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Abstract. Although prospective logistic regression is the standard
method of analysis for case-control data, it has been recently noted that
in genetic epidemiologic studies one can use the “retrospective” likeli-
hood to gain major power by incorporating various population genet-
ics model assumptions such as Hardy–Weinberg-Equilibrium (HWE),
gene–gene and gene–environment independence. In this article we re-
view these modern methods and contrast them with the more classical
approaches through two types of applications (i) association tests for
typed and untyped single nucleotide polymorphisms (SNPs) and (ii) es-
timation of haplotype effects and haplotype–environment interactions
in the presence of haplotype-phase ambiguity. We provide novel in-
sights to existing methods by construction of various score-tests and
pseudo-likelihoods. In addition, we describe a novel two-stage method
for analysis of untyped SNPs that can use any flexible external algo-
rithm for genotype imputation followed by a powerful association test
based on the retrospective likelihood. We illustrate applications of the
methods using simulated and real data.

Key words and phrases: Case-control studies, Empirical-Bayes, ge-
netic epidemiology, haplotypes, model averaging, model robustness,
model selection, retrospective studies, shrinkage.

1. INTRODUCTION

Case-control study designs are now widely used to
study the role of genetic susceptibility in the etiology
of rare complex diseases. Typically, a case-control
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study involves recruiting all or a large fraction of the
diseased subjects (cases) that arise in an underlying
study base and then sampling a comparable num-
ber of healthy subjects (controls), ideally from the
exact same study base, and possibly matched with
the cases by some socio-demographic characteristics
such as race, age and gender. Biological samples and
questionnaire data collected on the sampled subjects
are then used to determine their genetic suscepti-
bility, such as SNP genotypes and history of some
nongenetic (environmental) exposures. For rare dis-
eases such as cancers, case-control studies are cost-
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efficient compared to a cross-sectional or prospective
cohort studies because they dramatically reduce the
number of nondiseased subjects to study.
In general, the standard method for analysis of

case-control data is the prospective logistic regres-
sion ignoring the retrospective nature of the under-
lying design. The validity of this approach relies on
the classic results by Cornfield (1956) who showed
the equivalence of prospective- and retrospective-
odds ratios. The efficiency of the approach was es-
tablished in two other classic papers by Andersen
(1970) and Prentice and Pyke (1979), who showed
that the prospective analysis of case-control data
yields the proper maximum-likelihood estimates of
the odds ratio parameters of the logistic model un-
der a “semiparametric” setup that allows the distri-
bution of the underlying covariates to remain com-
pletely unrestricted. More recently, it has been shown
that even in the presence of missing data and mea-
surement error in covariates, the “prospective” treat-
ment of case-control data can yield proper maximum-
likelihood estimates as long as the distribution of
the underlying covariates is allowed to remain unre-
stricted (Roeder, Carroll and Lindsay, 1996).
A special feature for studies in genetic epidemiol-

ogy is that it is often reasonable to assume certain
models for the population distribution of the ge-
netic and environmental covariates of interest. The
Hardy–Weinberg-Equilibrium (HWE) law, for ex-
ample, which implies a simple relationship between
allele and genotype frequencies at a given chromoso-
mal locus, is a natural model for a random mating,
large, stable population in the absence of new ge-
netic mutations, inbreeding and selective survivor-
ship among genotypes (see Hartl and Clark (2007),
Chapter 3). Genes which are physically apart and
hence are not expected to be in linkage disequilib-
rium (LD) are also expected to be independently
distributed in a homogeneous population. It is often
also natural to assume a subject’s genetic suscepti-
bility, a factor which is determined at birth, is inde-
pendent of his/her subsequent environmental expo-
sures. A pertinent question then is what is the most
appropriate method for analysis of case-control data
in genetic epidemiology where some natural model
assumptions exist for the distribution of genetic and
environmental factors in the underlying population.
We will assume data on some genetic (G) and en-

vironmental (E) exposures are collected in a case-
control study involving N0 controls (D = 0) and N1

cases (D = 1). If one ignores the retrospective nature

of the case-control design, one can conduct inference
based on the prospective-likelihood

LP =

N∏

i=1

pr(Di|Gi,Ei),(1)

where N =N1+N0. The fundamental likelihood for
case-control data, however, known as the “retrospec-
tive” likelihood, is given by

LR =
N∏

i=1

pr(Gi,Ei|Di).(2)

In the absence of any missing data, it is evident
from the classical theory that the prospective-likelihood
(1) provides a valid way of testing and estimation of
the odds ratio association parameters of the under-
lying logistic regression model. In fact, the prospective-
likelihood yields the same maximum-likelihood esti-
mates for the odds ratio association parameters that
could be obtained by maximization of the proper
retrospective likelihood (2) while allowing pr(G,E),
the joint distribution of G and E, to remain com-
pletely non-parametric. Under constraints on pr(G,E),
however, the retrospective likelihood would not yield
the same maximum-likelihood estimator as that from
the prospective likelihood. More importantly, the
retrospective-likelihood can exploit various popula-
tion genetics model assumptions such as HWE, gene–
gene and gene–environment independence to gain
major efficiency over the prospective-likelihood for
inference on various association and interaction pa-
rameters. At the same time, if the underlying model
assumptions are violated, then the use of the retro-
spective likelihood can lead to serious bias for both
testing and estimation procedures. In the presence
of missing data, a further complication is that the
use of the prospective likelihood may not be even
strictly valid in certain settings, such as that de-
scribed in Section 4 for estimation of haplotype ef-
fects, where for the purpose of identifiability LP also
requires some modeling assumptions, thus destroy-
ing its equivalence with LR that is known to hold
under unspecified covariate distribution. Thus, to
date, a debate remains about the most appropriate
method of analysis of case-control studies in genetic
epidemiology.
In this article we will review some modern devel-

opments for analysis of case-control studies in ge-
netic epidemiology using the prospective- and
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retrospective-likelihoods. We will describe the meth-
ods primarily through two different types of applica-
tions: (a) association testing for genotyped and im-
puted single nucleotide polymorphisms (SNP) (Sec-
tions 2 and 3) and (b) estimation of haplotype effects
and haplotype–environment interactions in the pres-
ence of phase ambiguity (Section 4). In each section
we aim to provide new intuitive insights into the al-
ternative methods by constructions of various score
tests (Sections 2 and 3) and pseudo-likelihoods (Sec-
tion 4). As a byproduct, in Section 3 we also propose
a novel “retrospective” method for association test-
ing for untyped SNPs which can easily use any exter-
nal algorithm for imputation of genotypes. In each
section we will use numerical examples to illustrate
the bias and efficiency trade-off between the alter-
native methods. We will conclude the article with a
discussion and recommendations for practical data
analysis.

2. ASSOCIATION ANALYSIS FOR SINGLE
NUCLEOTIDE POLYMORPHISMS (SNPS)

2.1 The Prospective Approach

The genotype information for an individual SNP
in a case-control study can be represented by the
2× 3 contingency table defined by cross-tabulation
of case-control and genotype status. Let D be the
indicator of case (D = 1) or control (D = 0) status
and let G be the number of minor alleles carried
by an individual (G = 0,1,2). Let ndg denote the
number of subjects with genotype G= g and disease
status D = d observed in the case-control sample.
Suppose we are interested in testing the association
of the disease outcome with a SNP-genotype using
a population logistic regression model of the form

pr(D = 1|G) =
exp{α+ βTm(G)}

1 + exp{α+ βTm(G)}
,(3)

where the function m(·) is chosen in a suitable way
to reflect an assumed mode of genetic effect. If, for
example, G denotes the count for the minor allele at
a SNP locus, then one can chose m(G) =G, m(G) =
I(G≥ 1) or m(G) = I(G= 2) to model the effect of
the minor allele as additive (in the logistic scale),
dominant or recessive. One can also consider a sat-
urated model by allowing m(G) to be a vector of
two dummy variables associated with heterozygous
(G= 1) and homozygous variant (G= 2) genotypes
and β to be the corresponding log-odds-ratios. The
prospective analysis of case-control data yields an

asymptotically unbiased estimate for the genotype-
odds-ratio parameters β, but not for the intercept
parameter α.
The score function for β under the prospective-

likelihood (1) can be written as

UPL =

N1+N0∑

i=1

m(Gi){Di − pr(D = 1|Gi)}.

Under the null hypothesis, β = 0, we can estimate
p = pr(D = 1|Gi) as p̂ =N1/(N1 +N0) since under
that hypothesis, G does not influence D. Then the
score function can be written as

U0
PL =

N1∑

i=1

m(Gi)−
N1

N1 +N0

N1+N0∑

i=1

m(Gi)

=
N1N0

N1 +N0

{
1

N1

N1∑

i=1

m(Gi)−
1

N0

N1+N0∑

i=N1+1

m(Gi)

}
,

which is proportional to the difference between the
empirical means of m(G) in the cases (D = 1) and
in the controls (D = 0). We suppose without loss
of generality that the indices for the cases are {i=
1, . . . ,N1} and those for the controls are {i=N1 +
1, . . . ,N1+N0}. If, for example, we assume m(G) =
G, that is, the additive effect, then U0

PL corresponds
to the numerator of the Cochran–Armitage trend
test (van Belle et al., 2004, Chapter 7) that is widely
used for single-SNP association testing. More gen-
erally, a “prospective” score-test can be constructed
under any genetic model based on U0

PL and its vari-
ance under the null hypothesis of no association that
be estimated by

V 0
PL =

N1N0

N1 +N0
Vm(G),

where Vm(G) is the pooled-sample variance ofm(Gi).

2.2 Retrospective Approach

The retrospective likelihood, LR, for the genotype
data of a single-SNP can be written as the product
of two sets of multinomial probabilities:

LR = L1 ×L0 =

2∏

g=0

p
n1g

1g ×
2∏

g=0

p
n0g

0g ,

where pdg = pr(G = g|D = d), d= 0 and 1, denotes
the population genotype frequencies for the con-
trols and the cases, respectively. Given the genotype
probabilities for the controls, we can characterize
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the genotype probabilities for the cases according
to the formula (Satten and Kupper, 1993)

p1g =
ψg(β)p0g∑2
g=0ψg(β)p0g

,(4)

where ψg(β) denotes the odds ratio associated with
the genotype G= g as specified by the logistic model
(3). Thus, the retrospective likelihood can be pa-
rameterized in terms of the genotype probabilities of
the controls and the disease-odds-ratio parameters
β. The maximization of the retrospective likelihood
LR, without imposing any further constraints on the
genotype probabilities for the controls, will lead to
the same estimator for β that would be obtained
by maximization of LP (Prentice and Pyke, 1979).
In fact, it can be shown that the retrospective- and
prospective-profile likelihoods of β become identical
after maximization of the corresponding likelihoods
with respect to the associated nuisance parameters
(Roeder, Carroll and Lindsay, 1996). Thus, the as-
sociated tests, including score-, Wald- and likelihood-
ratio tests, are identical under the retrospective and
prospective likelihoods.
Now suppose we are willing to assume that HWE

holds in the underlying population and that the dis-
ease is rare so that HWE also holds approximately
in the control population. In the retrospective like-
lihood LR, we can write the genotype probabilities
for the controls as a function of the frequency, f , of
the minor allele as

p00(f) = (1− f)2, p01(f) = 2f(1− f),

p02 = f2.

It is easy to show that the score function for β associ-
ated with the retrospective likelihood can be written
as

URL =

N1∑

i=1

[m(Gi)−EHWE,f{m(G)|D = 1}],

which under the null hypothesis of no association
reduces to

U0
RL =

N1∑

i=1

[m(Gi)−EHWE,f{m(G)}].(5)

Moreover, under the null hypothesis, the allele fre-
quency f can be substituted for by its maximum-
likelihood estimate

f̂ =
n+1 + 2n+2

2N
,(6)

where n+g denotes the frequency for genotype G= g
in the pooled sample of cases and controls. Thus,
U0
RL corresponds to the difference between the em-

pirical mean of the function m(G) in cases and its
expected value under HWE and the null hypoth-
esis of no association. In contrast, note that U0

PL

corresponds to the difference between the empirical
mean of the function m(G) in cases and the empir-
ical mean for the same function in the controls. If
the expectation in the retrospective score function
(5) is estimated empirically without assuming HWE,
then, as expected, it can be easily shown that the
retrospective and prospective scores are the same.
If, however, we assume HWE to evaluate the retro-
spective score function, then it would have smaller
variance than that for the prospective score. In par-
ticular, this can be seen from the estimate of the
variance estimate U0

RL given by

V 0
RL =N1

{
Vm(G) −

N1

2N
f̂(1− f̂)C(f̂)C(f̂)T

}
,

where

C(f) = covHWE,f

{
m(G),

G− 2f

f(1− f)

}

=
∑

g

m(g)
g− 2f

f(1− f)
p0g(f).

By the Cauchy–Schwarz inequality, V 0
RL ≥ V 0

PL asymp-
totically, implying that the retrospective score test
is asymptotically more powerful than its prospective
counterpart when the assumption of HWE is valid.
Chen and Chatterjee (2007) compared the perfor-

mance of 2 d.f. Wald-tests of association based on
the retrospective and prospective likelihoods. They
observed major gains in power for the test based
on the retrospective-likelihood for the detection of
nonmultiplicative effects, for example, recessive ef-
fects. Notice that if we assume an additive model,
that is, m(G) =G, then the prospective and retro-
spective score functions U0

RL and U0
PL become iden-

tical because in this case E
HWE,f̂

{m(G)} = 2f̂ =
∑N

i=1Gi/N . The larger the departure of the effect of
a SNP from the additive form, the greater the gain
in efficiency for the retrospective method. Applica-
tion of retrospective methods for association testing,
however, requires caution because of their sensitivity
to the underlying model assumption. In particular,
it can be seen from the formula of U0

RL that the un-
biasedness of that score function crucially depends
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on the assumption of HWE being correct for the un-
derlying population. Satten and Epstein (2004) and
Chen and Chatterjee (2007) have noted that even
modest violation of HWE can cause serious infla-
tion in Type-I error in association tests based on
the retrospective likelihood.

2.3 Empirical-Bayes Methods

Luo et al. (2009) considered an empirical-Bayes
type shrinkage estimation approach to develop a 2
d.f. single-SNP association test that can gain power
by exploiting the model assumptions of HWE for
the underlying population and yet is resistant to
bias when the model assumptions are violated. The
method involves estimation of genotype-specific dis-
ease odds ratio parameters by data-adaptive “shrink-
age” of a “prospective” model-free estimator that
does not require the HWE assumption toward a
“retrospective” model-based estimator that directly
exploits the HWE constraints. The amount of
“shrinkage” is sample-size and data-adaptive, so that
in large samples the method has no bias whether
the assumption of HWE holds or not and yet the
method can gain efficiency by shrinking the analysis
toward HWE, but only to the extent that the data
validate the assumptions. In what follows we pro-
vide some insight into the empirical-Bayes method
through the construction of a score-test. For numer-
ical illustration, however, we will focus on the Wald
test as originally developed in Luo et al. (2009).

Let m(G) = (N1 + N0)
−1
∑N1+N0

i=1 m(Gi)

and s2
m(G) = (N1+N0)

−1
∑N0+N1

i=1 {m(Gi)−m(G)}2

denote the sample mean and variance for the func-
tion m(G), respectively. Further, let τ̂ = m(G) −
E

f̂ ,HWE
m(G) denote the difference between the em-

pirical and expected means of m(G) when the lat-
ter quantity is computed assuming HWE and under
the estimate of allele frequency f̂ given in (6). Intu-
itively, τ̂ can be viewed as an estimate of the bias in
estimation of the population mean of m(G) under
the assumption of HWE. An empirical-Bayes type
score function can be now defined as

U0
EB

=

N1∑

i=1

[m(Gi)−EEB{m(G)}],(7)

where EEB{m(G)} is the empirical-Bayes estimate
for the mean of the function m(G) under H0, given
by

EEB{m(G)} =
s2
m(G)/N

s2
m(G)/N + τ̂2

E
HWE,f̂

{m(G)}

+
τ̂2

s2
m(G)/N + τ̂2

m(G).

Thus, EEB{m(G)} corresponds to a weighted aver-
age of the empirical mean of m(G) and its expected
mean under HWE, with the weights defined by an
estimate of the bias for the estimate of the popula-
tion mean of m(G) under HWE and an estimate of
the variance of the empirical mean of m(G). As τ̂2

decreases, that is, the evidence of bias due to the vio-
lation of HWE becomes smaller, EEB{m(G)} gives
more weight to the more precise HWE-based esti-
mator of the population mean of m(G). Conversely,
as s2

m(G)/N decreases, that is, the sample mean of

m(G) becomes more precise, then EEB{m(G)} puts
more weight to the robust model-free estimatorm(G).
The original perspective for constructing such
weighted combinations of model-based and model
free estimators from an empirical-Bayes point of view
can be found in Mukherjee and Chatterjee (2008).
Simple methods for variance estimation for such es-
timators have been also described in that article.

2.4 The Cancer Genetics Markers of
Susceptibility (CGEMS) Study

We illustrate the performance of alternative 2 d.f.
single SNP association tests using data from the
Cancer Genetics Markers of Susceptibility (CGEMS)
study (Yeager et al., 2007; Hunter et al., 2007;
Thomas et al., 2008), an NCI enterprize initiative to
conduct multistage whole-genome association stud-
ies to identify susceptibility genes giving rise to in-
creased risks of prostate and breast cancers. In this
article we will focus on data from the initial scan
for the prostate cancer study, involving genotype
data on about 550,000 SNPs from 1172 cases and
1157 controls. The details of the CGEMS study de-
sign and the results from the initial scan and sub-
sequent replication studies can be found at the web
site https://caintegrator.nci.nih.gov/cgems/.
We consider 449,698 SNPs from 22 nonsex chro-

mosomes with minor allele frequencies larger than
0.05. Table 1 displays the empirical proportions of
the number of SNPs that are found to be significant
at different nominal significance levels using 2 d.f.
tests based on three different methods: (a) prospec-
tive, (b) retrospective and (c) empirical-Bayes [see
Luo et al. (2009) for more details]. For a well-designed
study and a robust analytic method, the empirical
proportions are expected to be fairly close to the

https://caintegrator.nci.nih.gov/cgems/
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Table 1

The empirical proportions of significant SNPs detected by
different methods at different nominal significance levels in

the CGEMS prostate cancer study

α Prospective Retrospective Empirical-Bayes

5e–2 5.01e–2 5.66e–2 4.49e–2
1e–2 0.98e–2 1.43e–2 0.87e–2
1e–3 1.05e–3 3.85e–3 1.00e–3
1e–4 1.27e–4 2.24e–3 1.31e–4
1e–5 2.67e–5 1.76e–3 3.34e–5
1e–6 2.22e–6 1.47e–3 4.45e–6

nominal significant levels, given that the vast ma-
jority of the SNPs are likely to be not associated
with the disease. In Table 1, we observe that the em-
pirical proportions of significant SNPs found by the
prospective method closely follows the nominal sig-
nificance levels. In contrast, the corresponding pro-
portions for the retrospective test deviate severely
from the nominal values in the range of α ≤ 10−3,
indicating significantly inflated type-I error due to
the violation of HWE for many SNPs. The last col-
umn of Table 1 shows that the empirical-Bayes pro-
cedure essentially corrects for all the bias of the ret-
rospective method due to the violation of the HWE
assumption.
Next, we conducted a simulation study to inves-

tigate the performance of various tests in ranking a
true susceptibility locus in a genome-wide associa-
tion study (GWAS) that include hundreds of thou-
sands of “null” SNPs. To generate realistic link-
age disequilibrium patterns, we simulated GWAS
data mimicking the CGEMS study itself. Given mi-
nor allele frequency among controls and the disease-
genotype odds ratio parameters for a chosen suscep-
tibility locus, we simulate genotype data at that lo-
cus for the cases and controls separately from the
corresponding multinomial distributions. Given the
genotype data at the susceptibility locus for a case
or a control, we simulate genotype data for the re-
mainder of the SNPs by assigning the whole geno-
type profile for a randomly selected subject from
the controls of the CGEMS study who have the
same genotype data at the given susceptibility lo-
cus as the sampled subject in our simulation study.
This algorithm, as originally described by Yu et al.
(2009), assumes that given the genotypes for the
susceptibility locus, the risk of the disease is inde-
pendent of all the remaining SNPs. We simulated
50 data sets with approximately 550 cases and 550

controls. For each data set we tested for association
for each of the approximately 450,000 SNPs using
the prospective, retrospective and empirical-Bayes
methods. The rank of the disease-associated SNP
is obtained by sorting all the p-values in ascending
order.
Table 2 displays the median ranks obtained by

three methods for a true disease-associated SNP that
has a recessive effect with a log-odds-ratio of β =
log(3). As expected, the ranks of all tests decrease
as the minor allele frequency increases. Comparing
the ranks of different tests at a specific minor allele
frequency, we can see that the standard prospective
method generally has the lowest power in the sense
that it assigns much higher rank to the susceptibil-
ity SNP than the two other tests. When minor allele
frequency is 0.1, we observe that the pure retrospec-
tive method performs the best in the sense that it
assigns the lowest rank to the susceptibility SNPs
among all the methods. In contrast, when minor al-
lele frequency is greater than or equal to 0.2, we
observe that the empirical-Bayes procedure assigns
considerable lower rank to the susceptibility SNP
than the pure retrospective method. Intuitively, the
results can be explained from the fact that the ret-
rospective method yields low p-values for many null
SNPs due to the violation of the HWE assumption
(see Table 1) and thus dilutes the rank of the real
susceptibility SNP.

3. ASSOCIATION ANALYSIS FOR IMPUTED
SNPS

The forms of the prospective- and retrospective-
scores suggest how they can be modified easily for
SNPs that may not have been directly genotyped,
but can be “imputed” conditional on neighboring
SNPs and estimates of linkage disequilibrium from

Table 2

Simulated median ranks of a true susceptibility SNP with a
recessive effect and log-odds-ratio value of log(3) for

alternative tests. The results are based on 50 simulated
datasets, each of which has approximately 550 cases and 550
controls and 450,000 SNPs. MAF: minor allele frequency

MAF Prospective Retrospective Empirical-Bayes

0.1 112163 8117 44319
0.2 1888 203 52
0.3 656 210 27
0.4 15 82 2
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HapMap or other similar databases. Let N (G) de-
note the neighboring genotype information for an
untyped SNP-locus with unobserved genotype G.
The prospective score for such an untyped SNP can
be defined by taking the conditional expectation of
the “complete data” score function U0

PL given the
observed data, that is, the neighboring genotype in-
formation. More formally, the prospective score for
an untyped SNP can be written as

U0u
PL =

N1N0

N1 +N0

[
1

N1

N1∑

i=1

E{m(G)|N (Gi)}

(8)

−
1

N0

N0∑

i=1

E{m(G)|N (Gi)}

]
,

where the conditional expectations are taken with
respect to a suitable imputation model such as those
described by Nicolae (2006), Marchini et al. (2007)
and others. The retrospective score for an untyped
SNP can be similarly defined by the conditional ex-
pectation of the “complete data” retrospective score
function U0

RL given the observed data N (G) in the
form

U0u
RL =

N1∑

i=1

[E{m(G)|N (Gi)}

(9)
−EHWE,f{m(G)}].

Notice that in the retrospective score function, the
contribution of the term EHWE,f{m(G)} is a con-
stant term given the allele frequency f . The estima-
tion of the allele frequency f for an untyped SNP,
however, requires imputation. In particular, under
the “complete data” model we can write the esti-
mate of the allele frequency under the null hypoth-
esis of no association as

f̂ =

∑N0+N1
i=1 {I(Gi = 1) + 2I(Gi = 2)}

2N
.

Thus, given an imputation model, we can estimate
the allele frequency f as

f̂u =

(
N0+N1∑

i=1

pr{G= 1|N (Gi)}

(10)

+ 2pr{G= 2|N (Gi)}

)/
(2N).

We further need the variances for U0u
PL and U0u

RL

under the null hypothesis to obtain the correspond-

ing score tests. The variance of U0u
PL can be esti-

mated as

V 0u
PL =

N1N0

N1 +N0
VE{m(G)|N (G)},

where VE{m(G)|N (G)} is the pooled-sample variance
of E{m(G)|N (Gi)}. The prospective-score test is
based on the test statistic given by

(U0u
PL)

T{V 0u
PL}

−U0u
PL,

where the superscripts T and—denote transpose and
generalized inverse, respectively. Asymptotically, this
statistic follows a chi-squared distribution under the
null hypothesis of β = 0, with the degrees of freedom
given by the dimension of m(G). The variance of the
retrospective score U0u

RL, after adjusting for the esti-

mation of the allele frequency f by f̂ given by (10),
can be estimated by

V 0u
RL =N1

[
VE{m(G)|N (G)}

+
N1

2N

{
VE{G|N (G)}

2
C(f̂)C(f̂)T

−QC(f̂)T −C(f̂)QT

}]
,

where Q is the pooled-sample covariance between
E{m(G)|N(Gi)} and E{G|N(Gi)}. The variance of
U0u
RL can also be alternatively estimated by the ro-

bust sandwich-type estimate given as

V 0u
PL =

N1+N0∑

i=1

Ũ0u
RL,i(Ũ

0u
RL,i)

T,

where the efficient score

Ũ0u
RL,i =Di[E{m(G)|N (Gi)} −E

HWE,f̂
{m(G)}]

−
N1

2N
C(f̂)[E{G|N (Gi)} − 2f̂ ].

The retrospective-score test is then based on the test
statistic given by

(U0u
RL)

T{V 0u
RL}

−U0u
RL,

which again follows a chi-squared distribution asymp-
totically under the null hypothesis, with the degrees
of freedom given by the dimension of m(G). In both
the prospective- and retrospective-score tests given
above, we obtain the conditional probability
Pr{G|N (Gi)} directly from some external reference
database, for example, HapMap, a strategy similar
to the proposal of Nicolae (2006).
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We now demonstrate the potential power advan-
tages that might be achieved by imputing the un-
typed SNP, using numerical studies following two
scenarios as in Tables 1 and 2 of Nicolae (2006). In
Scenario 1 the untyped SNP can be perfectly pre-
dicted by the genotypes of the typed SNPs, namely,
the R2

s = 1 (see Stram et al., 2004, for a defini-
tion), while in Scenario 2 the untyped SNP is moder-
ately predicted by the genotypes of the typed SNPs
with R2

s = 0.39. The SNP profiles together with the
haplotype frequencies estimated from HapMap CEU
samples in the two scenarios are summarized in Ta-
bles 3 and 4. Also listed in Tables 3 and 4 are the
haplotype frequencies we actually used to simulate
the SNP data for the case-control sample, which
moderately deviate from those seen in the HapMap
CEU sample to reflect the potential discrepancy be-
tween the HapMap and study samples. The haplo-
type pair for each person is generated according to
HWE.
We simulated the case-control status by the lo-

gistic regression model (3), where the genetic deter-
minant G is given by the minor allele count of the
untyped SNP, and the function m(·) is given by the
recessive, dominant or additive genetic mode. The
intercept α = −3.0, which yields an overall disease
rate around 5%. Each analysis is based on a case-
control sample with 1000 cases and 1000 controls.
The simulation results are based on 1000 (3000) rep-
etitions for evaluation of test power (size). All the
tests are performed at a significance level of 0.01.
The score tests are performed using the correct ge-
netic model, and the retrospective-score tests are
based on the robust sandwich-type variance esti-
mates; results based on model-based variance es-

Table 3

The SNP profiles and haplotype frequencies for the region
considered in Scenario 1, where the untyped SNP can be

perfectly predicted by genotyped SNPs A1, . . . ,A4 (R2
s = 1).

Also listed are the haplotype frequencies estimated from the
CEU sample in HapMap. Part of the data are from Table 1

of Nicolae (2006)

Haplotype of SNPs Frequency
A1–T –A2–A3–A4 Frequency from HapMap

1–0–0–0–0 0.158 0.058
0–1–0–1–0 0.400 0.300
1–1–0–1–0 0.050 0.050
1–1–1–0–1 0.358 0.558
0–1–1–0–1 0.022 0.017
1–1–0–0–1 0.012 0.017

Table 4

The SNP profiles and haplotype frequencies for the region
considered in Scenario 2, where the untyped SNP is
moderately predicted by genotyped SNPs A1, . . . ,A3

(R2
s = 0.39). Also listed are the haplotype frequencies

estimated from the CEU sample in HapMap. Part of the
data are from Table 2 of Nicolae (2006)

Haplotype of SNPs Frequency
A1–T –A2–A3 Frequency from HapMap

0–0–0–0 0.088 0.058
0–0–1–1 0.027 0.017
0–1–0–0 0.302 0.342
0–1–1–0 0.008 0.008
1–0–1–0 0.242 0.142
1–0–1–1 0.333 0.433

timates are quite similar and are omitted. When
performing the prospective- and retrospective-score
tests with imputed genotypes for the untyped SNP,
we use the haplotype frequency estimates from
HapMap to obtain the conditional probabilities
Pr{G|N (Gi)}, even though the case-control sample
is actually from a population with moderately dif-
ferent haplotype frequencies. To see the degree of
recovery of missing information achieved by imputa-
tion, we also perform the prospective- and
retrospective-score tests based on the true genotypes
at the untyped SNP. In addition, we perform the
multimarker Hotelling’s T 2 test based on genotypes
at typed SNPs (Xiong, Zhao and Berwinkle, 2002;
Chapman et al., 2003), which is equivalent to the
prospective-score test derived from the logistic re-
gression model (3) with the covariates m(G) given
as the vector of genotypes for all the typed SNPs.
Results for this simulation study are presented

in Tables 5 (Scenario 1) and 6 (Scenario 2). It is
seen that the score tests with imputed genotypes
have size matching reasonably well with the nom-
inal value of 1%, even though the imputation is
based on haplotype frequencies that are obtained
from the HapMap data and are different from the
true frequencies. From the results regarding power,
we see that imputing the untyped SNP in either
the prospective- or the retrospective-score test can
achieve substantial power gains as compared with
the Hotelling’s T 2 test based only on genotyped
SNPs. The relative power improvement gained by
imputation can still be quite remarkable even when
the accuracy for predicting the untyped SNP using
the genotyped SNPs is only of a moderate level (Sce-
nario 2, where R2

s = 0.39). On the other hand, the
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prediction accuracy does affect the degree of recov-
ery of the missing information that may be achieved
by imputation: in Scenario 1, with perfect prediction
of the untyped SNP, the tests using imputed geno-
types do attain the full power we would obtain if the
tests were based on the true genotype of the untyped
SNP. In Scenario 2, with moderate prediction of the
untyped SNP, imputation of the untyped SNP can
recover partial but not full power. It is worth remem-
bering that, with exact data, the retrospective-score
test is usually more powerful than the prospective-
score under the dominant or recessive model, and
the two tests are essentially equivalent under the
additive model. Here we observe the same phenom-
ena when the prospective- and retrospective-score
tests are based on imputed genotypes.
As we noted earlier, when exact genotype data are

available, the retrospective-score test is more sensi-
tive to violation of the HWE assumption than the
prospective-score test; that is, the former is usu-
ally biased while the latter still remains unbiased
when HWE does not hold. To assess the robustness
properties for the prospective- and retrospective-
score tests with imputed genotype data, we per-
formed a further simulation study where the SNP
haplotypes are still given as in Tables 3 and 4, but
the haplotype pair Hdi = (ha, hb) for each person
is given by the model with Pr{Hdi = (ha, hb)} =
(1 − ζ)θaθb for ha 6= hb and Pr{Hdi = (ha, hb)} =
ζθa + (1 − ζ)θ2a for ha = hb, where θa is the fre-
quency for haplotype ha, and ζ , the fixation in-
dex quantifying the departure from HWE, is set to
0.05. We can see from the results listed in Table 7
that, with imputed genotype data, the prospective-
score test, like its exact-data counterpart, still shows
greater robustness in maintaining the type-I error
rates than the retrospective-score test. In particu-
lar, the retrospective-score test, based on the reces-
sive or dominant model, may yield high type-I error
rates under violation of HWE, no matter whether
exact or imputed genotype data are used. Thus,
an empirical-Bayes type shrinkage method that can
adapt between prospective and retrospective meth-
ods depending on bias-variance trade-off could be
useful for analysis of both typed and untyped SNPs.
We conclude this section with a discussion on the

two types of association analyses recently developed
for untyped SNPs: the full likelihood approach
(Lin, Hu and Huang, 2008) and the two-stage ap-
proach (Nicolae, 2006; Marchini et al., 2007). The

Table 7

Size (%) of the prospective- and retrospective-score tests
(significance level= 0.01) based on the imputed and true (in
parenthesis) genotypes at the untyped causal SNP, using

SNP data generated according to Scenarios 1 (Table 3) and
2 (Table 4) and a fixation index of 0.5 (violating HWE).

Results are based on 3000 simulated data sets

Prospective score Retrospective score
imputed (true) imputed (true)

Recessive model
Scenario 1 0.8 (0.8) 1.7 (1.7)
Scenario 2 1.2 (1.2) 5.9 (7.7)

Dominant model
Scenario 1 0.9 (0.9) 1.4 (1.4)
Scenario 2 1.0 (0.8) 3.2 (5.1)

Additive model
Scenario 1 1.0 (1.0) 1.0 (1.0)
Scenario 2 0.7 (0.8) 0.7 (0.8)

full likelihood approach uses a retrospective likeli-
hood for the case-control sample and a likelihood
for the external (such as HapMap) data, by which
the imputation and association analysis are simul-
taneously performed in a one-stage manner. Con-
versely, the two-stage approach performs the impu-
tation and association analysis separately: imputing
missing genotypes in the first stage and then per-
forming association analysis in the second stage. In
the imputation stage of the two-stage approach, one
can apply existing powerful external imputation al-
gorithms such as Nicolae (2006) and Marchini et al.
(2007), and, hence, the two-stage approach is conve-
nient to implement. There has been some debate on
the efficiency difference between the two approaches
(Marchini and Howie, 2008; Lin and Hu, 2008). Our
simulation results (Tables 5 and 6) suggest that some
of the efficiency difference between the full likeli-
hood and the two-stage approaches may be due to
the use of different likelihoods (prospective vs. ret-
rospective) and not so much due to the use of one-
stage vs. two-stage analysis. In this section we have
shown that one can still use a retrospective likeli-
hood even in a two-stage approach with powerful
imputation performed at the first stage.

4. HAPLOTYPES

4.1 Definitions, Background and Missing Data

Although single-SNP association tests are often
the primary methods for genome-wide association
scans, many secondary or “downstream” analyses
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Table 5

Size/Power (%) of the prospective- and retrospective-score tests (significance level= 0.01) based on the imputed and true (in
parenthesis) genotypes at the untyped causal SNP, using SNP data generated according to Table 3 (perfect prediction). Also
shown are results for the Hotelling’s T 2 test based only on genotypes at the typed SNPs. Results for power (size) are based on

1000 (3000) simulated data sets

Prospective score Retrospective score Hotelling’s T 2

β imputed (true) imputed (true)

Recessive model
0 1.1 (1.1) 1.1 (1.1) 0.9
0.5 26.1 (26.1) 33.7 (33.7) 3.6
0.6 40.1 (40.1) 55.3 (55.3) 5.6

Dominant model
0 1.0 (1.3) 1.0 (1.3) 0.9
0.3 68.6 (68.6) 72.9 (72.9) 39.0
0.4 96.0 (96.0) 96.7 (96.7) 79.3

Additive model
0 1.2 (1.2) 1.2 (1.2) 0.9
0.2 43.0 (43.0) 43.0 (43.0) 24.2
0.3 86.4 (86.4) 86.4 (86.4) 65.5

are often useful for detailed characterization of the
risk of the disease associated with specific genomic

regions of interest. One popular technique is haplotype-
based association analysis, which involves studying
the association of a disease with a genomic region in

terms of the underlying “haplotypes,” the combina-
tion of alleles at multiple loci along individual ho-
mologous chromosomes. Originally, haplotype-based

association analysis was considered a powerful tech-

nique for “indirect” association testing in situations
where a causal SNP may not have been genotyped,

but the haplotypes defined by multiple typed SNPs
could serve as a good “surrogate” for the causal vari-
ant. With the advent of various imputation meth-

ods, although haplotype analysis has become less
relevant for such indirect association testing, it re-
mains a useful tool for parsimonious characteriza-

tion of disease risk associated with multiple, possibly

Table 6

Size/Power (%) of the prospective- and retrospective-score tests (significance level= 0.01) based on the imputed and true (in
parenthesis) genotypes at the untyped causal SNP, using SNP data generated according to Table 4 (moderate prediction).
Also shown are results for the Hotelling’s T 2 test based only on genotypes at the typed SNPs. Results for power (size) are

based on 1000 (3000) simulated data sets

Prospective score Retrospective score Hotelling’s T 2

β imputed (true) imputed (true)

Recessive model
0 1.4 (1.2) 1.2 (1.2) 1.1
0.5 42.6 (92.2) 47.0 (97.6) 17.6
0.6 59.4 (99.1) 66.4 (99.9) 24.9

Dominant model
0 0.8 (1.1) 0.9 (1.0) 1.1
0.4 48.5 (95.6) 54.3 (98.2) 23.8
0.5 71.6 (99.6) 77.2 (100) 41.5

Additive model
0 1.0 (1.3) 1.0 (1.3) 1.1
0.3 60.2 (97.6) 60.1 (97.6) 40.6
0.4 92.5 (99.9) 92.4 (99.9) 77.4
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interacting, loci within a given region. Moreover, it
is conceivable that for some regions, the haplotypes,
and not the individual SNPs, are functional units
and, thus, for these regions stronger signals of asso-
ciations could be detected by performing haplotype-
based regression analysis.
A technical problem for haplotype-based regres-

sion analysis is that typically the haplotype infor-
mation for the study subjects is not directly ob-
servable. Instead, locus-specific genotype data are
observed, which contain information on the pair of
alleles a subject carries, but does not provide the
“phase information,” that is, which combinations of
alleles appear across multiple loci along the indi-
vidual chromosomes. In general, the genotype data
of a subject will be phase-ambiguous whenever the
subject is heterozygous at two or more loci. Statis-
tically, the lack of phase information can be viewed
as a special missing data problem.
For example, suppose A/a and B/b denote the

major/minor alleles in two bi-allelic loci. A partic-
ular haplotype pair, called a diplotype, is the pair
of alleles that are inherited from one’s parents. One
such haplotype pair would be (AB)− (ab), and dis-
ease risk can be associated with the number of copies
of particular haplotypes that one inherits. Unfortu-
nately, the diplotypes are not observable directly,
but instead we can observe only the unordered or
combined genotypes, in this case (Aa) at the first
locus and (Bb) at the second locus, that is, (AaBb).
However, when observing only the genotypes, the ac-
tual haplotype pair is unknown, or “phase ambigu-
ous,” because the haplotype pair (Ab)−(aB) has the
same set of unordered genotypes. Confronted with
the unordered set of genotypes (AaBb), we know
that the actual haplotype pair is either (AB)− (ab)
or (Ab)− (aB), but we must use probability mod-
els to take into account the phase ambiguity when
performing statistical inference.
In Section 2 we described “model-free” prospec-

tive and “model-based” efficient retrospective meth-
ods for analyzing SNP data, and we also described
empirical-Bayes methods that data-adaptively move
between the two. Just as in SNP data, for haplo-
type data there are also model-free and model-based
methods, and accompanying empirical-Bayes meth-
ods.
A variety of methods have been developed for

haplotype-based analysis of case-control data using
the logistic regression model (Zhao, Li and Khalid,
2003; Lake et al., 2003; Epstein and Satten, 2003;

Satten and Epstein, 2004; Spinka, Carroll and Chat-
terjee, 2005; Lin and Zeng, 2006; Chatterjee et al.,
2006; Chen, Chatterjee and Carroll, 2009). Consider
a general risk model similar to (3) but with the ad-
dition of environmental factors (E) and written in
terms of the diplotypes, denoted as Hdi:

pr(D = 1|Hdi,E)
(11)

=
exp{α+m(Hdi,E,β)}

1 + exp{α+m(Hdi,E,β)}
,

where the function m(·) is chosen in a suitable way
to reflect an assumed mode of genetic effect. For ex-
ample, suppose we are interested in the particular
haplotype h∗ = (ab). A model that assumes an ad-
ditive effect of this haplotype would have m(Hdi =
hdi,E) linear in the number of copies of the haplo-
type h∗.

4.2 Model-Based and Model-Free Methods

4.2.1 Identifiability The data setup then is that
we have observations on environmental exposure (E),
genotypes G and cases and controls D. What is
missing is the underlying diplotype Hdi. The retro-
spective likelihood is still (2), but the risk of disease
depends on the diplotype Hdi and not otherwise on
the genotype.
While models such as (11) seem straightforward

enough for random samples, in retrospective sam-
ples a problem arises because of the phase ambi-
guity. In particular, all components of β may not
be identifiable if the distribution of (Hdi,E) is left
completely unrestricted (Epstein and Satten, 2003;
Lin and Zeng, 2006). Thus, to make progress, some
type of distributional assumptions are needed. Here
we will distinguish between two approaches, both of
them retrospective in nature but with different dis-
tributional assumptions. The first we call “model-
free” in that very little is actually assumed about
the haplotype distribution. If haplotypes were ob-
servable, this method reduces to ordinary prospec-
tive logistic regression, while in the rare disease case
with phase ambiguity, the method reduces to that of
Zhao, Li and Khalid (2003). The second approach,
which we call “model-based,” makes much stronger
assumptions about the haplotype distribution, and
reduces to the efficient retrospective approach of
Chatterjee and Carroll (2005) if haplotypes were ob-
servable. The model-free method will thus be more
robust but less efficient than the model-based method.
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4.2.2 Model-based method The model-based
method (Spinka, Carroll and Chatterjee, 2005) has
three aspects:

(A.1) Haplotypes and the environment are assumed
independent in the population.

(A.2) The diplotypes are assumed to be in HWE in
the population, so that

pr(Hdi = hdi = (ha, hb)|E)

= q{hdi = (ha, hb), θ}

=

{
θ2a, if ha = hb,
2θaθb, if ha 6= hb,

where θs denotes the population frequency for
the haplotype hs.

(A.3) The distribution of the environmental vari-
able E is left completely nonparametric.

The methodology Spinka, Carroll and Chatterjee
(2005) used to construct their profile likelihood was
a nonparametric maximum likelihood estimator over
the unknown distribution of E. However, there is an
alternative derivation, one that is both more intu-
itive and much easier to work out. Indeed, it is a not
sufficiently well-known fact that for most purposes
a case-control study can be viewed as a prospective
study with missing data. Consider a sampling sce-
nario where each subject from the underlying pop-
ulation is selected into the case-control study us-
ing a Bernoulli sampling scheme where the selection
probability for a subject given his/her disease status
D = d is proportional to Nd/pr(D = d). Inference
with the actual case-control data can then be based
on the pseudo-likelihood derived for such an alter-
native sampling scenario. Let δ = 1 denote that a
subject is selected in the case-control sample under
this Bernoulli sampling scheme and hence has been
observed. Then in this alternative sampling scheme,
and with the assumptions stated above,
Spinka, Carroll and Chatterjee (2005) compute
pr(D = 1,G= g|E,δ = 1). This calculation is simple
and in the rare disease case the resulting efficient
model-based likelihood function reduces to

Lmodel(D,G,E,Ω)

=
∑

hdi∈HG

q(hdi, θ) exp[D{κ+m(hdi,E,β)}]

(12) /( 1∑

s=0

∑

hdi

q(hdi, θ)

· exp[s{κ+m(hdi,E,β)}]

)
,

where pd = Nd/N , πd = pr(D = d), κ = α +
log(p1/p0)− log(π1/π0), Ω = (β, θ, κ), and HG is the
set of diplotypes consistent with the observed geno-
types G.

4.2.3 Model-free method The two important model
assumptions in the model-based estimator are (A.1)
and (A.2). Although because of identifiability some
model assumptions must be made, they can be weak-
ened tremendously, as follows (Chen, Chatterjee and
Carroll, 2009):

(B.1) The haplotype and the environment are inde-
pendent in the population given the genotype
G.

(B.2) There population distribution for the diplo-
types given the genotype G, called qfree(h

di|G,θ),
can be derived assuming HWE.

Following the same alternative sampling scheme as
described in Section 4.2.2, or by doing a nonpara-
metric maximum likelihood analysis, we can com-
pute pr(D = 1|G,E, δ = 1) under assumptions (B.1),
(B.2) and (A.3) to be

Lfree(D,G,E,Ω)

=
∑

hdi∈HG

qfree(h
di|G,θ)

· exp[D{κ+m(hdi,E,β)}](13)

/( 1∑

s=0

∑

hdi∈HG

qfree(h
di|G,θ)

· exp[s{κ+m(hdi,E,β)}]

)
.

To see why the likelihood Lfree requires far weaker
assumptions than Lmodel, note that Lfree requires
the haplotype–environment independence and HWE
assumption only to specify the conditional distribu-
tion pr(Hdi|G,X), while Lmodel requires the same
assumption to specify the entire joint distribution
pr(Hdi,X). As a result, Lfree requires the haplotype–
environment independence and HWE only to resolve
the phase ambiguous genotypes. The likelihood con-
tribution for the subjects with phase unambiguous
genotypes, that is, G=Hdi, is the same as that for
the standard prospective logistic regression. In con-
trast, Lmodel depends on the assumptions (A.1) and
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(A.2) irrespective of whether a subject has a missing
phase or not.
Note that Lfree(D,G,E,Ω) will contain little in-

formation on θ since it conditions on G. Thus, when
implementing methods based on this likelihood,
Chen, Chatterjee and Carroll (2009) proposed to re-
place the score function for θ by the estimating func-
tion for θ based on the genotype data from the con-
trols and assuming that the haplotypes are in HWE
in the population.

4.3 Empirical-Bayes

In Section 4.2.2 we constructed a profile likeli-
hood under strong assumptions leading to an effi-
cient method that will not be robust to violations
of the two major assumptions. Conversely, in Sec-
tion 4.2.3 we computed a profile likelihood leading
to much more robust inference, but at the cost of
a steep loss of efficiency. Similarly to Section 2.3,
here we briefly review a fully sample size- and data-
adaptive empirical-Bayes method that
Chen, Chatterjee and Carroll (2009) described for
gaining efficiency when warranted but is still robust.
Let β̂free and β̂model be the model-free and model-

based estimates, with jth components β̂j,free and

β̂j,model. Let V be the covariance matrix of ψ̂ =

β̂free− β̂model, with the jth diagonal element of V be-
ing vj : a sandwich estimator vj can be computed, al-
though a nonparametric bootstrap can also be used.
Then one can define the empirical-Bayes estimator

β̂j,EB = β̂j,free +Wj(β̂j,model − β̂j,free);
(14)

W =
vj

vj + (β̂j,free − β̂j,model)2
.

The intuition behind (14) is that if the model fails,

(β̂j,model − β̂j,free) will be large relative to vj , which
as a variance is proportional to N−1, hence, Wj ≈ 0,
and, hence, the empirical-Bayes method will effec-
tively become the model-free estimator. If, however,
the model assumption holds, then vj and (β̂j,free −

β̂j,model)
2 are proportional to one another, so that

Wj > 0 and the empirical-Bayes estimate goes part
way toward the model-based estimator, and hence
gains efficiency over the model-free estimate.
Chen, Chatterjee and Carroll (2009) describe the
limiting distribution of (14) and how to compute
an estimate of its variance.
Chen, Chatterjee and Carroll (2009) illustrate ap-

plication of the different methods in two case-control
data examples. The examples were chosen in such a

way that from a priori biologic grounds one would
expect the gene–environment independence assump-
tion to hold in one case, but not in the other. The
two examples together illustrate how the different
shrinkage estimators adapt to alternative scenarios
of gene–environment distribution.

5. DISCUSSION

Researchers now increasingly use the Cochran–
Armitage trend test as the primary method for single-
SNP association testing in the GWAS. The test is
known to have robust power for the detection of ef-
fect of susceptibility SNPs under a range of realistic
modes of inheritance that give rise to some sort of
monotone relationship between disease risk and al-
lele count. As noted in Section 2, the retrospective
and prospective methods have very similar, if not
identical, power under the trend model and thus ei-
ther could be used as the primary method for anal-
ysis of GWAS data. The trend test, however, can
perform very poorly for the detection of SNPs for
which the minor allele has a recessive effect. Thus,
it is often recommended that a test under the re-
cessive mode of inheritance be conducted as a sec-
ondary step to detect SNPs with recessive effects
that may be missed by the primary trend test of as-
sociation. The use of the retrospective method can
be potentially beneficial at this stage. One, however,
has to be cautious about creation of false positive re-
sults due to the violation of the HWE assumption.
We recommend that if a retrospective method is to
be used for potential power gain, then it should be
used in conjunction with the empirical-Bayes type
shrinkage estimation. Our numerical investigations
suggest that such a method can indeed be more pow-
erful than the conventional “prospective” methods
without creating excess false positives; see Tables 1
and 2.
In this article, although we focus on association

tests involving bi-allelic SNPs, the same issues are
relevant for genetic association tests involving loci
with more than two alleles. In particular, one can
gain efficiency for analysis of case-control data by
assuming HWE or other natural population-genetic
models (Satten and Epstein, 2004; Lin and Zeng,
2006) to specify multi-allelic genotype frequency for
the underlying population. The sensitivity of the
methods to underlying model assumption can be
reduced by appropriate shrinkage estimation tech-
niques.
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The impact of population stratification (PS) can
be very different for prospective and retrospective
methods. As it is well known, the presence of
population stratification, that is, the existence of
hidden ethnic sub-structures in the population, can
create confounding bias in all of the methods when
both gene-frequency and disease risks vary across
the underlying strata. The presence of PS can also
cause large scale violation of the HWE assumption,
thus making the retrospective method more suscep-
tible to bias than its prospective counterpart. Our
application of different methods to the CGEMS
genome-wide association study data illustrated that
the empirical-Bayes type procedure can correct for
inflated type-I error that may exist for retrospective
methods due to large scale violation of the underly-
ing HWE assumption.
The difference between prospective and retrospec-

tive methods becomes more relevant for studies of
gene–gene and gene–environment interactions, a topic
that we have not directly addressed in this article. In
particular, retrospective methods, such as the case-
only analysis (Piegorsch, Weinberg and Taylor, 1994),
which assumes gene–gene or/and gene–environment
independence for the underlying population, can gain
dramatic power for testing and estimation of odds
ratio interaction parameters in the logistic regres-
sion model. Given that standard case-control anal-
yses often have poor power for detection of multi-
plicative interactions due to small numbers of cases
or controls in cells of crossing exposures, practition-
ers often find it is tempting to use the more power-
ful retrospective methods. The assumption of gene–
environment independence, however, can be violated,
either due to direct casual association between gene
and environment or indirect association due to ef-
fects of family history and hidden population strati-
fication. The assumption of gene–gene independence
between physically distant genes can also be violated
due to population stratification. Thus, we believe
the development of shrinkage (Mukherjee and Chat-
terjee, 2008; Chen, Chatterjee and Carroll, 2009)
and other types of data-adaptive techniques
(Li and Conti, 2009) has been valuable for robust
inference in case-control studies of genetic epidemi-
ology.
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