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ABSTRACT 

Activation of the Wnt/-catenin pathway occurs in a vast majority of colorectal cancers. 

However, the outcome of the disease strongly varies from patient to patient, even within the 

same tumor stage. This heterogeneity is governed in large parts by the genetic makeup of 

individual tumors and the combination of oncogenic mutations.  

To express throughout the intestinal epithelium a degradation resistant β-catenin (Ctnnb1) 

which lacks the first 131 amino acids, we inserted an epitope-tagged ΔN(1-131)-β-catenin 

encoding cDNA as a knockin transgene into the endogenous gpA33 gene locus in mice. The 

resulting gpA33ΔN-Bcat mice show increased constitutive Wnt/-catenin pathway activation 

that shifts the cell fate towards the Paneth cell lineage in pre-malignant intestinal epithelium. 

Furthermore, 19% of all heterozygous and 37% of all homozygous gpA33ΔN-Bcat mice 

spontaneously develop aberrant crypt foci and adenomatous polyps, at frequencies and 

latencies akin to that observed in sporadic colon cancer in humans. Consistent with this, the 

Wnt target genes, MMP7 and Tenascin-C, which are expressed highest in benign human 

adenomas and early tumor stages, were up-regulated in pre-malignant tissue of gpA33ΔN-Bcat 

mice, but not those Wnt target genes associated with excessive proliferation (i.e Cdnn1, c-

myc). We also detected diminished expression of membrane-associated α-catenin and 

increased intestinal permeability in gpA33ΔN-Bcat mice under challenged conditions, providing 

a potential explanation for the observed mild chronic intestinal inflammation and increased 

susceptibility to azoxymethane and mutant Apc-dependent tumorigenesis. Collectively, our 

data indicate that epithelial expression of ΔN(1-131)-β-catenin in the intestine creates an 

inflammatory microenvironment and cooperates with other mutations in the Wnt/-catenin 

pathway to facilitate and promote tumorigenesis. 
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INTRODUCTION 

Colorectal tumorigenesis is promoted by chronic inflammation of the intestine, and patients 

suffering from Crohn’s disease or ulcerative colitis have an increased risk of developing 

colorectal cancer. The canonical Wnt/-catenin signaling pathway is aberrantly activated in 

the majority of colorectal cancers. Mutations of the APC (adenomatous polyposis coli) gene 

are the most common form of genetic alteration in CRC and represent the earliest detectable 

genetic change in tumorigenesis (Jen et al., 1994; Powell et al., 1992; Smith et al., 1994). 

Most of the tumor suppressing functions of APC are attributed to its capacity to negatively 

regulate β-catenin, a central component of the canonical Wnt/-catenin signaling pathway 

(Polakis, 1997; Polakis, 2000). Accordingly, APC impairment mutations, epigenetic silencing 

(Dimberg et al., 2013; Gay et al., 2012; Qiu et al., 2014) or amino terminal mutations in 

CTNNB1 mutations that result in excessive stabilization and nuclear accumulation of -

catenin result in excessive TCF/LEF-dependent transcription and associated neoplastic 

transformation and intestinal adenoma formation. Besides their role in the canonical Wnt/-

catenin pathway, APC also regulates cell migration, adhesion, chromosome segregation, 

spindle assembly and apoptosis (Dikovskaya et al., 2007; Hanson and Miller, 2005). 

Meanwhile, a pool of β-CATENIN localises at the cell membrane to maintain integrity of 

cell-cell adherens junctions by linking E-CADHERIN to α-CATENIN and the actin 

cytoskeleton (Lilien and Balsamo, 2005).  

 

The various APC truncation mutations identified suggest molecular complexity of the 

mechanism(s) by which deregulated Wnt/-catenin signaling drives intestinal tumor 

formation. For instance, Apc1638N mice express undetectable levels of C-terminal truncated 

Apc protein and carry 5-6 tumors by 10 months of age, whereas ApcMin mice develop more 

tumors with a shorter latency period, which is preceded by the obligatory loss of Apc 

heterozygosity (Fodde et al., 1994; Luongo et al., 1994). Similarly, enforced expression of an 
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amino-terminally truncated β-catenin that lacks the 76 amino acids encoded by exon 3 leads 

to the formation of numerous adenomatous polyps in the small intestine and some 

microadenomas in the colon (Harada et al., 1999, Leedham et al., 2013). However, calbindin 

promoter-dependent overexpression of the more severe ΔN131β-catenin truncation mutant 

results in multifocal dysplastic lesions in the small intestine after 3-4 weeks, with mice 

succumbing prematurely to polycystic kidney disease (Romagnolo et al., 1999). A shared 

feature of the above models is there propensity to develop the majority of large number of 

tumors in the small intestine, rather than the few early tumors in the colon of the majority of 

humans of age 50+ that bear the risk to ultimately develop into sporadic metatstatic CRC. IN 

an effort to address these shortcomings, we developed a novel knockin mouse model that 

exploits the intestine-specific gpA33 gene locus to enforce expression of a ΔN131β-catenin 

encoding transgene throughout the epithelial mucosa. Surprisingly, the corresponding 

gpA33ΔN-Bcat mice show a mild decrease in epithelial barrier function associated with elevated 

expression of inflammatory cytokines prior to the spontaneous development of a small 

number of, primarily colonic, tumors developing in aging mice.  We therefore propose that 

gpA33ΔN-Bcat mice can serve to investigate the compounding pathophysiological consequences 

of reduced barrier function, ensuing inflammation and oncogenic driver mutations in the 

colon, as well as serving as a model for the development of novel chemopreventive and/or 

therapeutic strategies (Orner et al., 2002). 
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 RESULTS 

 

ΔN-Bcat is expressed in intestinal epithelial cells of gpA33ΔN-Bcat mice 

The gpA33 antigen is a glycosylated transmembrane protein that is expressed specifically in 

the intestinal epithelium (Catimel et al., 1996; Heath et al., 1997; Johnstone et al., 2000). We 

exploited the endogenous gpA33 gene locus to drive intestinal-specific expression of an N-

terminal deletion mutant of β-catenin (ΔN-Bcat) encoded by a bicistronic gpA33-IRES-ΔN-

catenin RNA (Supplementary material Fig. S1A,E). For this, a cDNA encoding ΔN(1-131)β-

catenin, in which a FLAG epitope replaced the first 131 amino terminal amino acids, was 

inserted in the 3’ UTR of the gpA33 antigen gene locus (Orner et al., 2002). As gpA33 is also 

transcribed in embryonic stem cells, we blocked the transcription of ΔN-Bcat by a lox(P)-

flanked neo cassette in the corresponding gpA33Neo (henceforth referred to as A33Neo) mouse 

strain. Transcriptional activation of the silent ΔN-Bcat transgene was achieved by excising the 

lox(P)-flanked neo cassette in the germline to yield the gpA33ΔN-Bcat (henceforth referred to as 

Bcat) strain (Supplementary material Fig. S1A). 

 

To verify tissue-specific expression of ΔN-Bcat, we performed qRT-PCR analysis on 

different tissues in A33Neo and Bcat mice. We detected ΔN-βcatenin mRNA in the small and 

large intestines of Bcat mice but not in liver or in intestines of A33Neo mice (Supplementary 

material Fig. S1C). Transcript levels of the truncated β-catenin were higher in the large 

intestine as predicted from the rostro-caudal expression gradient of endogenous gpA33 

(supplementary material Fig. S1D). We confirmed by Northern blot and anti-FLAG 

immunoprecipitation analysis that Bcat transgene expression occurred in a gene dose-

dependent manner (Supplementary material Fig. S1E,K) and that it did not affect expression 

of endogenous β-catenin in Bcat mice (Supplementary material Fig. S1B). We also 

ascertained nuclear accumulation of ΔN-βcatenin by subcellular fractionation of intestinal 
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lysates from Bcat mice (Supplementary material Fig. S1H). As predicted from the introduced 

truncation mutations, immunoprecipitation with an anti-E-cadherin antibody furthermore 

confirmed that ΔN-βcatenin retained the capacity to bind to E-cadherin at the membrane 

(Supplementary material Fig. S1I). The expression level of the mutant ΔN-βcatenin was 

approximately 50% compared to endogenous β-catenin in total lysate and further reduced to 

about 30% in the nuclear compartment (Supplementary material Fig. S1F-H). 

 

Increased number of Paneth cells in Bcat mice 

To evaluate the capacity of ΔN-βcatenin to regulate Wnt target genes, we performed qRT-

PCR analysis on small and large intestinal tissue of wild type (Wt) and Bcat mice. Although 

expression of the constitutive active delta-exon 3 β-catenin mutant results in elevated 

expression of the prototypical Wnt target genes c-myc, cyclinD1 and CD44, expression of 

these genes remained unaffected in Bcat mice (Fig. 1A-C). In agreement with this, we found 

similar staining patterns for the proliferation marker Ki67 in the crypts of Lieberkühn in Bcat 

and Wt mice (Fig. 1D,E). However, in the small intestine of Bcat mice we detected a 

significant increase of the Paneth-cell specific transcripts encoding matrix metalloproteinase 7 

(MMP7) and cryptidin 1 and this coincided with a significant expansion in the staining zone 

of Ulex Europaeus Agglutinin lectin (UEA) and lysozyme positive cells (Fig. 1F-I). 

Collectively, these observations indicate a gradient whereby limited overexpression of a 

stabilized ΔN-βcatenin can selectively shift the cell fate towards the Paneth cell lineage as 

described (Andreu et al., 2008; van Es et al., 2005), but without increasing the rate of mucosal 

renewal associated with excessive activation of the Wnt target genes c-myc and cyclinD1.  
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Inflammatory cytokines in Bcat mice  

Expression of (ΔN28-134)-catenin results in loss of intercellular adhesiveness (Oyama et al., 

1994) in the human gastric signet ring cell carcinoma cell line HSC-39 through impaired 

interaction between mutant -catenin, α-catenin and E-cadherin. However we found no overt 

mislocalization of membrane bound E-cadherin in cultures of intact colonic crypts isolated 

from Bcat mice, consistent with our biochemical analysis and the prediction that ΔN-Bcat 

protein retains its E-cadherin interaction domain (Fig. 2A,B, Supplementary material Fig. 

S1I). Since we detected increased -catenin expression in the nucleus, cytosol and membrane 

fraction of isolated intestinal epithelium (Fig. 2B) that was associated with the expected 

reduction of α-catenin levels, as determined by WB and IF staining in the colon of Bcat mice 

(Fig. 2C-E), suggesting that ΔN-Bcat interfered with the formation of a functional α-

catenin/-catenin/E-cadherin complex at the membrane. To investigate likely physiological 

consequences of aberrant formation of such membrane complexes, we measured intestinal 

permeability in ΔN-Bcat mice using TRITC-labelled dextran (TD) gavage and observed 

leakage from the intestinal lumen into the circulation through serum TD quantitation 4 hours 

later. While the permeability to 4kDa TD remained comparable between unchallenged Wt and 

Bcat mice, we noted increased leakiness of the intestinal mucosa of Bcat mice when 

challenged by limited exposure to the luminal irritant Dextran Sulfate Sodium (DSS) for 16 

hours (Fig. 2F). Following administration of 2% DSS in drinking water, Bcat mice 

demonstrated a significant increase in serum TD suggesting their intestinal mucosa’s 

underlying sensitivity to reduced barrier function. However, the increase in the inflammatory 

cytokines IL-17 and IL-23 (Fig. 2G) alongside the reduced expression of -catenin (Fig. 2C-

E) present already in the unchallenged colons of Bcat mice implies influx of innate immune 

cells (Grivennikov et al., 2012) possibly due to increased permeability to molecules smaller 

than TD.   
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Spontaneous, sporadic colonic tumor formation in Bcat mice  

Although stronger alleles of mutant -catenin rapidly induce extensive epithelial 

hyperproliferation and formation of up to several hundreds adenomas primarily in the small 

intestine of mice (Harada et al., 1999; Leedham et al., 2013), tumor formation in these mice 

neither reflects tumor latency, multiplicity nor site where the majority of adenomas arise in 

humans from which CRC ultimately develops. We therefore determined spontaneous tumor 

occurrence in old (8-24 month) Bcat mice and found that 22 of 54 (37%) homozygous mice 

carried macroscopically visible colonic tumors at an average rate of 1.7 tumors per mouse. 

Predictably, spontaneous tumor formation was smaller in heterozygous mice where only 6 of 

31 (19%) mice showed macroscopically visible adenomas (1.5 tumors per mouse) 

(Supplementary material Table S1). Meanwhile, none of the age-matched wild type littermate 

mice (n=18) showed any sign of intestinal lesions. Most of the detected lesions in 

homozygous Bcat mice comprised relative small colonic adenomas (<1.0mm), however, we 

also occasionally detected in old mice (>22 months) larger adenoma (1.9-2.7 mm diameter). 

Histopathological analysis revealed that all tumors in Bcat mice corresponded to hyper-

proliferative tubular adenoma with equally sized cell nuclei and a prominent desmoplastic 

reaction (Fig. 3A). Furthermore, -catenin was diffusely localized throughout the cytosol and 

nuclei of tumor cells, but clearly remained associated with the plasma membrane in adjacent 

normal epithelium. Meanwhile, non-uniform organization of F-actin was observed throughout 

tumors, and these lesions also stained strongly for UEA and lysozyme, and prominently for 

Ki67 (Fig. 3A). Consistent with this, the Paneth cell marker MMP7, which was among the 

few Wnt-target genes deregulated in the normal epithelium of Bcat mice (Fig. 1G), was 

already significantly up-regulated in benign human colonic adenoma (Fig. 3B). Like MMP7, 

Tenascin-C, another Wnt target gene, is also upregulated in the normal mucosa of Bcat mice 

(Fig. 3C-E), and this persists in the tumor of these mice and in human human colorectal 

cancer samples (n=31) (Supplementary material Fig. S2A,B).  Consistent with the expression 
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of MMP7 and Tenascin-C being highly sensitive to Wnt pathway activation, we also detected 

up-regulation of these genes within the tumors of Apc mutant mice. (Fig. 3C,G).   

 

Bcat mice are sensitized to AOM-induced tumorigenesis  

To establish whether expression of the ΔN-Bcat transgene sensitized mice to chemical 

tumorigenesis, we challenged Bcat mice with the organotropic carcinogen azoxymethane 

(AOM). Mice were then analysed 5 and 12 weeks after the last of 6 consecutive AOM 

injections and colons were stained in methylene blue to identify ACFs (McLellan and Bird, 

1988). Compared to Wt mice, Bcat mice harboured more ACFs and more adenomatous 

polyps (Fig. 4A-C,E), which however consistently remained well differentiated (Fig. 4D). 

 

In order to gain insights into the molecular events underpinning the cooperation between the 

ΔN-catenin allele and AOM, we determined the nucleotide sequences of the mutagen 

hotspots in the endogenous Kras and ctnnb1 genes.  We found similar frequencies of 

activating missense mutations affecting codons 12, 13 and 61 of the Kras gene in tumors of 

Wt and Bcat mice. However, only tumors of Bcat mice (4 of 24) carried missense mutations 

in the ctnnb1 codons that substituted the regulatory serine residues at positions 37 and 38 

(Supplementary material Table S2) to result in stabilized more active form of catenin. In 

order to determine whether AOM also introduced functionally equivalent nonsense mutations 

in the Apc gene that result in a truncated, less stable or non-functional Apc protein, we stained 

tumor sections with an antibody that specifically recognizes a C-terminal epitope of the Apc 

protein. We observed weaker Apc staining in a much larger proportion of adenomas from 

Bcat than from Wt mice (Supplementary material Table S2 and data not shown). Collectively, 

these results suggested that AOM-induced somatic mutations that further activate the Wnt/-

catenin pathway (i.e. gain-of-function mutations in ctnnb1; loss of function mutations in Apc), 
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rather than mutations in the Ras-Erk signalling cascade, co-operate with ΔN-Bcat to trigger 

intestinal tumorigenesis. 

 

Level of tumorigenesis differs in mouse models for colorectal cancer 

We previously showed that concomitant mutations in Apc and Kras increased intestinal 

tumorigenesis and mortality of compound pVillin-KrasV12G;Apc1638N mice, where the Apc1638N 

allele alone, upon loss of heterozygosity of the remaining wild type Apc allele, confers 

development of 3-4 tumors per mouse (Janssen et al., 2006). Similar observations have also 

been reported in KrasV12G compound mutant mice based on the stronger ApcMin allele (Luo et 

al., 2009).  We reconciled these observations, at least in part, by the ability of oncogenic 

KrasV12G to enhance accumulation of nuclear -catenin and hence to further activate canonical 

Wnt/-catenin signaling. To better understand the molecular mechanisms underlying the 

functional discrepancy between co-operations of ΔN-Bcat with the AOM-induced Apc and 

Kras mutations, respectively, we generated compound mutant pVillin-KrasV12G;gpA33ΔN-Bcat 

mice (referred to as Ras/Bcat), Apc1638N;gpA33ΔN-Bcat mice (referred to as 1638N/Bcat) and 

ApcMin;gpA33ΔN-Bcat mice (referred to as Min/Bcat). Consistent with our results from the AOM 

challenge, we observed that the homozygous ΔN-Bcat allele conferred a small additive effect 

in the compound Ras/Bcat mice yielding an average of 4 tumors per mouse compared to 1.7 

and 2.3 tumors observed in the corresponding single mutants (Table 1). By contrast, ΔN-Bcat 

conferred synergistic effects on both Apc mutant alleles, averaging 7.8 tumors per 

1638N/Bcat mouse and 62.5 tumors per Min/Bcat mouse compared to 3.9 tumors per 

Apc1638N and 22.3 tumors per ApcMin mouse. There were no gross morphological and 

histological differences between the lesions of the compound mutant mice, which comprised 

mainly well-differentiated adenomas (Supplementary material Fig. S3). Likewise, overall 

tumor incidence remained independent of the presence of the ΔN-Bcat allele (Table 1). Thus, 
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ΔN-Bcat promotes intestinal polyposis in Apc mutant backgrounds in a synergistic manner 

whereas it merely shows additive effects in mutant Kras animals.  

 

Establishment of a pro-angiogenic environment in the intestines of Bcat mice  

To better understand the molecular mechanisms that are likely to underpin the effects of the 

ΔN-Bcat mutation on intestinal tumor multiplicity, we monitored expression of the Wnt/-

catenin target gene c-myc and Ccnd1, which serve as a gate-keeper in Apc-dependent tumor 

formation (Sansom et al., 2007) and promote cell cycle progression, respectively. 

Surprisingly, expression of c-myc and cyclinD1 in tumors remained unaffected irrespective of 

whether they also harbored the ΔN-Bcat mutation, and irrespective of whether they were 

associated with the mutations in Kras or Apc (Fig. 5 A,B). Consistent with this, the average 

tumor size remained similar upon addition of the ΔN-Bcat mutation (Table 1). However in the 

lesions of Min/Bcat compared to the other mouse models, the ΔN-Bcat allele conferred a 

strikingly increased expression of osteopontin (OPN) and Cox2 (Fig. 5 C,D), which can be 

considered as surrogate markers for activation of the Wnt/-catenin pathway and 

inflammation (Araki et al., 2003; Mitra et al., 2012). We confirmed these findings by 

immunofluorescence staining of Cox2, which revealed significantly more Cox2 positive cells 

in tumors of Ras/Bcat and 1638N/Bcat mice than in tumors of their single Apc and Ras 

mutant counterparts (Fig. 6A,B). Strikingly, the Cox2 staining was more prominent in the 

tumor stroma than the epithelial tumor compartment. Since Cox2 activity has been linked to 

increased tumor angiogenesis, we also stained tumor sections with the endothelial cell marker 

CD31 and observed a significant increase in CD31 positive blood vessels in tumors of 

1638N/Bcat and Min/Bcat mice, but not in tumors of Ras/Bcat mice (Fig. 6C-F). Collectively 

these observations suggest that the ΔN-Bcat mutation co-operates with Apc mutations, which 

further activate the Wnt/-catenin pathway to help establishing a pro-angiogenic environment 

conducive to promote intestinal tumorigenesis. 

D
ise

as
e 

M
od

el
s &

 M
ec

ha
ni

sm
s  

    
   D

M
M

Ac
ce

pt
ed

 m
an

us
cr

ip
t

 

 

 

 

 



DISCUSSION 

We have generated a new gpA33ΔN-Bcat knockin mouse model to study intestinal tumor 

susceptibility by inserting the 1-131 amino-terminally truncation mutant of -catenin into the 

3’UTR of the endogenous gpA33 antigen locus. Expression of this ΔN-Bcat transgene per se 

resulted in the formation of primarily colonic tumors in 37% of all Bcat mice of at least 8 

months of age, akin to the long latency and low penetrance observed in human sporadic CRC. 

Our observations that ΔN-Bcat expression functionally co-operates with loss-of-function 

mutations in Apc rather than gain-of-function Kras mutations, implies the existence of a 

minimal threshold level for canonical Wnt/-catenin signaling to trigger tumor formation 

(Albuquerque et al., 2010; Buchert et al., 2010; Leedham et al., 2013; Roose et al., 1999; 

Samuel et al., 2009). Indeed, in Bcat mice we detected transcriptional activation of only a 

subset of Wnt/-catenin target genes, including some specific for Paneth cells. This is 

consistent with models suggesting that different gene promoters require different levels of 

Wnt/-catenin pathway activation for efficient transcription (Albuquerque et al., 2010; 

Darken and Wilson, 2001), and mathematical calculations that the combination of gene 

specific regulatory mechanisms with gradients of -catenin and Apc functions are sufficient 

to confer distinct target gene expression patterns (Benary et al., 2013).  

 

Functionally, Paneth cells contribute to intestinal homeostasis by providing niche factors to 

retain the stemness of Lgr5 positive intestinal cells. While the latter population also 

contributes the cells of origin for intestinal tumors (Barker et al., 2009), human colonic 

neoplasms are frequently characterized by excessive abundance of Paneth(-like) cells (Joo et 

al., 2009). Likewise, the serum levels of Tenascin-C and MMP7 are increased in patients with 

CRC and have been proposed as biomarkers for primary and metastatic CRC, respectively 

(Pryczynicz et al., 2013; Takeda et al., 2007). Moreover, Tenascin-C is increasingly 
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recognised to play an important role in shaping the tumor microenvironment (Spenle C, Cell 

Adh Migr 2015 Jan 22:0). However, we noted that the increase in Paneth cells in Bcat mice 

was not accompanied by an increase in stem cells markers Lgr5, Sox9 or Ascl2 in the normal 

intestine, nor activation of the Notch pathway (Supplementary material Fig. S4 A-C, and data 

not shown), which also regulate cell fate decisions in the intestine. Likewise, in Bcat mice we 

did not observe the increase in progenitor cell proliferation characteristically observed when 

the Wnt/β-catenin pathway is maximally stimulated following biallelic Apc inactivation 

(Sansom et al., 2006).  

 

Several studies have reported the effects of intestinal expression of N-terminal mutants of -

catenin in vivo.  The most extensive intestinal hyperproliferation and adenoma formation 

resulted from Cre-mediated excision exon 3 (encoding amino acids 5-80) of the endogenous 

ctnnb1 gene throughout the intestinal mucosa, thereby deleting all the regulatory serine and 

threonine residues that control the turnover of the -catenin protein (Harada et al., 1999; 

Leedham et al., 2013). By contrast, mice that transgenically expressed -catenin lacking 

amino acids 1-89 (Wong et al., 1998) remained tumor-free at 10 month of age, but developed 

abnormal villus branching in the small intestine consistent with the rostro-caudal gradient of 

Fabpl gene promoter used to drive the transgene.  Meanwhile, ubiquitous expression of a 

doxycycline-inducible version of the same -catenin transgene resulted in rapid expansion of 

the intestinal crypt compartment, mislocalization of Paneth cells and upregulation of many 

Wnt target genes (Jarde et al., 2013). Transgenic expression of ΔN131-catenin under the 

control of the calbindin promoter resulted in intestinal tumors strictly confined to the small 

intestine, and premature death associated with transgene-induced polycystic kidney disease 

(Romagnolo et al., 1999).  -catenin, 

albeit as a homozygous knockin transgene and under the control of the gpA33 locus, results 

primarily in colonic tumors without detrimental effects in other organs.  Notwithstanding the 
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different nature of the various -catenin truncation mutations in the above models, we 

interpret the different biological outcomes primarily as a consequence of the different spatial 

expression patterns, conferred to by the various gene promoters, and "signaling strength" as a 

function of the gene promoter and the nature of the -catenin mutation. For instance, in their 

doxycycline-inducible model Jarde et al noted that transgene expression exceeded that of the 

endogenous ctnnb1 gene by up to 11,000 fold (Jarde et al., 2013), while in our Bcat mice the 

level of ΔN-Bcat expression remains more comparable to that of the simultaneously expressed 

endogenous wild type protein. It remains to be determined whether the presence of the amino-

terminal FLAG-tag and the associated introduction of bulky amino acids immediately 

following the 3’-end of the IRES account for moderate expression from the second cistron of 

the gpA33-IRES-ΔN-Bcat RNA (Bochkov and Palmenberg, 2006). Thus in general, 

activation of Wnt/-catenin pathway in Bcat mice falls short of reaching the threshold 

required to induce adenoma formation in the colon, but predisposes these mice to 

tumorigenesis upon exposure to mutant Apc alleles or AOM-induced mutations in 

components of the Wnt signaling pathway. Bcat mice are therefore likely to provide a 

background that is genetically sensitized for the functional detection and confirmation of 

mutation variants in components of the canonical Wnt/-catenin pathway. 

  

Changes to intestinal permeability have recently been recognized as a contributing factor to 

intestinal mutagenesis. Here we show that relative modest activation of the Wnt/-catenin 

pathway increased intestinal permeability prior to formation of adenomas, and the former is 

likely to account for the increased expression of the pro-inflammatory proteins Cox2, 

osteopontin, IL-17 and IL-23.  

 

We speculate that this may result from the impaired interaction of ΔN-Bcat with α-catenin, 

which is likely to weaken the interaction of the actin cytoskeleton with the plasma membrane 
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in intestinal epithelial cells. Our observations suggest that oncogenic activation of the 

canonical Wnt/-catenin pathway may help to set up a pro-tumorigenic microenvironment 

that precedes subsequent neoplastic transformation of the epithelium. This may be further 

exaggerated once tumors are established, since the leakiness in Apc mutant colonic adenomas 

in mice triggered further accumulation of IL-17 and IL-23 in the tumor stroma (Grivennikov 

et al., 2012). Interestingly, cytoplasmic and nuclear -catenin accumulation is detected in the 

majority of pre-neoplastic intestinal epithelium of IBD patients (Claessen et al., 2010; van 

Dekken et al., 2007). Meanwhile, the importance of the IL-17/IL-23 axis is well documented 

for the pathogenesis of Crohn’s disease and ulcerative colitis in humans (Clevers, 2006), and 

Cox2-derived lipids, including prostaglandin E2, are potent inflammatory mediators that 

promote tumor growth and metastasis (Wang et al., 2005; Xia et al., 2012). Conversely, for 

the non-transformed epithelium it is intriguing to speculate that the Wnt-signaling-dependent 

increase in Paneth cells and their transcripts is part of the epithelium’s response to increased 

bacterial antigen exposure. Upregulation of cryptidin 1 in the intestine of Bcat mice, for 

instance, is consistent with the upregulation of α-DEFENSIN 5 and 6 in the leaky and 

inflamed colons of patients with ulcerative colitis (Supplementary material Fig. S5).  

 

In conclusion, the Bcat mice provide a model, to mimics some of the critical aspects of 

sporadic CRC induction in humans in terms of tumor multiplicity, tumor latency, tumor site 

specificity, and coincides with upregulation of the earliest markers for human emerging CRC 

in humans, including Tenascin-C, MMP-7, OPN and COX2.   
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MATERIALS AND METHODS 

Animal Models 

All experiments on mice were performed in accordance with institutional and national 

guidelines and regulations. Mice were maintained by crossing to C57Bl/6J animals. To 

control for genetic background effects, littermates were always used as controls. Mice were 

maintained under a 12-hour light-dark cycle and fed with standard diet and water ad lib. The 

ApcMin, Apc1638N and the pVillin-KrasG12V models have been published previously (Janssen et 

al., 2006; Smits et al., 1998; Su et al., 1992). 

 

Generation of the gpA33ΔN-Bcat mouse 

The gpA33ΔN-Bcat mouse (hereafter referred to as “Bcat”) was generated from a knockin gene 

targeting vector comprising a lox(P)-flanked IRES-neo cassette and a cDNA in which the 

FLAG-epitope tag replaced the most amino terminal 131 amino acids of mouse β-catenin. 

The IRES sequence used is a modified version of the 5’UTR from EMCV mRNA (Mountford 

et al., 1994). The vector (Orner et al., 2002) also contained flanking sequences homologous to 

the last coding exon of gpA33 and its 3’-untranslated region in order to capture all the cis-

acting regulatory elements that collectively specify and confine expression of the resulting 

bicistronic RNA to the intestinal epithelium (Catimel et al., 1996; Heath et al., 1997; 

Johnstone et al., 2000). A lox(P)-flanked neo cassette provides a transcriptional roadblock for 

expression of the ΔN-Bcat transgene in gpA33Neo mice. However, upon Cre-recombinase 

mediated excision of the neo-cassette following mating of female A33Neo mice with male Cre-

deleter mice, the modified gpA33 locus of Bcat mice encodes a bicistronic RNA 

simultaneously encoding gpA33 and the FLAG-tagged ΔN(1-131)β-catenin (Orner et al., 

2002). The 3’ end of the IRES and the 5’ ATG of the FLAG-tagged ΔN(1-131)β-catenin 

cDNA are separated by a short 13bp linker region (gcttgccacaacc). The targeting vector was 

electroporated into W9.5 ES cells (129X1/SvJ) and correctly targeted ES cells were injected 
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into blastocycsts derived from C57/Bl6 donor female mice. Chimeric male offspring were 

mated with C57/Bl6 female mice and once germ line transmission of the transgene was 

confirmed the mice were backcrossed for at least 10 generation onto C57/Bl6 background. 

 

RNA Isolation 

We isolated RNA from snap-frozen samples stored at -80°C. RNA was isolated using the 

Qiagen RNeasy Kit (Qiagen, Hilden, Germany) and judged RNA integrity on a denaturing 

formaldehyde-agarose gel. cDNA preparation was performed according to standard 

procedures, using RevertAid H-minus M-Mulv Reverse Transciptase, random primer and 

oligo dT primers (Fermentas, St. Leon-Rot, Germany).  

 

Quantitative Real-time PCR  

Quantitative Real-Time PCR was performed with the ABI PRISM 7300 detection system 

(Applied Biosystems, Foster City, USA) and using SYBRGreen dye. Relative RNA 

abundance was calculated using the ΔΔCT formula and normalized to the transcript levels of 

the housekeeping gene β-actin with the help of the Sequence Detection Software v.1.4 

(Applied Biosystems, Foster City, USA). Assays were performed in duplicate. TaqMan 

primers for IL23 and IL17 were purchased from Life Technologies (Mulgrave, Australia). 

Primer sequences used for SybrGreen RT-qPCR were as follows: 

-actin/for:  5’- AGC CAG GTC CAG ACG CAG G - 3’ 

-actin/rev:  5’- ACC CAC ACT GTG CCC ATC TAC -3’ 

-catenin/for:  5’- GCT GAC CTG ATG GAG TTG GA - 3’ 

-catenin/rev:  5’- GCT ACT TGC TCT TGC GTG AA - 3’ 

CD44/for:  5’- GTC TGC ATC GCG GTC AAT AG - 3’ 

CD44/rev:  5’- GGT CTC TGA TGG TTC CTT GTT C - 3’ 

Cmyc/for:  5’- TAG TGC TGC ATG AGG AGA CA - 3’ 
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Cmyc/rev:  5’- GGT TTG CCT CTT CTC CAC AG - 3’ 

Cox2/for:  5’- ACA CAC TCT ATC ACT GGC ACC - 3’ 

Cox2/rev:  5’- TTC AGG GAG AAG CGT TTG C - 3’ 

Cryptdin1/for:  5’- AAG AGA CTA AAA CTG AGG AGC AGC - 3’ 

Cryptdin1/rev:  5’- CGA CAG CAG AGC GTG TA - 3’ 

CyclinD1/for:  5’- GCA CAA CGC ACT TTC TTT CCA - 3’ 

CyclinD1/rev:  5’- CGC AGG CTT GAC TCC AGA AG - 3’ 

ΔN-Bcat/for:  5’- GGA TTA CAA AGA CGA TGA TGA CAA GTT G - 3’ 

ΔN-Bcat/rev:  5’- GTC AGC TCA GGA ATT GCA CGT G - 3’ 

MMP7/for:  5’- GAG ATG TGA GCG CAC ATC AGT G - 3’ 

MMP7/rev:  5’- GAT GTA GGG GGA GAG TTT TCC AGT - 3’ 

 

Human Tissue samples  

All samples were collected after prior informed written patient consent as part of a study (no. 

1926/7) approved by the human ethics committee of the Klinikum rechts der Isar. Samples of 

histologically confirmed normal colon mucosa from resected specimen (n = 8), as well as 

from benign adenoma (n=9) were additionally analyzed. None of the patients received 

neoadjuvant treatment or suffered from a known second neoplastic disease. Tumors were 

classified according to the UICC/TNM system (7th edition): UICC stage I (n=11 cases), stage 

II (n=10), stage III (n=8), and stage IV (n=13). The median of histologically reviewed lymph 

nodes per case was 21 (range: 7–72). Tissues from all 42 patients, who underwent surgical 

resection between 1987 and 2006 at the Klinikum rechts der Isar, were obtained immediately 

after surgical resection. Specimens were transferred into liquid nitrogen and stored at −80°C.  
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Immunofluorescence on Tissue Sections 

Cryosections of acetat-buffer (AlleMan Pharma GmbH, Rimbach, Germany) embedded 

mouse tissues were cut at 7µm thickness, air-dried and processed by routine H&E staining. 

Some tissue sections were fixed in 10% normal buffered formalin overnight, processed and 

embedded in paraffin. For immunofluorescence, sections were fixed with either 3% 

paraformaldehyde at room temperature for 20 minutes or with methanol at -20°C for 10 

minutes. The paraformaldehyde-fixed sections were treated with 50 mmol/L NH4Cl in PBS 

for 20 minutes and solubilized with 0.1% Triton X-100 for 5 minutes. Antibodies used were 

as follows: anti-α-catenin (Abcam, Cambridge, UK), anti-β-catenin (BD, Franklin Lakes, 

USA and Sigma-Aldrich, Saint Louis, USA, cat#C2206), anti-E-Cadherin (Invitrogen, 

Camarillo, USA, cat#13-1900, clone ECCD-2), anti-Cox2 (Santa Cruz, Heidelberg, 

Germany), anti-CD31 (PECAM1 Sigma-Aldrich, Munich, Germany), anti-Ki67, anti-

Lysozym (Dako, Hamburg, Germany) and the dyes 4, 6- diamidino-2-phenyl indol (DAPI, 

Sigma, Munich, Germany), TRITC-Phalloidin (Sigma, Munich, Germany) and TRITC-UEA1 

(Sigma, Munich, Germany). Immunofluorescent staining of mouse tissue sections was 

detected with a Zeiss Axiovert 200M microscope with an AxiocamMR3 camera, with the 

following objectives: LD A-Plan 10x/NA:0.25, LD A-Plan 20x/NA:0.30, Plan Neofluoar 

40x/NA:0.75 lenses (all lenses: air, no immersion liquid). The tissues were imaged using 

standard filter sets and laser lines, acquiring single labeled images. DAPI, FITC and Cy3 

fluorescence were excited with a HXP120C lamp with filters at excitation wavelengths of 

360nm, 490nm, and 550nm, respectively and the emission wavelength were measured at 

wavelengths 460nm, 520nm, and 562nm, respectively. The images were captured using Zeiss 

Axiovision software (version 4.8.2). The Zeiss image files (.zvi) were imported into the 

Adobe Photoshop version 12.0.4 software for processing and display.  
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For immunofluorescence staining of paraffin embedded tissue, sections were dewaxed in 

xylene and rehydrated. Antigen retrieval was in boiling 10 mM citrate buffer pH 6.0 for 15 

minutes. Primary antibodies were diluted in 5% normal goat serum/0.5% Triton X-100 in 

PBS and incubated overnight at 4°C. Secondary antibodies used were goat anti-mouse IgG, 

goat anti-rat IgG and goat anti-rabbit IgG coupled to Alexa488, 546 or Cy3 (Molecular 

Probes, Eugene, USA). Tissues were mounted in ProLong Antifade plus DAPI (Life 

Technologies, Mulgrave, Australia). Immunofluorescent staining of the distal colon was 

detected with a Leica SP8 Confocal microscope with Resonant Scanner (C4.50) on a 10x 

water immersion (NA 0.40) lens. The tissues were imaged using standard filter sets and laser 

lines, acquiring single labeled i -catenin fluorescence were excited with 

the 405nm and 488nm laser lines, respectively and the emission wavelength were measured at 

wavelengths 405nm and 473nm, respectively. The images were captured using Leica's LAS-

AF software. The Leica image files (lif) were imported into the ImageJ/Fiji software 

(Schindelin et al., 2012) for processing and display. 

 

3D confocal fluorescence imaging 

Immunofluorescent staining of crypts was detected with an Olympus FV1000 Spectral 

Confocal attachment to an Olympus IX-81 microscope on either a 60x water immersion (NA 

1.2). The crypts were imaged using standard filter sets and laser lines, acquiring single labeled 

images. DAPI, β-catenin and E-cadherin fluorescence were excited with the 405nm, 488nm 

and 546nm laser lines, respectively and the emission wavelength were measured at 

wavelengths 405nm, 473nm and 559nm, respectively. The images were captured using 

Olympus FluoroView software (Version 1.7c). 3D image stacks were acquired, which 

encompass the entire depth of the crypt(s) in the field of view. The entire depth of the sample 

was acquired as 3D image stacks at approximately 20µm thickness for each optical section. 

For quantitative spatial analysis of key proteins in isolated crypts, cubic voxels were acquired 
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for each image stack. The output analogue signal, representing the fluorescence intensities 

was digitized to 16 bits resolution at 65536 levels of grey and saved as an Olympus Image 

Binary (OIB) image. The Olympus Image Binary (OIB) image files from the fluorescently 

stained individual whole mount crypts were imported into the ImageJ/Fiji software(Schindelin 

et al., 2012) for processing and display. 3D image stacks were extracted, and imported as 

„tiff“ files into MATLAB (MathWorks, Natick, Massachusetts, USA), for analysis. 

Quantitation of β-catenin and E-cadherin was conducted as described (Tan et al., 2013). 

 

Preparation of Protein Lysates 

Protein lysates were prepared from tissue samples stored at -80°C. Samples were 

homogenized in a Dounce Homogenizer (Wheaton, Mellville, USA) with RIPA buffer (50 

mmol/L Tris-HCl, pH 7.5, 150 mmol/L NaCl, 1 mmol/L EDTA, 1% NP-40, 0.25% sodium-

deoxycholate, 0.1% SDS and protease inhibitor cocktail (Roche, Mannheim, Germany). 

Soluble proteins were extracted after a 15,000g centrifugation for 15 minutes at 4°C. 

 

Immunoprecipitation and Immunoblotting 

Protein G sepharose beads were incubated with 2 µg of anti-β-catenin, anti-FLAG or anti-E-

cadherin antibody for 1 hour at 4°C, and 40 µl of the sepharose/antibody mixture was added 

to 400 µl cell lysate (see above). After 2 hours incubation the samples were centrifuged at 

15,000 g for 30 seconds at 4°C and washed 3 times with RIPA buffer.  

 

For immunoblotting, protein lysates were separated by SDS polyacrylamide gel 

electrophoresis under reducing conditions and transferred to a nitrocellulose membrane as 

described (Laemmli, 1970; Towbin et al., 1979). Immunoreactive bands were detected using 

anti-α-Tubulin and anti-E-Cadherin antibodies (Calbiochem, Darmstadt, Germany), anti-β-
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Catenin (BD, Franklin Lakes, USA), anti-Apc (sc-896, Santa Cruz, Heidelberg, Germany), 

anti-FLAG (Dianova), and anti-Lamin antibodies (Cell Signaling Technology, Beverly, 

USA). Secondary antibodies were either horseradish peroxidase-conjugated goat anti-mouse 

IgG, goat anti-rabbit IgG or goat anti-rat IgG (Jackson Immunoresearch, West Grove, USA), 

and bands were visualized with an enhanced chemiluminescence substrate detection kit 

(Pierce, Rockford, USA).  

 

Isolation of Cytosolic and Nuclear Fractions 

Tissue samples were resuspended in ice-cold CLB buffer (10 mM Hepes,10 mM NaCl, 5 mM 

NaHCO3, 1 mM CaCl2, 0,5 mM MgCl2, 5 mM EDTA,1 mM Pefablock and protease inhibitor 

cocktail) on ice for 5 minutes, homogenized in a Dounce Homogenizer (Wheaton, Mellville, 

USA) and centrifuged at 3000 rpm (4°C) for 5 minutes. The cytosolic fraction (supernatant) 

was harvested after a centrifugation at 39,000 g for 15 minutes. The nuclear fraction (pellet) 

was resuspended in TSE buffer (10 mM Tris/HCl ph 7.5, 0.3 M Sucrose, 1 mM EDTA, 0.1% 

NP-40, 1 mM Pefablock and protease inhibitor cocktail), homogenized and centrifuged at 

3000 rpm (4°C) for 5 minutes. The pellet was resuspended in 100 µl RIPA buffer (see above), 

and the samples were prepared for immunoblotting or immunoprecipitation. 

 

Tumor Analysis and Processing of Tissue 

Intestines were collected from mice at the indicated age and opened longitudinally, to 

determine the size and location of macroscopically visible tumors, prior to their resection and 

embedding in acetate-buffer (sodium acetate, sodium chloride, potassium chloride, calcium 

chloride, magnesium chloride hexahydrate, with respective molarities: 140 mmol/l Na+, 4 

mmol/l K+, 2.5 mmol/l Ca2+,  1 mmol/l Mg2+, 106 mmol/l Cl-, 45 mmol/l acetate, pH: 6.7-

7.7 (AlleMan Pharma GmbH, Rimbach, Germany)) and processing for cryosections. Some 

freshly isolated tumors were snap-frozen in liquid nitrogen and stored at -80°C for subsequent 
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DNA/RNA extraction or protein analysis. Aberrant crypt foci (ACF) in the colonic mucosa of 

longitudinally opened, pinned out and fixed tissues (over night in 75% ethyl alcohol, 20% 

formaldehyde and 5% acetic acid) were detected after staining for 1 minute in 0.2% 

methylene blue (Sigma, Munich, Germany) in PBS and rinsed in fresh phosphate buffer at 

4°C for 2 hours. The tissue segments were placed with the luminal side up on microscope 

slides and observed with a low-magnification lens. All ACFs were at least 3 times larger in 

diameter than normal crypts, and their lumina were mostly oval or elongated rather than 

circular (McLellan and Bird, 1988). 

 

Azoxymethane (AOM)-induced mutagenesis  

Eight week old mice were injected with 10 mg/kg AOM intraperitoneally once weekly for 6 

consecutive weeks.  Colons were collected either 5 weeks after the last AOM challenge to 

assess for ACF, or at 12 weeks to assess for colonic adenomas. We used Sanger sequencing 

on genomic DNA prepared from adenomas to assess for AOM-induced amino acid 

substitution mutation K-ras (G12, G13, Q61) and -catenin (S37, S38). Loss-of-

heterozygosity was implicated by immunohistochemical absence of Apc protein staining 

using an antibody raised against the C-terminus of APC (sc-896, Santa Cruz, Heidelberg, 

Germany). 

 

TRITC-dextran permeability assay 

Intestinal permeability was assessed by gastric gavage of TRITC-dextran (40 mg/ml, 4 kDa in 

PBS; Sigma, Munich, Germany) as a non-metabolizable macromolecule(Brandl et al., 2009). 

Prior to the TRITC-dextran challenge (200  of a 40 mg/ml solution), we sensitized mice by 

providing 2% DSS in drinking for 16 hours. TRITC-dextran measurements in plasma were 

performed 4 hours after the challenge using fluorometry. 
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Statistics 

Unless otherwise indicated, Student’s t-test were performed and data expressed as means + 

s.e.m.   
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Figures 

 

 

 

Figure 1 Only some Wnt target genes are induced in pre-malignant intestinal tissue of 

Bcat mice.  
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(A-C) mRNA expression determined by quantitative real-time PCR in small (SI) and large 

(LI) intestine from wild type (Wt) (n=5) and Bcat (n=12) mice. Expression was normalized to 

the median expression of all wild type SI and LI samples, respectively. All measurements 

were done in duplicate.  

(D) Hematoxylin and eosin (H&E) and Ki67 stain of small intestine from Wt and Bcat mice 

(100x magnification, scale bar = 100 µm).  

(E) Quantitation of Ki67 positive cells in the intestine of Wt and Bcat mice and normalized 

per fully visible crypt.  

(F,G) Cryptdin 1 and MMP7 mRNA expression in the SI and LI of Wt and Bcat mice. mRNA 

expression is increased in SI in Bcat mice in comparison to Wt mice but absent in the large 

intestine. (* P< 0.05;  *** P< 0.001) 

(H) Staining for Lysozyme (100x magnification, scale bar = 100 µm) and Ulex Europaeus 

Agglutinin lectin (UEA, 200x magnification, scale bar = 50 µm) in the SI of Wt and Bcat 

mice. The dashed lines indicate the outline of individual intestinal crypts. 

(I) Quantitation of Paneth cells in the SI of Wt and Bcat mice (* p<0.05, n = 3 mice per 

genotype, 20 fully visible crypts per mouse were counted). 
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Figure 2 Intestinal permeability defect in Bcat mice is associated with mislocalization of 

membrane-associated proteins.  

(A) -catenin and E-cadherin staining on isolated colonic crypts from Bcat and wild type (Wt) 

mice. In the composite image -catenin is stained in green, E-cadherin in red and DAPI 

labelled cell nuclei are blue (scale bar = 30 µm).   

(B)  Quantitation of staining intensity of -catenin (top panel) and E-cadherin (bottom panel) 

in the indicated subcellular compartments (* p<0.05, ** p<0.01, single factor anova analysis, 

n=15 Bcat and n=24 Wt mice).  

(C) Confocal immunofluorescence images of α-catenin (green) in distal colon of Bcat and Wt 

mice. DAPI (blue) labels nuclei. (scale bar = 100 µm).  

(D) Western blot analysis of α-catenin protein expression in colonic shakepreps of Wt and 

Bcat mice. Shown is a representative Western blot of 1 of three independent experiments. 

Each lane represents one mouse. Gapdh was used as loading control.  

 (E) Scatter plot showing the expression levels of α-catenin protein normalised to Gapdh in 

colonic shakepreps of Wt and Bcat mice (* p<0.05; n=9 mice per genotype).  

 (F) Intestinal permeability determined by the absorbance of TRITC-dextran in the serum 4 

hours after oral gavage of TRITC-dextran (4 kDa) in Wt and Bcat mice. A cohort of mice was 

also challenged by 2% DSS in the drinking water for 16 hours prior to the TRITC-dextran 

gavage (* p<0.05, n=5-8 mice per genotype).   

(G) mRNA expression of IL-17 and IL-23 cytokines in proximal, middle and distal small 

intestine as well as colon of Wt and Bcat mice (* p<0.05,  n=3 mice per genotype).   
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Figure 3 MMP7 is upregulated in normal epithelium of Bcat mice and early stage 

human colon cancer.  

(A) Spontaneously arising tumors in the small intestine of Bcat mice show well differentiated 

to high-grade adenoma (50x magnification, scale bar = 200 µm, inset: 200x magnification). 

Immunofluorescence staining for β-catenin, proliferation marker Ki67, F-actin (TRITC-

Phalloidin), and the Paneth cell markers UEA and Lysozyme. Cell nuclei are stained blue 

with DAPI. (β-catenin: 400x magnification, scale bar = 25 µm; all others: 100x magnification, 

scale bar = 100 µm).  

(B) MMP7 RNA expression in human colon cancer specimen in normal mucosa (n=8), benign 

adenomas (n=9), locally restricted early stage carcinoma (UICC I; n=11), carcinoma UICC 

stage II (n=10), carcinoma UICC stage III (n=8), and carcinoma UICC stage IV (n=13). The 

qRT-PCR data were normalized to expression of HPRT (* p<0.05, ** p<0.01, *** p<0.001; 

unpaired student's t-test). 

(C) RT-qPCR analysis of MMP7 expression in normal (N) and tumor (T) tissue from mice of 

the indicated genotypes (* p<0.05, ** p<0.01, n≥3, student’s t-test) 

 (D,E) Western blot analysis and associated quantitation of Tenascin-C protein expression in 

non-neoplastic small intestine of Wt and Bcat mice. Each lane represents one mouse (* 

p<0.05; n=4 mice per genotype).  

(F) Immunofluorescence staining with a specific anti-Tenascin-C antibody in normal and 

tumoral intestine of Bcat mice. Cell nuclei are stained blue with DAPI. (100x magnification, 

scale bar = 100 µm). 

(G) RT-qPCR analysis of Tenascin-C expression in normal (N) and tumor (T) tissue from 

mice of the indicated genotypes (* p<0.05, ** p<0.01, n≥3, student’s t-test) 
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Figure 4  The intestinal epithelium of Bcat mice has increased susceptibility to mutagen-

induced carcinogenesis.  

(A) Representative methylene blue stained large intestine of wild type (Wt) and Bcat mice 5 

weeks after last of 6 consecutive azoxymethane (AOM) injections (scale bar = 400 µm).  

(B) Enumeration of aberrant crypt foci in the colonic epithelium of Wt and Bcat mice. (mean 

± s.d, n=15 mice, * p<0.05).  

(C) Photomicrographs of longitudinally opened and pinned out colons from Wt and Bcat mice 

16 weeks after last injection of AOM (scale bar = 1 cm).  

(D) H&E stain of a representative colonic adenoma excised from a Bcat mouse 16 weeks after 

the last AOM in injection (scale bar = 20 µm).  

(E) Enumeration of macroscopically visible adenomas in AOM-challenged Wt and Bcat mice 

(mean ± s.d, n=10-11 mice, * p<0.05)  
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Figure 5 Regulation of selected Wnt target genes in tumors of mice of the indicated 

genotype where no difference in proliferation is detected upon expression of the N-Bcat 

transgene (data not shown).  

(A,B) RT-qPCR analysis of c-Myc and cyclinD1 expression in normal (N) and tumor (T) 

tissue from mice of the indicated genotypes (* p<0.05, ** p<0.01, *** P<0.001; n≥5 tumors).  
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(C,D) RT-qPCR analysis of osteopontin (OPN) and cyclooxygenase 2 (Cox2) expression in 

normal (N) and tumor (T) tissue from mice of the indicated genotypes (* p<0.05, ** p<0.01, 

*** P<0.001; n≥5 tumors).  
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Figure 6 Increased tumor angiogenesis in Bcat mice.  

(A) Representative immunohistochemical Cox2 staining of tumor sections of the indicated 

genotypes (100x magnification, scale bar = 100 µm). 

(B) Enumeration of Cox2 positive cells per high-power field (HPF) of view in tumor sections 

from mice of the indicated genotypes. (*p<0.05; 10 HPFs counted per mouse and n>3 mice 

per genotype) 
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(C) Immunofluorescence of cryosections stained with anti-CD31 antibody on tumors from 

mice of the indicated genotypes (100x magnification, scale bar = 100 µm).  

(D) Quantitation of CD31 stained positive vessels per HPF (** p<0.01; 10 HPFs counted per 

mouse and n>3 mice per genotype).  

(E) Representative immunohistochemical CD31 staining of cells in intestinal tissue sections 

of Min and Min/Bcat mice. (20x magnification, scale bar = 100 µm, tumor inset: 200x 

magnification)  

(F) Quantitation of CD31 stained area in tumours from Min and Min/Bcat mice (*** p<0.001, 

n=3 mice per genotype).  
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Tables 

 

Table 1: Incidence, size and distribution of tumors from different mouse models of colorectal 

cancer. 

Genotype Number 
of mice 

Age 
(months) 

Tumors 
per 

animal 

Incidence Avg size 
of tumors 
(SD, mm) 

Localisation of tumors 

      PSI MSI DSI Colon 

Ras 57 17 2.3 56% 2.0±0.9 37% 43% 20% 0% 
          

Bcat 54 17 1.7 37% 2.2±1.7 10% 25% 5% 60% 

1638N 60 9 3.9 95% 3.4±1.8 66% 27% 5% 2% 

Min 4 8 22.3 100% 2.5±1.5 50% 23% 23% 4% 
          

Ras/Bcat 14 17 4.0 64% 2.0±1.2 47% 31% 19% 3% 

1638N/Bcat 8 7 7.8 100% 3.1±1.9 53% 34% 10% 3% 

Min/Bcat 5 8 62.5 100% 2.7±1.5 23% 28% 40% 9% 

 

Mice carrying the indicated mutant alleles were harvested at the indicated time. The 

incidence, number, size and localisation of intestinal tumors were determined. 

  

D
ise

as
e 

M
od

el
s &

 M
ec

ha
ni

sm
s  

    
   D

M
M

Ac
ce

pt
ed

 m
an

us
cr

ip
t

 

 

 

 

 



 

TRANSLATIONAL IMPACT 

Clinical issue 

Colon cancer is the second leading cause of cancer mortality in many industrialized countries.  

Activation of the Wnt/-catenin pathway occurs in a vast majority of colorectal cancers. 

Colorectal tumorigenesis is promoted by chronic inflammation of the intestine, and patients 

suffering from Crohn’s disease or ulcerative colitis have an increased risk of developing 

colorectal cancer. Genetically engineered mice are invaluable tools for deciphering the 

mechanisms underpinning cancer development and provide a means to test new anti-cancer 

drugs.   

Results 

To mimic sporadic colon cancer in humans, a truncated ΔN(1-131)β-catenin was introduced 

as a knockin transgene into the intestinal gene-specific gpA33 locus and combined with 

various oncogenic driver mutations. The resulting gpA33ΔN-Bcat mice show increased 

constitutive Wnt/-catenin pathway activation in the intestinal epithelium and spontaneously 

develop aberrant crypt foci and adenomatous polyps, at frequencies and latencies akin to that 

observed in sporadic colon cancer in humans. Consistent with this, the Wnt target genes, 

MMP7 and Tenascin-C, which are expressed highest in benign human adenomas and early 

tumor stages, were up-regulated in pre-malignant tissue of gpA33ΔN-Bcat mice. Moreover, 

intestinal permeability in gpA33ΔN-Bcat mice was increased resulting in mild chronic intestinal 

inflammation and increased susceptibility to azoxymethane and mutant Apc-dependent 

tumorigenesis.  

 

Implications and future directions 

The gpA33ΔN-Bcat mice provide a model, which better mimics some aspects of sporadic colon 

cancer induction in humans in terms of tumor multiplicity and latency, and site-specific (i.e. 

colon) tumor occurrence that coincides with upregulation of markers for human colorectal 

cancer progression.  Therefore the gpA33ΔN-Bcat mice are likely to be useful to functionally 
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assess and identify mutations that co-operate with canonical Wnt/ β-catenin signaling during 

the initiation of adenoma formation. In turn, this is likely to identify components that 

constitute novel pharmacological targets for the treatment and prevention of sporadic colon 

cancer in humans.  
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