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Abstract

Finding an unconstrained and statistically interpretable reparameterization of a co-
variance matrix is still an open problem in statistics. Its solution is of central impor-
tance in covariance estimation, particularly in the recent high-dimensional data envi-
ronment where enforcing the positive-definiteness constraint could be computationally
expensive. We provide a survey of the progress made in modeling covariance matrices
from the perspectives of generalized linear models (GLM) or parsimony and use of
covariates in low dimensions, regularization (shrinkage, sparsity) for high-dimensional
data, and the role of various matrix factorizations. A viable and emerging regression-
based setup which is suitable for both the GLM and the regularization approaches is
to link a covariance matrix, its inverse or their factors to certain regression models and
then solve the relevant (penalized) least squares problems. We point out several in-
stances of this regression-based setup in the literature. A notable case is in the Gaussian
graphical models where linear regressions with LASSO penalty are used to estimate the
neighborhood of one node at a time (Meinshausen and Bühlmann, 2006). Some advan-
tages and a limitation of the regression-based Cholesky decomposition (Pourahmadi,
1999) relative to the classical spectral (eigenvalue) and variance-correlation decompo-
sitions are highlighted. It provides an unconstrained and statistically interpretable
reparameterization, and guarantees the positive-definiteness of the estimated covari-
ance at no additional computational cost, and reduces the unintuitive task of covariance
estimation to that of modeling a sequence of regressions. However, its flexibility comes
at the cost of imposing an a priori order among the variables in a random vector, so
that the above problem is solved for time series, longitudinal, functional and spectro-
scopic data where the variables are naturally ordered, but for the general multivariate
data where the variables are unordered it is still open.

Key Words: Bayesian estimation; Cholesky decomposition; Dependence and correla-
tion; Graphical models; Longitudinal data; Parsimony; Penalized like-
lihood; Precision matrix; Sparsity; Spectral decomposition; Variance-
Correlation decomposition

1 Introduction

The p× p covariance matrix Σ of a random vector Y = (y1, · · · , yp)′ with as many as p(p+1)
2

constrained parameters plays a central role in virtually all of classical multivariate statistics
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(Anderson, 2003), time series analysis (Box et al. 1994), spatial data analysis (Cressie,

1993), variance components and longitudinal data analysis (Searle et al. 1992; Diggle et

al. 2002), and in the modern and rapidly growing area of statistical and machine learning

dealing with massive and high-dimensional data (Hastie, Tibshirani and Friedman, 2009).

More specifically, principal component analysis, factor analysis, classification and cluster

analysis, inference about the means and regression coefficients, prediction and Kriging, and

analysis of conditional independence in graphical models typically, require an estimate of a

covariance matrix or its inverse. It is generally recognized that the two major challenges

in covariance estimation are the positive-definiteness constraint and the high-dimensionality

where the number of parameters grows quadratically in p. In this survey, we point out

that the latter challenge is virtually eliminated by reducing covariance estimation to that of

solving a series of penalized least-squares regression problems.

Nowadays, in microarray data, spectroscopy, finance, climate studies and abundance data

in community ecology it is common to have situations where n < p, so that the use of sample

covariance matrix is problematic (Stein, 1956), particularly when its inverse is needed as,

for example, in the classification procedures (Anderson, 2003, Chap. 6), multivariate linear

regression (Warton, 2008; Witten and Tibshirani, 2009), portfolio selection (Ledoit et al.

2003) and Gaussian graphical models (Wong et al. 2003 ; Meinshausen and Bühlmann, 2006;

Yuan and Lin, 2007). In these situations and others, the goal is to find alternative covariance

estimators that are more accurate and well-conditioned than the sample covariance matrix.

It was noted rather early by Stein (1956, 1975) that the sample covariance matrix S =

1
n

∑n
i=1 YiY

′
i , based on a sample of size n from a mean zero normal population with the

covariance matrix Σ, though unbiased and positive-definite is not an accurate estimator

when p
n

is large. In this situation, it distorts the eigenstructure of Σ, in the sense that the

largest sample eigenvalue will be biased upward and the smallest sample eigenvalue will be

biased downward. Since then many improved estimators have been proposed by shrinking
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only the eigenvalues of S towards a central value (Haff, 1980, 1991; Lin and Perlman, 1985;

Dey and Srinivasan, 1985; Yang and Berger, 1994; Ledoit and Wolf, 2004). These have been

derived from a decision-theoretic perspective or by specifying an appropriate prior for the

covariance matrix.

By now it is well-known that estimators like Stein’s (1956, 1975) that focus on shrinking

the eigenvalues, have smaller estimation risks and are usually more accurate than the sample

covariance matrix (Lin and Perlman, 1985; Daniels and Kass, 1999; Ledoit and Wolf, 2004).

However, when p > n, since the sample covariance matrix is singular, suitable ridge regular-

ization (Hoerl and Kennard, 1970; Ledoit and Wolf) will lead to covariance estimators which

are more accurate and well-conditioned (Bickel and Li, 2006; Warton, 2008). This class of

estimators based on an optimal linear combination of the sample covariance matrix and the

identity matrix also ends up shrinking only the eigenvalues of S.

The Stein’s family of shrinkage estimators leaving intact the eigenvectors of the sample

covariance matrix, are neither sparse nor parsimonious. In the search for sparsity and parsi-

mony, one may directly shrink either the eigenvectors or the matrix S itself toward certain

targets or structured covariance matrices like diagonal and autoregressive sturctures as in

Daniels and Kass (1999; 2001), Hoff (2009), Fan, Fan and Lv (2008) and Johnstone and

Lu (2009). Perhaps, the simplest, more direct and less computationally intensive ways of

achieving sparsity are the techniques of banding and thresholding of the sample covariance

matrix (Bickel and Levina, 2008a, b; Rothman, Levina and Zhu, 2009) which amounts to

elementwise operations on S, and hence completely avoids the computationally expensive

eigenvalue problem (Golub and Van Loan, 1989).

In many applications the need for the precision matrix Σ−1 is stronger than that for Σ

itself. Though the former can be computed from the latter in O(p3) operations, this could

be computationally expensive and should be avoided when p is large. Recently, inspired by

the approach of Meinshausen and Bühlmann (2006) for neighborhood selection in Gaussian
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graphical models using p separate linear regressions to estimate the neighborhood of one

node at a time, several direct sparse estimators of Σ−1 have been proposed using a penalized

likelihood approach with a LASSO penaly on its off-diagonal terms (Yuan and Lin, 2007;

Banerjee et al. 2008; d’Aspremont et al. 2008; Friedman et al. 2008; Rothman et al.

2008; Rocha et al. 2008; Peng et al. 2009). Friedman et al.’s (2008) graphical LASSO,

which is the fastest available algorithm to date, relies on the equivalence of the Banerjee

et al. (2008) blockwise interior point procedure, and recursively solving and updating a

lasso least-squares regression problem using the coordinate descent algorithm for LASSO.

Moreover, the sparse covariance estimator from the graphical LASSO is guaranteed to be

positive-definite; this follows from another result due to Banerjee et al. (2008) showing that

if the recursive procedure is initialized with a positive-definite matrix, then the subsequent

iterates remain positive-definite and invertible. These methods share a common feature of

treating the p(p−1)
2

off-diagonal entries of the precision matrix as if they were unconstrained

regression coefficients. This view along with the use of fast LASSO least-squares regressions

has greatly reduced the high-dimensionality challenge of the covariance estimation.

Interestingly, there are several regression-based approaches to covariance estimation in

the literature where they rely first on the idea of regression to reparameterize a covariance

(precision) matrix in a manner that its estimation can be recast later as linear least-squares

regression problems. Some powerful examples are: (i) formulating principal component

analysis (PCA) as a regression optimization problem (Jong and Kotz, 1999; Zou, Hastie and

Tibshirani, 2006), sparse loadings are then obtained by imposing the lasso constraint on

the regression coefficients, (ii) regression-based derivation (interpretation) of the modified

Cholesky decomposition of a covariance matrix and its inverse (Pourahmadi, 1999; 2001,

Sec. 3.5; Bilmes, 2000; Huang et al. 2006; Rothman, Levina and Zhu, 2010), (iii) the

regression approach of Meinshausen and Bühlmann (2006), Rocha, Zhang and Yu (2008)

and Peng, Wang, Zhou and Zhu (2009) merging all p regressions into a single least-squares

4



problem, (iv) the graphical LASSO algorithm of Friedman, Hastie and Tibshirani (2008,

2010); see also Friedman et al. (2009, Section 17.3), and (v) iteratively reweighted penalized

likelihood of Fan, Feng and Wu (2010) where nonconcave penalties, such as the smoothly

clipped absolute deviation (SCAD), are introduced on the entries of the precision matrix ,

then using the local linear approximation to the nonconcave penalty functions, the problem

of sparse estimation of the precision matrix is recast as a sequence of penalized likelihood

problems with a weighted LASSO penalty and solved using the graphical LASSO algorithm

of Friedman et al. (2008).

Among these approaches it seems only (ii) using the Cholesky decomposition has the dis-

tinction of providing unconstrained regression parameters. Unfortunately, however, unlike

the others which work for unordered variables and provide permutation-invariant covariance

estimators, (ii) and a few other alternatives to the sample covariance matrix proposed in

recent years work for ordered variables and give rise to covariance estimators which are

sensitive to the order among the variables in Y . These approaches work well for the time

series and longitudinal data which have a natural (time) order among the variables in Y , and

assume that variables far apart in the ordering are less correlated. For example, regularizing

a covariance matrix by tapering (Furrer and Bengtsson, 2007), banding (Bickel and Levina,

2004; 2008a; Wu and Pourahmadi, 2009) and generally those based on the Cholesky decom-

position of the covariance matrix or its inverse (Pourahmadi, 1999, 2000; Rothman et al.

2010) do impose an order among the components of Y and are not permutation-invariant.

Nevertheless, one could estimate the covariance matrix or its inverse using regression regu-

larization tools like, covariance selection priors, AIC and LASSO penalties on the Cholesky

factor (Smith and Kohn, 2002; Wu and Pourahmadi, 2003; Huang, Lin, Pourahmadi and

Lin, 2006; Huang, Lin and Lin, 2007) and nested LASSO (Levina, Rothman and Zhu, 2007).

The recent surge of interest in regression-based approaches to sparse estimation of large

covariance matrices of massive and high-dimensional data, bodes well with the long history
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of interest in using regression ideas and covariates to achieve parsimony in estimating smaller

covariance matrices in the traditional areas of statistics, biostatistics, econometrics and social

sciences. For example, longitudinal data collected from expensive clinical trials and biological

experiments, may have n = 30 subjects and p ≤ 10. Accurate modeling and estimation of

the covariance structure is important in these application areas (Cannon et al. 2001; Carroll,

2003; Qu and Lindsay, 2003; Ye and Pan, 2006; Fitzmaurice et al. 2009). While the process

for modeling the mean is well-understood (McCullagh and Nelder, 1989; Diggle et al. 2002),

the situation for modeling the covariance matrix is underdeveloped, where at one extreme it

is modeled as σ2Ip (independence) and at the other by an unstructured covariance matrix

with p(p+1)
2

parameters (Zimmerman and Núñez-Antón, 2001, 2010). In these situations,

it is highly desirable to bridge the gap between these two extremes by developing a bona

fide GLM methodology and a data-based framework for modeling covariance matrices which

include the three stages of model formulation, estimation and diagnostics, just like those for

modeling the mean vector (McCullgh and Nelder, 1989). Attempts to develop such methods

going beyond the traditional linear covariance models (Anderson, 1973), have been made

in recent years by Chiu et al. (1996) and Pourahmadi (1999, 2000); Pan and MacKenzie

(2003); Ye and Pan (2006); Wang and Lin (2008); Leng, Zhang and Pan (2010); Lin (2010)

using the spectral and Cholesky decompositions of covariance matrices, respectively.

Given the complex nature of a covariance matrix and the positive-definiteness constraint,

to develop a GLM methodolgy it is plausible to factorize Σ into two components capturing

the “variance” through a diagonal matrix and the “dependence” through a matrix with p(p−1)
2

functionally unrelated entries. A decomposition is ideal for the GLM purposes, if its ”depen-

dence” component is an unconstrained and statistically interpretable matrix, since then one

may use covariates to achieve parsimony. The three most commonly used decompositions

in increasing order of adherence to the GLM principles are the variance-correlation, spectral

and Cholesky decompositions where their ”dependence” components are correlation, orthog-
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onal and lower triangular matrices, respectively. While the entries of the first two matrices

are always constrained, those of the last are unconstrained. Consequently, computing the

(penalized) maximum likelihood estimates of the parmaters of Cholesky decomposition in-

volves unconstrained optimization compared to the orthogonally-constrained optimization

algorithm of Flury and Gautschi (1986) for the spectral decomposition. Thus, finding at

least an unconstrained reparameterization for Σ seems to be the first order of business for

both the GLM and regularization approaches.

The outline of the paper is as follows. Section 2, covers some preliminaries on the GLM for

covariance matrices, the roles of the three standard decompositions of a covariance matrix, a

regression-based decomposition of the precision matrix useful in Gaussian graphical models,

a review of covariance estimation from the GLM perspective and its evolution through lin-

ear/inverse, log and hybrid link functions. Steinian shrinkage, regularization (banding and

thresholding), penalized likelihood estimation, and improvement of the sample covariance

matrix from the shrinkage/sparsity perspective are discussed in Section 3. Some prior dis-

tributions on the parameters of the factors of the three decompositions and their roles in the

Bayesian inference are reviewed in Section 4. Section 5 concludes the paper with some open

problems for further research.

This survey emphasizes the importance of and the need for unconstrained reparameteriza-

tion in both the GLM- and regularization-type approaches to covariance estimation for low-

and high-dimensional data sets. As such it has a relatively narrow focus, important topics

like robustness, use of random-effects models, nonparametric and semi-parametric methods

in covariance estimation are not discussed. It is hoped to serve as a starting point or a

blueprint for further research in this active and growing area of current interest in statistics.
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2 The GLM & Matrix Decompositions

In this section, the importance of the GLM, the role of the three matrix decompositions in

removing the positive-definiteness constraint on a covariance matrix, the connection between

reparameterizing the precision matrix and the Gaussian graphical models, along with linear,

log-linear and generalized linear models for covariance matrices are reviewed.

2.1 Positive-Definiteness and the GLM

A major stumbling block in covariance estimation, particularly when using covariates, is the

notorious positive-definiteness constraint. Recall that constraints on the mean vector µ or

the mean-like parameters of the distribution of a random vector Y has been handled quite

successfully in the theory of generalized linear models (McCullagh and Nelder, 1989) using

a link function g(·) and a linear predictor g(µ) = Xβ. What are the analogues of these for

a positive-definite covariance matrix?

Since a covariance matrix defined by Σ = E(Y − µ)(Y − µ)′, is a mean-like parameter,

it is natural to exploit the idea of GLM to develope a systematic, data-based statistical

model-fitting procedure for covariance matrices composed of model formulation, estimation

and diagnostics. However, unlike the mean vector where a link function acts elementwise, for

covariance matrices elementwise transformations are not enough as the positive-definiteness

is a simultaneous constraint on all its entries. More global transformations engaging possibly

all entries of a covariance matrix are needed to remove the constraint.

Conceptually, the GLM approach to covariance estimation is important due to its success

and track record in unifying a vast collection of apparently disparate approaches, developed

over the span of two centuries, to model the mean and mean-like parameters of various

distributions (McCullagh and Nelder, 1989). It hinges on the concept of link functions to

induce unconstrained and statistically interpretable reparameterization for the mean of a

distribution, and to reduce the dimension of the parameter space using covariates. These
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two GLM features or principles are precisely what are needed to tackle the two challenges

in covariance estimation regardless of the size of p, and to possibly unify diverse approaches

to covariance estimation.

Not surprisingly, some common and successful modeling approaches decompose a covari-

ance matrix into its “variance” and “dependence” components, and write regression models

using covariates for the logarithm of the “variances”. However, writing such regression mod-

els for the entries of the “dependence” component is still a challenging problem because these

are often constrained. In the next section, three examples of unconstrained parameterization

of a covariance matrix are given which involve the spectral and Cholesky decompositions.

2.2 The Matrix Decompositions

In this section, we present the roles of the variance-correlation, spectral and Cholesky decom-

positions in potentially removing the positive-definiteness constraint on a covariance matrix,

and paving the way for using covariates to reduce its high number of parameters.

2.2.1 The Variance-Correlation Decomposition

The simple decomposition

Σ = DRD,

where D is the diagonal matrix of standard deviations and R = (ρij) is the correlation matrix

of Y, has a strong practical appeal since these two factors of Σ are easily interpreted in terms

of the original variables. It allows one to estimate D and R separately, which is important in

situations where one component might be more important than the other (Lin and Perlman,

1985; Liang and Zeger, 1986; Barnard et al. 2000).

Note that while the logarithm of the diagonal entries of D are unconstrained, the corre-

lation matrix R must be positive-definite with the additional constraint that all its diagonal

entries are equal to 1. Thus, it is inconvenient to work with it in the framework of GLM

to reduce its large number of parameters. In the literature of longitudinal data analysis
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(Liang and Zeger, 1986; Diggle et al. 2002; Zimmerman and Núñez-Antón, 2010) and other

application areas dealing with correlated data, in the interest of expediency, parsimony and

ensuring positive-definiteness structured correlation matrices with a few parameters are pre-

ferred. Fan, Huang, and Li (2007) have studied a semiparametric model for the covariance

structure by using the variance-correlation decomposition. They estimated the marginal vari-

ances via kernel smoothing and used specific parametric models for the correlation matrix

such as AR(1) or ARMA(1, 1) to ensure positive-definiteness of the estimated covariance.

2.2.2 The Variance-Correlation Decomposition of the
Precision Matrix: Gaussian Graphical Models

Recall that the marginal (pairwise) dependence or independence among the entries of a

random vector are summarized by the off-diagonal entries of Σ or the entries of the correlation

matrix R = (ρij). Surprisingly, the conditional dependencies can be found in the off-diagonal

entries of the precision matrix Σ−1 = (σij). More precisely, take Y to be a mean zero

normal random vector with a positive-definite covariance matrix, if the ijth component of

the precision matrix is zero, then variables yi and yj are conditionally independent, given

the other variables. A connection between graphs and statistical models is usually made by

identifying the graph’s nodes with random variables and translating the graph’s edges into

a parametrization that relates to the precision matrix of a multivariate normal distribution.

In this section, we focus on and give several regression interpretations of the entries of

the variance-correlation decomposition of the precision matrix:

Σ−1 = (σij) = D̃R̃D̃.

Most of these are motivated by the recent surge of activities in sparse estimation of Σ−1

in the context of Gaussian graphical models sparked by the approach in Meinshausen and

Bühlmann (2006) using p LASSO linear least-squares regression problems. We show that the

entries of (R̃, D̃) have direct statistical interpretations in terms of the partial correlations, and

variance of predicting one variable given the rest. More precisely, using standard regression
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calculations we show below that ρ̃ij is the partial correlation coefficient between yi and yj

after removing the linear effect of the p− 2 remaining variables, and is given by − σij√
σiiσjj

,

and that d̃2
ii is the partial variance of yi after removing the linear effect of the remaining

p− 1 variables and is given by
1

σii
.

For this and other regression-based techniques reviewed in this survey, it is instructive

to partition a random vector Y into two components (Y ′1 , Y
′

2)′ of dimensions p1 and p2,

respectively, and then partition its covariance and precision matrices conformally as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, Σ−1 =

(
Σ11 Σ12

Σ21 Σ22

)
.

Some useful relationships among the blocks of Σ and Σ−1 are obtained by considering

the linear least-squares regression (prediction) of Y2 based on Y1. Let the p2 × p1 matrix

Φ2|1 be the regression coefficients and the vector of regression residuals be denoted by Y2·1 =

Y2−Φ2|1Y . Recall that Φ2|1 is found so that the vector of residuals Y2·1 is uncorrelated with

Y1. Then, it follows that (see the Appendix):

Φ2|1 = Σ21Σ−1
11 , (1)

and

Cov(Y2·1) = Σ22 − Σ21Σ−1
11 Σ12 = Σ22·1. (2)

The following lemma re-expresses the covariance matrix of the vector of residuals Y2·1

and the matrix of regression coefficients Φ2|1 in terms of the corresponding blocks of the

precision matrix.

Lemma. With notation as above, we have

Φ2|1 = Σ21Σ−1
11 = −(Σ22)−1Σ21, (3)

and

Cov(Y2·1) = Σ22·1 = (Σ22)−1. (4)
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Certain special choices of Y2 corresponding to p2 = 1, 2, are helpful in connecting

Φ2|1,Σ22·1 directly to the entries of the concentration matrix Σ−1 as we discuss below.

For example, when p2 = 1, Y2 = yi, for a fixed i, and Y1 = (y1, . . . , yi−1, yi+1, . . . , yp)
′ =

Y−(i), then Σ22·1 is a scalar, called the partial variance of yi given the rest. Let ỹi be the

linear least-squares predictor of yi based on the rest Y−(i), and ε̃i = yi − ỹi, d̃2
i = V ar(ε̃i) be

its prediction error and prediction error variance, respectively. Then,

yi =
∑
j 6=i

βijyj + ε̃i, (5)

and it follows immediately from (3)-(4) that the regression coefficients of yi on Y−(i), are

given by:

βi,j = −σ
ij

σii
, j 6= i, (6)

and

d̃2
i = Var(yi|yj, j 6= i) =

1

σii
, i = 1, · · · , p. (7)

This shows that σij, the (i, j) entry of the precision matrix is, up to a scalar, the regression

coefficient of variable j in the multiple regression of variable i on the rest. As such each βi,j

is an unconstrained real number, βj,j = 0 and βi,j is not symmetric in (i, j).

Writing (6) in matrix form gives the following alternative and useful factorization of the

precision matrix:

Σ−1 = D̃2(Ip − B̃), (8)

where D̃ is a diagonal matrix with d̃j as its jth diagonal entry, and B̃ is a p× p matrix with

zeros along its diagonal and βj,k in the (j, k)th position. Now, it is evident from (8) that the

sparsity patterns of Σ−1 and B̃ are the same, and hence the former can be inferred from the

latter using the regression setup (5) along with a LASSO penalty for each regression. This

is essentially the key conceptual tool behind the approach of Meinshausen and Bühlmann

(2006). Note that the left-hand side of (8) is a symmetric matrix while the right-side is

not necessarily so. Thus, to increase computational and statistical efficiencies one must
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impose the following symmetry constraint (Rocha et al. 2008; Friedman et al. 2010) for

j, k = 1, · · · , p:

d2
kβjk = d2

jβkj. (9)

As another important example, take p2 = 2, Y2 = (yi, yj), i 6= j and Y1 = Y−(ij) com-

prising the remaining p − 2 variables. Then, it follows from (4) that the covariance matrix

between yi, yj, after eliminating the linear effects of the other p− 2 components, is given by

Σ22·1 =

(
σii σij

σij σjj

)−1

= ∆−1

(
σjj −σij
−σij σii

)
,

where ∆ = σiiσjj−(σij)2, the correlation coefficient in Σ22·1 is, indeed, the partial correlation

coefficient between yi and yj:

ρ̃ij = − σij√
σiiσij

, (10)

as announced earlier. From (6) and (10), it follows that

βij = ρ̃ij

√
σjj

σii
. (11)

This representation which shows that Σ−1 and R̃ share the same sparsity is the basis for the

Peng et al.’s (2009) SPACE algorithm which imposes a LASSO penalty on the off-diagonal

entries of the matrix of partial correlations R̃.

2.2.3 The Spectral Decomposition

The spectral decomposition of a covariance matrix given by,

Σ = PΛP ′ =
p∑
i=1

λieie
′
i, (12)

where Λ is a diagonal matrix of eigenvalues and P the orthogonal matrix of normalized

eigenvectors with ei its ith column, is familiar from the literature of principal component

analysis (Anderson, 2003; Flury, 1988). The entries of Λ and P have interpretations as

variances and coefficients of the principal components. The matrix P being orthogonal is
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constrained, so that it is inconvenient to work with it in the framework of GLM or to use

covariates to reduce its high number of parameters.

In spite of the severe constraint on the orthogonal matrix, the spectral decomposition

is the source of two new reparameterizations that are unconstrained, but is believed to be

hard to interpret statistically. The first, due to Leonard and Hsu (1992) and Chiu et al.

(1996) exploits the fact that the logarithm of a covariance matrix Σ defined below is an

unconstrained symmetric matrix:

log Σ = P log ΛP ′ =
p∑
i=1

(log λi)eie
′
i. (13)

However, a drawback of this transformation (link function) seems to be the lack of statistical

interpretability of the entries of log Σ (Brown, Le and Zidek, 1994; Liechty et al. 2004). From

(12)-(13) it is evident that the entries of Σ and log Σ are similar functions of the entries of

P and Λ, except that in (13) λi is replaced by log λi. Can this ”small” substitution be the

reason for the ”big” difference in the statistical interpretability of the entries of log of a

covariance matrix and the matrix itself? Perhaps the apparent simplicity of (13) may have

concealed the complicated and highly nonlinear relations that exist between the entries of Σ

and log Σ as seen in the following simple example.

For log Σ =

(
α β
β γ

)
, using the eigenvalues and eigenvectors of the 2× 2 matrix, it can

be shown that

σ11 =
1

2
√

∆
exp

(
α + γ

2

) {√
∆u− (α− γ)u−

}
,

where
∆ = (α− γ)2 + 4β2,

u± = exp

(√
∆

2

)
± exp

(
−
√

∆

2

)
.

The second reparameterization relies on the logarithm of the eigenvalues and logit of the

Givens angles (Golub and Van Loan, 1989) associated with pairs of columns of the orthogonal

matrix P . Though the logit of the Givens angles are unconstrained (Daniels and Kass, 1999),

they are hard to interpret statistically at this time.
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2.2.4 The Cholesky Decompositions

The standard Cholesky decomposition of a positive-definite matrix encountered in some

optimization techniques, software packages and matrix computation (Goulb and Van Loan,

1989), is of the form

Σ = CC ′, (14)

where C = (cij) is a unique lower-triangular matrix with positive diagonal entries. Statistical

interpretation of the entries of C is difficult in its present form (Pinheiro and Bates, 1996).

However, reducing C to unit lower-triangular matrices through multiplication by the inverse

of D = diag(c11, · · · , cpp), makes the task of statistical interpretation of the diagonal entries

of C, and the ensuing unit lower-triangular matrix much easier.

For example, using basic matrix multiplication, (14) can be rewritten as

Σ = CD−1DDD−1C ′ = LD2L′, (15)

where L = CD−1 is obtained from C by dividing the entries of its ith column by cii. This is

usually called the modified Cholesky decomposition of Σ, it can also be written in the forms

TΣT ′ = D2,Σ−1 = T ′D−2T, (16)

where with T = L−1. Note that the second identity is, in fact, the modified Cholesky

decomposition of the precision matrix Σ−1, and the first identity in (16) looks a lot like the

spectral decomposition, in that Σ is diagonalized by a lower triangular matrix. However,

we show next that unlike the constrained entries of the orthogonal matrix of the spectral

decomposition, the nonredundant entries of T = L−1 are unconstrained and statistically

meaningful. Furthermore, the argument makes it clear that the parameters in the factors

of the Cholesky decomposition are dependent on the order in which the variables appear in

the random vector Y . Wagaman and Levina (2008) have proposed an Isomap method for

discovering meaningful orderings of variables based on their correlations. This method may

15



result in block-diagonal or banded correlation structure, resulting in an Isoband estimator,

or may help to fix a reasonable ordering before applying the Cholesky decomposition, see

Section 5.

As in Section 2.2.2, we use the idea of regression or the Gram-Schmidt orthogonaliza-

tion to orthogonalize the random variables sequentially, and to show that T and D can be

constructed directly by regressing a variable yt on its predecessors. In what follows, it is

assumed that Y is a random vector with mean zero and a positive-definite covariance matrix

Σ. Let ŷt be the linear least-squares predictor of yt based on its predecessors yt−1, . . . , y1,

εt = yt − ŷt be its prediction error with variance σ2
t = V ar(εt). Then, there are unique

scalars φtj so that

yt =
t−1∑
j=1

φtjyj + εt, t = 1, · · · , p. (17)

Next, we show how to compute the regression coefficients φtj using the covariance matrix.

For a fixed t, 2 ≤ t ≤ p, set φt = (φt1, · · · , φt,t−1)′ and let Σt be the (t− 1)× (t− 1) leading

principal minor of Σ and σ̃t be the column vector composed of the first t − 1 entries of the

tth column of Σ. Then, from (1)-(2) it follows that

φt = Σ−1
t σ̃t, σ

2
t = σtt − σ̃′tΣ−1

t σ̃t. (18)

Let ε = (ε1, · · · , εp)′ be the vector of successive uncorrelated prediction errors with

Cov(ε) = diag(σ2
1, · · · , σ2

p) = D2. Then, (17) can be rewritten in matrix form as ε = TY ,

where T is the following unit lower triangular matrix :

T =



1
−φ21 1
−φ31 −φ32 1

...
. . .

−φn1 −φn2 · · · −φn,n−1 1

 . (19)

Now, computing Cov(ε) = Cov(TY ) = TΣT ′, gives the modified Cholesky decomposition

(16).
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Since the φij’s in (18) are simply the regression coefficients computed from an unstruc-

tured covariance matrix, these coefficients along with log σ2
t are unconstrained (Pourahmadi,

1999, 2000). From (17) it is evident that, the orthogonalization process reduces the task

of modeling a covariance matrix to that of a sequence of p varying-coefficient and varying-

order regression models so that one can bring the whole regression analysis machinery to the

service of the unintuitive task of modeling covariance matrices (Smith and Kohn, 2002; Wu

and Pourahmadi, 2003; Huang et al. 2006, 2007; Bickel and Levina, 2008a; Rothman et al.

2009). An important consequence of (16) is that for any estimate (T̂ , D̂2) of the Cholesky

factors, the estimated precision matrix Σ̂−1 = T̂ ′D̂−2T̂ is guaranteed to be positive-definite.

An alternative form of the Cholesky decomposition (15) due to Chen and Dunson (2003)

which can be obtained from (14) is

Σ = DL̃L̃′D,

where L̃ = D−1C is obtained from C by dividing the entries of its ith row by cii. This

form has proved useful for joint variable selection for fixed and random effects in the linear

mixed-efects models, and when the focus is on modeling the correlation matrix, see Bondell,

Krishna and Ghosh (2010), Pourahmadi (2007a).

Some early and implicit examples of the use of the Cholesky decomposition in the lit-

erature of statistics include Bartlett’s (1933) decomposition of a sample covariance matrix;

Wright’s (1934) path analysis; Roy’s (1958) step-down procedures and Wold’s (1960) causal

chain models which assume the existence of an a priori order among the p variables of

interest. Some of the more explicit uses are in Kalman (1960) for filtering of state-space

models and the Gaussian graphical models (Wermuth, 1980). For other uses of Cholesky

decomposition in multivariate quality control and related areas see Pourahmadi (2007b).
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2.3 GLM for Covariance Matrices

Research on estimation of covariance matrices has followed paths of developments very much

similar to those for the estimation of the mean vector or regression analysis, and modeling

dependence in time series analysis (Klein, 1997). It has gone or is currently going through

the phases of linear, log-linear and generalized linear models (McCullagh and Nelder, 1989),

ridge regularization (Hoerl and Kennard, 1970), LASSO (Tibshirani, 1996) and aspects of

penalized normal likelihood, see Fan and Lv (2010) for a review of the current state of

regression analysis for high-dimensional data.

2.3.1 Linear Covariance Models

The origin of linear models for covariance matrices can be traced to the work of Yule (1927)

and Gabriel (1962) and the implicit parameterization of a multivariate normal distribution

in terms of entries of either Σ or its inverse. However, Dempster (1972) was the first to

recognize the entries of Σ−1 = (σij) as the canonical parameters of the exponential family

of normal distributions. He proposed to select or estimate a covariance matrix efficiently

and sparsely by identifying zeros in its inverse, and referred to these as covariance selection

models which fit the framework of linear covariance models defined next.

Motivated by the simple and linear structure of covariance matrices of some time series

and variance components, Anderson (1973) introduced the class of linear covariance models

(LCM):

Σ±1 = α1U1 + · · ·+ αqUq, (20)

where Ui’s are some known symmetric basis matrices and αi’s are unknown parameters, they

must be restricted so that the matrix is positive-definite. It is usually assumed that there

is a least a set of coefficients where the Σ±1 is positive-definite. The model (20) is general

enough to include any covariance matrix. Indeed, for q = p2 any covariance matrix admits
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the representation:

Σ = (σij) =
p∑
i=1

p∑
j=1

σijUij, (21)

where Uij is a p× p matrix with one on the (i, j)th position and zero elsewhere.

Replacing Σ by S in the left-hand side of (20), it can be viewed as a collection of p(p+1)
2

linear regression models. The same regression models viewpoint holds with the precision

matrix on the left-hand side. Similar to linear regression models, the class of linear covariance

models is omnipresent when dealing with covariance matrices. It includes virtually any

estimation method that acts elementwise on a covariance matrix such as tapering, banding,

thresholding, covariance selections models, penalized likelihood with LASSO penalty on the

off-diagonal entries of the precision matrix, etc. see (21).

A major drawback of (20)–(21) is the constraint on the coefficients which could make the

estimation and other statistical problems difficult (Anderson, 1973; Szatfrowski, 1980). For a

sample of size n from a normal distribution, the score equations for the maximum likelihood

estimates can be solved by an iterative method; in each step a set of linear equations is

solved (Anderson, 1973). He showed that if consistent estimates of α1, · · · , αq are used

as initial values to obtain the coefficients of the linear equations, then its solution or the

MLE is asymptotically efficient for n large. Szatrowski (1980) gives necessary and sufficient

conditions for the existence of explicit maximum likelihood estimates, and the convergence

of the iterative procedure, proposed by Anderson (1973), in one iteration from any positive-

definite starting point. In fact, Szatrowski (1980) showed that, using a linear covariance

model for Σ, the MLE of the coefficient vector has an explicit representation, i.e., is a vector

of known linear combinations of elements of the sample covariance matrix, if and only if Σ−1

has the same LCM pattern. This happens, for example, when Σ has a compound symmetry

(exchangeable) structure.

A good review of the MLE procedures for the model (20) and their applications to the

problem of testing homogeneity of the covariance matrices of several dependent multivariate
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normals are presented in Jiang, Sarkar and Hsuan (1999). They derive a likelihood ratio

test, and show how to compute the MLE of Σ, in both the restricted (null) and unrestricted

(alternative) parameter spaces using SAS PROC MIXED software. They also provide the

code and the implementation is explained using several examples.

The notion of covariance regression introduced by (Hoff and Niu, 2009) is in the spirit of

(20), but unlike the LCM the covariance matrix is quadratic in the covariates, and positive-

definiteness is guaranteed through the special construction.

2.3.2 Log-Linear Covariance Models

In analogy with the use of log-linear models to handle variance heterogeneity in regression

analysis where the variability depends on some predictors, a plausible way to remove the

constraint on αi’s in (20) is to work with the logarithm of a covariance matrix. The key

fact needed here is that for a general covariance matrix with the spectral decomposition

Σ = PΛP ′, its matricial logarithm defined by log Σ = P log ΛP ′ is simply a symmetric

matrix with unconstrained entries taking values in (−∞,∞).

This idea has been pursued by Leonard and Hsu (1992) and Chiu et al. (1996) who

introduced the log-linear covariance models for Σ as

log Σ = α1U1 + · · ·+ αqUq, (22)

where Ui’s are known matrices as before and the αi’s are now unconstrained. However,

since log Σ is a highly nonlinear operation on Σ, see the example in Section 2.2.3, the αi’s

lack statistical interpretation (Brown et al. 1994; Liechty et al. 2004). Fortunately, for

Σ diagonal since log Σ = diag(log σ11, . . . , log σpp), then (22) amounts to log-linear models

for heterogeneous variances which has a long history in econometrics and other areas, see

Carroll and Ruppert (1988) and references therein.

Maximum likelihood estimation procedures to estimate the parameters in (22) and their

asymptotic properties are studied in Chiu et al. (1996) along with the analysis of two real
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data sets. Given the flexibility of the log-linear models, one would expect them to be used

widely in practice, however, a literature search shows this not to be case. An interesting

application to spatial autoregressive (SAR) models and some of its computational advantages

are discussed in LeSage and Pace (2007).

2.3.3 GLM via the Cholesky Decomposition

In this section, the constraint and lack of interpretation of αi’s in (20) and (22) are resolved

simultaneously by relying on the Cholesky decomposition of a covariance matrix described in

Section 2.2.4. A bona fide GLM for the precision matrix in terms of covariates is introduced

and its maximum likelihood estimation (MLE) is discussed. An important consequence of

the approach based on the modified Cholesky decomposition is that for any estimate of

the Cholesky factors, the estimated precision matrix Σ̂−1 = T̂ ′D̂−2T̂ is guaranteed to be

positive-definite, see (16).

Recall that for an unstructured covariance matrix Σ, the nonredundant entries of its

components (T, logD2) in (16) obtained from Σ−1 are unconstrained. Thus, following the

GLM’s tradition one may write parameteric models for them using covariates (Pourahmadi,

1999; Pan and MacKenzie, 2003; Zimmerman, and Núñez-Antón, 2010). We consider the

following parametric models for φtj and log σ2
t ,for t = 1, . . . , p; j = 1, . . . , t− 1:

log σ2
t = z′tλ, φtj = z′tjγ, (23)

where zt, ztj are q × 1 and d × 1 vectors of known covariates, λ = (λ1, . . . , λq)
′ and γ =

(γ1, . . . , γd)
′ are parameters related to the innovation variances and dependence in Y , re-

spectively (Pourahmadi, 1999). The most common covariates used in the analysis of several

real longitudinal data sets (Pourahmadi, 1999; Pourahmadi and Daniels, 2002; Pan and

MacKenzie, 2003; Ye and Pan, 2006; Lin and Wang, 2009; Leng et al. 2010) are in terms of

powers of times and lags :

zt = (1, t, t2, · · · , td−1)′,
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ztj = (1, t− j, (t− j)2, · · · , (t− j)p−1)′.

A truly remarkable feature of (23) is its flexibility in reducing the potentially high-

dimensional and constrained parameters of Σ or the precision matrix to q+ d unconstrained

parameters λ and γ. Furthermore, one can rely on graphical tools such as the regressogram, a

nonstationary analogue of the time series correlogram or AIC, to identify models such as (23)

for the data; for more details on these, see Pourahmadi (1999, 2001) and Pan and MacKenzie

(2003). Ye and Pan (2006) employ such parametrized models for covariance matrices in

the context of the popular (Liang and Zeger, 1986) generalized estimating equations for

longitudinal data.

To study the MLE of the parameters, recall that minus twice the loglikelihood function

for a sample Y1, · · · , Yn from a normal population with mean zero and the common covariance

Σ, except for a constant, is given by

−2l =
n∑
i=1

(log |Σ|+ Y
′

i Σ−1Yi)

= n log |D2|+ ntrΣ−1S

= n log |D2|+ ntrD−2TST ′

= n log |D2|+ ntrD−2(Ip −B)S(Ip −B)′, (24)

where S = 1
n

∑n
i=1 YiY

′
i , B = Ip − T and the last three equalities are obtained by replacing

for Σ−1 from (16) and basic matrix operations involving trace of a matrix. Note that (24)

is quadratic in B, thus for a given D2 the MLE of B or φtj’s has a closed form, the same

is true of the MLE of D2 for a given B (Pourahmadi, 2000; Huang et al. 2006, 2007).

This observation for computing the MLE of the saturated (unstructured) model for (T,D) is

important when comparing the computational aspects of Cholesky-based estimation of the

precision matrix with the Rocha et al.’s (2008) SPLICE algorithm in Section 3.4.

An algorithm for computing the MLE of the parameters (γ, λ) using the iterative Newton-

Raphson algorithm with Fisher scoring is given in Pourahmadi (2000) along with the asymp-
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totic properties of the estimators. An unexpected finding is the asymptotic orthogonality

of the MLE of the parameters λ and γ, in the sense that their Fisher information matrix

is block-diagonal, see Ye and Pan (2006), Pourahmadi (2007) and references therein. When

the assumption of normality is questionable like when the data exhibit thick tails, then a

multivariate t-distribution might be a reasonable alternative. Lin and Wang (2009) and Lin

(2010) have extended the above theory of MLE to this situation.

The fact that the lower triangular matrix T in the Cholesky decomposition of a covariance

matrix Σ is unconstrained makes it ideal for nonparametric estimation. Wu and Pourahmadi

(2003) have used local polynomial estimators to smooth the subdiagonals of T . The idea of

smoothing along its subdiagonals is motivated by the similarity of the regressions in (17) to

the varying-coefficients autoregressions (Kitagawa and Gersch, 1985; Dahlhaus, 1997):

m∑
j=0

fj,p(t/p)yt−j = σp(t/p)εt, t = 0, 1, 2, · · · ,

where f0,p(·) = 1, fj,p(·), 1 ≤ j ≤ m, and σp(·) are continuous functions on [0, 1] and {εt}

is a sequence of independent random variables each with mean zero and variance one. This

analogy and comparison with the matrix T for stationary autoregressions having nearly

constant entries along subdiagonals suggest taking the subdiagonals of T to be realizations

of some smooth univariate functions:

φt,t−j = fj,p(t/p) , σt = σp(t/p).

The details of smoothing and selection of the order m of the autoregression and a simulation

study comparing performance of the sample covariance matrix to smoothed estimators are

given in Wu and Pourahmadi (2003), for a related problem in multivariate time series see

Dai and Guo (2004) and Stoffer and Rosen (2007). Huang, Liu and Liu (2007) have proposed

a more direct and efficient approach using splines to smooth the subdiagonals of T . Leng et

al. (2010) estimate a covariance matrix by writing linear models for T and semi-parametric

models for D2.
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3 Regularization of the Sample Covariance Matrix

Knowing that the sample covariance matrix behaves poorly in high dimensions and is not

even invertible when n < p, it is natural to look for alternative and improved estimators by

regularizing the sample covariance matrix in various ways. In Sections 3.2 and 3.3, we review

shrinkage estimators obtained by minimizing risk functions. A good example is the Stein’s

family of shrinkage estimators that shrinks the eigenvalues in the spectral decomposition.

Regularization methods which act elementwise on the sample covariance matrix such as

tapering, banding and thresholding are discussed in Section 3.5. Penalized normal likelihood

estimators with LASSO penalty on the precision matrix are reviewed in Section 3.4 .

3.1 The Loss and Risk Functions

Regularized estimators are usually obtained by minimizing suitable risk/objective functions.

The two common loss functions used when n > p are

L1(Σ̂,Σ) = tr(Σ̂ Σ−1)− log |Σ̂Σ−1| − p,

L2(Σ̂,Σ) = tr(Σ̂Σ−1 − I)2,

where Σ̂ = Σ̂(S) is an arbitrary estimator, with the corresponding risk functions:

Ri(Σ̂,Σ) = EΣLi(Σ̂,Σ), i = 1, 2.

An estimator Σ̂ is considered better than S if its risk function is smaller than that of S. The

loss function L1 was advocated by Stein (1956) and is usually called the entropy loss or the

Kullback-Liebler divergence of two multivariate normal densities corresponding to the two

covariance matrices. The second, called a quadratic loss function is essentially the Euclidean

or the Frobenius norm of its matrix argument which involves squaring the difference between

aspects of the estimator and the target. Consequently, it penalizes overestimates more than

underestimates, and ”smaller” estimates are more favored under L2 than under L1. For

example, among all scalar multiples aS, a > 0, it is known (Haff, 1980) that S is optimal

under L1, while the smaller estimator nS
n+p+1

is optimal under L2.
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Following the lead of Muirhead and Leung (1987), Ledoit and Wolf (2004) have used a

slight modification of the Frobenius norm as the loss function:

L3(Σ̂,Σ) = p−1‖Σ̂− Σ‖2 = p−1tr(Σ̂− Σ)2,

with the corresponding risk function. Note that though dividing by the dimension p is not

standard, it has the advantage that norm of the identity matrix is simply one, regardless

of the size of p. Also, the loss L3 does not involve matrix inversion which is ideal with

regard to computational cost for the “small n, large p” case. The heuristics behind this

loss function are the same those for L2, it has the additional and attractive feature that

the optimal covariance estimator under L3 turns out to be the penalized normal likelihood

estimator with trΣ−1 as the penaly (Warton, 2008; Yuan and Huang, 2009). Since the

penalty function becomes large when Σ gets closer to singularity, such a penalty forces the

covariance estimators to be nonsingular and well-conditioned.

3.2 Shrinking The Spectrum and The Correlation Matrix

In this section we prsent one of the earliest improvements of S obtained by shrinking only

its eigenvalues. Having observed that the sample covariance matrix systematically distorts

the eigenstructure of Σ, particularly when p
n

is large, Stein (1956, 1975) initiated the task of

improving it. He considered orthogonally invariant estimators of the form

Σ̂ = Σ̂(S) = PΦ(λ)P ′,

where λ = (λ1, · · · , λp)′, λ1 > · · · > λp > 0 are the ordered eigenvalues of S, and P is

the orthogonal matrix whose jth column is the normalized eigenvector of S corresponding

to λj, and Φ(λ) = diag(ϕ1, · · · , ϕp) is a diagonal matrix where ϕj = ϕj(λ) estimates the

jth largest eigenvalue of Σ. For example, the choice of ϕj = λj corresponds to the usual

unbiased estimator S, where it is known that λ1 and λp have upward and downward biases,

respectively. Stein’s method chooses Φ(λ) so as to counteract the biases of the eigenvalues
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of S by shrinking them toward some central values. For the L1 risk, his modified estimators

of the eigenvalues of Σ are ϕj = nλj
αj
, where

αj = αj(λ) = n− p+ 1 + 2 λj
∑
i 6=j

1

λj − λi
.

Note that the ϕj’s will differ the most from λj when some or all of the λj’s are nearly equal

and n
p

is not small. Since some of the ϕj’s could be negative and may not even satisfy the

order restriction, Stein has suggested an isotonizing procedure to obtain modified estimators

satisfying the above constraints, for more details on this procedure see Lin and Perlman

(1985).

Simulation studies in Lin and Perlman (1985) show that the above shrinkage estimator

has significant improvement in risk over the sample covariance matrix, and performs the best

when the eigenvalues of the population covariance matrix are nearly equal or form clusters

within each of which the eigenvalues are nearly equal, see Ledoit and Wolf (2004) for more

simulation-based comparisons of a few other alternatives to the sample covariance.

Lin and Perlman (1985) have applied the James-Stein shrinkage estimators to the sam-

ple correlation in order to improve the sample covariance matrix for large p. They shrink

the Fisher z-transform of the individual correlation coefficients (and the logarithm of the

variances) toward a common target value. Their simulation study shows that, the greatest

potential improvement can be expected when the correlations and/or the the standard devi-

ations are nearly equal, or when these can be partitioned into clusters within each of which

the values are nearly the same. Liechty et al. (2004) provide a Bayesian method for corre-

lation estimation that exploits the prior knowledge that one may have on the clustering of

the correlations, see also Daniels and Kass (1999) on using hierarchical priors on the Fisher

z-transform of the entries of a correlation matrix.

Stein (1956), James and Stein (1961) have considered shrinking the Cholesky factor of

the sample covariance matrix: S = CC ′, where C is a lower triangular matrix with positive

diagonal entries, see Anderson (2003, Sec. 7.8) for more discussions and details.
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3.3 Ledoit-Wolf Shrinkage Estimator

As in regression analysis to ensure nonsingularity of the estimated covariance matrix in the

“n small, p large” case the idea of ridge regularization (Hoerl and Kennard, 1970) seems

promising. Using this idea, Ledoit and Wolf (2004) present a shrinkage estimator that is

asymptotically the optimal convex linear combination of the sample covariance matrix and

the identity matrix with respect to L3.

Alternatively, one can motivate such a ridge regularization by recalling that the sample

covariance matrix S is unbiased for Σ, but unstable with considerable risk when n < p, and

a structured covariance matrix estimator, like the identity matrix, has very little estimation

error, but can be severely biased when the structure is misspecified. A natural compromise

between these two extremes is a linear combination of them, giving a simple shrinkage or

ridge candidate of the form

Σ̂ = α1I + α2S.

Now, one may choose α1 and α2 to optimize certain criterion (Ledoit and Wolf, 2004; Warton,

2008).

Using the Frobenius norm or minimizing the risk corresponding to the loss function L3,

Ledoit and Wolf (2004) showed that the optimal choices of α1 and α2 depend only on the

following four scalar functions of the true (but unknown) covariance matrix Σ :

µ =< Σ, I >, α2 = ‖Σ− µI‖2, β2 = E‖S − Σ‖2, δ2 = E‖S − µI‖2,

where < A,B >= p−1tr(AB′). Consistent estimators for these scalars are provided by

Ledoit and Wolf (2004), so that substitution in Σ̂ results in a positive-definite estimator of

Σ. Through extensive simulation studies they establish the superiority of this estimator to

the sample covariance matrix and the empirical Bayes estimator (Haff, 1980) among others.

Applications of this procedure to the estimation of the spectral density matrix of multivariate

stationary time series are discussed in Böhm and von Sachs (2008).
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Warton (2008) taking α2 = 1, showed that such ridge estimators can be obtained using the

penalized normal likelihood where the penalty term is proportional to trΣ−1. Evidently, such

a penalty ensures that the estimator is a nonsingular matrix. He suggests using the cross-

validation of the likelihood function for estimation of the ridge and the penalty parameters,

and extends the approach to the ridge estimation of the correlation matrix. His method of

estimation leads to the definition of a suitable test statistics for the parameters in multivariate

linear regression in high-dimensional situations. The power properties of the test statistic are

studied and compared with the principal components and generalized inverse test statistics

used in dealing with high dimensionality.

3.4 The Penalized Likelihood Approach

In this section, we review various methods for solving Dempster’s (1972) covariance selection

problem, that is, inducing sparsity in the precision matrix, which is of great interest in the

literature of Gaussian graphical models (Tibshirani et al. 2009, Chap. 17).

Motivated by the success of the LASSO estimators in the context of linear regression with

a large number of covariates (Tibshirani, 1996), and in view of (20) and (21) it is plausible

to induce sparsity in the precision matrix estimation by adding to the normal loglikelihood

(24) a penalty on the off-diagonal entries of the precision matrix Σ−1 or its Cholesky factor

(Huang et al. 2006) :

−2l +
∑
i<j

pλij(σ
ij), (25)

where σij is the (i, j)th entry of the precision matrix and λij is the corresponding tuning

parameter. Note that the LASSO and ridge penalties correspond to choosing pλ(|x|) = λ|x|p

for p = 1, 2, respectively. Such an approach will inherit many desirable computational and

statistical properties of LASSO and its many improved variants, provided that a regression-

based interpretation can be found for the entries of the precision matrix or its factors.

Of particular interests are LASSO’s abilities to select models and estimate parameters si-
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multaneously, and the recent improved computational algorithms for LASSO such as the

homotopy/LARS–LASSO (Efron et al. 2004; Rocha et al. 2008), see Fan and Lv (2010, Sec.

3.5) for other improved algorithms.

Some early attempts at inducing sparsity in the precision matrix are, Bilmes (2000),

Smith and Kohn (2002), Wu and Pourahmadi (2003) and Levina et al.(2007) who, for a

fixed order of the variables in Y, use a parametrization of the precision matrix in terms

of the modified Cholesky decomposition (16) . Covariance selection priors and AIC were

used to promote sparsity in T . Huang et al. (2006) propose a covariance selection estimate

by adding to the normal loglikelihood the LASSO penalty on the off-diagonal entries of T,

cross-validation is used to select a common regularization parameter. Using a local quadratic

approximation to the penalty, it was shown that the method is computationally tractable,

see also Huang et al. (2007) and Levina et al. (2007) for some improvents. Bickel and Levina

(2008a) provide conditions ensuring consistency in the operator norm (spectral norm) for

precision matrix estimates based on banded Cholesky factors.

Chang and Tsay (2010) extend the Huang et al. (2006) setup using an equi-angular

penalty which imposes different penalty on each regression or row of T , where the penalties

are inversely proportional to the prediction variance σ2
t of the tth regression. They use ex-

tensive simulations to compare the performance of their method with others including the

sample covariance matrix, the banding (Bickel and Levina, 2008a), and the L1-penalized

normal loglikelihood (Huang et al. 2006). Contrary to the banding method, the method of

Huang et al. and the equi-angular method work reasonably well for six covariance matrices

with the equi-angular method outperforming the others. Since the modified Cholesky decom-

position is not permutation-invariant, they also use a random permutation of the variables

before estimation to study the sensitivity to permutation of each method. They conclude

that permuting the variables introduces some difficulties for each estimation method, except

the sample covariance matrix, but the equi-angular method remains the best with the band-
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ing method having the worst sensitivity to permutation. They also compare these methods

by applying them to a portfolio selection problem with p = 80 series of actual daily stock

returns. In the context of space-time data, Zhu and Liu (2009) rely on on the Cholesky

decomposition of the precision matrix, based on several ordering schemes using the spa-

tial locations of the observations. Their theoretical and simulation studies show that the

regression-based penalized normal likelihood method performs competitively.

Two disadvantage of imposing the sparsity on the factor T are that its sparsity does not

necessarily imply sparsity of the precision matrix; and the sparsity structure in T could be

sensitive to the order of the random variables within Y . Some alternative methods which

tackle these issues penalize the precision matrix directly . For example, d’Aspremont et al.

(2008), Yuan and Lin (2007), and Friedman et al. (2008) consider an estimate defined by

the normal loglikelihood penalized by the L1-norm of the entries of Σ−1. These methods

produce sparse, permutation-invariant estimators of the precision matrix, though some are

computationally expensive. Yuan and Lin (2007) use the max-det algorithm to compute

the estimator while imposing the positive-definiteness constraint, this seems to have limited

their numerical results to p ≤ 10 (Rothman et al. 2008, p. 496). A faster semi-definite

programming algorithm based on Nesterov’s method for interior point optimization was

used by d’Aspremont et al. (2008). Rothman et al. (2008) analyze the properties of the

solution of the same problem using the Cholesky decomposition to avoid the computational

cost of semi-definite programming. To date, the fastest available algorithm is the graphical

lasso (glasso), proposed by Friedman et al. (2008) which relies on the equivalence of the

d’Aspremont et al. (2008) blockwise interior point procedure and recursively solving and

updating a lasso least-squares regression problem using the coordinate descent algorithm for

LASSO.

The sparse pseudo-likelihood inverse covariance estimation (SPLICE) algorithm of Rocha

et al. (2008) and the SPACE (Sparse PArtial Correlation Estimation) algorithm of Peng et
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al. (2009) also impose sparsity constraints directly on the precision matrix, but with slightly

different regression-based reparameterizations of Σ−1 , see (8) and (10). They are designed

to improve several shortcomings of the approach of Meinshausen and Bühlmann (2006)

including its lack of symmetry for neighborhood selection in Gaussian graphical models.

While Meinshausen and Bühlmann (2006) use p separate linear regressions to estimate the

neighborhood of one node at a time, Rocha et al. and Peng et al. propose merging all p

linear regressions into a single least squares problem where the observations associated to

each regression are weighted differently according to their conditional variances.

To appreciate the need for using approximate or pseudo-likelihood it is instructive to

note that unlike the sequence of prediction errors in (17), the ε̃j’s from Section 2.2.2 are

correlated so that D̃2 is not really the covariance matrix of the vector of regression errors

ε̃ = (ε̃1, · · · , ε̃p)′. The use of its true and full covariance matrix in the normal loglikelihood

would increase the computational cost at the estimation stage. This problem is circumvented

in Rocha et al. (2008) and Friedman et al. (2010) by using a pseudo-likelihood function which

in the normal case amounts to pretending that the Cov(ε̃) is D̃2. To this pseudo-loglikelihood

function, they add the symmetry constraints (9) and a weighted LASSO penalty on the off-

diagonal entries to promote sparsity. A drawback of the SPLICE and SPACE algorithms is

that they do not enforce the positive-definiteness constraint, hence the resulting covariance

estimator are not guaranteed to be positive-definite.

The sparsistency and rates of convergence for sparse covariance and precision matrix

estimation using the penalized likelihood with nonconvex penalty functions have been studied

in Lam and Fan (2009). By sparsistency they refer to the property that all zero entries are

actually estimated as zero with probability tending to one. In a given situation, sparsity

might be present in the covariance matrix, its inverse or Cholesky fator. They develop a

unified framework to study these three sparsity problems with a general penalty function

and show that the rates of convergence for these problems under the Frobenius norm are
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of order ( s log p
n

)1/2, where s = sn is the number of nonzero elements, p = pn is the size

of the covariance matrix and n is the sample size. This reveals that the contribution of

high-dimensionality is merely of a logarithmic factor.

3.5 Elementwise Shrinkage

In this section, we review a few alternative estimators like banding, tapering and thresholding

which are based on the elementwise shrinkage of the sample covariance matrix. These co-

variance estimators require minimal amount of computation, except in the cross-validation

for selecting the tuning parameter which is computationally comparable to that for the pe-

nalized likelihood method. However, due to their emphasis on elementwise transformations

such estimators are not guaranteed to be positive-definite.

3.5.1 Banding the Sample Covariance Matrix

Many entries of the sample covariance matrix S = (sij) could be small or unstable in the “n

small, p large” case, where, in fact, one is estimating far too many parameters based on a few

observations. The most extreme case of this occurs in time series analysis where one has to

work with only a single (long) realization (n = 1). Here the requirement of stationarity helps

to reduce the number of distinct entries of the p × p covariance matrix Σ from p(p + 1)/2

to just p, which is still large. The moving average (MA) and autoregressive (AR) models in

time series analysis which further reduce the number of parameters, are the prototypes of

banding a covariance matrix or its inverse, i.e. replacing all entries outside a band around

the main diagonal by zeros (Wu and Pourahmadi, 2009; Bickel and Gel, 2010; McMurry and

Politis, 2010).

Given the sample covariance matrix S = (sij) and any integer k, 0 ≤ k < p, its k-banded

(Bickel and Levina, 2008a) version defined by

Bk(S) = [sij1(|i− j| ≤ k)],
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can serve as an estimator for Σ. This kind of regularization is ideal when the indices have

been arranged so that

|i− j| > k =⇒ σij = 0.

This occurs, for example, if Σ is the covariance matrix of Y = (y1, · · · , yp)′ where y1, y2, · · · ,

is a finite inhomogenous moving average process

yt =
k∑
j=1

θt,t−jεj,

and εj’s are i.i.d. with mean 0 and finite variances.

Note that a k-banded matrix Bk(S) is not necessarily positive-definite. Tapering the

covariance matrix is frequently used in time series and spatial models, it has been used

recently to improve the performance of covariance matrix estimates used by classifiers based

on linear discriminant analysis (Bickel and Levina, 2004) and in Kalman filter ensembles

(Furrer and Bengtsson, 2007). Banding is a special case of tapering, that is, replacing S by

S ∗ R, where (∗) denotes the Schur (coordinate-wise) matrix multiplication and R = (rij)

is a positive-definite symmetric matrix (Furrer and Bengtsson, 2007). It is known that the

Schur product of two positive-definite matrices is also positive-definite. Note that banding

corresponds to using R = rij = (1(|i − j| ≤ k) which is not a positive definite matrix.

The idea of banding has also been used on the lower triangular matrix of the Cholesky

decomposition of Σ−1 by Wu and Pourahmadi ( 2003) and Huang et al.(2006), Bickel and

Levina (2008a). While Furrer and Bengtsson (2007) have used tapering as a regularization

technique for the ensemble Kalman filter, Kaufman, Schervish and Nychka (2008) use it

for purely computational purposes in the likelihood-based estimation of the parameters of a

structured covariance function for large spatial data sets.

Asymptotic analysis of banding is possible when n, p and k are large. Bickel and Lev-

ina (2008a, Theorems 1 and 2) have shown that, for normal data the banded estimator is

consistent in the operator norm (spectral norm), uniformly over a class of approximately

“bandable” matrices, as long as log p
n
→ 0. They obtain explicit rate of convergence which
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depends on how fast k → ∞, see also Cai et al. (2010). The consistency in operator norm

guarantees the consistency of principal component analysis (Johnstone and Lu, 2009) and

other related methods in multivariate statistics when n is small and p is large. Cai et al.

(2010) propose a tapering procedure for the covariance matrix estimation and derive the

optimal rate of convergence for estimation under the operator norm. They also carry out

a simulation study to compare the finite sample performance of their proposed estimator

with that of the banding estimator introduced in Bickel and Levina (2008a). The simulation

shows that their proposed estimator has good numerical performance, and nearly uniformly

outperforms the banding estimator.

3.5.2 Thresholding the Sample Covariance Matrix

When both n and p are large, it is plausible that many elements of the population covariance

matrix are equal to 0, and hence Σ is sparse. How does one develop an estimator other than

S to cope with this situation? The concept of thresholding originally developed in nonpara-

metric function estimation has been used in the estimation of large covariance matrices by

Bickel and Levina (2008b), El Karoui (2008 a, b) and Rothman et al. (2009).

For a sample covariance matrix S = (sij) the thresholding operator Ts for s ≥ 0 is defined

by

Ts(S) = [sij1(|sij| ≥ s)] ,

so that thresholding S at s amounts to replacing by zero all entries with absolute value less

than s. Its biggest advantage is its simplicity as it carries no major computational burden

compared to its competitors like the penalized likelihood with the LASSO penalty (Huang

et al. 2006; Rothman et al. 2008; Rocha et al. 2008). A potential disadvantage is the loss of

positive-definiteness as in banding. However, just as in banding, Bickel and Levina (2008b)

have established the consistency of the threshold estimator in the operator norm, uniformly

over the class of matrices that satisfy a notion of sparsity, provided that log p
n
→ 0, with an

explicit rate of convergence. An immediate consequence of the consistency result is that a
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threshold estimator will be positive definite with probability tending to one for large samples

and dimensions.

4 Bayesian Modeling of Covariances

Traditionally, in Bayesian approaches to inference for Σ the Jefferys’ improper prior and the

conjugate inverse Wishart (IW) priors are used. For some reviews of the earlier work in

this direction, see Lin and Perlman (1985) and Brown et al. (1994). However, the success

of Bayesian computation and Markov Chain Monte Carlo (MCMC) in the late 1980’s did

open up the possibility of using more flexible and elaborate non-conjugate priors for covari-

ance matrices, see Yang and Berger (1994), Daniels and Kass (1999), Wong et al. (2003),

Liechty, Liechty and Müller (2004) and Hoff (2009). Some of these priors were constructed

and inspired by certain useful and desirable features of IW, such as the generalized inverse

Wishart (GIW) and marginally uniform priors introduced by Brown et al. (1994), Daniels

and Pourahmadi (2002), Pourahmadi and Daniels (2002), Smith and Kohn (2002), Barnard

et al. (2000), Wong et al. (2003) and Liechty et al. (2004), which rely on the Cholesky and

the variance-correlation decompositions, respectively. We present a very brief review of the

progress in Bayesian covariance estimation in a somewhat chronological order starting with

priors put on the components of the spectral decomposition.

4.1 Priors on the Spectral Decomposition

Starting with the remarkable work of Stein (1956, 1975) efforts to improve estimation of a

covariance matrix, have been confined mostly to shrinking the eigenvalues of the sample co-

variance matrix toward a common value (Dey and Srinivasan, 1985; Lin and Perlman, 1985;

Haff 1991; Yang and Berger 1994; Daniels and Kass, 1999; Hoff, 2009). Such covariance

estimators have been shown to have lower risk than the sample covariance matrix. Intu-

itively, shrinking the eigenvectors is expected to further improve or reduce the estimation
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risk (Daniels and Kass, 1999, 2001; Johnstone and Lu, 2009).

There are three broad classes of priors that are based on unconstrained parameterizations

of a covariance matrix using its spectral decomposition. These have the goal of shrinking

some functions of the off-diagonal entries of Σ or the corresponding correlation matrix toward

a common value like zero. Consequently, estimation of the p(p−1)
2

dependence parameters is

reduced to that of estimating a few parameters.

Perhaps, the first breakthrough with the GLM principles in mind is the log matrix prior

due to Leonard and Hsu (1992) which is based on the matricial logarithm defined in Section

2.2.3. Thus, formally a multivariate normal prior with a large number of hyperparameters

is introduced. They show the flexibility of this class of priors for the covariance matrix of

a multivariate normal distribution, yielding much more general hierarchical and empirical

Bayes smoothing and inference, when compared with a conjugate analysis involving an IW

prior. The prior is not conditionally conjugate, and according to Brown et al. (1994), its

major drawback is the lack of statistical interpretability of the entries of log Σ and their

complicated relations to those of Σ as seen in Section 2.2.3. Consequently, prior elicitation

from experts and substantive knowledge cannot be used effectively in arriving at priors for

the entries of log Σ and their hyperparameters, see Lietchy et al. (2004, p. 2) for a discussion

on the lack of intuition and relationship between log-eigenvalues and correlations.

The reference (noninformative) prior for a covariance matrix in Yang and Berger (1994)

is of the form,

p(Σ) = c[|Σ|
∏
i<j

(λi − λj)]−1,

where λ1 > λ2 > · · · > λp are the ordered eigenvalues of Σ and c is a constant. Yang

and Berger(1994, p. 1199) note that compared to the Jeffreys prior, the reference prior

puts considerably more mass near the region of equality of the eigenvalues. Therefore, it

is intuitively plausible that the reference prior would produce a covariance estimator with

better eigenstructure shrinkage. Furthermore, they point out that the reference priors for
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Σ−1, and the eigenvalues of the covariance matrix are the same as p(Σ). Expression for

the Bayes estimator of the covariance matrix using this prior involve computation of high-

dimensional posterior expectations, the computation is done using the hit-and-run sampler

in a Markov chain Monte Carlo setup. An alternative noninformative reference prior for

Σ (and the precision matrix ) which allows for closed-form posterior estimation is given in

Rajaratnam et al. (2008).

It is known (Daniels, 2005) that the Yang and Berger’s (1994) reference prior implies

a uniform prior on the orthogonal matrix P and flat improper priors on the logoarithm of

the eigenvalues of the covariance matrix. The shrinkage priors of Daniels and Kass (1999)

also rely on the spectral decomposition of the covariance matrix, but are designed to shrink

the eigenvectors by reparametrizing the orthogonal matrix in terms of p(p−1)
2

Givens angles

(Golub and Van Loan, 1989) θ between pairs of the columns of the orthogonal matrix P .

Since θ is restricted to lie in the interval (−π/2, π/2), a logit transform will make it uncon-

strained so as to conform to the GLM principles. They put a a mean-zero normal prior on the

logit tranformation of the Givens angles. The statistical relevance and interpretation of the

Givens angles are not well-understood at this time. The local parametrization of orthogonal

matrices in Boik (2002) could shed some light on the problem of interpretation of the new

parameters. The idea of introducing matrix Bingham distributions as priors on the group

of orthogonal matrices (Hoff, 2009) could also be useful in shrinking the eigenvectors of the

sample covariance matrix.

Using simulation experiments, Yang and Berger (1994) compared the performance of

their reference prior Bayes covariance estimator to the covariance estimators of Stein (1975)

and Haff (1991) and found it to be quite competitive based on the risks corresponding to

the loss functions Li, i = 1, 2. Daniels and Kass (1999) also using simulations compared

the performance of their shrinkage estimator to several other Bayes estimators of covariance

matrices, using only the risk corresponding to the L1 loss function. It turns out that the
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Bayes estimators from the Yang and Berger’s (1994) reference prior does as well as those

from Givens-angle prior for some nondiagonal and ill-conditioned matrices, but suffers when

the true matrix is diagonal and poorly conditioned.

4.2 The Generalized Inverse Wishart Priors

The use of Cholesky decomposition of a covariance matrix or the regression dissection of the

associated random vector has a long history and can be traced at least to the work of Bartlett

(1933); Liu (1993). Though the ensuing parameters have nice statistical interpretation, they

are not permutation-invariant. It is shown by Brown et al. (1994) that a regression dissection

of the inverse Wishart (IW) distribution reveals some of its noteworthy features making it

possible to define flexible generalized inverted Wishart (GIW) priors for general covariance

matrices.

These priors are constructed by first partitioning a multivariate normal random vector

Y with mean zero and covariance matrix Σ, into k ≤ p subvectors: Y = (Z1, · · · , Zk)′, and

writing its joint density as the product of a sequence of conditionals:

f(y) = f(z1)f(z2|z1) · · · f(zk|zk−1, · · · , z1).

Now, in each conditional distribution one places normal prior distributions on the regression

coefficients and inverse Wishart on the prediction variances. The hyperparameters can be

structured so as to maintain the conjugacey of the resulting priors. It is known (Daniels

and Pourahmadi, 2002; Rajaratnam, Massam and Carvalho, 2008) that such priors offer

considerable flexibility as there are many parameters to control the variability in contrast to

the one parameter for IW.

These ideas and techniques have been further refined in Gaithwaite and Al-Awadi (2001)

in prior distribution elicitation from experts, and extended to longitudinal and panel data

setup in Daniels and Pourahmadi (2002) and Smith and Kohn (2002) . The GIW prior was

further refined in Daniels and Pourahmadi (2002) using the finest partition of Y , i.e. using
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k = p. In this case all restrictions on the hyperparameters are removed from the normal

and inverse Wishart (gamma) distributions and the prior remains conditionally conjugate,

in the sense that the full-conditional of the regression coefficients is normal given the predic-

tion variances, and the full-conditional of prediction variances is inverse gamma given the

regression coefficients. For a review of certain advantages of this approach in the context of

longitudinal data and some examples of analysis of such data, see Daniels (2005) and Daniels

and Hogan (2008).

4.3 Priors on Correlation Matrices

One of the first use of variance-correlation decomposition in Bayesian covariance estimation

seems to be due to Barnard et al. (2000), who using p(Σ) = p(D,R) = p(D)p(R|D)

introduced independent priors for the standard deviations in D and the correlations in R.

Specifically, they used log normal priors on variances independently of a prior on the whole

matrix R capable of inducing uniform (−1, 1) priors on its entries ρij, see Liu and Daniels

(2006).

This is done by first deriving the marginal distribution of R when Σ has a standard IW

distribution, W−1
p (I, ν), ν ≥ p, with the density

fp(Σ|ν) = c|Σ|−
1
2

(ν+p+1) exp
(
−1

2
trΣ−1

)
.

It turns out that

fp(R|ν) = c|R|
1
2

(ν−1)(p−1)−1
p∏
i=1

|Rii|−ν/2,

when Rii is the principal submatrix of R, obtained by deleting its ith row and column. Then,

using the marginalization property of the IW (i.e. a principal submatrix of an IW is still an

IW), the marginal distribution of each ρij(i 6= j) is obtained as

f(ρij|ν) = c(1− ρ2
ij)

ν−p−1
2 , |ρij| ≤ 1.

The latter can be viewed as a Beta
(
ν − p+ 1

2
,
ν − p+ 1

2

)
on (−1, 1), which is uniform

when ν = p + 1. Moreover, by choosing p ≤ ν < p + 1 or ν > p + 1, one can control the
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tail of f(ρij|ν), i.e. making it heavier or lighter than the uniform. Thus, the above family of

priors for R is indexed by a single “tuning” parameter ν.

Liechty et al. (2004) note that few existing probability models and parameterizations for

covariance matrices allow for easy interpretation and prior elicitation. They propose priors

in which correlations are grouped based on similarities among the correlations or based on

groups of variables. A good example of this situation is in financial time series where it

is often known that returns of stocks in the same industries are more closely related than

others. Alternatively, one could rely on the idea of reparametrizing the correlation matrix R

using the partial autocorrelations, discussed next, and then introduce various independent

beta priors on the latter.

4.4 Reparameterization via Partial Autocorrelations

In this section, we present yet another unconstrained and statistically interpretable repa-

rameterization of Σ, but now using the notion of partial autocorrelation function (PACF)

from time series analysis (Box et al. 1994; Pourahmadi, 2001, Chap. 7). As expected,

this approach just like the Cholesky decomposition requires an a priori order among the

random variables in Y . It is motivated by and tries to mimic the phenomenal success of

the PACF of a stationary time series in model formulation (Box et al. 1994) and removing

the positive-definiteness constraint on the autocorrelation function (Ramsey, 1974). We note

that reparameterizing the stationarity-invertibility domain of ARMA models by Jones (1980)

had a profound impact on algorithms for computing the MLE of the ARMA coefficients and

guaranteeing that the estimates are in the feasible region.

Starting with the variance-correlation decomposition of a general Σ = DRD, we focus on

reparameterizing its correlation matrix R = (ρij) in terms of entries of a simpler symmetric

matrix Π = (πij) where πii = 1 and for i < j, πij is the partial autocorrelation between yi

and yj adjusted for the intervening (not the remaining) variables. More precisely, πi,i+1 =

ρi,i+1, i = 1, · · · , p − 1 are the lag-1 correlations and for j − i ≥ 2, πij = ρij|i+1,···,j−1 in
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the notation of Anderson (2003, p.41). Note that unlike R, and the matrix of full partial

correlations (ρij) constructed from Σ−1,Π has a simpler structure in that its entries are free

to vary in the interval (−1, 1). If needed, using the Fisher z-transform Π can be mapped to

the matrix
∼
Π where its off-diagonal entries take values in the entire real line (−∞,+∞). Of

course, the process of going from a constrained R to Π or
∼
Π is reminiscent of finding a link

function in the theory of GLM (McCullagh and Nelder, 1989).

Compared to the long history of using the PACF in time series analysis (Quenouille,

1949), research on establishing a one-to-one correspondence between a general covariance

matrix and (D,Π) has a rather short history. An early work in the Bayesian context is due

to Eaves and Chang (1992), followed by Zimmerman (2000) and Pourahmadi (1999, 2001,

p.102) for longitudinal data, Dégerine and Lambert-Lacroix (2003) for the nonstationary

time series, and Kurowicka and Cooke (2003) and Joe (2006) for a general random vector.

The fundamental determinantal identity:

|Σ| =
( p∏
i=1

σii

) p∏
i=2

i−j∏
j=1

(
1− π2

ij

)
, (26)

has been redicovered recently by Dégerine and Lambert-Lacroix (2003), Kurowicka and

Cooke (2003) and Joe (2006), but its origin can be traced to a notable and somewhat

neglected paper of Yule (1907, equ. 25).

The identity (26) plays a central role in Joe’s (2006) method of generating random cor-

relation matrices whose distributions are independent of the order of variables in Y , and in

Daniels and Pourahmadi’s (2009) introduction of priors for the Bayesian analysis of correla-

tion matrices. These papers employ independent linearly transformed Beta priors on (−1, 1)

for the partial autocorrelations πij. However, Jones (1987) seems to be the first to use such

Beta priors in simulating data from ”‘typical”’ ARMA models.
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5 Conclusions and Future Research

We have reviewed progress in covariance estimation for low- and high-dimensional data sets,

from the narrow perspectives of the GLM and regularization or parsimony and sparsity. Re-

cent appearance of many regression-based techniques and the use of LASSO-type penalties

show that covariance estimation can benefit greatly from mimicking/using the conceptual and

computational tools of regression analysis, and the GLM’s insistence on using unconstrained

parameters. Fortunately, mostly due to the computational-algorithmic advances centered

around LASSO, the high-dimensionality challenge in covariance estimation has been virtu-

ally eliminated, however, the positive-definiteness challenge still remains. Its removal could

not only further reduce the computational cost due to high-dimensionality, but is also cru-

cial for parsimony and writing simple, interpretable models using covariates. Among the

three matrix decompositions, the spectral and Cholesky decompositions are the most helpful

in removing the positive-definiteness constraint. These along with some recent covariance

estimation algorithms enforcing the positive-definiteness suggest that there are trade-offs

among the requirements of unconstrained parameterization, statistical interpretability, and

the computational cost.

In summary, the key problem of removing the positive-definiteness constraint which is

central to developing a GLM setup for covariance modeling remains open, in the sense that,

as yet, no unconstrained and statistically interpretable reparameterization exists for

a general covariance matrix without imposing an order on the variables. In addition to this,

the following topics/problems related to covariance estimation are worthy of further study:

• Positive-Definiteness Plus Aother Constraint: There are several situations in

statistics where it is desirable to have sparse or parsimonious estimators of certain

structured covariance matrices. For example:

1. Some off-diagonal entries are zero, as in graphical models with known structures,
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2. Correlation matrices, where the diagonal entries are constant and equal to one,

3. Stationary (Toeplitz) covariance matrices, where all (sub-) diagonals are constant.

An iterative conditional fitting procedure for solving the first problem is proposed by

Chaudhuri et al. (2007). Friedman et al. (2009, Chap.17) provide a regression-based

approach very much similar to the graphical LASSO. A permutation-invariant solution

to the second problem is given in Rothman et al. (2008). Assuming an order on the

variables, a general correlation matrix can be reparameterized using the PACF as in

Section 4.4, where in principle covariates can be used to to write GLM for correlation

matrices. Some preliminary results are given in Daniels and Pourahmadi (2009). The

PACF also works for stationary covariance matrices (Jones, 1980), so long as an order

is imposed on the variables. The problem is open for unordered variables.

• Ordering The Variables: Variables in many application areas do not have a natural

order as in time series or longitudinal studies. A method for discovering meaningful

orderings among variables based on their correlations using the Isomap is proposed in

Wagaman and Levina (2009). If the variables can be rearranged so that the resulting

covariance matrix is approximately ”bandable”, then this order can be used to proceed

with the Cholesky decomposition, construct a sparse covariance estimator that is block-

diagonal and/or banded. In the context of spatial data analysis, Zhu and Liu (2009)

also propose an ordering strategy that uses the location information to minimize the

bandwidth of the Cholesky factor of the precision matrix. The problem of finding

good permutations of a sparse symmetric matrix to induce extra nonzero elements in

its Cholesky factor has been studied extensively in the numerical analysis literature

for the purpose of minimizing storage and speeding up computation; see Section 3

in Zhu and Liu for an extended review of this literature. The need for ordering a

set of variables or parameters is also present in other areas of statistics, for example,

in the construction of reference priors (Berger and Yang, 1994; Brown et al. 1994;
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Liechty et al. 2004) and spatial data where the idea of ordering groups of variables

or parameters (regression dissection) is advocated. In the literature of statistics, this

problem has not received the rigorous and systematic attention that it deserves. To

achieve parsimony in covariance estimation, how can one order the variables so that

the ensuing covariance matrix can be modeled, say, as in (23) using a minimal number

of parameters/covariates? How sensitive is a particular inference to the choice of an

order among the variables?
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Appendix: Proof of the Lemma

Recall that the matrix of regression coefficients Φ2|1 must be found so that the vector of

residuals Y2·1 is uncorrelated with the data Y1:

0 = Cov(Y2·1, Y1) = Cov(Y2, Y1)− Φ2|1Cov(Y1, Y1)

= Σ21 − Φ2|1Σ11,

or

Φ2|1 = Σ21Σ−1
11 . (27)

The covariance matrix of Y2·1, the regression residuals, denoted by Σ22·1, is

Σ22·1 = Cov(Y2·1) = Cov(Y2 − Φ2|1Y1, Y2 − Φ2|1Y1)

= Cov(Y2 − Φ2|1Y1, Y2)

= Σ22 − Φ2|1Σ12

= Σ22 − Σ21Σ−1
11 Σ12. (28)
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Since the vector of residuals Y2·1 is a linear transformation of Y1, Y2, it is evident that(
Y1

Y2·1

)
= T

(
Y1

Y2

)
, (29)

with T a block lower-triangular matrix with the identity blocks down the diagonals and −Φ2|1

in the (2, 1) block. The covariance matrix of the left-hand side in (29) is by construction a

block-diagonal matrix. Thus, with

D = diag(Σ11,Σ22·1), (30)

computing the covariance of both sides of (29) we obtain

TΣT ′ = D, (31)

and the precision matrix Σ−1 has a similar decomposition:

Σ−1 = T ′D−1T. (32)

Important consequences of multiplying out the partitioned matrices in the right-hand side

of this identity and matching with the (2, 2) and (1, 2) blocks of Σ−1 are precisely the results

given in the lemma.
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Dégerine, S., Lambert-Lacroix, S. (2003). Partial autocorrelation function of a nonstation-

ary time series. J. of Multivariate Analysis, 89, 135-147.

Dempster, A. (1972). Covariance selection models. Biometrics, 28, 157-175.

Dey, D.K., Srinivasan, C. (1985). Estimation of a covariance matrix under Steins loss. Ann.

Statist. ,13, 15811591.

Diggle, P., Liang, K.Y. , Zeger, S.L. and Heagerty,P.J. (2002). Analysis of Longitudinal

Data,Second Edition, Oxford, Clarendon Press.

Eaves, D. and Chang, T. (1992). Priors for ordered conditional variances and vector partial

correlation. J. of Multivariate Analysis, 41, 43-55.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. The

Annals of Statistics, 35, 407499.

El Karoui, N. (2008a). Operator norm consistent estimation of large dimensional sparse

covariance matrices. Ann. Statist., 36, 27172756.

El Karoui, N. (2008b). Spectrum estimation for large dimensional covariance matrices using

random matrix theory. Ann. Statist., 36, 27572790.

Fan, J., Huang, T., and Li, R. (2007). Analysis of longitudinal data with semiparametric

estimation of covariance function. Journal of the American Statistical Association,

102, 632641.

Fan, J., Fan, Y., and Lv, J. (2008). High dimensional covariance matrix estimation using

a factor model. Journal of Econometrics, 147, 186197.

Fan, J., Feng, Y., and Wu, Y. (2009). Network exploration via the adaptive LASSO and

SCAD penalties. Annals of Applied Statistics, 3, 521541.

49



Fan, J. and Lv, J. (2010). A selective overview of variable selection in high-dimensional

feature space. Statistica Sinica, 20, 101-148.

Fitzmaurice, G., Davidian, M., Verbke, G. and Molenberghs, G. (eds.) (2009). Longitudinal

Data Analysis, Handbooks of Modern Statistical Methods, Chapman & Hall/CRC.

Flury, B. (1988). Common Principal Components and Related Multivariate Models ,Wiley,

NewYork.

Flury, B. and Gautschi, W. (1986). An algorithm for simultaneous orthogonal transforma-

tion of several positive definite symmetric matrices to nearly diagonal form. SIAM J.

Statist. Comp. 7, 169-184.

Friedman, J., Hastie, T. and Tibshirani, R.(2008). Sparse inverse covariance estimation

with the graphical lasso. Biostatistics, 9, 432-441.

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Applications of the lasso and grouped

lasso to the estimation of sparse graphical models. Technical Report, Stanford Univer-

sity.

Furrer, R. and Bengtsson, T. (2007). Estimation of high-dimensional prior and posterior

covariance matrices in Kalman filter variants. Journal of Multivariate Analysis, 98,

227-255.

Gabriel, K. R. (1962), Ante-dependence analysis of an ordered set of variables, The Annals

of Mathematical Statistics, 33 , 201-212.

Gaithwaite, P.H. and Al-Awadhi, S.A. (2001). Nonconjugate prior distribution assessment

for multivariate normal sampling. J. of Royal Statist B, 63, 95-110.

Golub, G.H. and Van Loan, C.F. (1989). Matrix Computations. The Johns Hopkins Uni-

versity Press, Baltimore, Second Edition.

50



Haff, L.R. (1980). Empirical Bayes estimation of the multivariate normal covariance matrix.

Ann. Statist., 8 ,586597.

Haff, L. R. (1991). The variational form of certain Bayes estimators. Annals of Statistics,

19, 1163-1190.

Hastie, T.J. and Tibshirani, R. J.(1990). Generalized Additive Models, Chapman &HALL/CRC.

Hastie, T., Tibshirani, R. and Frieman, J. (2009). The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Second Edition, Springer, New York.

Hoerl, A. E., and Kennard, R.W. (1970). Ridge Regression: Biased Estimation for Nonorthog-

onal Problems. Technometrics, 12, 5567.

Hoff, P.D. (2009). A hierarchical eigenmodel for pooled covariance estimation. J. of Royal

Statistical Society, Ser. B, 71, 971-992.

Hoff, P.D. and Niu, X. (2009). A covariance regression model. Technical Report, University

of Washington.

Huang, J.Z., Liu, N. and Pourahmadi, M. and Liu, L. (2006). Covariance matrix selection

and estimation via penalized normal likelihood. Biometrika, 93, 85-98.

Huang, J.Z., Liu, L. and Liu, N. (2007). Estimation of large covariance matrices of lon-

gitudinal data with basis function approximations. J. of Statistical Computation and

Graphics, 16, 189-209.

James, W. and Stein, C. (1961). Estimation with quadratic loss. Proceedings of the Fourth

Berkeley Sympossium on Mathematical and Statistical Probability, (Jerzy Neyman, ed.),

Vol. I, 361-379, University of California, Berkeley.

51



Jiang, G., Sarkar, S. K. and Hsuan, F. (1999). A likelihood ratio test and its modifications

for the homogeneity of the covariance matrices of dependent multivariate normals.

Journal of Statistical Planning and Inference, 81, 95-111.

Joe, H. (2006). Generating random correlation matrices based on partial correlations. J.

of Multivariate Analysis, 97,2177-2189.

Jong, J.C. and Kotz, S. (1999). On a relation between principal components and regression

analysis. The Amer. Statist., 53, 349-351.

Johnstone, I.M. and Lu, A.Y. (2009).

On consistency and sparsity for principal components analysis in high dimensions. J.

of Amer. Statist. Assoc., 104, 682-693.

Jones, M.C. (1987). Randomly choosing parameters from the stationarity and invertibility

region of autoregressive-moving average models. Appl. Statist., 36, 134-138.

Jones, R.H. (1980). Maximum likelihood fitting of ARMA models to time series with

missing observations. Technometrics, 22, 389-395.

Kalman, A.E. (1960). A new approach to linear filtering and prediction problems, Trans.

Amer. Soc. Mech. Eng., J. Basic Engineering, 82, 35-45.

Kaufman, C.G., Schervish, M.J. and Nychka, W. (2008). Covariance tapering for likelihood-

based estimation in large data sets. Journal of the Amer. Statist. Assoc., 103, 145-155.

Kitagawa, G. and Gersch, W. (1985). A smoothness priors time varying AR coefficient

modeling of nonstationary time series. IEEE Trans. on Automatic Control, AC-30,

48-56.

Klein, J. L. (1997. Statistical Visions in Time: A History of Time Series Analysis, 1662-

1938. Cambridge University Press.

52



Kurowicka, D. and Cooke, R. (2003). A parameterization of positive definite matrices in

terms of partial correlation vines. Linear Algebra and its Applications, 372, 225-251.

Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance

matrices estimation. Annals of Statistics, 37, 4254-4278.

Ledoit, O., Santa-Clara, P. and Wolf, M. (2003). Flexible multivariate GARCH modeling

with an application to international stock markets. The Review of Economics and

Statistics, 85, 735-747.

Leng, C., Zhang, W. and Pan, J.(2010). Semiparametric meancovariance regression analysis

for longitudinal data. J. of Amer. Statist. Assoc., 105, 181-193.

Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covari-

ance matrices. Journal of Multivariate Analysis, 88, 365-411.

Leonard, T. and Hsu, J.S.J. (1992). Bayesian inference for a covariance matrix. Annals of

Statistics, 20,1669-1696.

LeSage, J.P. and Pace, R.K. (2007). A matrix exponential spatial specification. Journal of

Econometrics, 140, 198-214.

Levina, E., Rothman, A.J. and Zhu, J.(2008). Sparse estimation of large covariance matrices

via a nested Lasso penalty. Annals of Applied Statistics, 2, 245-263.

Liang, K.Y. and Zeger, S.L. (1986). Longitudinal data analysis using generalized linear

models. Biometrika, 73, 13-22.

Liechty,J.C., Liechty, M.W. and Müller, P. (2004). Bayesian correlation estimation. Biometrika,

91, 1-14.

53



Lin, T.I. (2010). A Bayesian approach to joint modelling of location and scale parameters of

the t distribution for longitudinal data. Journal of Statistical Planning and Inference,

to appear.

Lin, S.P. and Perlman, M.D. (1985). A Monte Carlo comparison of four estimators of a

covariance matrix. In Multivariate Analysis, 6, Ed. P.R. Krishnaiah, 411-429. Ams-

terdam: North-Holland.

Tsung-I. Lin, T.-I., Wang, Y. J. (2009). A robust approach to joint modeling of mean and

scale covariance for longitudinal data. Journal of Statistical Planning and Inference ,

139, 3013–3026.

Liu, C. (1993). Bartlett’s decomposition of the posterior distribution of the covariance for

normal monotone ignorable missing data. J. of Multiv. Analysis, 46, 198-206.

Liu, X. and Daniels, M.J. (2006). A new algorithm for simulating a correlation matrix

based on parameter expansion and re-parameterization. Journal of Computational

and Graphical Statistics, 15, 897-914.

McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models. 2nd ed., Chapman and

Hall, London.

McMurry, T.L. and Politis, D.N. (2010). Banded and tapered estimates for autoco-

variance matrices and the linear process bootstrap. Technical Report, UC San Diego.
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