were optimized with the Hartree-Fock/STO-3G
method.

with 1D connections forming linear rods [18, 19]. Higher-
dimensional constructs, for example, those in Figure 9, can
include endohedral atoms inside the cages. The geometries
can be modified by exo substituents. Abstracting hydro-
gen atoms also would change the properties as the spins
of the resulting unpaired electrons might be delocalized
in different directions. These possibilities, with the as
yet unknown constructs in Figure 8, are research goals

and starting points for the elaboration of finite or infi-
nite networks capable of interacting with electromagnetic
fields.
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interaction in 1,2-substituted 1,2-C2B10H10 ortho-carboranes:
to bond or not to bond?” in Conceptual Aspects of Chemical
Bonding, abstracts of papers of the American Chemical Society
226th National Meeting: 664-ORGN part 2, September 2003.
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