
FULLY-DISCRETE FINITE ELEMENT ANALYSIS OFMULTIPHASE FLOW IN GROUNDWATER HYDROLOGYZhangxin Chen and Richard E. Ewing*Abstract. This paper deals with development and analysis of a fully discrete �nite elementmethod for a nonlinear di�erential system for describing an air-water system in groundwater hydrol-ogy. The nonlinear system is written in a fractional 
ow formulation, i.e., in terms of a saturationand a global pressure. The saturation equation is approximated by a �nite element method, whilethe pressure equation is treated by a mixed �nite element method. The analysis is carried out �rstfor the case where the capillary di�usion coe�cient is assumed to be uniformly positive, and is thenextended to a degenerate case where the di�usion coe�cient can be zero. It is shown that error es-timates of optimal order in the L2-norm and almost optimal order in the L1-norm can be obtainedin the nondegenerate case. In the degenerate case we consider a regularization of the saturationequation by perturbing the di�usion coe�cient. The norm of error estimates depends on the severityof the degeneracy in di�usivity, with almost optimal order convergence for non-severe degeneracy.Implementation of the fractional 
ow formulation with various nonhomogeneous boundary condi-tions is also discussed. Results of numerical experiments using the present approach for modelinggroundwater 
ow in porous media are reported.Key words. time discretization, mixed method, �nite element, compressible 
ow, porous me-dia, error estimate, air-water system, numerical experimentsAMS(MOS) subject classi�cations. Primary 65N30, 76S051. Introduction. In this paper we develop and analyze a fully-discrete �nite el-ement procedure for solving the 
ow equations for an air-water system in groundwaterhydrology, � = a; w [3], [12], [31]:@(���s�)@t +r � (��u�) = f�; x 2 
; t > 0;(1.1) u� = �kkr��� (rp� � ��g); x 2 
; t > 0;(1.2)where 
 � <d, d � 3 is a porous medium, � and k are the porosity and absolutepermeability of the porous system, ��, s�, p�, u�, and �� are the density, saturation,pressure, volumetric velocity, and viscosity of the �-phase, f� is the source/sink term,kr� is the relative permeability of the �-phase, and g is the gravitational, downward-pointing, constant vector.Flow simulation in groundwater reservoirs has been extensively studied in pastyears (see, e.g., [26], [28] and the bibliographies therein). However, in most previ-ous works the air-phase equation is eliminated by the assumption that the air-phaseremains essentially at atmospheric pressure. This assumption, as mentioned in [13],is reasonable in most cases because the mobility of air is much larger than that ofwater, due to the viscosity di�erence between the two 
uids. When the air-phasepressure is assumed constant, the air-phase mass balance equation can be eliminatedand thus only the water-phase equation remains. Namely, the Richards equation isused to model the movement of water in groundwater reservoirs. However, it provides*Department of Mathematics and the Institute for Scienti�c Computation, Texas A&M Uni-versity, College Station, TX 77843. Partly supported by the Department of Energy under contractDE-ACOS-840R21400. email: zchen@isc.tamu.edu, ewing@ewing.tamu.edu.1



2no information on the motion of air. If contaminant transport is the main concernand the contaminant can be transported in the air-phase, the air-phase needs to beincluded to determine the advective component of air-phase contaminant transport[7]. Furthermore, the dynamic interaction between the air and water phases is alsoimportant in vapor extraction systems. Hence in these cases the coupled system ofnonlinear equations for the air-water system must be solved. It is the purpose of thispaper that is to develop and analyze a �nite element procedure for approximatingthe solution of the coupled system of nonlinear equations for the air-water system ingroundwater hydrology.In petroleum reservoir simulation the governing equations that describe 
uid 
oware usually written in a fractional 
ow formulation, i.e., in terms of a saturation anda global pressure [1], [8]. The main reason for this fractional 
ow approach is thate�cient numerical methods can be devised to take advantage of many physical prop-erties inherent in the 
ow equations. However, this pressure-saturation formulationhas not yet achieved application in groundwater hydrology. In petroleum reservoirstotal 
ux type boundary conditions are conveniently imposed and often used, but ingroundwater reservoirs boundary conditions are very complicated. The most com-monly encountered boundary conditions for a groundwater reservoir are of �rst-type(Dirichlet), second-type (Neumann), third-type (mixed), and \well" type [8]. Theproblem of incorporating these nonhomogeneous boundary conditions into the frac-tional 
ow formulation has been a challenge [12]. In particular, in using the fractional
ow approach a di�culty arises when the Dirichlet boundary condition is imposed forone phase (e.g. air) and the Neumann type is used for another phase (e.g. water).This paper follows the fractional 
ow formulation. Based on this approach, wedevelop a fully-discrete �nite element procedure for the saturation and pressure equa-tions. The saturation equation is approximated by a Galerkin �nite element method,while the pressure equation is treated by a mixed �nite element method. It is wellknown that the physical transport dominates the di�usive e�ects in incompressible
ow in petroleum reservoirs. In the air-water system studied here, the transportagain dominates the entire process. Hence it is important to obtain good approximatevelocities. This motivates the use of the parabolic mixed method, as in [17], in thecomputation of the pressure and the velocity. Also, due to its convection-dominatedfeature, more e�cient approximate procedures should be used to solve the satura-tion equation. However, since this is the �rst time to carry out an analysis for thepresent problem, it is of some importance to establish that the standard �nite ele-ment method for this model converges at an asymptotically optimal rate for smoothproblems. Characteristic Petrov-Galerkin methods based on operator splitting [20],transport di�usion methods [32], and other characteristic based methods will be con-sidered in forthcoming papers.The main part of this paper deals with an asymptotical analysis for the fullydiscrete �nite element method for the �rst-type and second-type boundary conditionsp� = p�D(x; t); x 2 �1; t > 0;(1.3) u� � � = d�(x; t); x 2 �2; t > 0;(1.4)where p�D and d� are given functions, @
 = �1[�2 with �1 and �2 being disjoint, and� is the outer unit normal to @
. We point out that petroleum reservoir simulationis di�erent from groundwater reservoir simulation. The 
ow of two incompressible
uids (e.g. water and oil) is usually considered in the former case, while the latter



3system consists of the air and water phases. Consequently, the �nite element analy-ses for these two cases di�er. As shown here, compressibility and combination of theboundary conditions (1.3) and (1.4) complicate error analyses. Indeed, if optimality isto be preserved for the �nite element method, the standard error argument just failsunless we work with higher order time-di�erentiated forms of error equations, whichrequire properly scaling initial conditions. Also, we mention that a slightly compress-ible miscible displacement problem was treated in [14], [18], [23], [33]; however, onlythe single phase was handled, gravitational terms were omitted, and total 
ux typeboundary conditions were assumed. Furthermore, the so-called \quadratic" terms invelocity were neglected. The dropping of these quadratic terms may not be valid nearwells, and so the miscible displacement model was oversimpli�ed both physically andmathematically. The analysis of this paper includes these terms. Finally, only theRaviart-Thomas mixed �nite element spaces [34] have been considered in these earlierpapers. We are here able to discuss all existing mixed spaces.The error analysis is given �rst for the case where the capillary di�usion coe�cientis assumed to be uniformly positive. In this case, we show error estimates of optimalorder in the L2-norm and almost optimal order in the L1-norm. Then we treat adegenerate case where the di�usion coe�cient vanishes for two values of saturation.In the degenerate case we consider a regularization of the saturation equation byperturbing the di�usion coe�cient to obtain a nondegenerate problem with smoothsolutions. It is shown that the regularized solutions converge to the original solutionas the perturbation parameter goes to zero with speci�c convergence rates given. Thenorm of error estimates depends on the severity of the degeneracy in di�usivity, withalmost optimal order convergence for the degeneracy under consideration.The rest of this paper is concerned with implementation of the fractional 
owformulation with various nonhomogeneous boundary conditions. We show that allthe commonly encountered boundary conditions can be incorporated in the fractional
ow formulation. Normally the \global" boundary conditions are highly nonlinearfunctions of the physical boundary conditions for the original two 
ow phases. Thismeans that we have to iterate on these global boundary conditions as part of the solu-tion process. We here develop a general solution approach to handle these boundaryconditions. Results of numerical experiments using the present approach for modelinggroundwater 
ow are reported here.The paper is organized as follows. In x2, we de�ne a fractional 
ow formulation forequations (1.1){(1.4). Then, in x3 we introduce weak forms of the pressure-saturationequations, and in x4 a fully-discrete �nite element procedure for solving these equa-tions. An asymptotical analysis is given in x5 and x6 for the nondegenerate caseand the degenerate case, respectively. Finally, in x7 we discuss implementation ofvarious nonhomogeneous boundary conditions and present the results of numericalexperiments.2. A pressure-saturation formulation. In addition to (1.1){(1.4), we imposethe customary property that the 
uid �lls the volume:(2.1) sa + sw = 1;and de�ne the capillary pressure function pc by(2.2) pc(sw) = pa � pw:



4Introduce the phase mobilities�� = kr�=��; � = a; w;and the total mobility � = �a + �w:To devise our numerical method, it is important to choose a reasonable set of depen-dent variables. Since pw = �1 if sw is equal to the water residual saturation [3],pw cannot generally be expected to lie in any Sobolev space. Air being a continuousphase implies that pa is well behaved. Hence, as mentioned in the introduction, wede�ne the global pressure [1] with s = sw:(2.3) p =pa � Z ssc �w� dpcd� d�=pa � Z pc(s)0 ��w� � �p�1c (�)� d�;where pc(sc) = 0. The integral in the right-hand side of (2.3) is well de�ned [1], [8].As usual, assume that �� depends on p [8]. Then we de�ne the total velocity(2.4) u = �k� (rp�G(s; p)) ;where G(s; p) = �a�a + �w�w� g:Now it can be easily seen thatuw = qwu+ k�aqwrpc � k�aqw ~�;(2.5a) ua = qau� k�wqarpc + k�wqa~�;(2.5b)where q� = ��=�, � = a; w, and ~� = (�a � �w)g. Consequently,(2.6) u = ua + uw:Equations (1.1) and (1.2) can be manipulated using (2.1){(2.6) to have the pressureequation(2.7) r � u = �@�@t � aX�=w 1�� ��s� @��@t + u� � r�� � f�� ;and the saturation equation(2.8) �@sw@t +r � (qwu+ k�aqw(rpc � ~�))= �sw @�@t � 1�w ��sw @�w@t + uw � r�w � fw� :Terms of the form u� � r��, � = a; w have been neglected in compressible miscibledisplacement problems [14], [18], [23], [33]. The dropping of these terms may notbe valid near wells. Also, if they are neglected, the model may not be qualitativelyequivalent to the usual formulation of two phase 
ow. Hence we keep them in this



5paper. However, the water phase is usually assumed to be incompressible. With theincompressibility of the water phase and the following notation:c(s; p) = �(1� s)�a d�adp ; D(s) = �k�aqw dpcds ;a(s) = k�; A(s; p) = qaa�1(s)�a d�adp ;~fw = fw�w ; b(s; p) = �k�aqw ~�;B(s; p) = � 1�a d�adp �qaG(s; p) + a�1(s)k�wqa(rpc � ~�)� ;f(s; p) = 1�a d�adp k�wqa(rpc � ~�) �G(s; p) + fa�a + fw�w � @�@t ;equations (2.7) and (2.8) can be now written asc(s; p)@p@t +r � u = A(s; p)u2 +B(s; p) � u+ f(s; p);(2.9) u = �a(s) (rp�G(s; p)) ;(2.10) �@s@t �r � (D(s)rs� qwu� b(s; p)) = ~fw � s@�@t :(2.11)The boundary conditions for the pressure-saturation equations becomep = pD(x; t); x 2 �1; t > 0;(2.12) u � � = ~d(x; t); x 2 �2; t > 0;(2.13) s = sD(x; t); x 2 �1; t > 0;(2.14) (D(s)rs� qwu� b(s; p)) � � = �dw(x; t); x 2 �2; t > 0;(2.15)where sD and pD are the transforms of pwD and paD by (2.2) and (2.3), and ~d =da + dw.The model is completed by specifying the initial conditionsp(x; 0) = p0(x); x 2 
;(2.16) s(x; 0) = s0(x); x 2 
:(2.17)The later analysis for the nondegenerate case in x5 is given under a number ofassumptions. First, the solution is assumed smooth; i.e., the external source termsare smoothly distributed, the coe�cients are smooth, the boundary and initial datasatisfy the compatibility condition, and the domain has at least the regularity requiredfor a standard elliptic problem to have H2(
)-regularity and more if error estimatesof order bigger than one are required. Second, the coe�cients a(s), �, and c(s; p) areassumed bounded below positively:0 < a� � a(s) � a� <1;(2.18) 0 < �� � �(x) � �� <1;(2.19) 0 < c� � c(s; p) � c� <1:(2.20)Finally, the capillary di�usion coe�cient D(s) is assumed to satisfy(2.21) 0 < D� � D(s) � D� <1:



6 While the phase mobilities can be zero, the total mobility is always positive [31].The assumptions (2.18) and (2.19) are physically reasonable. Also, the present analysisobviously applies to the incompressible case where c(s; p) = 0. In this case, the analysisis simpler since we have an elliptic pressure equation instead of the parabolic equation(2.9). Thus we assume condition (2.20) for the compressible case under consideration.Next, although the reasonableness of the assumption (2.21) is discussed in [16], thedi�usion coe�cient D(s) can be zero in reality. It is for this reason that section sixis devoted to consideration of the case where the solution is not required smooth andthe assumption (2.21) is removed. As a �nal remark, we mention that for the casewhere point sources and sinks occur in a porous medium, an argument was given in[22] for the incompressible miscible displacement problem and can be extended to thepresent case.3. Weak forms. To handle the di�culty associated with the inhomogeneousNeumann boundary condition (2.13) in the analysis of the mixed �nite element method,let d be such that d �� = ~d and introduce the change of variable u = ~u+d in equations(2.9){(2.11). Then the homogeneous Neumann boundary condition holds for ~u. Thus,without loss of generality, we assume that ~d � 0. To be compatible, we also requirethat this homogeneous condition holds when t = 0.In the two-dimensional case, letH(div;
) = fv 2 (L2(
))2 : r � v 2 L2(
)g;while it is accordingly de�ned in the three-dimensional case as follows:H(div;
) = fv 2 (L2(
))3 : r � v 2 L2(
)g:Also, set V = fv 2 H(div;
) : v � � = 0 on �2g;M = fw 2 H1(
) : w = 0 on �1g:The weak form of (2.9){(2.11) on which the �nite element procedure is based is givenbelow. Let J = (0; T ] (T > 0) is the time interval of interest. The mixed formulationfor the pressure is de�ned by seeking a pair of maps fu; pg : J ! V �L2(
) such that(�(s)u; v) � (r � v; p) = (G(s; p); v) � hpD; v � �i�1 ; 8v 2 V;(3.1a) (c(s; p)@p@t ;  ) + (r � u;  )(3.1b) = (A(s; p)u2 +B(s; p) � u+ f(s; p);  ); 8 2 L2(
);where �(s) = a(s)�1, the inner products (�; �) are to be interpreted to be in L2(
)or (L2(
))d, as appropriate, and h�; �i�1 denotes the duality between H1=2(�1) andH�1=2(�1). The weak form for the saturation s : J !M + sD is given by(3.2) ��@s@t ; v�+ �D(s)rs� qw(s)u� b(s; p);rv�= � ~fw � s@�@t ; v�� hdw; vi�2 ; 8v 2M;where the boundary condition (2.15) is used. Finally, to treat the nonzero initialconditions imposed on s and p in (2.16) and (2.17), we introduce the following trans-



7formations in (3.1) and (3.2): s(x; t) =s(x; t) + s0(x);p(x; t) =p(x; t) + p0(x);u(x; t) =u(x; t) + u0(x);where u0 = �a(s0)(rp0 � G(s0; p0)) and u = �a(s + s0)(r(p + p0) � G(s + s0; p +p0))�u0(x). Then we have zero initial conditions for s, p, and u. Hence, without lossof generality again, we assume that(3.3) s0 = p0 = u0 � 0:The reason for introducing these transformations to have zero initial conditions is tovalidate equation (5.15) later.4. Fully-discrete �nite element procedures. Let 
 be a polygonal domain.For 0 < hp < 1 and 0 < h < 1, let Thp and Th be quasi-uniform partitions into ele-ments, say, simplexes, rectangular parallelepipeds, and/or prisms. In both partitions,we also need that adjacent elements completely share their common edge or face. LetMh � W 1;1(
) \M be a standard C0-�nite element space associated with Th suchthat(4.1) inf 2Mh kv �  k1;q � C�XK h2kK kvk2k+1;q;K�1=2; k � 1; 1 � q �1;where hK =diam(K), K 2 Th and kvkk;q;K is the norm in the Sobolev spaceW k;q(K)(we omit K when K = 
 and kvkk;K = kvkk;2;K). Also, let Vh �Wh = Vhp �Whp �V �L2(
) be the Raviart-Thomas-Nedelec [34], [29], the Brezzi-Douglas-Fortin-Marini[5], the Brezzi-Douglas-Marini [6] (if d = 2), the Brezzi-Douglas-Dur�an-Fortin [4] (ifd = 3), or the Chen-Douglas [11] mixed �nite element space associated with thepartition Thp of index such that the approximation properties below are satis�ed:inf 2Vh kv �  k � C�XK h2rp;Kkvk2r;K�1=2; 0 � r � k� + 1;(4.2) inf 2Vh kr � (v �  )k � C�XK h2rp;Kkr � vk2r;K�1=2; 0 � r � k��;(4.3) inf 2Wh kw �  k � C�XK h2rp;Kkwk2r;K�1=2; 0 � r � k��;(4.4)where hp;K =diam(K), K 2 Thp , kvk = kvk0, k�� = k� + 1 for the �rst two spaces,k�� = k� for the second two spaces, and both cases are included in the last space.Finally, let ftngnTn=0 be a quasi-uniform partition of J with t0 = 0 and tnT = T , andset �tn = tn � tn�1, �t = maxf�tn; 1 � n � nT g, and n =  (tn); @ n = ( n �  n�1)=�tn:We are now in a position to introduce our �nite element procedure.The fully-discrete �nite element method is given as follows. The approximationprocedure for the pressure is de�ned by the mixed method for a pair of maps funh; pnhg 2



8Vh �Wh, n = 1; 2; � � � ; nT such that(�(sn�1h )unh; v)� (r � v; pnh) = (G(sn�1h ; pn�1h ); v)� hpnD; v � �i�1 ; 8v 2 Vh;(4.5a) (c(sn�1h ; pn�1h )@pnh;  ) + (r � unh;  ) = (A(sn�1h ; pn�1h )(un�1h )2(4.5b) +B(sn�1h ; pn�1h ) � un�1h + f(sn�1h ; pn�1h );  ); 8 2 Wh;and the �nite element method for the saturation is given for snh 2 Mh + snD, n =1; 2; � � � ; nT satisfying(4.6) ��@snh; v�+ �D(sn�1h )rsnh � qw(sn�1h )unh � b(sn�1h ; pnh);rv�= � ~fnw � snh @�n@t ; v�� hdnw; vi�2 ; 8v 2Mh:The initial conditions satisfy(4.7) p0h = 0; s0h = 0; u0h = 0:After startup, for n = 1; 2; � � � ; nT , equations (4.5) and (4.6) are computed asfollows. First, using sn�1h , pn�1h , and (4.5), evaluate funh; pnhg. Since it is linear, (4.5)has a unique solution for each n [10], [27]. Next, using sn�1h , funh; pnhg, and (4.6),calculate snh. Again, (4.6) has a unique solution for �tn su�ciently small for each n[39].We end this section with a remark. While the backward Euler scheme is usedin (4.5b) and (4.6), the Crank-Nicolson scheme and more accurate time steppingprocedures (see, e.g., [21]) can be used. The present analysis applies to these schemes.5. An error analysis for the fully-discrete scheme. In this section we give aconvergence analysis for the �nite element procedure (4.5) and (4.6) under assumption(2.21). As usual, it is convenient to use an elliptic projection of the solution of (2.11)into the �nite element space Mh. Let ~s = ~sh : J !Mh + sD be de�ned by(5.1) �D(s)r(s� ~s);rv�+ (s� ~s; v) = 0; 8v 2Mh; t 2 J:Set(5.2) � = s� ~s; � = ~s� sh:Then it follows from standard results of the �nite element method [15], [30], [37] thatk�k+ hk�k1 � C�XK h2(k+1)K ksk2k+1;K�1=2;(5.3a) k�k0;1 � Chk+1� logh�1�
kskk+1;1;(5.3b)where 
 = 1 for k = 1 and 
 = 0 for k > 1. The same result applies to the time-di�erentiated forms of (5.1) [40]:(5.4) k@�@t k+ hk@�@t k1 � C�XK h2(k+1)K �ksk2k+1;K + k@s@t k2k+1;K��1=2:As for the analysis of the mixed �nite element method, we use the the followingtwo projections instead of the elliptic projections introduced in [14] and [18]. So thepresent analysis is di�erent from and in fact simpler than those in [14] and [18]. Eachof our mixed �nite element spaces [4]{[6], [11], [29], [34] has the property that thereare projection operators �h : H1(
) ! Vh and Ph = L2-projection: L2(
) ! Whsuch that



9kv ��hvk � C�XK h2rp;Kkvk2r;K�1=2; 0 � r � k� + 1;(5.5) kr � (v ��hv)k � C�XK h2rp;Kkr � vk2r;K�1=2; 0 � r � k��;(5.6) kw � Phwk � C�XK h2rp;Kkwk2r;K�1=2; 0 � r � k��;(5.7)and (see, e.g., [9], [19]) (r � (v ��hv); w) = 0; 8w 2 Wh;(5.8) (r � v; w � Phw) = 0; 8v 2 Vh:(5.9)Set ~p = Php, ~u = �hu, and � = u� ~u; � = ~u� uh;(5.10) � = p� ~p; � = ~p� ph:(5.11)Note that, by (3.3) and (4.7),(5.12) �0 = 0; �0 = 0; �0 = 0:Finally, we prove some bounds of the projections ~s and ~p. Let s = sh be theinterpolant of s in Mh. Then we see, by (4.1), (5.3b), the approximation property ofs, and an inverse inequality in Mh, thatk~sk1;1 �ks� ~sk1;1 + ksk1;1�ks� ~sk1;1 + ks� sk1;1 + ksk1;1�Ch�1ks� ~sk0;1 + ks� sk1;1 + ksk1;1�Ch�1�k~s� sk0;1 + ks� sk0;1�+ ks� sk1;1 + ksk1;1�Chk(log h�1)
kskk+1;1 + ksk1;1;where 
 is given as in (5.3b). This implies that k~sk1;1 is bounded for su�cientlysmooth solutions since k � 1. The same argument applies to k@~s=@tk1;1. Next, notethat, by the approximation property of the projection Ph [27],k~ptk0;1 � Ckptk0;1:These bounds on ~pt, r~s, and r(@~s=@t) are used below.We are now ready to prove some results. Below " is a generic positive constantas small as we please.5.1. Analysis of the mixed method. We �rst analyze the mixed method(4.5). We set s = p = u � 0 and sh = ph = uh � 0 when t � 0. The following errorequation is obtained by subtracting (4.5) from (3.1) at t = tn and applying (5.8) and(5.9): (�(sn�1h )�n; v)� (r � v; �n) = �(�(sn�1h )� �(sn))un; v�� (�(sn�1h )�n; v)(5.13) + �G(sn; pn)�G(sn�1h ; pn�1h ); v�; 8v 2 Vh;�c(sn�1h ; pn�1h )@�n;  �+ (r � �n;  ) = �f(sn; pn)� f(sn�1h ; pn�1h );  �+ �A(sn; pn)(un)2 �A(sn�1h ; pn�1h )(un�1h )2;  �(5.14) + �B(sn; pn) � un �B(sn�1h ; pn�1h ) � un�1h ;  �



10 + �(c(sn�1h ; pn�1h )� c(sn; pn))@pn@t ;  �� (c(sn�1h ; pn�1h )�@pn@t � @~pn�;  ); 8 2Wh:Below Ci indicates a generic constant with the given dependencies.Lemma 5.1. Let (u; p) and (uh; ph) solve (3.1) and (4.5), respectively. Then(5.15) k@�1k2+�t1k@�1k2� C0��t1(ks1 � s0k2 + k@�1k2 + k@G1k2)+ kp1 � p0k2 + ks1 � s0k2 + k@p1@t � @~p1k2 + ku1 � u0k2	;where @G1 = (G(s1; p1)�G(s0; p0))=�t1 andC0 = C0�k@p@t kL1(J�
); k@u@t kL1(J�
); kukL1(J�
)�:Proof. Set v = �1 in (5.13) and  = �1 in (5.14), add the resulting equations atn = 1, and use (3.3), (4.7), and (5.12) to see that(c(s0; p0)@�1; @�1) + �t1(�(s0)@�1; @�1) = 8Xi=1 T 1i ;whereT 11 = �(�(s0)� �(s1))(u1 � u0); @�1�; T 12 = ���(s0)(�1 � �0); @�1�;T 13 = �G(s1; p1)�G(s0; p0); @�1�; T 14 = �A(s1; p1)(u1)2 �A(s0; p0)(u0)2; @�1);T 15 = �(c(s0; p0)� c(s1; p1))@p1@t ; @�1�; T 16 = ��c(s0; p0)(@p1@t � @~p1); @�1�;T 17 = �B(s1; p1) � u1 �B(s0; p0) � u0; @�1�; T 18 = �f(s1; p1)� f(s0; p0); @�1�:Then (5.15) can be easily seen.Lemma 5.2. Let (u; p) and (uh; ph) satisfy (3.1) and (4.5), respectively. Thenk@�
k2 + 
Xn=2 k@�nk2�tn� C1�k@�1k2 + 
Xn=1�k@(@�n)k2 + k@�nk2 + k�n�1k2 + k@�n�1k2+ k�n�1k2 + k@�nk2 + k@�@pn@t � @pn�k2 + k@�nk2+ k@(pn � pn�1)k2 + kpn � pn�1k2 + k@(sn � sn�1)k2+ ksn � sn�1k2 + k�n�1k2 + k@�n�1k2 + k�n�1k2+ k@(un � un�1)k2 + kun � un�1k2+ (k@�n�1k20;1 + k@�n�1k20;1)�k@�n�1k2 + k@pn@t � @pnk2+ k�nk2 + (1 + k@�n�1k20;1)k@�n�1k2�+ (1 + k@�n�1k20;1 + k@�n�1k20;1)(k�n�1k2 + k�n�2k2 + k�nk2)	�tn�;



11for 2 � 
 � nT , whereC1 = C1(k@s@t kL1(J�
); k@p@t kL1(J�
); k@2p@t2 kL1(J�
); kukL1(J�
); k@u@t kL1(J�
)):Proof. Di�erence equations (5.13) and (5.14) with respect to n, set v = @�n and = @�n in the resulting equations, divide by �tn, and add to obtain(5.16) (�(sn�1h )@�n; @�n) + (c(sn�1h ; pn�1h )@(@�n); @�n) = 10Xi=1 Tni ;whereTn1 = 1�tn �(f(sn; pn)� f(sn�1h ; pn�1h ))� (f(sn�1; pn�1)� f(sn�2h ; pn�2h )); @�n�;Tn2 = 1�tn �[A(sn; pn)(un)2 �A(sn�1h ; pn�1h )(un�1h )2]� [A(sn�1; pn�1)(un�1)2 �A(sn�2h ; pn�2h )(un�2h )2]; @�n�;Tn3 = 1�tn �[B(sn; pn) � un �B(sn�1h ; pn�1h ) � un�1h ]� [B(sn�1; pn�1) � un�1 �B(sn�2h ; pn�2h ) � un�2h ]; @�n�;Tn4 = 1�tn �(c(sn�1h ; pn�1h )� c(sn; pn))@pn@t� (c(sn�2h ; pn�2h )� c(sn�1; pn�1))@pn�1@t ; @�n�;Tn5 =� 1�tn �c(sn�1h ; pn�1h )�@pn@t � @~pn�� c(sn�2h ; pn�2h )�@pn�1@t � @~pn�1�; @�n�;Tn6 = 1�tn �(c(sn�2h ; pn�2h )� c(sn�1h ; pn�1h ))@�n�1; @�n�;Tn7 = 1�tn �(�(sn�2h )� �(sn�1h ))�n�1; @�n�;Tn8 =� 1�tn ��(sn�1h )�n � �(sn�2h )�n�1; @�n�;Tn9 = 1�tn �(�(sn�1h )� �(sn))un � (�(sn�2h )� �(sn�1))un�1; @�n�;Tn10 = 1�tn �(G(sn; pn)�G(sn�1h ; pn�1h ))� (G(sn�1; pn�1)�G(sn�2h ; pn�2h )); @�n�:Observe that the left-hand side of (5.16) is larger than the quantity(5.17) 12�tn�(c(sn�1h ; pn�1h )@�n; @�n)� (c(sn�2h ; pn�2h )@�n�1; @�n�1)	+ (�(sn�1h )@�n; @�n) + Tn11;where Tn11 = 12�tn �(c(sn�2h ; pn�2h )� c(sn�1h ; pn�1h ))@�n�1; @�n�1�:



12We estimate the new term Tn2 in detail. Other terms can be bounded by a simplerargument. To estimate Tn2 , we writeTn2 = 1�tn ��[A(sn; pn)�A(sn�1; pn�1)]� [A(sn�1h ; pn�1h )�A(sn�2h ; pn�2h )]	(un)2; @�n�+ 1�tn �[A(sn�1h ; pn�1h )�A(sn�2h ; pn�2h )]((un)2 � (un�1h )2); @�n�+ 1�tn �[A(sn�1; pn�1)�A(sn�2h ; pn�2h )]((un)2 � (un�1)2); @�n�+ 1�tn �A(sn�2h ; pn�2h )�[(un)2 � (un�1)2]� [(un�1h )2 � (un�2h )2]	; @�n�� 4Xi=1 Tn2;i:Note that[A(sn�1h ; pn�1h )�A(sn�2h ; pn�2h )]� [A(sn; pn)�A(sn�1; pn�1)]= @A@s (bsn�1h ; pn�1h )(sn�1h � sn�2h ) + @A@p (sn�1h ; bpn�1h )(pn�1h � pn�2h )� @A@s (bsn; pn)(sn � sn�1)� @A@p (sn�1; bpn)(pn � pn�1);where minfpn�1h ; pn�2h g � bpn�1h � maxfpn�1h ; pn�2h g;minfpn; pn�1g � bpn � maxfpn; pn�1g;and similar inequalities hold for bsn�1h , bsn. Consequently, with �n = �tn�1=�tn wesee thatTn2;1 =� �@A@s f�n[@�n�1 + @�n�1]� @(sn � sn�1)g(un)2; @�n�� �[@2A@s2 (bsn�1h � bsn) + @2A@p@s (pn�1h � pn)](un)2 sn � sn�1�tn ; @�n�� �@A@p f�n[@�n�1 + @�n�1]� @(pn � pn�1)g(un)2; @�n�� �[@2A@p2 (bpn�1h � bpn) + @2A@s@p(sn�2h � sn�1)](un)2 pn � pn�1�tn ; @�n�;so that(5.18) jTn2;1j � C1�k@�n�1k2 + k@�n�1k2 + k@(sn � sn�1)k2 + kbsn�1h � bsnk2+ kpn�1h � pnk2 + k@�n�1k2 + k@�n�1k2 + k@(pn � pn�1)k2+ kbpn�1h � bpnk2 + ksn�2h � sn�1k2 + k@�nk2�;where(5.19) kbpn�1h � bpnk � C1�kpn � pn�1h k+ kpn � pn�2h k+ kpn�1 � pn�1h k+ kpn�1 � pn�2h k);



13and an analogous inequality holds for bsn�1h � bsn. Also, we see that[A(sn�1h ; pn�1h )�A(sn�2h ; pn�2h )]((un)2 � (un�1h )2)= �@A@s (sn�1h � sn�2h ) + @A@p (pn�1h � pn�2h )	(un � un�1h ) � (un + un�1h );which implies thatjTn2;2j � C1�(1 + k@�n�1k20;1 + k@�n�1k20;1)(1 + k�n�1k20;1)k�n�1k2+ ksn�1h � sn�2h k2 + kpn�1h � pn�2h k2 + k@�nk2�:Next, it can be easily seen thatjTn2;3j � C1�ksn�1 � sn�2h k2 + kpn�1 � pn�2h k2 + k@�nk2�:Finally, since [(un�1h )2 � (un�2h )2]� [(un)2 � (un�1)2]= ([un�1h � un�2h ]� [un�1 � un�2])(un�1h + un�1)+ (un�2 � un�2h )([un�2h � un�1h ] + [un�2 � un�1])+ ([un�1 � un�2]� [un � un�1])(un�1 + un�2)+ (un � un�1)(un � un�2);we �nd that jTn2;4j � C1�(1 + k@�n�1k20;1)(k�n�1k2 + k�n�2k2)+ k@�n�1k2 + k@(un � un�1)k2 + kun � un�1k2+ k�n�2k2 + k@�nk2�+ "k@�n�1k2:Hence Tn2 can be bounded in terms of Tn2;i, i = 1; � � � ; 4. Other terms are bounded asfollows:jTn1 j � C1�k@�n�1k2 + k@�n�1k2 + k@(sn � sn�1)k2 + kbsn�11;h � bsn1k2+ kpn�1h � pnk2 + k@�n�1k2 + k@�n�1k2 + k@(pn � pn�1)k2+ kbpn�11;h � bpn1k2 + ksn�2h � sn�1k2 + k@�nk2�;jTn3 j � C1�k@�n�1k2 + k@�n�1k2 + k@(sn � sn�1)k2 + kbsn�12;h � bsn2k2+ kpn�1h � pnk2 + k@�n�1k2 + k@�n�1k2 + k@(pn � pn�1)k2+ kbpn�12;h � bpn2k2 + ksn�2h � sn�1k2 + k@�nk2+ (1 + k@�n�1k20;1 + k@�n�1k20;1)k�n�1k2+ ksn�1 � sn�2h k2 + kpn�1 � pn�2h k2 + k@�n�1k2+ k@(un � un�1)k2�+ "k@�n�1k2;jTn4 j � C1�ksn � sn�1h k2 + kpn � pn�1h k2 + k@�nk2 + k@�n�1k2+ k@�n�1k2 + k@(pn � pn�1)k2 + k@(sn � sn�1)k2+ k@�n�1k2 + k@�n�1k2 + kbpn�13;h � bpn3k2 + kbsn�13;h � bsn3k2�;jTn5 j � C1�(k@�nk2 + k@pn@t � @pnk2)(k@�n�1k20;1 + k@�n�1k20;1)



14 + k@�@pn@t � @pn)k2 + k@(@�n)k2 + k@�nk2�;jTn6 j � C1�(1 + k@�n�1k20;1 + k@�n�1k20;1)k@�n�1k2 + k@�nk2�;jTn7 j � C1�1 + k@�n�1k20;1�k�n�1k2 + "k@�nk2;jTn8 j � C1�(1 + k@�n�1k20;1)k�nk2 + k@�nk2�+ "k@�nk2;jTn9 j � C1�k@�n�1k2 + k@�n�1k2 + k@(sn � sn�1)k2+ ksn � sn�1h k2 + kbsn�14;h � bsn4k2�+ "k@�nk2;jTn10j � C1�k@�n�1k2 + k@�n�1k2 + k@(sn � sn�1)k2 + ksn�2h � sn�1k2+ k@�n�1k2 + k@�n�1k2 + k@(pn � pn�1)k2 + kpn�1h � pnk2+ kbpn�15;h � bpn5k2 + kbsn�15;h � bsn5k2 + "k@�nk2;jTn11j � C1�1 + k@�n�1k20;1 + k@�n�1k20;1�k@�n�1k2;where bsn�1i;h � bsni and bpn�1i;h � bpni (i = 1; � � � ; 5) can be bounded as in (5.19), e.g.,(5.20) kbsn�1i;h � bsni k � C1�ksn � sn�1h k+ ksn � sn�2h k+ ksn�1 � sn�1h k+ ksn�1 � sn�2h k):Now, apply these inequalities and (5.17){(5.20), multiply (5.16) by �tn, sum n, andproperly arrange terms to complete the proof of the lemma.The error equations (5.13) and (5.14) are usually exploited to derive error esti-mates in the parabolic mixed �nite element method [18], [27]. To handle the di�cultyarising from the combination of the Dirichlet boundary condition (1.3) and the non-linearity of the di�erential system (2.9){(2.11), we must use their time-di�erentiatedforms, as mentioned before. Also, the three terms Tni , i = 1; 2; 3 take care of the qua-dratic terms in the velocities, which require more regularity on u than those withoutthese quadratic terms, as seen from Lemma 5.2.5.2. Analysis of the saturation equation. We now turn to analyzing the�nite element method (4.6).Lemma 5.3. Let s and sh solve (3.2) and (4.6), respectively. Thenkr�
k2 + 
Xn=1 k@�nk2�tn� C2�ks
 � s
�1k2 + k�
�1k2 + k�
�1k2 + k�
k2 + k�
k2 + k�
k2 + k�
k2+ 
Xn=0 �k@sn@t � @snk2 + k@(sn+1 � sn)k2 + ksn+1 � snk2 + kpn+1 � pnk2+ k@�nk2 + k�nk2 + k@�nk2 + k�nk2 + k�nk2 + k�nk21 + k�nk2+ k�nk2 + k@�nk2 + k@�nk2��tn + 
�1Xn=1 kr�nk2k@�nk20;1�tn�+ " 
Xn=1 k@�nk2�tn;



15for 1 � 
 � nT , whereC2 = C2�k@s@t kL1(J�
); kr@s@t kL1(J�
); krskL1(J�
); kukL1(J�
)�:Proof. Subtract (4.6) from (3.2) at t = tn, use (5.1) at t = tn, and set the testfunction v = @�n to see that(5.21) (�@�n; @�n) + (D(sn�1h )r�n;r@�n) = 7Xi=1 Bni ;whereBn1 =� ��(@sn@t � @~sn); @�n�; Bn2 = (�n; @�n);Bn3 =�(qw(sn)� qw(sn�1h ))un;r@�n�; Bn4 = �(un � unh)qw(sn�1h );r@�n�;Bn5 =(b(sn; pn)� b(sn�1h ; pnh);r@�n�; Bn6 = ��@�n@t (sn � snh); @�n�;Bn7 =� �(D(sn)�D(sn�1h ))r~sn;r@�n):The left-hand side of (5.21) is bigger than the quantity(5.22) (�@�n; @�n) + 12�tn (D(sn�1h )r�n;r�n)� 12�tn (D(sn�2h )r�n�1;r�n�1) +Bn8 ;where Bn8 is de�ned byBn8 = 12�tn �(D(sn�2h )�D(sn�1h ))r�n�1;r�n�1�;and is bounded by(5.23) jBn8 j � C2�1 + k@�n�1k20;1�kr�n�1k2:Next, it can be easily seen that(5.24) jBn1 j+ jBn2 j+ jBn6 j � C2�k@sn@t � @snk2+ k@�nk2+ k�nk2+ k�nk2�+ "k@�nk2:To avoid an apparent loss of a factor h in Bni , i = 3; 4; 5; 7, we use summation byparts on these items. We work on Bn3 in detail, and other quantities can be estimatedsimilarly. Applying summation by parts in n and the fact that �0 = 0, we see that
Xn=1 �(qw(sn)� qw(sn�1h ))un;r@�n)�tn= 
�1Xn=1 ��(qw(sn)� qw(sn�1h ))� ((qw(sn+1)� qw(snh))	un;r�n�+ 
�1Xn=1 �(qw(sn+1)� qw(snh))(un � un+1);r�n�+ �(qw(s
)� qw(s
�1h ))u
 ;r�
�;



16so that, using the same argument as for (5.18),(5.25) ����� 
Xn=1Bn3�tn����� � C2�
�1Xn=1 �k@�nk2 + k@(sn+1 � sn)k2 + kbsnh � bsn+1k2+ ksn+1 � snhk2 + kr�nk2��tn + ks
 � s
�1h k2�+ "�kr�
k2 + 
�1Xn=1 k@�nk2�;where kbsnh � bsn+1k can be estimated as in (5.20). The term P
n=1Bn7�tn has thesame bound as in (5.25). Also, we �nd that(5.26) ����� 
Xn=1Bn4�tn����� � C2�
�1Xn=1 �k@�n+1k2 + k�nk2 + k�nk2+ (1 + k@�nk20;1)kr�nk2��tn+ k�
k2 + k�
k2�+ "�kr�
k2 + 
�1Xn=1 k@�n+1k2�;and
(5.27)

����� 
Xn=1Bn5�tn����� � C2�
�1Xn=1 �k@�nk2 + k@(sn+1 � sn)k2 + kbsnh � bsn+1k2+ k@�nk2 + k@�nk2 + kbpnh � bpnk2+ ksn+1 � snhk2 + kpn � pnhk2 + kr�nk2��tn+ ks
 � s
�1h k2 + kp
 � p
hk2�+ "�kr�
k2 + 
�1Xn=1 k@�nk2�:Now, multiply (5.21) by �tn, sum n, and use (5.22){(5.27) to complete the proof ofthe lemma.5.3. L2-error estimates. We now prove the main result in this section. De�neE(t) = XK2Thp hk��p;K�kpkL1(0;t;Hk�� (K)) + k@p@t kL1(0;t;Hk�� (K)) + k@2p@t2 kL2(0;t;Hk�� (K))�+ XK2Thp hk�+1p;K �kukL1(0;t;Hk�+1(K)) + k@u@t kL2(0;t;Hk�+1(K))�+ XK2Th hk+1K �kskL1(0;t;Hk+1(K)) + k@s@t kL2(0;t;Hk+1(K))�+�t 2Xi=1 �k@ip@ti kL2(J;L2(
)) + k@is@ti kL2(J;L2(
)) + k@iu@ti kL2(J;L2(
))�+�tk@3p@t3 kL2(J;L2(
)); t 2 J:



17Theorem 5.4. Let (u; p; s) and (uh; ph; sh) satisfy (3.1), (3.2) and (4.5), (4.6),respectively. Then, if the parameters �t, hp, and h satisfy(5.28) (h�d=2 + h�d=2p )��t+ hk�+1p + hk��p + hk+1�! 0 as �t; h! 0;we havemax0�n�nTfkun � unhk+ kpn � pnhk+ ksn � snhk+ hkr(sn � snh)k+ k@pn@t � @pnhkg+ � nTXn=1 k@sn@t � @snhk2�tn	1=2 � CE(T );where C = C(C1; C2; T ).Proof. Take a (C1 + 1)-multiple of the inequality in Lemma 5.3, add the result-ing inequality and the inequality in Lemma 5.2, and use (5.3){(5.7), (5.15), and theextension of the solution for t � 0 to obtain
(5.29)

kr�
k2 + k@�
k2 + 
Xn=1(k@�nk2 + k@�nk2)�tn� C3�E2(t
) + k�
�1k2 + k�
k2 + k�
k2+ 12 
Xn=1 �k�nk21 + k�nk2 + k�nk2 + k@�nk2+ (k@�n�1k2 + k�n�2k2 + kr�n�1k2+ (1 + k�n�1k20;1)k�n�1k2 + E2(t
))� (k@�n�1k20;1 + k@�n�1k20;1 + k@�n�1k20;1)��tn�:where C3 = C3(C1; C2). In deriving (5.29), we required that the " appearing in Lemma5.3 be su�ciently small that (C1 + 1)" � 1=2; this increases C2, but not C1. Observethat, by (5.12),(5.30) k�
k2 � C 
Xn=1 k�nk2�tn + " 
Xn=1 k@�nk2�tn:The same result holds for �
 and �
 . Combine (5.29), (5.30), and an inverse inequalityto see that
(5.31) k�
k21 + k�
k2 + k@�
k2 + k�
k2 + 
Xn=1(k@�nk2 + k@�nk2)�tn�C3�E2(t
) + 12 
Xn=1 �k�nk21 + k�nk2 + k�nk2 + k@�nk2+ (h�d + h�dp )(k@�n�1k2 + k�n�2k2 + kr�n�1k2+ (1 + h�dp k�n�1k2)k�n�1k2 + E2(t
))� (k@�n�1k2) + k@�n�1k2 + k@�n�1k2)��tn�:



18We now make the induction hypothesis that(5.32) maxn�
�1(k�nk21 + k�nk2 + k@�nk2 + k�nk2)+ 
�1Xn=1(k@�nk2 + k@�nk2)�tn � C4E2(T );where C4 = 2C3eTC3 . Note that, by (5.12), (5.32) holds trivially for 
 = 1. Then, by(5.32), (5.31) becomes
(5.33) k�
k21 + k�
k2 + k@�
k2 + k�
k2 + 
Xn=1(k@�nk2 + k@�nk2)�tn�C3�E2(t
) + 12 
Xn=1 �k�nk21 + k�nk2 + k�nk2 + k@�nk2+ 2(h�d + h�dp )C4E2(T )(1 + C4h�dp E2(T ))� (k@�n�1k2 + k@�n�1k2 + k@�n�1k2)��tn�:Using (5.28), we choose the discretization parameters so small that2(h�d + h�dp )C3C4E2(T )(1 + C4h�dp E2(T )) � 1=2:Then it follows from (5.33) thatk�
k21 + k�
k2 + k@�
k2 + k�
k2 + 
Xn=1(k@�nk2 + k@�nk2)�tn� C3�E2(t
) + 
Xn=1 �k�nk21 + k�nk2 + k�nk2 + k@�nk2��tn�;which, together with Gronwall's inequality, implies that(5.34) k�
k21 + k�
k2 + k@�
k2 + k�
k2 + 
Xn=1(k@�nk2 + k@�nk2)�tn � C5E2(T );where C5 = C3(1� C3�t)�T=�t � 2C3eTC3 � C4;for �t not too large. Consequently, the induction argument is completed and thetheorem follows.We remark that, if h and hp are of the same order as they tend to zero, then(h�d=2 + h�d=2p )�hk�+1p + hk��p + hk+1� � Ch�d=2�hk�� + hk+1�;since k�� � k� + 1. Since k � 1,h�d=2hk+1 ! 0 as h! 0; d = 2; 3:Also, if k�� � 2, we see thath�d=2hk�� ! 0 as h! 0; d = 2; 3:Thus, for (5.28) to be satis�ed, we assume that k�� � 2. This excludes the mixed�nite element spaces of lowest order, i.e., k�� = 1. The lowest order case has to be



19treated using di�erent techniques. If the nonlinear coe�cients �(s) and c(s; p) in (4.5)are projected into the �nite element space Wh, the technique developed in [10] can beused to handle the lowest order case. We shall not pursue this here.5.4. L1-error estimates. The main objective of this paper is to establish theL2-error estimates given in Theorem 5.4. For completeness, we end this section witha statement of L1-estimates for the errors s� sh and p� ph in the two-dimensionalcase.Theorem 5.5. Assume that (p; s) and (ph; sh) satisfy (3.1), (3.2) and (4.5),(4.6), respectively, and the parameters hp and h satisfy (5.28). Thenmax0�n�nT kpn � pnhk0;1 � C logh�1p �E(T ) + hk��p kpkL1(J;Hk��+1(
))�;(5.35) max0�n�nT ksn � snhk0;1 � C� logh�1�
�E(T ) + hk+1kskL1(J;Wk+1;1(
))�;(5.36)where C = C(C1; C2; T ), 
 = 1 for k = 1, and 
 = 1=2 for k > 1.Proof. First, it follows from the approximation property of the projection Ph [27]that(5.37) kpn � ~pnk0;1 � Chk��p � logh�1p �1=2kpnkk��+1:Also, from [27, Lemma 1.2] and (5.13), we see thatk�nk0;1 � C logh�1p k�(sn�1h )�n + (�(sn)� �(sn�1h ))un+ �(sn�1h )�n + (G(sn�1h ; pn�1h )�G(sn; pn))k;so that, by Theorem 5.4, max0�n�nT k�nk0;1 � C logh�1p E(T ):This, together with (5.37), implies (5.35). Finally, apply the embedding inequality[36] k�nk0;1 � C� logh�1�1=2k�nk1;(5.3b), and (5.34) to obtain (5.36).6. Finite elements for a degenerate problem. In this section we considera degenerate case where the di�usion coe�cient D(s) can be zero. Since the pressureequation is the same as before, we here focus on the saturation equation. For simplicitywe neglect gravity. Then the saturation equation (2.11) can be written as(6.1) �@s@t �r � (D(s)rs � qw(s)u) = ~fw � s@�@t ; (x; t) 2 
� J:For technical reasons we only consider the Neumann boundary condition (2.15):(6.2a) (D(s)rs � qw(s)u) � � = �dw(x; t); (x; t) 2 @
� J;and the initial condition is given by(6.2b) s(x; 0) = s0(x); x 2 
;



20where 0 � s0(x) � 1, x 2 
. We impose the following conditions on the degeneracyof D(s):(6.3) D(s) � 8><>: �1jsj�1 ; 0 � s � �1;�2; �1 � s � �2;�3j1� sj�2 ; �2 � s � 1;where the �i are positive constants and �j and �j (j = 1; 2) satisfy the conditions:0 < �1 < 1=2 < �2 < 1; 0 < �j � 2:Di�culties arise when trying to derive error estimates for the approximate solu-tion of (6.1) and (6.2) with D(s) satisfying the condition (6.3). To get around thisproblem, we consider the perturbed di�usion coe�cient D�(s) de�ned by [13], [24],[35], [38] D�(s) = maxfD(s); ��g;where � > 0 and � = maxf�1; �2g. Since the coe�cient D�(s) is bounded away fromzero, the previous error analysis applies to the perturbed problem:�@s�@t �r � (D�(s�)rs� � qw(s�)u) = ~fw � s� @�@t ; (x; t) 2 
� J;(6.4a) (D�(s�)rs� � qw(s�)u) � � = �dw(x; t); (x; t) 2 @
� J;(6.4b) s�(x; 0) = s0(x); x 2 
:(6.4c)We now state a result on the convergence of s� to s as � tends to zero. Its proofis given in [24] for the case where dw � 0 and the right-hand side of (6.1) is zero, andcan be easily extended to the present case.Theorem 6.1. Assume that D(s) satis�es (6.3) and there is a constant C� > 0such that(6.5) C�jqw(s1)� qw(s2)j2 � (D(s1)�D(s2)) (s1 � s2); 0 � s1; s2 � 1;where D(s) = Z s0 D(�)d�:Then there is C independent of �, s, and � such that(6.6) jjs� s�jjL2+�(J;L2+�(
)) � C�:As shown in [24], the requirement (6.5) is reasonable. We now consider a fully-discrete �nite element method for (6.4). Let Mh be the standard C0 piecewise linearpolynomial space associated with Th; due to the roughness of the solution to (6.1) and(6.2), no improvements in the asymptotic convergence rates result from taking higherorder �nite element spaces. Also, we extend the domain of D� and qw as follows:D�(�) = � D�(1) if � � 1;D�(��) if � � 0;and qw(�) = 0; 8� 2 (�1; 0) [ (1;1):



21Now the �nite element solution snh : J !Mh, n = 1; 2; � � � ; nT to (6.4) is given by��@snh; v�+ �D�(snh)rsh � qw(snh)un;rv�(6.7a) = � ~fnw � snh @�n@t ; v�� hdnw; vi@
 ; 8v 2Mh;s0h = Phs0;(6.7b)where Ph is the L2-projection ontoMh. The following theorem states the convergenceof sh to s. For (6.8) below to be satis�ed, we see from (6.6) that the perturbationparameter � need to satisfy the relation � = O(h�1 ), where �1 is given by�1 = (4 + 2�)=(2 + 4�+ �2):Theorem 6.2. Let s and sh solve (6.1), (6.2) and (6.7), respectively, and let thehypotheses of Theorem 6.1 be satis�ed. Then there is C independent of �, s, and �such that(6.8) max0�n�nT jjs(tn)� snhjj2H�1(
) + nTXn=0 jjs(tn)� snhjj2+�L2+�(
)�tn� C�h(2+�)�1 �logh�1� �1+� +�t�2+22 �;where �2 = (2 + �)=(1 + �).The proof can be carried out as in [25], [35], and [38]; we omit the details.7. Simulation with various boundary conditions. Let @
 be a set of fourdisjoint regions �i, i = 1; � � � ; 4, and let �3 = [j�3;j where each �3;j is connected. Asmentioned in the introduction, the most commonly encountered boundary conditionsfor the two-pressure equations are of �rst-type, second-type, third-type, and well type.Then we consider for � = w; ap� = p�D(x; t); x 2 �1; t > 0;(7.1) u� � � + ��(x; t; s)p� = ��(x; t; s); x 2 �2; t > 0;(7.2) Z�3;j (uw + u�) � � = �j(t); x 2 �3;j ; t > 0;(7.3a) p� = p�D(x; t) + dj(t); x 2 �3;j ; t > 0;(7.3b) pa = paD(x; t); x 2 �4; t > 0;(7.4a) uw � � + �w(x; t; s)pw = �w(x; t; s); x 2 �4; t > 0;(7.4b)where p�D, ��, ��, and �j are given functions, dj is an arbitrary scaling constant,and � is the outer unit normal to @
. Note that �1 is of the �rst type, �2 is of thethird type (it reduces to the second type as �� � 0), �3 is of the well type, and on �4we have the Dirichlet condition for the air phase and the Neumann condition for thewater phase. Let �p;i = �i, i = 1; � � � ; 4, �s;1 = �1[�3, and �s;2 = �2[�4. Then theglobal boundary conditions for the pressure-saturation equations (2.9){(2.11) becomep = pD(x; t); x 2 �p;1; t > 0;(7.5) u � � + �(x; t; s)p = �(x; t; s); x 2 �p;2; t > 0;(7.6) Z�p;3;j u � � = �j(t); x 2 �p;3;j ; t > 0;(7.7a) p = pD(x; t) + dj(t); x 2 �p;3;j ; t > 0;(7.7b)



22 p = paD(x; t) + '(s); x 2 �p;4; t > 0;(7.8) s = sD(x; t); x 2 �s;1; t > 0;(7.9) (qwu+ k�aqw(rpc � ~�)) � �(7.10) + �w(x; t; s)p = �w(x; t; s); x 2 �s;2; t > 0;where pD and sD are the transforms of pwD and paD by (2.2) and (2.3), and� = �w + �a;� = �w + �a � �apc + � Z pc(s)0 qa �p�1c (�)� d�;�w = �w + �w Z pc(s)0 qa �p�1c (�)� d�;'(s) = � Z pc(s)0 qw �p�1c (�)� d�:We now incorporate the boundary conditions (7.5){(7.10) in the �nite elementscheme given in (4.5) and (4.6). The constraint Vh � V says that the normal com-ponents of the members of Vh are continuous across the interior boundaries in Thp .Following [2], [9], we relax this constraint on Vh by introducing Lagrange multipliersover interior boundaries. Since the mixed space Vh is �nite dimensional and de�nedlocally on each element K in Thp , let Vh(K) = VhjK . Then we de�ne~Vh = fv 2 (L2(
))d : vjK 2 Vh(K) for each K 2 Thpg;Lh;�1;f�jg;�3 = �r 2 L2� [e2@Thp e� : rje 2 Vh � �je for each e 2 @Thp ;(r � �1; r1)e = 0; r1 2 Vh � �je; 8e 2 �p;1;(r � �j ; r2)e = 0; r2 2 Vh � �je; 8e 2 �p;3;j ; for each j;(r � �3; r3)e = 0; r3 2 Vh � �je; 8e 2 �p;4�;andWh andMh are given as before. The mixed �nite element solution of the pressureequation is funh; pnh; `nhg 2 ~Vh�Wh�Lh;pnD;fpnD+dnj g;pnaD+'n�1 , n = 1; 2; � � � ; n satisfying(c(sn�1h ; pn�1h )@pnh;  ) +XK (r � unh;  )K = (f(pn�1h );  ); 8 2 Wh;(�(sn�1h )unh; v)�XK �(r � v; pnh)K � (`nh; v � �K)@K	 = (G(sn�1h ; pn�1h ); v); 8v 2 ~Vh;XK (unh � �K ; r)@Kn(�p;1[�p;4) = (�(sn�1h )� �(sn�1h )`nh; r)�p;2 +Xj (�nj ; r)�p;3;jj�p;3;j j ;8r 2 Lh;0;f0g;0;and the �nite element method for the saturation is given for snh 2Mh + snD satisfying��@snh; v�+ �D(sn�1h )rsnh � qw(sn�1h )unh � b(sn�1h ; pnh);rv�= � ~fnw � snh @�n@t ; v�� (�w(sn�1h )� �w(sn�1h )`nh; v)�2 ; 8v 2Mh;



23for n = 1; 2; � � � ; nT . The computation of these equations can be carried out as in(4.5) and (4.6). Note that the last equation in the unconstrained mixed formulationabove enforces the continuity requirement on uh, so in fact uh 2 Vh. It is well known[2], [9] that the linear system arising from this unconstrained mixed formulation leadsto a symmetric, positive de�nite system for the Lagrange multipliers, which can beeasily solved. Also, the introduction of the Lagrange multipliers makes it easier toincorporate the boundary conditions (7.5){(7.10).We now present a numerical example. The relative permeability functions aretaken as follows: krw = s� srw; kra = 1� s� sra;where srw and sra are the irreducible saturations of the water and air phases, respec-tively. The capillary pressure function is of the formpc(s) = (1� s)f
(s�1 � 1) + �g;where 
 and � are functions of the irreducible saturations. The water and air vis-cosities and densities are set to be 1cP and 0:8cP , and 100kg=m3 and 1:3kg=m3,respectively. The permeability rate is 1� 10�12m2. A two-dimensional domain of 4mwidth by 1m depth is simulated. Finally, the boundary of the domain is divided intothe following segments:�1 = f(x; y) : x = 0; 0 < y < 1g;�2 = f(x; y) : x = 4; 0 � y � 1g [ f(x; y) : y = 0; 0 � x < 4g;�3 = ;;�4 = f(x; y) : y = 1; 0 � x < 4g:A uniform partition of 
 into rectangles with h = �x = �y is taken, and the timestep �t is required to satisfy (5.28). The Raviart-Thomas space of lowest-order overrectangles is chosen. Tables 1 and 2 describe the errors and convergence orders for thepressure and saturation at time t = 1min, respectively. Experiments at other timesand on �ner meshes are also carried out; similar results are observed and not reportedhere. 1=h L1-error L1�order L2�error L2�order10 0.0570 - 0.0501 -20 0.0343 0.73 0.0245 1.0240 0.0186 0.88 0.0122 1.0080 0.0090 1.05 0.0059 1.02Table 1. Convergence of ph at T = 1min.



24 1=h L1-error L1�order L2�error L2�order10 0.0766 - 0.0695 -20 0.0526 0.55 0.0482 0.5340 0.0295 0.83 0.0271 0.8380 0.0167 0.82 0.0152 0.84Table 2. Convergence of sh at T = 1min.From Table 1, we see that the scheme is �rst-order accurate both in L2 and L1norms for the pressure, i.e., optimal order. Table 2 shows that the scheme is almostoptimal order for the saturation. Thus the numerical experiments in the two tablesare in agreement with our earlier analytic results.REFERENCES[1] S. Antoncev, On the solvability of boundary value problems for degenerate two-phase porous
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