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ADAPTIVE TECHNIQUES FOR IMPROVING THE PERFORMANCE
OF INCOMPLETE FACTORIZATION PRECONDITIONING

ANSHUL GUPTA* AND THOMAS GEORGE'

Abstract. Three techniques for improving the robustness and performance of iterative solvers
for sparse systems with symmetric positive definite or mildly indefinite coefficient matrices are intro-
duced. The primary contribution is new block algorithms for incomplete factorization that result in
an improvement in the performance of both the preconditioner generation and the iterative solution
phases. One of the algorithms applies to matrices that have a natural block structure in their original
form, and the other one applies to matrices without natural dense blocks. Additionally, two relatively
simple but highly effective techniques are introduced. These include selecting the solver based on the
definiteness properties of the preconditioner and automatic selection and tuning of incomplete fac-
torization parameters. All three techniques have adaptive components; i.e., the preconditioner-solver
combination chooses parameters or algorithmic components based on the properties of the coefficient
matrix and its incomplete factors. T'wo of the three techniques are applicable to incomplete LU
factorization for unsymmetric systems as well.

Key words. sparse solvers, iterative methods, preconditioning, incomplete factorization

AMS subject classifications. 65F10, 65F50

1. Introduction. Incomplete factorization methods have long been used to de-
rive preconditioners for Krylov subspace methods to solve large sparse systems of
linear equations [7, 56]. Like many preconditioning methods, incomplete factoriza-
tion has its share of drawbacks. In this paper, we address three weaknesses of in-
complete Cholesky factorization preconditioners and offer solutions to mitigate these
problems. All three techniques introduced in the paper have adaptive components;
i.e., the preconditioner-solver combination chooses parameters or algorithmic com-
ponents based on the properties of the coefficient matrix and its incomplete factors.
While we focus our discussion on incomplete Cholesky factorization for the iterative
solution of symmetric positive definite (SPD) systems, two of the three problems and
their mitigation methods presented in this paper are also relevant to incomplete LU
factorization for the iterative solution of general sparse systems.

The first problem that we address is related to performance. A typical implemen-
tation of complete sparse Cholesky factorization [35] can realize a fairly respectable
fraction of the peak performance of a machine. There are two main reasons for
this. First, the numerical factorization is preceded by a symbolic factorization phase
that computes the static structure of the factors. Secondly, supernodal [30] and
multifrontal [25, 46] techniques ensure that practically all numerical computation
is performed by cache-friendly level 2 and level 3 basic linear algebra subprograms
(BLAS) [20, 21]. A-priori symbolic factorization cannot be used in incomplete factor-
ization when a dropping strategy based on the values of the factor entries is used. As a
result, for many problems, a direct solution turns out to be faster than an iterative so-
lution based on incomplete factorization, even when complete factorization consumes
significantly more memory than incomplete factorization [31, 32]. Dense blocks have
been used successfully in the past [12, 27, 37, 41, 42, 53] to enhance the performance
of incomplete factorization preconditioners. However, with a few exceptions [37, 53],
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2 ANSHUL GUPTA AND THOMAS GEORGE

these block algorithms have been applied to relatively simpler preconditioners, and
only for matrices that have a naturally occurring block structure. We present an
incomplete factorization algorithm that not only detects and uses dense or near dense
blocks as they emerge in the incomplete factors during preconditioner generation, but
also promotes the creation of such blocks by a local permutation scheme. Thus, this
algorithm makes the use of higher level BLAS possible during the incomplete factor-
ization of even those matrices that have poor or no block structure to begin with. In
addition, the solution phase also benefits from blocking.

The second problem that we address is the breakdown of the Cholesky process
due to negative or near zero pivots. Traditional methods to address this problem fall
into two categories [7]: preemptive methods, which either modify the matrix or the
factorization method to ensure that breakdown does not occur, and reactive meth-
ods, which either apply some sort of local perturbation or roll back the computation
upon encountering an unsuitable pivot and restart with modified parameters until
the factorization succeeds. Preemptive methods unnecessarily increase the cost and
error of incomplete factorization for those matrices for which the standard incomplete
factorization process may have succeeded. Reactive methods that roll back the com-
putation are too costly and the ones that apply a local perturbation are too error
prone. Our approach, which we show to work well in practice, involves switching to
complete LDLT factorization for the troublesome portions of the matrix and drop-
ping the onerous requirement that the preconditioner be positive definite. During the
solution phase, the conjugate gradient method is used if the preconditioner is positive
definite and GMRES [57] or symmetric QMR [28] is used if it is indefinite.

The third problem that we address is that the performance and effectiveness of
incomplete factorization is not only problem dependent, but is also highly sensitive to
parameters such as ordering, drop-tolerance, fill-factor, or level of fill [31]. Moreover,
many applications require the solution of a series of systems with the coefficient ma-
trices changing gradually and the set of parameters that are best for the first system
may not be suitable for the later ones. To address these issues, we built features
in both the incomplete factorization algorithm and its software implementation that
minimize the effort required by the user to select appropriate parameters. The solver
not only offers a degree of automation in initial parameter selection, but also monitors
the relative computation performed in the preconditioner generation and the solution
phases to continuously adjust the drop-tolerance and fill-factor of incomplete factor-
ization. The fill-factor is also used flexibly to allow less diagonally dominant columns
to retain more nonzeros than the more diagonally dominant ones, thus reducing the
sensitivity to the original selection.

In the paper, wherever practical and useful, we present experimental results on
matrices derived from real applications to demonstrate the benefits of the techniques
introduced in the paper. We also present experimental results to show that the
robustness and performance of the resulting linear solver, which we shall refer to
as WSMP (Watson Sparse Matrix Package) ICT, is highly competitive with that of
well known iterative solver packages such as PETSc [5], Trilinos [39], Hypre [26],
and ILUPACK [51] and that the techniques introduced in this paper do succeed in
bridging the robustness and performance gap with direct solvers. Table 1.1 lists the
matrices, along with some of their characteristics, that we used in our experiments.
The column labeled BIkSz contains the average size of row and column blocks with
nearly identical' structure. The column labeled Dim indicates the dimension of the

1Please refer to section 2 for more details.
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Matrix N NNZ | BlkSz | Dim | DD | Application
af_shell7 504855 17588875 | 5.00 | 2 No | Sheet metal forming
audikw_1 943695 77651847 | 3.02 | 3 No | Crankshaft modeling
besstk25 15439 252241 1.33 | 3 No | Skyscraper simulation
bmwcra_1 148770 10644002 3.00 | 3 No | Crankshaft modeling
bst-1 1017397 74144859 299 | 2+ No | Structural analysis
bst-2 384012 28069776 3.02 | 3 No | Structural analysis
cfdl 70656 1828364 1.00 | 3 No | CFD Pressure matrix
cfd2 123440 3087898 1.00 | 3 No | CFD Pressure matrix
conti20 20341 1854361 3.02 2+ No | Structural analysis
dfil 89616 1474304 | 1.88 | U No | Linear programming
fm90153 90153 5629095 | 9.00 | 2 No | Sheet metal forming
garybig 42459173 | 238142243 1.13 2+ Yes | Circuit simulation
hood 220542 10768436 | 7.00 | 2 No | Automotive
inline_1 503712 36816342 3.05 2 No | Structural engineering
kyushu 990692 26268136 1.00 3 No | Structural engineering
ldoor 952203 46522475 | 6.96 | 2 No | Structural analysis
minsurfo 40806 203622 1.00 2 Yes | Minimum surface problem
msdoor 415863 20240935 6.91 2 No | Structural analysis
mstamp-2c 902289 70925391 3.00 3 No | Metal stamping
nastran-b 1508088 | 111614436 3.04 3 No | Structural analysis
nd24k 72000 | 28715634 | 2.42 | 3 No | 3d mesh (ND problem set)
oilpan 73752 3597188 7.00 2 No | Structural analysis
prblc_fem 525825 3674625 1.00 3 Yes | CFD Convection-diffusion
qa8fk 66127 1660579 | 1.00 | 3 Yes | Acoustics (stiffness)
qa8fm 66127 1660579 | 1.00 | 3 No | Acoustics (mass)
pga-rem-1 5978665 29640547 | 1.00 | 2 Yes | Power network analysis
pga-rem-2 1480825 7223497 1.00 2 Yes | Power network analysis
ship_003 121728 8086034 | 6.00 | 3 No | Structural analysis
shipsech 179860 10113096 5.91 2 No | Structural analysis
torso 201142 3161120 1.00 3 No | Human torso modeling
TABLE 1.1

SPD test matrices with their order (N), number of nonzeros (NNZ), average clique size (BlkSz),
dimension of the physical problem (Dim), diagonal dominance (DD), and application area. A 2+
in the DIM column indicates that the physical domain has a small constant third dimension, and a
U in this column indicates unknown dimension.

physical problem that the matrix is derived from. The column labeled DD indicates
whether or not the matrix is diagonally dominant. Most of the matrices are obtained
from the University of Florida sparse matrix collection [18]. The remaining ones
are from some of the applications that currently use WSMP direct solver [35]. All
experiments were performed on a single CPU of a Power 5+ system running AIX with
16 GB of memory. In all our experiments, the right hand side vector b of the sparse
system Ar = B to be solved is set such that the solution z is all ones. A maximum
of 1000 iterations were permitted in any experiment, and were terminated when the
relative residual norm dropped below 1078.

The remainder of the paper is organized as follows. In section 2, we describe our
block incomplete factorization algorithm in detail and experimentally demonstrate the
effectiveness of the blocking scheme. In section 3, we discuss breakdown of incomplete
Cholesky and a reasonably effective way of recovering from it. In section 4, we discuss
selection and tuning of parameters for incomplete Cholesky factorization. Section 5
contains experimental comparison of the our preconditioner with several other precon-
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ditioners from PETSc, Trilinos, Hypre, and ILUPACK. Section 6 contains concluding
remarks.

2. Incomplete Factorization with Blocking. It is a well known fact that
the nature of computations in a typical sparse iterative solver is such that its CPU
utilization on modern cache-based microprocessors is quite poor. This problem of poor
CPU utilization (relative to the CPU utilization of a well-implemented direct solver)
is evident in varying degrees for almost all preconditioners [31]. In the context of
incomplete factorization preconditioners, the primary culprits are indirect addressing
and lack of data reuse, both during the preconditioner generation and solution phases.
Performing sparse operations on dense blocks instead of individual elements during
incomplete factorization and the solution phases can potentially reduce both these
overheads.

2.1. Motivation for Block Incomplete Factorization. Figure 2.1(a) com-
pares the preconditioner generation speeds of a few iterative solvers with that of
complete factorization of the WSMP direct solver [35] for two of the matrices from
our test suite, namely, af_shell7 and nastran-b. The preconditioners used are levels of
fill based incomplete Cholesky factorization [61] of PETSec [5], the sparse approximate
inverse preconditioner [10, 15] of Hypre [26], the multilevel inverse-based incomplete
Cholesky preconditioner [50] from ILUPACK [51], and the threshold based incomplete
Cholesky preconditioner (described in detail in sections 2.2-2.6) from WSMP [36].
For each type of preconditioner, we generated preconditioners of varying sizes (by
changing the threshold parameter of ParaSails, level of fill K for PETSc IC(K), and
drop-tolerance for ILUPACK and WSMP ICT). We plot the size of the preconditioner
relative to that of the complete factor on the z-axis and the preconditioner generation
time relative to the direct factorization time on the y-axis.

Figure 2.1(a) clearly shows that preconditioner generation, across a diversity of
preconditioners, is a much less efficient process than complete factorization. The pre-
conditioner generation time relative to complete factorization increases rapidly with
the size of the preconditioner and it often takes much longer to generate precondition-
ers that are a fraction of the size of the complete factor. Therefore, it remains practical
to use only small preconditioners. Note that PETSc IC(K) is relatively faster to gen-
erate compared to other non-blocked preconditioners because incomplete factorization
based on levels of fill benefits from the predetermined structure of the factors. There
is often a correlation between the size and the quality of preconditioners, particularly
for preconditioners based on incomplete factorization. A smaller preconditioner is
likely to result in a slower rate of convergence and is more likely to fail compared
to larger one (although, increasing the preconditioner size beyond a point may lead
to slower overall solution because the reduction in the number of iterations may not
be enough to offset the increased cost of preconditioner generation as well as that of
each iteration). Therefore, the inefficiency of the preconditioner generation process
has implications for not only the speed, but also the robustness of iterative methods
because it renders preconditioners beyond a certain size impractically slow to use.

Figure 2.1(a) also shows that WSMP’s block incomplete Cholesky method (de-
scribed in sections 2.2-2.6) takes the least time to generate a preconditioner of a
certain given size, thus providing empirical evidence of the benefits of blocking. The
generation efficiency of the non-blocked version of WSMP’s preconditioner is com-
parable to that of other non-blocked preconditioners. Figure 2.1(b) provides further
empirical evidence of the benefits of blocking, this time in the iterative phase of
the solution process. In Figure 2.1(b), we plot the speed of the conjugate gradient
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Fi1G. 2.1. (a) Memory and time comparison between direct factorization and generation of
ILUPACK ML ICT, PETSc IC(K ), Hypre ParaSails, and WSMP ICT preconditioners. (b) Speed
of the conjugate gradient algorithm with the preconditioner configurations in (a).

(CG) [33] algorithm in Megaflops (million floating point operations per seconds) with
each preconditioner-parameter combination used in Figure 2.1(a). While computing
the Megaflops rate of preconditioned CG, we include the operations required for sparse
matrix-vector multiplication and for solving a system of the form y = M ~!b in each
iteration, where M is the preconditioner. We ignore the cost of vector operations.
While there does not seem to be a clear overall pattern in how the speed of precondi-
tioned CG changes with increasing preconditioner size, WSMP’s CG implementation
with blocking appears to achieve the highest Megaflops rate. The Megaflops rate
of CG with WSMP’s non-blocked preconditioner are comparable to those of other
non-blocked solvers.
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During the preconditioner generation phase, blocking would help in two ways.
First, a single step of indirect addressing would afford access to a whole block of
nonzeros instead of a single element, thus reducing overhead. Secondly, it would
permit the use of higher level BLAS [20, 21], thus improving the cache efficiency of
the program. Note that when we refer to the use of higher level BLAS, we do not
necessarily mean making calls to a BLAS library. Typically, the blocks in sparse
incomplete factors are small and it may not be efficient to make a library call for
BLAS operations on these blocks due to large constant overheads, such as those for
error checking, associated with typical BLAS library calls. The key here is to use the
blocks to improve spatial and temporal locality for better cache performance, which
in our implementation, we achieve through light-weight BLAS-like kernels instead of
making calls to an actual BLAS library.

During the solution phase, a block column of size m improves temporal locality
because each element of the vector, once loaded from the main memory, can be reused
m times. A block row of size m improves spatial locality because m consecutive
elements of the vector are used. These benefits are in addition to the reduction in
indirect addressing overhead for accessing the elements of the preconditioner.

In the remainder of this section, we describe how blocking is used in WSMP’s
iterative solver for sparse syminetric positive definite systems. Since we are working
with symmetric matrices only, henceforth, we will only mention column blocks because
a column block implies an equivalent row block. We shall also refer to these blocks as
supernodes. Note that in direct sparse solver literature, the term supernode typically
refers to block rows or columns of the complete factors whose structure is determined
through a symbolic factorization step [30, 47]. We refer to the block columns of the
incomplete factors as supernodes, whose structure is either based on the natural block
structure, if any, of the coefficient matrix, or is determined dynamically during the
incomplete factorization process.

2.2. Incomplete Factorization with Static Blocking. The coefficient matri-
ces of many sparse systems have a naturally occurring block structure. Such matrices
usually result from the association of multiple unknowns with each node of the grid
used to discretize coupled differential equations. The columns of the coefficient ma-
trix corresponding to the unknowns associated with the same grid point have identical
nonzero patterns. These column blocks can be detected [2] easily and are treated as
single columns for all symbolic purposes. In WSMP, we relax the criterion for a group
of columns to belong to a single block by permitting all columns with a user selected
percentage of overlap in their indices to belong to a single block. We do this by
first detecting exact blocks using Ashcraft’s algorithm [2] and then making a second
pass that searches the neighbors of each block column for nearly identical patterns
for inclusion in the block. This notion of relaxed row/column blocks (supernodes)
is used fairly routinely in direct solvers [3]. The column labeled BIkSz in Table 1.1
shows the average size of (relaxed) blocks of columns detected by WSMP with 90%
or more overlap. Note that the matrices af_shell7 and nastran-b used in Figure 2.1,
have average block sizes of 5.0 and 3.04, respectively.

The first step in our static block incomplete Cholesky algorithm is to construct
a supernodal elimination tree. An elimination tree [44, 45] is a minimum task de-
pendency graph for factoring a sparse matrix and is used frequently in sparse direct
solvers. Each vertex in the tree corresponds to a column of the sparse matrix and
a column can be factored after the columns corresponding to all its children in the
elimination tree have been factored. In a supernodal elimination tree, each vertex
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1. begin function sup.inc_choll(Sk,.,)
2. for each child C of § in the elimination tree do
3. sup-inc_chol1(C);
4. end for
5. Construct the potential row index set of S as the union of its original index
set and that of all supernodes that have a row index j, k < j < k+m;
6. Allocate [ x m space for S, where [ is the number of potential row indices;
7. Update columns k...k + m — 1 by supernodes that have a row index j,
k < j < k+m, using level 3 BLAS;
8. Perform dense panel factorization on the [ x m supernode S;
9. Apply dropping strategy to reduce ! to {finai;
10. Compact and store lfinqa X m supernode S;

11. end function sup_inc_choll.

Fia. 2.2. Outline of incomplete Cholesky factorization with static supernodes.

represents a block column or supernode instead of an individual column. We denote a
supernode by S ,,, which is uniquely identified by the index £ of its starting column
and the size (number of columns) m. The factorization process can be viewed as a
postorder depth-first traversal of the elimination tree, as shown in Figure 2.2.

Our block incomplete factorization is a left-looking algorithm [30]. While visiting
a supernode S ,,, the corresponding block of columns k...k +m — 1 is assembled and
updated just before it is factored. Recall that these columns have a nearly identical
structure in the coefficient matrix. If l;,,;1:4; is the number of row indices in this block
column in the coefficient matrix, then it is stored in an ;4,41 X m array, with a single
integer array of length l;,,+4; storing the row indices for all columns in the block. If
an index is missing in any column, then an explicit zero is stored in the corresponding
location of the block. We maintain this type of a data-structure for Sy, ,,, at all stages
of the incomplete factorization process. During the process of getting updated, the
supernode Sk, incurs fill-in. All incomplete factor block columns (which belong to
the subtree rooted at S) that have a nonzero in any row j, k < j < k+m, contribute to
the block column k...k+m — 1. Let us assume that the number of row indices in Sy,
after the update is [. Note that l;niziar < [. Once updated, a dense panel factorization
is performed on this [ x m block. Finally, the dropping strategy (described in detail
in section 2.3) is applied to the rows of this supernode.

2.3. Dropping Strategy. In this section, we describe the dropping strategy
used in WSMP’s incomplete block Cholesky factorization to reduce the length of an
I x m supernode after it is factored. WSMP implements a dual dropping strategy of
the form introduced by Saad [55]. A user defined threshold (7,7) suggests that (1) an
entry L(i,k) in the incomplete lower triangular factor L whose magnitude is smaller
than 7 x L(k, k) can be dropped, and (2) we strive to restrict the final length I,
of column k of L to v X ljpitiar- Note that, for dropping an element from a factored
column, we consider its magnitude relative to that of the corresponding diagonal entry.
Other dropping strategies have been used for incomplete factorization. These include
dropping L(i, k) based on its magnitude relative to the 2-norm of column k of L [55, 56]
and dropping L(i, k) if L(i, k) x L(i, k) is smaller than 7 x L(k, k) x L(i,7) [52]. We
found dropping L(i, k) based on its magnitude relative to that of L(k.,k) to be more
effective than than the other two on an average for the problems in our test suite.
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Bollhéfer [49] proposed a dropping strategy in which L(i, k) is dropped based on
its magnitude relative to an approximate norm of row k of L~!. We implemented
Bollhofer’s dropping criterion and found that while it was more robust than our
simpler criterion at avoiding the breakdown of the incomplete Cholesky process, it
was slower in general. When combined with our technique discussed in section 3 to
address Cholesky breakdown, our dropping method outperformed Bollhofer’s method
on our suite of test problems. This is also evident from a comparison in section 5 of the
robustness and performance of WSMP ICT preconditioner with that of ILUPACK,
which implements Bollhofer’s technique.

In our blocked incomplete Cholesky factorization, we apply the dropping criterion
described above to entire rows of a supernode S, ;.. A row 4 that satisfies the dropping
criterion is dropped in its entiretys; i.e., all elements L(i, k)...L(i, k+m—1) are dropped.
Other rows are kept as part of the incomplete factor in their entirety. To implement
row dropping, we compute a drop score dscrs (i) for each row i > k+m of the factored
supernode S, ,,, as follows:

L(i, )
L(j.7)

(2.1) dsers (i) = % 3

j=k,k+m—1

,i > k+m.

Row i is dropped if dscrs(i) < 7, where ¢ > k + m. No dropping takes place
within the m x m diagonal block of S, .

After dropping the rows based on their drop scores, the number of remaining rows
lremain in Sk,m may still be greater than the target of v X lipitiar. If this is the case,
then we compute a secondary drop-tolerance 75 for S, as follows:

dmam X dmin
Xlinits '
dmin + 1Xlinitial (dmaz - dmzn)

lremain

(2.2) TS =

Here d,,q. is the maximum drop score less than or equal to 1.0 in dscrs and dy,;p
is the minimum drop score greater than or equal to 7. We now perform a second round
of dropping and drop row i if dscrs(i) < 7s. The rationale behind the choice of dyaz
is that we never consider any rows with drop scores greater than 1.0 for dropping.
Equation 2.2 chooses Ts such that 7' partitions the range between d;.}, and d,}
in the ratio v X linitial to lremain -7 X linitial-

There are multiple advantages to reinterpreting and applying the fill-factor 7 in
terms of a secondary drop-tolerance 7s. First, it is much faster to apply the drop-
tolerance 7s in a single pass rather than exactly determining v X l;nitiq largest drop
scores. Secondly, using a secondary drop-tolerance 75 offers some adaptability of the
dropping criteria to the actual distribution of values in the supernodes; i.e., supernodes
with a large number of high drop scores will retain more rows than supernodes with
a large number of small drop scores.

As we shall see in section 2.4, our method of applying the fill-factor ~ results in
factors of sizes that are quite close to the desired size for the non-blocked version of
our algorithm when ~ is not too small. For the blocked version, it results in factors
whose size is greater than  times the size of the coefficient matrix. In section 2.4, we
also discuss the impact of dropping or retaining entire rows of the supernodes on the
quality of the preconditioner.
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af-shell7 with blocking
Thresholds Fnnz | Ftime | #Iters | Stime | Itime | FStime

(mill.) | (sec.) (sec.) | (sec.) (sec.)
1. | (3.5e-3,3.5) 43.6 7.4 106 44.4 0.42 51.8
2. | (1.0e-3,4.5) 55.1 12.9 62 28.8 0.46 41.7
3. | (5.0e-455) | 612 | 169 46 | 22.8 | 050 39.7
4. | Direct 94.7 14.7 1 1.6 1.60 16.3
af-shell7 without blocking
Thresholds Fnnz | Ftime | #Iters | Stime | Itime | FStime
(mill.) | (sec.) (sec.) | (sec.) (sec.)
5. ] (3.0e-2,0.8) 12.5 5.9 292 40.8 0.14 46.7
6. | (1.5e-2,1.5) 16.7 9.5 198 36.9 0.19 46.4
7. | (7.5e-3,2.5) 23.3 17.2 145 46.3 0.32 63.5
8. | (3.5e-3,3.5) 30.3 27.2 103 49.2 0.46 76.4
9. | (1.0e-3,4.5) 41.9 49.4 64 41.0 0.64 90.4
10. | (5.0e-4,5.5) 50.7 69.5 55 42.7 0.78 112.2
nastran-b with blocking
Thresholds Fnnz | Ftime | #Iters | Stime | Itime | FStime
(mill.) | (sec.) (sec.) | (sec.) (sec.)
11. | (1.5e-2,1.5) 119.5 55.4 390 | 572.7 1.47 628.1
12. | (7.5e-3,2.5) 164.5 106.5 287 | 477.6 1.66 584.1
13. | (3.5e-3,3.5) 217.4 195.6 226 | 419.3 1.86 614.9
14. | (1.0e-3,4.5) 309.2 434.3 193 | 412.3 2.14 846.6
15. | (5.0e-4,5.5) 369.2 | 650.8 124 | 287.8 2.32 938.6

16. | Direct 1021.3 | 653.1 1 8.7 | 873 661.8
nastran-b without blocking
Thresholds Fnnz | Ftime | #Iters | Stime | Itime | FStime
(mill.) | (sec.) (sec.) | (sec.) (sec.)

17. | (3.0e-2,08) | 712 | 1117 470 | 544.1 | 1.16 | 6558

18. | (1.5e-2,1.5) | 97.0 | 169.2 307 | 4785 | 1.56 | 647.7

19. | (7.5e-3,2.5) | 129.7 | 238.6 235 | 491.9 | 2.09 | 730.5

20. | (3.5e-3,3.5) | 169.7 | 386.2 185 | 464.6 | 251 | 850.8

21. | (1.0e-3,4.5) | 248.2 | 776.5 172 | 533.9 | 3.10 | 1310.4
(

22. 5.0e-4,5.5) 305.3 | 1147.5 123 | 428.5 3.48 1576.0
TABLE 2.1
Factor size (Fnnz), factorization time (Ftime), number of CG iterations (#lIters), solution
time (Stime), per iteration time (Itime), and total factor and solve time (FStime) for af_shell7 and
nastran-b with and without blocking. A threshold (T,v) indicates that an entry L(i, k) in the factor
smaller than T x |L(k, k)| is dropped and we strive to restrict the length of column k of the incomplete
factor L to v times the length of the lower triangular part of column k of the coefficient matriz.

2.4. Performance Evaluation of Blocked Incomplete Cholesky. In Fig-
ure 2.1, we compared the performance of both the preconditioner generation and the
iterative solution phases of WSMP’s static block incomplete Cholesky preconditioner
with that of some non-blocked preconditioners for two of the matrices from our test
suite. We now take a closer look at the impact of blocking by means of a detailed
comparison with a non-blocked implementation of incomplete Cholesky factorization.
Table 2.1 shows factor size (Fnnz), factorization time (Ftime), number of CG iter-
ations (#Iters), solution time (Stime), per iteration time ([time), and total factor
and solve time (FStime) of both the blocked and the non-blocked versions for our
incomplete Cholesky preconditioner for the same two matrices. A comparison of the
performance of the solver with and without blocking clearly shows the improvement
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that results from blocking. For the same dropping criteria, the blocked version of
incomplete Cholesky factorization is roughly 2 to 4 times faster than its non-blocked
counterpart. The time for each iteration is also generally smaller for the blocked ver-
sion of the solver, although the difference is less stark. The best total time for the
non-blocked version is achieved for much sparser factors than for the blocked version
and remains higher than the best total time for the blocked version. This has im-
plications for the robustness of the iterative solver. The two matrices considered in
Table 2.1 are fairly well behaved and do not encounter a breakdown of the Cholesky
process, even for very sparse factors. Incomplete Cholesky factorization is likely to
breakdown for many matrices for thresholds that lead to very sparse factors, thus
forcing the use of thresholds in a range in which the blocked algorithm is much more
efficient than the non-blocked one.

Apart from the performance impact, there are other side effects of blocking that
can be observed from the data in Table 2.1. An examination of the factor sizes (Fnnz)
reveals that for the same thresholds, the blocked version of incomplete Cholesky may
require substantially more memory than the non-blocked version. The sizes of the
blocked factors are roughly 20-50% higher for af_shell7 and roughly 20-30% higher for
nastran-b compared to their non-blocked counterparts. For 7 > 2.5 in Table 2.1, the
Fnnz entries for the non-blocked algorithm are remarkably close to vx the number of
nonzeros in the lower triangular part of the matrices, which is 9.05 million for af shell7
and 56.56 million for nastran-b. This shows that if 7y is not too small, then Equation 2.2
translates a fill factor threshold into a drop tolerance threshold fairly accurately. Of
course, this does not hold for the blocked algorithm, which retains a much larger
number of nonzeros in the incomplete factor. The reason for the memory overhead
is that the block columns may retain a substantial number of zero or small entries,
which are discarded in the non-blocked version of incomplete factorization with the
same dropping thresholds. Small or zero entries, for example, can be retained in a
row of a supernode that has a drop score greater than the drop-tolerance due to a
single large entry.

Larger factor size of the blocked algorithm may explain why the improvement
in the per iteration time due to blocking is not as dramatic as the improvement in
the incomplete factorization time. During blocked factorization, the use of level 3
BLAS offers a significant performance advantage over elementwise operations of a
non-blocked factorization. The speed of level 3 BLAS completely overshadows the
overhead due to computations performed on the extra zero or small entries stored in
the supernodes. The solution phase with a blocked preconditioner, however, involves
level 2 type computations, which offer less significant performance advantage over
elementwise operations. In some cases, this performance advantage is not enough to
overcome the overhead of the extra computation due to larger factors.

For af_shell7, the number of CG iterations for a given threshold is almost the same
for the blocked and the non-blocked versions. However, for nastran-b, the blocked
version of the solver seems to require more iterations than its non-blocked counterpart,
particularly for thresholds that result in sparser factors. The reason for this is that
the blocked algorithm can potentially drop an element from a supernode of width m
even if that element is up to m times larger in magnitude than the dropping threshold.
This would happen, for example, when only one L(4,j) in Equation 2.1 is nonzero
and the rest are all zeros.

To summarize our observations, the speedup resulting from the use of blocked
incomplete Cholesky over its non-blocked counterpart comes at the expense of ad-
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ditional memory requirement and some deterioration in the quality of the precondi-
tioner. The reason is that drop-tolerances are applied inexactly in the blocked version
of the algorithm. Within a supernode, it may retain some entries smaller than the
drop-tolerance in order to maintain the block structure of the supernode and it may
drop entries whose magnitude exceeds the drop-tolerance by a factor up to the width
of the supernode. As a result, the block dropping approach may be particularly bad
for certain problems that are inherently poorly scaled, such as semiconductor device
simulation [27] or incompressible Navier-Stokes problems [17] with high Reynolds
numbers. However, in such cases, a drop-tolerance based incomplete factorization
itself is perhaps a poor choice of preconditioner, with or without blocking, and an
incomplete factorization based on levels of fill would not only be a more suitable pre-
conditioner, but would also not incur a quality penalty for using blocks. WSMP’s
iterative solver includes a user defined limit that can be used to restrict the maximum
size of a supernode during incomplete factorization, should the memory or iteration
count with the natural supernodes become excessive. The total factor and solve time
numbers in the last column of Table 2.1 as well as the performance results in section 5,
however, suggest that the performance advantage of blocking, in general, outweighs
its drawbacks. This is particularly true for larger factor sizes, which may be required
to solve harder problems and may be too costly to be practical for non-blocked solvers.

2.5. An Adaptive Blocking Approach. As we have seen in section 2.4, the
use of block columns can give a substantial boost to the performance of an iterative
solver based on incomplete factorization preconditioning. However all matrices do
not have an inherent block structure that can be exploited. In our suite of test
problems shown in Table 1.1, thirteen of the thirty matrices have an average block
size of less than 2.0. Therefore, in WSMP, we have implemented two block incomplete
factorization procedures: one that uses the statically determined block structure, and
the other for those matrices that do not have a block structure in their original form.
The software first attempts to determine a relaxed block structure, as discussed in
section 2.2. If a suitable block structure with an average block size of at least 2.0 is
found, then the static block algorithm is used. The results in Table 2.1 are from the
static block algorithm because both af_shell7 and nastran-b are suitable candidates
for this algorithm. If the average block size in the coefficient matrix is less than 2.0,
then a different algorithm is used, which dynamically determines a block structure
as the incomplete factorization proceeds. We shall describe this algorithm in detail
in section 2.6. The choice of the algorithms is transparent to the user and is made
automatically by the software.

2.6. Incomplete Factorization with Dynamic Blocking. In this section, we
describe a block incomplete Cholesky factorization algorithm for matrices that do not
have a suitable initial block structure. Just like the algorithm described in section 2.2,
this algorithm too is guided by an elimination tree. However, the elimination tree
in this case is not a supernodal elimination tree. Instead, each vertex of the tree
represents a single column of the coefficient matrix.

We first recall some basic properties of elimination trees [44, 45] in the context
of complete Cholesky factorization. In our discussion of elimination trees, we assume
that a postorder numbering has been applied to the tree nodes, and consequently to
the rows and columns of the matrix. This ordering numbers the nodes in the order in
which they are processed and has no impact on the fill-in during factorization. With
this numbering, if &k is the only child of its parent, then the parent of k£ is k + 1. In
an elimination tree, if k is a child of [, then the set of row indices in the subdiagonal
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Fi1c. 2.3. (a) Subtree of a hypothetical elimination tree. (b) Hypothetical structure of columns
k ... k44 just before these columns are factored. (c) Reordering of columns k ... k+4 to form two
block columns of size 3 and 2, respectively.

portion of column k of the lower triangular factor L is a subset of the set of row indices
in column [. Moreover, if k is the only child of I, then the set of row indices in column
[ of L consists of (1) the set of row indices in the subdiagonal portion of column % in
L, and (2) the set of rows that have a nonzero in the lower triangular part of column
[ of the original matrix, but not in column k of L. As a result, in complete Cholesky
factorization, sets of columns of the factor L of the form {k,k+1,...,k+m—1} tend
to have identical (when set (2) above is empty) or nearly identical structures if k + ¢
is the only childof k+i+1,0< i< m—1.

With this background, we now describe our block incomplete factorization al-
gorithm for matrices without a natural block structure. Once again, just like the
algorithm in section 2.2, we proceed with a left-looking approach following the elim-
ination tree. In that algorithm, just before factorization, we assemble and update
columns k...k +m — 1 if they belong to the same statically determined supernode. In
the dynamic blocking algorithm, illustrated in Figure 2.3, we assemble and update
columns k...k+m —1 if nodes k+ 1...k +m — 1 have only one child in the elimination
tree. We maintain a single row index set of length [ for this block column, padding
the block with zeros where necessary. We then scan the first m row indices of column
k for nonzeros and perform a local symmetric permutation such that these rows are
in adjacent locations starting at k. For example, in Figure 2.3(b), rows k, k + 2, and
k + 4 have a nonzero in column k. So we permute the indices of the matrices to make
k, k + 2, and k + 4 adjacent. In general, if r; nonzeros are found within rows k to
k+m — 1 of column k, then after permutation, we have an [ x r; column block that
we treat as the first supernode of the section k...k +m — 1 of the matrix. We perform
dense panel Cholesky factorization on this block, drop rows based on the dropping
strategy describe in section 2.3, update the remaining [ X (m —r1) portion of the block
that we had assembled, and finally, store the lt;,q; X 71 block corresponding to the
newly discovered supernode S ,. The next step is to scan column k 4+ r; for nonzero
row entries between k 4+ r1 and k 4+ m — 1 in order to discover the second supernode
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of size r3. The process is repeated until all m columns are factored.

A few practical implementation details of the above algorithm are worth men-
tioning. Since m can be very large, especially close to the root of the elimination tree,
we place an upper limit of 32 on m in order to avoid making [ too large and using
an excessive number of zeros for padding. Thus, we break larger straight sections of
the elimination tree into blocks with a maximum of 32 columns. In section 2.4 and
Table 2.1 we observed that the effectiveness of blocking for reducing the total compu-
tation time increases with the density of the incomplete factors and the degradation in
the quality of the preconditioner increases as the preconditioner gets sparser. There-
fore, in addition to the search zone m, we must also restrict the size r; (0 < i < m)
of the supernodes. In our software, we use an upper bound of max(1,|v|) as the
default upper bound on r;, where (7,7) is the user defined defined threshold for drop-
ping. This choice of upper bound on r; lets the preconditioner adapt the blocking
to its density, thus maximizing its potential performance benefit and minimizing the
quality degradation.

We omit showing separate results for this algorithm, which, for matrices without
a natural block structure, look similar to those in Table 1.1 without a significant
degradation in the quality of the sparser preconditioners due to our choice of the
upper bound on r;.

2.7. Related Work. Use of blocking in incomplete factorization has been con-
sidered by many researchers. Recognizing the potential role of blocking in improving
the performance of iterative solvers, Chow and Heroux [12] propose a general object-
oriented framework to support preconditioning with sparse or dense blocks. Axels-
son [4], Beauwens and Bouzid [6], Chow and Saad [13], and Saad and Zhang [58] etc.
have considered the use of sparse blocks to improve locality in preconditioner gener-
ation and application. Naturally occurring dense blocks have been used by Kaporin
et al. [42] to obtain a block SSOR preconditioner that uses the inverses of the en-
tire dense diagonal blocks instead of just the diagonal elements as in the conventional
SSOR method [62]. In BlockSolve95 [41], the naturally occurring dense blocks are used
in the context of incomplete factorization based on levels of fill. Fan et al. [27] have
used such blocks in a two-level preconditioning scheme for semiconductor device simu-
lation and Benzi et al. [8] have used them for constructing a block sparse approximate
inverse preconditioner for structural mechanics applications. Hénon et al. [37] propose
using blocks determined by a symbolic factorization step to improve the performance
of incomplete factorization based on levels of fill. In all these cases, the precondi-
tioner has a static predefined structure. Unlike these methods, we apply blocking to
a matrix structure that evolves during factorization with dropping based on values
instead of position. Ng et al. [53] propose performing a symbolic factorization step, as
used in direct solvers [47], to identify block columns for a sparse incomplete Cholesky
factorization with threshold based dropping. In contrast, for matrices without natural
dense blocks, we identify and even create block columns dynamically in regions of the
matrix where there is a high probability of finding such blocks; i.e., those regions of
the matrix where complete factorization would have created dense blocks.

3. Handling Breakdown of the Cholesky Process. While the Cholesky fac-
torization LLT of a symmetric positive definite matrix is guaranteed to exist, there
is no such guarantee of the existence of an incomplete factorization of this form. The
reason is that the errors introduced due to dropping entries from the factor may
result in zero or negative values at the diagonal. Many remedies proposed in the liter-
ature [7] to handle the breakdown of the Cholesky process can either add cost [9, 59)
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Fic. 3.1. If the Cholesky process breaks down at the nodes marked ‘X’, then a direct LDLT
factorization is applied to an incomplete Schur complement consisting of the labeled nodes.

or errors [1], or both for matrices that may not have suffered a breakdown without
applying the remedy. Some methods [48] involve costly restarting of the incomplete
factorization, possibly multiple times. Some others apply local perturbations in re-
sponse to an unsuitable pivot [43], which is an inexpensive strategy, but is generally
not very effective [7].

We handle breakdowns in the Cholesky process by simply dropping the onerous
requirement that the preconditioner be positive definite. Note that the conjugate
gradient algorithm requires that both the coefficient matrix and the preconditioner
be positive definite. As described in section 2, our incomplete factorization algorithm
is guided by the elimination tree. We stop the Cholesky process at any node in the
tree where a small or negative pivot is encountered. This is illustrated in Figure 3.1.
The incomplete Cholesky process can continue on any node that does not encounter
breakdown or is not on the path between the root and a node with breakdown. For
example, if the nodes with an ‘X’ in Figure 3.1 encounter an unsuitable pivot, then
only the unlabeled nodes participate in incomplete Cholesky factorization.

The detailed incomplete factorization algorithm that can handle Cholesky break-
downs is given in Figure 3.2. The first pass of the algorithm, namely sup_inc_chol2, is
a modification of the algorithm of Figure 2.2 to account for failures in the incomplete
Cholesky process with predetermined supernodes. A version for dynamically deter-
mined supernodes discussed in section 2.6 can be formulated along similar lines. In
the algorithm in Figure 3.2, a node is considered to have failed if it encounters an
unsuitable pivot or if any of its children in the elimination tree have failed. If incom-
plete Cholesky cannot complete all the way to the root, then the second pass of the
algorithm, namely construct_schur, is invoked. This function visits only those nodes
that failed in sup_inc_chol2 (for example, the nodes labeled 0 to 8 in Figure 3.1) and
constructs an incomplete Schur complement matrix consisting of all the columns of
the matrix that belong to the failed nodes. We call it an incomplete Schur complement
because after generating a column of this matrix, we drop entries whose magnitude
relative to that of the corresponding diagonal entry is smaller than 71%, where (7,7)
is the dual threshold for dropping entries of L. The reason for using a smaller drop
tolerance, 7%, is that in this case, we are dropping entries before factorization and
there is a higher chance of dropping meaningful entries. We have experimentally con-
firmed that using 7% instead of 7 for dropping at this stage typically results in a
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begin function sup-_inc_breakdownfree()
/* Let R be the root supernode. */
fail(R) = sup_inc_chol2(R);
if fai(R) # 0 then
shr_size = construct_schur(R,0);
Perform sparse direct LDLT factorization of shr_size x shr_size Schur
complement matrix;
7 end if
8. end function sup-inc_breakdownfree.
9

O G =

10. begin function sup_inc_chol2(Sk,m)

11. fail(S) = 0;

12. for each child C of S in the elimination tree do
12. fail(S) += sup-inc_chol2(C);

13. end for

14. if fail(S) == 0 then

15. Construct the potential row index set of S as the union of its original index
set and that of all supernodes that have a row index j, k < j < k+ m;

16. Allocate | x m space for S, where [ is the number of potential row indices;

17. Update columns k...k +m — 1 by supernodes that have a row index j,
k <j < k4 m, using level 3 BLAS;

18. Perform dense panel factorization on the | X m supernode S;

19. if factorization of S completes without breakdown then

20. Apply dropping strategy to reduce ! to lfinai;

21. Compact and store [fina; X m supernode S;

22. else

23. fail(S) = 1;

24. end if

25. end if

26. return(fail(S));
27. end function sup_inc_chol2.

28.

29. begin function construct_schur(Sk,m,insize)

30. outsize = insize;

31. if fail(S) # 0 then

32. for each child C of S in the elimination tree do

33. outsize += construct_schur(C,outsize);

34. end for

35. Construct the potential row index set of S as the union of its original index
set and that of all supernodes that have a row index j, k < j < k+ m;

36. Allocate | x m space for S, where [ is the number of potential row indices;

37. Update columns k...k + m — 1 by supernodes that have a row index j,
k <j < k4 m, using level 3 BLAS;

38. for (j=k;j<k+m;j=j+1)do

39. Drop small elements from column j and add it as the outsize-th column of

the Schur complement matrix;

40. outsize++;

41. end for

42. end if

43. return(outsize);

44. end function construct_schur.

Fic. 3.2. Outline of a supernodal incomplete factorization algorithm that can handle breakdown
of the Cholesky process for SPD matrices.
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better quality preconditioner. Finally, we use direct LDLT factorization on the Schur
complement, matrix.

During the solution phase, we chose the Krylov subspace method depending on
whether or not any failures were encountered in incomplete Cholesky factorization.
CG is used if the preconditioner is SPD, and GMRES or symmetric QMR is applied
if the preconditioner is indefinite. The choice of the appropriate solver is made in the
software without intervention from the user.

Note that this method is appropriate for inexpensively recovering from a mod-
erate number of failures. An excessive number of failures may result in the loss of
convergence even with a general solver like GMRES or QMR because of excessive
error in the preconditioner, of which Cholesky breakdown is merely a symptom. Nev-
ertheless, experiments on a test suite of a reasonable size in section 5 suggest that
the algorithm in Figure 3.2 is generally robust. Nine of the 30 matrices in our test
suite encountered a breakdown of the Cholesky process, and of these, only bst-2 and
inline_1 failed to converge in a reasonable number of iterations. An additional ben-
efit of this technique is that it can handle mildly indefinite symmetric matrices; i.e.,
matrices with a few negative eigenvalues relative to their dimension. The algorithm
is particularly well suited for those matrices in which the negative eigenvalues corre-
spond to existing zero or negative diagonal entries in the coefficient matrix. In such
matrices, these diagonals can be permuted in advance to locations near the root of
the elimination tree in order to limit the size of the Schur complement matrix subject
to direct LDL” factorization.

4. Selection and Tuning of Parameters. The performance of incomplete
factorization preconditioners with threshold based dropping is extremely sensitive to
the choice of the thresholds [31]. Therefore, a fair amount of experimentation may
be required to find the suitable ordering, drop tolerance, and fill factor for a given
application. Even if generally good parameters are found for a given application,
it is impractical to manually tune the parameters to individual problems. To make
matters worse, many applications require the solution of a series of systems with the
coefficient matrices changing gradually. The set of parameters that are best for the
first system may not be optimum for the later ones because successive matrices in the
sequence may become progressively more or less ill-conditioned.

We have built features in our incomplete Cholesky factorization based precondi-
tioner to make initial parameter selection, to minimize the impact of initial parameter
selection, and to automatically monitor and tune the thresholds for dropping when
multiple systems with changing coefficient matrices are solved. We start by using
reverse Cuthill-McKee (RCM) [16, 23] ordering and (7.5e-3,2.5) as the dual threshold
by default if the matrix is diagonally dominant; otherwise, we use nested dissec-
tion [30, 34] ordering and (1.0e-3,4.75) as the threshold. The reason is that sparser
incomplete factors may be sufficient for diagonally dominant matrices, while others
may require denser factors for robust preconditioning. The default thresholds have
been experimentally determined to be generally good choices for the two classes of
matrices. The choice of ordering is based on our and others’ [24] observation that
RCM generally performs better with low fill-in and nested dissection performs better
with relatively higher fill-in.

For applications that need to solve a sequence of systems with gradually changing
coefficients, the solver incorporates a relatively simple search strategy to change the
thresholds in each iteration in an attempt to minimize the sum of preconditioner
generation and iterative solution time. After solving the first system, the solver
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Fia. 4.1. Comparison of the sum of preconditioner generation and iterative solution time with
and without automatic tuning for 50 time steps of the solution of a diffusion equation.

chooses an initial search direction (i.e., whether to increase or reduce fill) and a search
step size (i.e., percentage change in the thresholds) based on the relative time spent in
preconditioner generation and iterative solution. It determines the threshold for the
next system based on the previous threshold, the search direction, and the step size.
The search direction is changed if the new solution time is more than the previous one,
else it remains the same. The step size is gradually increased in each step that the
search direction stays the same (to reach the optimum point quickly) and is reduced
each time the search direction reverses (to choose thresholds with values between the
previous two choices).

Figure 4.1 demonstrates the benefits of continuous adjustment of dropping thresh-
olds with an application involving a finite volume discretization of the diffusion equa-
tion as the test case. The figure shows the total solution time for linear systems in
each of the 50 time steps of the application, both with and without automatic tuning
tuned on. The ‘+’s plot the time for solving each system with the default thresholds
and the diamonds plot the time, when the thresholds are adjusted according to the
search method described above. The plot clearly shows the widening gap between the
two choices of thresholds as the time steps proceed.

Note that there are two potential drawbacks to our threshold tuning method.
First, the search could get trapped into a local minimum. This problem could be
avoided by using more sophisticated search techniques, while still taking advantage of
the key idea that solving multiple systems with gradually changing coefficient matri-
ces presents an opportunity to automatically tune the parameters of the linear solver.
The second problem is that if the search parameters are a function of the precondi-
tioner generation and iterative solution times, then they could change from one run
to another depending on slight variations in the measured time. Therefore, running
the same application multiple times could yield different results. This may not be a
concern in certain situations. For situations in which bitwise reproducible results are
desired, WSMP permits the user to switch to tuning based on the approximate opera-
tion counts of preconditioner generation and iterative solution, instead of their times.
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Tuning aimed at minimizing operation counts rather than times is likely to be less
accurate though, because the relative Flops rate of preconditioner generation and the
solution phases may change from one machine to another and from one application
to another.

5. Experimental Comparison with Other Preconditioners. In this sec-
tion, we compare the performance of the incomplete Cholesky factorization based
preconditioner in WSMP (development version 7.12) with several preconditioners
from some well-known iterative solver packages, such as PETSc [5] (release version
2.3.3-p0), Trilinos [39] (release version 8.0.3), Hypre [26] (release version 2.0.0), and
ILUPACK [51] (development version 2.2). The overall set of preconditioners that we
use to compare with WSMP’s blocked ICT (threshold based incomplete Cholesky)
includes IC(K) (levels of fill based incomplete Cholesky [61]) and ILUTP (threshold
based ILU with pivoting [14, 56]) preconditioners from PETSc; IC(K) [40], ILUT
(dual threshold based ILU [40]), ParaSails (sparse approximate inverse [11, 15]), and
BoomerAMG (algebraic multigrid [38, 54]) preconditioners from Hypre; IC(K), ICT,
ILUT, and ML (multilevel or algebraic multigrid [29, 60]) preconditioners from Trili-
nos; and ML ICT (multilevel ICT [50]) from ILUPACK. We used CG for symmetric
preconditioners and tried GMRES with restart values of 30, 65, and 100 for the un-
symmetric preconditioners. Most preconditioners have multiple tunable parameters.
In addition, the solver packages often provide multiple preprocessing options, such as
different orderings. For each preconditioner, we tried a fairly comprehensive set of
preprocessing and parameter combinations [31]. A total of 806 solver, preconditioner,
and parameter combinations were tried for each matrix.

We use performance profiles [19] for comparing different solvers. Performance
profiles are a highly effective means of simultaneously comparing performance and
robustness. We compare the memory requirement as well as the total preconditioner
generation and solution time and present two sets of experimental results for each.
For each preconditioner-package combination, through our comprehensive (but not
exhaustive) trials, we picked the parameter combination that had the best overall
performance on the entire test suite. Our first set of results compare the various
preconditioners with their overall best configuration. For our second set of results, we
pick a preconditioner’s best parameter configuration from our trials individually for
each test matrix.

The measure of quality that we use for chosing the overall best and problemwise
best parameter configurations is the product of the memory used by the solver for
this configuration and the total time required for preconditioner generation and the
solution of the system. Henceforth, we shall refer to this measure as the memory-time
product. The reason for choosing the memory-time product as a measure of quality
for selecting the best set of parameters is that neither time, nor memory would be
adequate for this purpose, when considered individually. For most preconditioners,
there is a range of parameter choices in which there is a trade-off between solution
time and memory consumption, although it is possible to make parameter choices that
increase or decrease both time and memory simultaneously. The optimum operating
point of a preconditioner for a given problem lies in a trade-off zone. Therefore,
picking the parameters for these preconditioners based solely on either their time or
memory requirements would simply yield winners that are extreme cases and are of
little practical interest. For example, considering memory consumption only would
favor a very sparse low-quality preconditioner that may require too many iterations
to solve. On the other hand, the direct solver results in the overall fastest solution
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Fic. 5.1. Time profiles of various preconditioners with configurations resulting in the smallest
overall memory-time products.

time for many problems in our test suite, albeit at the cost of a significantly high
memory consumption. A certain parameter configuration could simply emulate the
direct solver and emerge as the fastest configuration.

Figure 5.1 shows the time profiles of the overall best configurations of various
preconditioners, along with the time profile of WSMP’s direct solver. The z-axis in
this figure plots the performance ratio and the y-axis plots the fraction of problems
solved. In this case, the performance ratio of a preconditioner for a given problem is
simply the ratio of total time (sum of preconditioner generation and iterative solution
time) of that preconditioner to the least total time taken by any preconditioner to
solve that problem. For example, the interpretation of the point (5.0,0.6) on the
curve for WSMP’s ICT preconditioner means that this preconditioner solved 60% of
the problems in the test suite in time that was within a factor of 5 of the best time
for these problems. Similarly, the point (1.0,0.7) on the curve for the direct solver
indicates that it was faster than any of the other solvers for 70% of the problems.
This is followed by PETSc IC(0), which is the fastest preconditioner for about 19% of
the problems, presumably those with a good degree of diagonal dominance. However,
understandably, PETSc IC(0) does not do as well for more difficult problems and its
time profile curve is soon surpassed by that of WSMP ICT. Note that Figure 5.1
displays the time profile curve for PETSc IC(0) because the number of levels of fill K
is an input parameter of the IC(K') preconditioner, and for PETSc IC(K), the fastest
overall solution time was obtained for K = 0.

Figure 5.2 shows the memory profiles of the overall best configurations of various
preconditioners, along with the memory profile of the direct solver. Hypre Boomer-
AMG and PETSc IC(0) appear to be the most memory efficient; however, Hypre
Boomer AMG is more robust and is able to solve 80% of the problems as compared to
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F1G. 5.2. Memory profiles of various preconditioners with configurations resulting in the small-
est overall memory-time products.
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Fic. 5.3. Time profiles of various preconditioners with parameter configurations for the least
memory-time product for each problem.
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Fic. 5.4. Memory profiles of various preconditioners with parameter configurations for the least
memory-time product for each problem.

60% for PETSc IC(0). The next best group of curves includes those for Trilinos ML,
Hypre ParaSails, WSMP ICT, and ILUPACK. Note that ILUT preconditioner imple-
mentations appear to have the worst memory profiles. This is primarily because they
need to store both triangular factors instead of just one, as in the case of symmetric
preconditioners. There are at least six preconditioners that handily outperform the
direct solver in terms of memory consumption.

Figure 5.3 shows the time profiles of all preconditioners when the parameter
configuration for each preconditioner was chosen individually to minimize its memory-
time product for each problem. While the best parameter configuration for the other
solvers was chosen manually through experimentation, WSMP ICT was made to run
through four steps of self tuning (section 4) and the time of the step with the least
memory-time product was picked. A comparison of Figures 5.1 and 5.3 shows that
the time of almost all preconditioners, including WSMP ICT, improves significantly
when the parameters are tuned for individual problems. The degree of improvement,
though, varies from one preconditioner to the other. ILUPACK appears to be quite
sensitive to its input parameters and shows the most improvement with problemwise
parameter selection.

Figure 5.4 shows the memory profiles of all preconditioners when, once again,
the parameter configuration for each problem was chosen individually to minimize
its memory-time product for each problem. Just like the time profiles, the memory
profiles of the preconditioners improve significantly when compared to those for the
overall best parameter configurations in Figure 5.2.

Among the iterative solvers compared in this section, WSMP ICT clearly has the
smallest performance ratios for the most number of matrices in the time profiles with
both the overall best and problemwise best parameters. In the memory profiles, it
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F1G. 5.5. Plot of the time profile area versus the memory profile area for various preconditioners.
Each circle represents a preconditioner whose name consists of the first two letters of the name
of the package followed by the type of preconditioner. The size of a circle is proportional to the
number of problems solved. The dark circles correspond to profile areas for the overall best parameter
configuration and the light ones correspond to profile areas for problem-specific best parameters.

is not, the best, but is among the top performers. This is expected because, as we
discussed in detail in section 2, our blocked version of incomplete Cholesky factor-
ization does require more space than its non-blocked counterpart. In order to assess
the tradeoff between memory and time for WSMP’s iterative solver, we computed the
memory-time product in our experimental results. We found that with problemwise
best parameters, among the iterative solvers, WSMP’s memory-time product was the
smallest for 15 out of the 30 test cases. This was followed by six for PETSc IC(0),
five for Hypre ParaSails, two for Hypre BoomerAMG, and two for ILUPACK.

A comparison of the memory and time performance of the iterative solvers rel-
ative to WSMP’s direct solver confirms the conventional wisdom that direct solvers
are generally fast and robust, but require more memory. Conventional wisdom also
holds that the preconditioned iterative solvers should outperform the direct solver on
larger problems. In addition, the performance crossover point between iterative and
direct solvers would be observed for relatively larger matrices that result from two
dimensional physical problems as compared to three dimensional ones. Our results
indicate that, although the dimension of 40% of the matrices in our test suite is more
than half a million and half the problems are three-dimensional (Table 1.1), the aver-
age problem size is still too small for most iterative solvers to outperform the direct
solver in terms of solution time.

Different preconditioners and solvers have different strengths and weaknesses.
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They have different degrees of robustness. Some are more memory efficient than oth-
ers, while some are faster than others. They have different degrees of sensitivity to
parameter tuning. Figure 5.5 displays all this relative information about the perfor-
mance of various preconditioners by means of a single information-rich graphic. The
performance profile curves shown in Figures 5.1-5.4 enable a visual comparison of the
performance and robustness of the preconditioners. For Figure 5.5, we introduce a
quantitative measure of performance, which is the area under a performance profile
curve for a given upper limit on performance ratio (which we have chosen to be 10
in this paper). This figure has two sets of circles for each preconditioner. The dark
circles correspond to the overall best parameter configurations and the light circles
correspond to problem-specific best parameters. The x- and y-coordinates of each cir-
cle are the areas of the time and memory profiles of the corresponding preconditioner
derived from Figures 5.1-5.4. The size of each circle is proportional to the number of
problems solved. Thus, Figure 5.5 gives a multidimensional ranking of various pre-
conditioners (including the direct solver). It shows that WSMP ICT has the highest
ranking on the time axis among the iterative solvers. Its memory performance, while
not the best, is a close third. The thick arrows in the figure show the number of trials
that were performed for each matrix for some of the key preconditioners to select the
best performing configuration. Note that WSMP ICT achieved a reasonably good
performance improvement along both the time and memory axes within just four tri-
als. This provides empirical evidence of the effectiveness of the parameter selection
and tuning methods discussed in section 4.

6. Concluding Remarks. We have introduced techniques to improve the reli-
ability and performance of incomplete Cholesky factorization based preconditioners
for solving symmetric positive definite or mildly indefinite systems. The goal of this
work was to produce an industrial strength iterative solver for SPD systems that
can reliably replace a direct solver in many real applications, particularly those in
which iterative solvers are not traditionally used due to robustness or performance
concerns. The results presented in the paper confirm that our solver can approach
the reliability of a well implemented direct solver, while consuming much less memory
on an average. While the direct solver turned out to be faster, in general, than all
the iterative solvers that we tried, our iterative solver was the second best performing
solver on our randomly selected suite of test problems. In fact, the speed of the direct
solver was a motivating factor behind our block incomplete factorization method, and
suggests a need for incorporating some of the direct solver techniques into iterative
solvers [22, 37, 53].

The adaptive nature of the choice of some of the parameters and algorithmic
components based on the properties of the matrix contributes to the performance
and robustness of our solver. The performance advantage of our incomplete Cholesky
factorization based preconditioner stems from its blocking scheme that works well
even on coefficient matrices that do not have a natural block structure and automatic
selection of the more appropriate of the two blocking algorithms. The switch to
LDLT factorization upon encountering very small or negative pivots accompanied by
a switch in the solver from CG to GMRES contributes to its robustness even in the
face of failure of the Cholesky process. Continuous monitoring of the performance of
the preconditioner generation and the iterative solution to tune dropping thresholds
makes it even more suitable for real industrial applications that often involve solving
a sequence of linear systems with different coefficient matrices. The block incomplete
factorization scheme and threshold tuning introduced in this paper in the context
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of SPD systems can be easily adapted for incomplete LU factorization for general
systeins.
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