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A NEW THEORY FOR ONE-DIMENSIONAL ADAPTIVE
GRID GENERATION AND ITS APPLICATIONS*

PRABIR DARIPAT

Abstract. The theory of a new approach to adaptive grid generation in one dimension is
developed. The approach is based on approximating either the resolution or the grid spacing ratio
on discrete lattice points by continuous variables. The order of accuracy of these approximations
in a suitable reference frame characterizes the various methods. Approximations that are first- or
second-order accurate in a suitable reference coordinate are derived in this paper. The free parameters
associated with these methods provide flexibility in generating a large family of adaptive grids with
smooth grid spacing ratio and high resolution. A selected group of this family of adaptive grids may
prove very useful in adaptive computations of partial differential equations. The adaptive grids are
numerically generated using these approximations. Numerical examples are given that exemplify the
usefulness of these adaptive grids.
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1. Introduction. Adaptive grids are used when the solution of a partial differ-
ential equation (pde) exhibits singular or near-singular behavior. Examples occur in
shock waves, traveling waves, and boundary layers. A correct selection of adaptive
grids will produce a highly accurate solution at an optimal cost. However, the use of
adaptive grids may increase the level of algorithmic complexity. The overall advan-
tages of using adaptive grids in an appropriate way compensate for the inconvenience
involved in generating and using these grids in the numerical solution of a pde.

There are two basic approaches to adaptive grid computations: the embedded
grid method and the moving grid method (see [1]-[26]). A suitable account of these
methods is given in Berger [3]. The embedded grid methods use a relatively coarse
initial grid at each time level, with finer grid patches in the regions requiring refine-
ment. The refined mesh patches generally consist of grid patterns that are similar
in shape to the initial level coarse grid pattern but that have a more dense grid pat-
tern. The refined mesh is generally obtained by subdividing the coarse grid element
requiring refinement into two or more smaller elements. Berger [3] presented a lo-
cally adaptive mesh refinement algorithm which is internally conservative, provides
estimates of the local errors, and provides heuristics for the automatic generation of
the embedded grid. This technique includes several features for error estimation that
provide consistent and efficient estimates of the errors across the entire mesh.

In the moving grid method, the grid points evolve with time in an appropriate
manner so as to improve the accuracy, reliability, and robustness of the solution
at an optimal cost. Flaherty and coworkers [1], [2] have developed a moving mesh
strategy in their finite element code based on equidistribution of discretization error.
K. Miller [21] and K. Miller and R. Miller [20] have developed a node movement
scheme based on minimization of residuals. Harten and Hyman [16] have developed a
moving mesh scheme in one dimension for hyperbolic equations based on averaging of
local characteristic velocities. Bieterman and Babuska [4] have applied the classical
method of lines to move the nodes. Dwyer [11], [13] and Matsuno and Dwyer [19] have
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used Poisson’s equation to generate adaptive grids. Dwyer, Kee, and Sanders [12] have
also used one-dimensional integral to generate adaptive grids. The contributions of
Sanz-Serna and coauthors [5], [26] and Ramshaw [24], [25] should also be cited. The
reader is referred to Larrouturou [18] and Pervaiz and Baron [22] for some interesting
applied problems using moving mesh schemes.

Here we briefly outline the idea behind the moving grid method of adaptive com-
putations. One of the ways to describe the idea of the moving grid method of com-
putation is as follows. A partial differential equation

(1.1) us = Lz, u, ug, - - +)

is transformed into

(12) Uur — UgT = L(:E’ Uy Ug,y * )

by means of the transformation { = {(z,t), T =t. In (1.1) and (1.2), L(z,u,---) is a
differential operator which may depend on z, u, us, Uz, and higher derivatives. The
mapping is carefully constructed so that in the ({,T) system the function u(¢,T) is
slowly varying in T and (.

It should be noted that the grid movement is associated with the second term in
(1.2). This system is augmented by an appropriate mapping function which closes
the system and couples the evolution of grid points with the evolution of the solution
function u. There are some variations on this basic idea, such as explicitly decoupling
the motion of the grid points and the solution variable u. The idea behind moving the
grids through the formulation (1.2) is to provide smoothing of near-singular temporal
development of the solution. This smoothing has the effect of allowing a larger time
step in numerical solution of (1.2) and appropriate augmented equations. However, as
the grids evolve there may arise problems such an grid entanglement, rapid variations
in grid spacing, and oscillations in the grid spacing ratio. The grid entanglement
problem may be avoided if the continuous movement of the grids is replaced by explicit
generation of the adaptive grids at each instant. This amounts to setting z7 = 0
in (1.2). Thus, the new coordinate ¢ is a function of z only where the grids are
constructed to adapt some appropriate properties of the solution u at each instant.
Even though this is the best possible simplification of the adaptive grid computation,
the problems of rapid variation in grid spacings and oscillations in grid spacing ratio
may persist. We briefly elaborate on this now.

In the numerical solution of (1.2), the discrete analogue of the system (1.2), even
without the second term involving zr, reduces to

(1.3) Au™Y) = B(u"),

which advances the solution from time level n to time level n+1. (The form of equation
(1.3) depends on the numerical method used.) In (1.3), A is a matrix that depends
on u™*! for a nonlinear problem. The matrix A and the vector B in (1.3) depend
on the adaptive grids, and if the grid spacings change too rapidly or the grid spacing
ratio oscillates, obtaining an accurate solution of (1.3) may be difficult. For nonlinear
cases, there may be convergence and/or stability problems.
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This paper develops a new approach to generating adaptive grids in one dimen-
sion. The adaptive grids generated by these methods have the following special prop-
erties: (i) very high resolution, yet satisfying the desired bounds on grid spacing ratio;
(ii) no oscillations in the grid spacing ratio; and (iii) flexibility in the order of accuracy
in an appropriate reference plane to be made precise below. However, in this paper
we consider only second-order accurate formulas exclusively for numerical purposes.
The purpose of the paper is to explore the feasibility of the new idea expounded here
and assess its merits in real applications. We address some theoretical issues of these
methods along with some numerical justifications of our analysis. We also address
applications of these adaptive grids in adaptive computations of partial differential
equations.

In §2 we define the properties of adaptive grids. In §3 we construct approximations
to these properties by continuous variables. Using these continuous descriptions and
a suitable definition for the mapping function, various useful theorems relating grid
spacing ratio, resolution, and the form of adaptivity are established in §4. In that
section, various theorems address how many useful properties of the adaptive grids
can be inferred directly from the function without actually generating the adaptive
grids. In §5 we mention some typical forms of adaptivity most often used in practice.
In §6 we briefly discuss some computational results which support our analysis of §4
and provide a meaningful guide to constructing practical algorithms. In §7 we describe
such an algorithm and in §8 we illustrate the use of such adaptive grids through some
numerical examples. Finally, we conclude in §9.

2. Some definitions. Let )¢ and €, be intervals in { and z space, respectively.
Consider a one-dimensional monotonic mapping z(¢) : Q¢ — €, with the property
that uniformly spaced ¢-grid points (grid points on ¢ axis will be referred to as ¢-grid
points) are mapped to nonuniformly spaced z-grid points. The mapping z(¢) will be
constructed so that rapidly varying functions f in  map into slowly varying functions
in ¢. The desired adaptivity is incorporated in the choice of z(¢). Let us denote by
h¢ the spacing between two consecutive (-grid points and let z; = z((;). The 2-
grid points constitute an adaptive grid. It is convenient to introduce the following
properties.

Resolution (s). The definition of resolution is motivated by the requirement that
the grid point concentration should be higher at locations of rapid variation in the
function values f(z). Therefore the mapping z(¢), which depends on f(z) as will
be seen later, should be carefully constructed so that the regions containing rapid
variations in f(z) are magnified much higher than the other regions. In this sense,
the resolution is synonymous with local magnification here, and hence a convenient
definition for resolution seems to be

d¢
2.1 s(x) = —.
(21) (0) = 3
Note that according to this definition, resolution is a continuous function.
Grid spacing ratio (r). The grid spacing ratio at the grid point z; is defined as
the ratio of the two adjacent grid spacings, i.e.,

(2.2) = 1l " %
Z; — Ti-1

Note that r; > 0 for a monotonic mapping and that it is a discrete function.
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3. Approximations. Either the resolution or the grid spacing ratio can be used
as the basic generator of the adaptive grids. However, these need to be approximated
numerically to establish the connection between the discrete adaptive grid coordinates
and the mapping z¢ : Q¢ — Q.. Below we use the notation n; and R(x;) to denote
the discrete approximation to the resolution s(z;) and the continuous approximation
to r;, respectively.

3.1. Approximations to resolution. Approximations of various orders to s(z)
can be obtained easily using Taylor series. As seen from (2.1), we are merely approx-
imating the first derivative z¢;. An appropriate first-order approximation n to s at a
grid point z; is

h
(3.1) ng=—=9" .
Tit1 — Zi
Similarly, other first-order approximations can be derived. Using Taylor series, we
find an appropriate second-order approximation to s(z):

(3.2) ni= — 20
Tit1 — Ti-1

Equations (3.1) and (3.2) can be derived by expanding z;+; and x;_; about z;. These
can be used to develop algorithms suitable for the grid generations [11]. Note that
according to definition (3.1), resolution measures the concentration of grid points.

3.2. Approximations to grid spacing ratio. In the same spirit as above,
definition (2.2) of the grid spacing ratio can be extended as continuous variables
within various orders of approximations.

3.2.1. First-order approximation. Using Taylor series, it is easy to rewrite
(2.2) in the following form:

— z¢(Gi)
(3.3) = iy Ok,

Therefore, to first-order accuracy, we can define

(3.4) Rg(alz) = x—c(@,

which is the approximation to r(x) due to neglect of O(h¢) terms in (3.3).

3.2.2. Second-order approximations. We now derive two second-order accu-
rate continuous analogues of (2.2). It follows from (2.2) that

_ _ Dol‘
(3.5) r(xz) —1=h¢ - and r(z)+1= 2D_9:’

where D, D_, and Dq are the forward, backward, and central difference operators,
respectively. For notational convenience, we have suppressed the subscript ¢ in (3.5).
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Using Taylor series, it is easy to see that these difference operators are related to their
corresponding differential operators by

(3.6) zee=DiD_z+ O(h%)
and
3.7 z¢ = D_xz+ O(h¢) = Dyxz + O(h¢) = Doz + O(hg).

Using (3.5)—(3.7), we have

Tee + O(h%) _

Ze 2

Alternatively, this may be written as

(3.9 riz)=14+a+ O(hf),
where
(3.10) a(z) = he 2.

¢

Therefore, to second-order approximation we may write

(3.11) r(zi) = Ri(x:),

where we have defined

(3.12) Ri(z) =1+ a(z).

In (3.11) we use the subscript 1 on R to distinguish it from another second-order
approximation Ry, which we derive below. Thus equation (3.11) is an appropriate
second-order accurate continuous extension of (2.2), provided that x¢ # 0, for all
¢ € Q¢ (see (3.10)). In fact, z¢ # 0 is guaranteed for a one-to-one smooth mapping
(see §4). Since addition of higher-order terms in (3.9) does not alter the order of
accuracy, it is possible to derive other second-order accurate continuous analogues of
(2.2). For example, it follows from (3.5), (3.6), and (3.7) that

r(x)+1 2 Doz 2 x¢+O(hZ)

r(z)—1  h¢DyD_z  h¢aec +O(h2)

(3.13)

Note that we have again suppressed the subscript i. A simple algebraic manipulation
gives
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_2+a(z)

(3.14) r(z) o)

+O(R2),

where « is again given by (3.10). Therefore, to second-order approximation we can
write

(315) T(il),;) = R2(.’1)i),

where we have defined

_ 24 a(x)

Expanding Rz(z) in a and dropping second- and higher-order terms in «, we recover
Ry (z). Since at @ = 0,R; = Ry = 1, which corresponds to uniform grid spacing,
a may be interpreted as a measure of nonuniformity between two consecutive grid
spacings.

We will be interested in generating adaptive grids using the second-order ap-
proximation methods (3.11) and (3.15). Some constraints arise due to numerical
approximations which we mention below.

3.3. Constraints. The natural constraint that arises due to the approximation
(3.11) is that

(3.17) a> -1,
so that mapping is monotonic, i.e., Ry = 1 + a > 0. Similarly, the approximation

method (3.15) satisfies the monotonic mapping property Ry > 0, provided

(3.18) —-2<a<

For reasons mentioned in §1, it may be necessary that the grid spacing ratio satisfies

(3.19) 0<r <r(z;) <ry Vz; € Qy,

where r; and r,, are given. We approximate this requirement to second-order accuracy
by

(3.20) 0<r < R<ry,

where R is either Ry or Ry, depending on the method used. It follows from (3.12) and
(3.16) that (3.20) will impose constraints on «, which is summarized in the following
proposition.

PROPOSITION 3.1. Given r;, and r,, (both must be positive), o must satisfy

(3.21) a<a(z)<b VzeQ,,
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where

rn—1 for R=Ry,
(3.22) a= 22 ; 1 for =Ry,
and

ro—1 for R=Ry,
(3.23) b= 2::;1 for = R,.

Proof. This follows easily from (3.12), (3.16), and (3.20). 0
Due to the leftmost inequality in (3.20), the natural constraints (3.17) and (3.18)
are embodied in (3.21).

4. Equations of grid generation. Consider the generation of one-dimensional
adaptive grids by direct integration of

(4.1) z¢ = c(k)w(z; k) onz; <z <z,

which maps Q¢ — Q.. The constant c(k) in (4.1) is a scaling constant which maps
Q, exactly onto Q¢. As we will see later (see (4.9)), this scaling constant depends on
the choice of the parameter k which we have shown explicitly in (4.1). From (3.4)
and (4.1) we see that the function a(x; k) also depends on the parameter k.

The adaptive grids are generated on the z axis. Without loss of generality, the
indices of the adaptive grid points on the x axis are taken as the coordinates of the
corresponding (-grid points, i.e., Q¢ : [(o = 0,{ny = N] — Qy : [0 = 2,8 = Zo].
Therefore, in the ¢ coordinate we have uniform spacing, given by h¢ = 1. This
convention gives a domain ¢ that is dynamically increasing as the number of z-grid
points increases. Thus, the two second-order accurate approximations of r(z) in the
previous section should be interpreted as O(Nl,;) accurate, which is the order of the
derivatives hidden in the O(h?) terms in §3.

The function w(x; k) is chosen to have the form

(42) w(a:; k) = ’lf)(:l), f(.’b), fzz; k)

The parameter k has been introduced so that this can be adjusted to obtain
desired bounds on grid spacing ratio. The required adaptivity is dictated by the
choice of w(z; k). However, the function w(z; k) must be properly chosen so that the
mapping is one to one.

The following theorem guarantees monotonicity of the mapping provided that
w(z; k) has the same sign for all z € Q,. Even though this is very obvious, we
mention it here for the sake of completeness.

THEOREM 4.1. If w(z; k) does not change sign in Q, and z,, > x;, then z¢ > 0,
(i.e. the mapping is monotonic).
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Proof. Since 0 < { < N, it follows that

Tu 1 Pu dg
(43) N=L, C””"””%‘@/m Wi k)’

If w(z; k) > 0, we have from (4.3)

(4.4) c(k) > 0.

Similarly, it also follows that c¢(k) < 0 if w(z;k) < 0 in Q;. Thus w(z;k) and c(k)
have the same sign in Q,, and hence

z¢e = c(k)w(z; k) >0 Ve, a

Usually, the form of %(. ; k) is chosen so that it is positive in [z;, z,]. Henceforth we
will assume that w(z; k) is positive for all z € Q.

The adaptive grids may be generated by direct integration of (4.1). However, in
this procedure the grid spacing ratio often turns out be a very oscillatory function.
Therefore a postprocessing operation would be required before these grids could be
used for practical purposes. The postprocessing would involve smoothing of the grid
spacing ratio and regeneration of the adaptive grids using this smoothed grid spacing
ratio. An alternative and better procedure would be to initially define a smooth
grid spacing ratio function and use this directly for the grid generation. This not
only avoids the problem above but is also less expensive. This has been the purpose
behind developing the grid spacing ratio based methods in §3. In addition, use of
(3.11) or (3.15) would generate higher-order grids as justified earlier. However, as we
have seen, these approximations induce additional constraints (3.21). This, in turn,
imposes a constraint on w, (k) which is summarized in the following proposition.

PROPOSITION 4.2. Given r; and 1, the w(z; k) must satisfy

(4.5) a< %g(wu; k)wg(z; k) < b,

where g(x; k) is defined as

(4.6) glaik) = [ ’ z,%

and the constants a and b are given in (3.22) and (3.23).
Proof. From (4.1) we have

(47) Tee = c(k)wmxc.

With h¢ = 1, a in (3.10) reduces to

(4.8) a(z; k) = c(k)wg(z; k).

Using (4.3) and (4.6), we have



THEORY AND APPLICATIONS OF ADAPTIVE GRIDS 1643

(4.9) elk) = ~9(au; b).

It follows from (4.8) and (4.9) that

(4.10) oz k) = %g(mu;k)ww(z; ).

Relation (4.5) follows from (3.21) and (4.10). o

Therefore w(z, k) must be chosen so that it satisfies (4.5). In grid generation,
it is of interest to know the locations of maximum and minimum resolution. This is
addressed in the following proposition. For the purpose of simplicity, the endpoint
extrema will not be dealt with in the rest of this paper.

PROPOSITION 4.3. Resolution attains its extremal values at zeros of o or, equiv-
alently, at R =1.

Proof. From (2.1) and (4.1) we have
(4.11) s(z) = (c(k)w(z; k)~

Differentiating s(z) with respect to « shows that

(4'12) Sg = _(c(k))_lw_2wz§

therefore w, = 0 where s, = 0. Substituting this in (4.8) gives @ = 0. Then from
(3.12) and (3.16) we have Ry =1 and Ry = 1. 0

4.1. Parametric control of (4.5). Proposition 4.2 provides the relation (4.5)
which must be satisfied by a proper choice of the mapping function w(z;k) and N.
However, in practice it may be convenient to vary one or both of the free parameters
k and N for a fixed form of w(z; k). Below we give details on how to choose N and
k so that (4.5) is satisfied.

A set of specified values of r; and r, may be divided into two basic groups: (i)
ry > 1, < land (ii)r, >r > 1L

Remark. The case (r; =1, r, = 1,) corresponds to uniformly spaced grids.

In terms of the constants a and b defined in (3.22) and (3.23), these two basic
groups correspond to (i) a < 0, b > 0, and (ii)) b > a > 0, respectively. The
functional form of w(x;k) is usually fixed by the desired adaptivity (see §5). We
now discuss how to select k or N in case (i). Case (ii) may be handled by a minor
modification of case (i).

4.1.1. Fixed k, adjustable N. Sincea < 0and b > 0, it follows from (4.5)
that N must be chosen so that

(4.13) N = max (M max wg, @mm w,,) .
x T

Thus N depends on the function f(z). This means that the number of grid points
has to be adjusted very often in time-dependent problems, where f(z) evolves in time.
This may be inconvenient and undesirable. An alternative procedure would be to keep
N fixed and vary the parameter k.
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4.1.2. Fixed N, adjustable k. To select proper values of k, so that (4.5) is
satisfied, we need some results. Hereafter, we assume that w(z; k) is of the following
form:

(4.14) w(z;k) = (k+v(@)7,
where
(415) ’U(CL‘) = f)(x’fmvfzz,’”)’

where v(z) > 0 and k is strictly positive. The form (4.15) is chosen because most of
the adaptions in use belong to this class (see §5).

THEOREM 4.4. a(z; k) is a monotone function of k. In particular, In|a(z; k)| is
a decreasing function of k and is given by

Onla| .
(4.16) 5 = Mk,
where
Loy 2( . 2(+.
(4.17) h(z;k) = 1 Bw?(z; k) + w? (k)] o,

 2g(z; k) o, w(t; k)

(Note that h(zx; k) is negative.)
Proof. Using (4.10) and simple calculations, we find that

1 [P W(wg(z; k), w(t; k))

4.1 = —
( 8) (675 N o 'w2(t; k) dt)

where W is the Wronskian of w, and w, and «y is the partial derivative of a with
respect to k. Using (4.14), expression (4.18) reduces to

_ a T [3w?(z; k) + w?(t; k)]
(4.19) = T2 k) Jay w(t; k) a

Expression (4.16) follows. Note that o is a monotone function of k since ay = 0 for
ap =0 from (4.19). 0

Let amax € {a(z; k) : az =0, azy <0} and omin € {a(z;k) : 0z =0, agg > 0} .
Thus amax and i, are the values of a local maximum and a local minimum, respec-
tively.

COROLLARY 4.5. If Qmax > 0 and apin < 0, then amax and amin are monotone
functions of k.

Proof. Tt follows from (4.19) that

aamax < aamin >

ok ~

(4.20)
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and
8'amax - aminl
4.21 ——== 77 <0
( ) ok -
Hence amax and api, are monotone functions of k. ]

Below the notation R denotes both R; and Rs.
PROPOSITION 4.6. The grid spacing ratio R(x; k) is a monotone function of k.
In particular, R is a decreasing (increasing) function of k if R>1 (R <1).

Proof. The first part follows immediately upon differentiating (3.12) and (3.16)
and using Theorem 4.4. On noticing in (3.12) and (3.16) that R > 1if @ > 0 and
R < 1if a <0, the second part follows from Theorem 4.4.

Let Rmax € {R(z;k) : Ry =0, Rz < 0} and Ruyin € {R(z;k) : Ry = 0, Ry > 0}.
Thus Rpax and Ryin are the values of a local maximum and a local minimum, re-
spectively. 0

COROLLARY 4.7. If Rnax > 1 and Ryin < 1, then Ryax and Ry, are monotone
functions of k.

Proof. It follows from previous proposition that

BRmax 8Rmin

2 < >
(422) ok — o ok ~— 0,
and

aIRmax - Rminl

. —_— <0
(4.23) % <0
Hence the corollary follows. 0

Theorem 4.4 through Corollary 4.7 are useful in finding a suitable value of k so
that (3.21) is satisfied. It is clear that (3.21) can always be satisfied by choosing a
large value of k. However, it will be desirable to find a best possible value of k (= Kopt)
so that (3.21) is satisfied for all k > kops. We take up this issue in §5.

Due to the continuous descriptions of the resolution and the grid spacing ratio,
further analysis can easily be carried out to establish some interesting properties.
Through such analysis we find that the critical points where resolution s(z; k) attains
its extremal values do not depend on the parameter k and are given by z* : v(z*) = 0.
In essence, we can calculate these critical points without generating the adaptive
grids. Even though this method may seem to be particularly of theoretical interest,
nonetheless it can be of interest in studying convergence properties of adaptive grids
with increasing number of adaptive grid points.

5. Remarks on the theorems and choices of w(z). At this point it is worth-
while to emphasize the importance of the theorems of the previous section. The con-
straints on the form of the adaptive function w(z; k) and the value of the parameter
k in w(z; k) are embodied in Proposition 3.1 and Theorem 4.1 through Proposition
4.3. Theorem 4.4 through Corollary 4.7 pertain to a specific form of w(z; k), namely,
(4.14). These results, in particular Theorem 4.4 through Corollary (4.7), are useful
in the selection of a proper value of the parameter & (see §6).

The specific form (4.14) of the adaptive function w(z; k) is chosen because a large
number of adaptive functions in practice is included in this class [5], [13], [19], [26].



1646 PRABIR DARIPA

Appropriate adaptivity, of course, is dictated by the problem. Usually, however, the

function w(z) is chosen so that it adapts the function f(z) or f.(z) or fyz(z) or a

combination of these. We cite some typical forms of w(x) for various types of adaption.
(a) Function adaption.

(5.1) w(z) = (ko + (f)20) 7.

(b) First derivative adaption. This form is usually used to resolve sharp gradients.

(5.2) w(z) = (k1 + (f2)?1) 7

(c) Second derivative adaption. This form is usually used to resolve sharp corners.

(5.3) w(@) = (ks + (fae)??) 7.

(d) First and second derivative adaption. This form is usually used to resolve
sharp corners and sharp gradients.

(5.4) w(z) = (14 k1 % (fo)* + ko x (f22)22) 7 .

(e) Spatial adaption. This form is usually used to resolve boundary layers.

(5.5) w(z) = Ce™®/8,

Note that, consistent with Theorem 4.1, w(z)(> 0) is of one sign in all these cases
and these forms are in class (4.14), justifying our interest in the analysis of §5. In all
of these adaptions, ko, k1, ko are arbitrary constants and ly, [1, [ are integer constants.
Usually the constants Iy, l1, l2 are taken to be 1. kg, k1, and k2 can be tuned to control
function, first and second derivative adaptivities, respectively. As seen from (4.1) and
the various adaptions mentioned above, the higher the values of [;, I, the more severe
is the concentration of grid points in regions of steep gradients and high curvature,
respectively.

In passing, we should mention that adaptive functions quite different from these
have been used in practice by some authors [12], [13].

6. Validation. This section is devoted to computations that support our anal-
ysis of the previous sections. We should recall that the functions R; and Rp ap-
proximate the discrete grid function 7(z) to second-order accuracy. Equating the
continuous and the discrete definitions of this grid function (i.e., (3.11) or (3.15)),
an appropriate algorithm can be set up for grid generation. Since our analysis here
is based on the continuous description, we carry out the computations below with a
large number of grid points for the purpose of validation. We set up the following
simple and direct algorithm which will work when the number of adaptive grid points
is large. In applications, however, the adaptive grid points will not be large and the
algorithm has to be modified, as seen in §8.

From (3.11) and (3.15), we obtain the following explicit form of generating the
adaptive grids:



THEORY AND APPLICATIONS OF ADAPTIVE GRIDS 1647

(6.1) Ti+1 = T4 + (th; - xi_l)R(wi),

where R can be either R; or R;. We apply this equation for i = 1, N — 1. This
method has the advantage that it is possibly the simplest way to generate these grids.
However, the serious disadvantage is that this method requires a correct initial guess
for z; and the constant ¢ (R depends on « and a depends on the constant ¢ through
(4.8)). Otherwise, z obtained from (6.1) for i = N — 1 will not be exactly what it
should be, i.e., the right boundary of €,. However, for large N, ¢ and z; are easy
to obtain from direct integration of (4.1). ; is obtained from interpolation and the
constant ¢ is obtained from (4.9). In the computations below, we use the continuous
function R = Ry (this has been found to be a more efficient grid generator than
others) and the following adaptive function:

(6.2) w(z; k) = (k+ £.2)7 .

In (6.2), the parameter k is user specified. The parameter k should be properly
selected because it affects some of the important features of the adaptive grids men-
tioned in §4. In particular, in the limit of extreme values of this parameter k, we
have

(63) w(x; 0) = |fw_1|a ww(w; 0) = _Sgn(fm)fa:_zf:cza
and
(6.4) w(z;00) =0, wg(z;00) = 0.

Then it follows from (6.4) that when k approaches infinity, o = cw, approaches
zero and the grid spacing ratio R (see (3.12) and (3.16)) approaches unity. Thus, in
this limit we have uniformly spaced grid points.

It also follows from (6.3) that in the other limit, k approaching zero, o = cw,
becomes singular at zeros of f, and f;., which is not allowed by the constraint (3.21).
We remark that in most practical instances, the function f, is likely to have a zero
in the domain of interest (this is true in the examples below). Thus it will be neces-
sary to choose k greater than some minimum value kmi,. In fact (3.21), (4.10), and
(4.14) imply that the parameter k must lie within some range and this can be easily
calculated if desired.

Ezxample 1. We consider the function

(6.5) f(z) = [1 +sgn(z — zc){1 — exp(-aX? +1/2)}]/2,

where X = 1/4/(2a) + |z — 2|, a = 2000, z. = %, sgn(z —z.) = 1 ifz >
z. and sgn(z —z.) = -1 if z < z..

This function is shown in Fig. 6.1(a). The Gaussian term contributes smooth
but rapid variation in the function values in the vicinity of the center of the domain.
The higher the value of a in (6.5), the steeper the function is. (We should note that
a smoother function than this is considered in [19] with no success.) The adaptive grid
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FIG. 6.1. Second-order adaptive grids with N = 1001 and k = 1. (a) function (6.5) in physical
space; (b) function (6.5); (c) discrete resolution; (d) grid spacing ratio. Figures (b), (c), and (d)
are in the reference frame.

should be able to resolve this fast variation. We generate the adaptive grids using
k =1 in (6.2) and N=1001 grid points. The function in the reference frame (grid
index space) is shown in Fig. 6.1(b). We see that the function is considerably spread
out in the region of interest. In Fig. 6.1(c) we have plotted log(n(i)), where n(z)
are computed from (3.1). We see that the maximum grid concentration is 2 x 10%,
equivalent to having 2 x 10* uniformly spaced grid points. Near the endpoints of the
domain, where the function is constant, the resolution is at a minimum and is about
6 x 102. This amounts to roughly a twofold increase in the grid spacing there.

Fig. 6.1(d) shows the variation of grid spacing ratio in the reference frame. We
notice an asymptotic grid spacing ratio of r = 1 near the boundaries of the domain
where the function is essentially constant. We also notice a rapid variation in grid
spacing in the vicinity of the sharp transition in the gradient of the function (see
Fig. 6.1(b)). Such rapid variations in grid spacing ratios is not likely to appear with
smaller number of grid points.
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F1G. 6.2. Effect of k on the adaptive grids k = 1 (solid line), k = 10 (dashed line ): (a) function
(6.6) in physical space, (b) function (6.6); (c) discrete resolution (3.1); (d) grid spacing ratio (2.2).
Figures (b), (c), and (d) are in the reference frame.

It should be seen in (6.5) and Fig. 6.1(a) that the function (f(z)—1/2) is odd about
z = z.. In Figs. 6.1(b)-6.1(d), we find that our computation preserves this property,
adding to the credibility of the theory and the computation. The computations are
done without invoking this symmetry.

Ezample 2. Here we consider the function [10]

(6.6) f(z) = }[1+ tanh(10%(z — 0.4))] exp[—((z — 0.4)/0.2)%],  x € [0,1].

This function, shown in Fig. 6.2(a), is a very good model for the profiles of shock
waves smoothed by slow diffusion. Figures 6.2(b)—6.2(d) show the effect of varying the
values of the parameter k on the different properties of the function in the reference
frame. In these figures, solid and dashed curves correspond to k¥ = 1 and k£ = 10,
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F1G. 6.3. Grid functions o and r as functions of k for function (6.6).

respectively. In Fig. 6.2(b) we see that an increase in the value of k decreases the
spread of the function in the reference frame. This is expected because k = oo
corresponds to uniform spacing, and hence there is no spreading of the function at
all. Figures 6.2(c) and 6.2(d) also support our analysis. We see in these figures that an
increase in the value of k decreases the peak resolution and the extremal grid spacing
ratio.

Figures 6.3(a)—6.3(d) show the variations of some properties of adaptive grids with
k, as obtained from our computations. These computations pertain to the function
(6.6) and are done with N=1001. We find that the Figs. 6.3(a)-6.3(d) are consis-
tent with our analysis. In Fig. 6.3(a), our computations show that amax and omin
are monotone functions of k, consistent with Corollary (4.5). Fig. 6.3(b) shows the
monotone property of the extremal grid spacing ratios as functions of k, consistent
with Corollary 4.7. These two curves approach 1 asymptotically with k¥ — oo. In Fig.
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F1G. 6.4. Comparison of continuous s(z) and discrete n(z) resolutions with N = 1001 for
the function (6.4): — corresponds to s(z) (2.1); - - - corresponds to n(x) (3.1); (a) discrete and
continuous resolutions in physical space with k = 5; (b) log of mazimum values of s(z) and n(z) as
function of the parameter k.

6.3(c), computations show that In |0max(k) — min| is a decreasing function of k, as
seen in (4.21). As seen in Fig. 6.3(d), ("max — Tmin) is a decreasing function of k and
will approach zero with k£ — oo, in agreement with our analysis.

In Fig. 6.4(a) we have plotted continuous and discrete resolutions as calculated
from (2.1) and (3.1) for the same function (6.6). We see that the comparison is
excellent, as these are virtually indistinguishable. In Fig. 6.4(b) we have plotted peak
values of both continuous and discrete resolutions, as functions of the parameter k.
Here again these two plots seem to agree very well. These calculations justify the use
of (3.15) for adaptive grid generation.

Note. It will be useful to note the following which, in part, we have mentioned
in §4 and in the above analysis of computational results: (i) peak resolution and
peak grid spacing ratios are decreasing functions of k. Thus high values of maximum
resolution and low values of grid spacing ratio, both of which are desirable, act against
each other. It therefore follows easily that to contain grid spacing ratio within some
limit, there is an upper bound on the maximum resolution and hence a lower bound
on the value of k (see Fig. 6.3(b)). (Of course, this value of k£ must be greater than
Kmin, as mentioned earlier.) These observations bear on what follows next.

6.1. Grid generation with r;, and r, specified. The monotonic profiles of
extreme values of a(k) and R(k) in Figs. 6.3(a) and 6.3(b) can be used to advantage
in automating the procedure for generating adaptive grids with following properties:
(i) highest possible peak resolution and (ii) grid spacing ratio within some prescribed
limits r; and r,. The importance of the first consideration is obvious, as this is one
of the motivating factors behind adaptive grid generation. As mentioned earlier, the
second consideration is important for stability of some numerical methods on adaptive
grids.

From Fig. 6.5(a) we should notice that for arbitrarily prescribed values of r; and
Tu,
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(b) are at r; = 0.85 and r, = 1.25.

6.7) k() # k(ra),

except in very fortunate situations. (In the present formulation of the problem, there
does not exist a value k such that ryin(k) = r; and rmax(k) = r,, for arbitrary r; and
7y.) From this and Fig. 6.5(a) it follows that k must be chosen so that

(6.8) k > max(k(ri), k(ry)).

This will ensure that the grid spacing ratio is within the prescribed limits. How-
ever, in order to have the highest possible resolution, the smallest allowed value of k
should be chosen (see Fig. 6.4(b)):

(6.9) k = max(k(r1), k(r))-

With this choice of k, adaptive grids will in general have either ry;, = 71 OF Thax =
r4. Regardless of which situation is realized in computation, we will always have
[Pmax, Tmin] € [ru — 71], as'seen in Fig. 6.5(a). In Fig. 6.5(b), we show the grid
spacing ratio of the adaptive grids that are generated with prespecified r; = 0.85 and
7y = 1.25. The graphs rmin(k) and rmax (k) are constructed numerically and the value
of k is chosen from these graphs according to (6.9). This is shown in Fig. 6.5(a).
With this choice of k, the adaptive grid is generated. The grid spacing ratio of this
generated adaptive grid is shown in Fig. 6.5(b). We find rmax = 1.25 and rmin =
0.87015 (see Fig. 6.5(b)) and hence this adaptive grid is an acceptable grid according
to our earlier discussion.

This section has been devoted to justifying the validity of formula (3.1) in con-
structing a suitable set of grids. However, the practical algorithms for construction
of adaptive grids with or without the prescription of r; and r,, have to be different for
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the following reasons: (i) if N is small, then the zy obtained from our algorithm will
not in general be the right boundary z, of Q; (ii) in this algorithm with =, and 7,
specified, the appropriate value of k is obtained from the curves rmiy (k) and ryayx (k).
However, since these curves are monotone, a Newton type algorithm can easily be de-
vised to find the appropriate value of k. This way these curves need not be generated
at all.

In §7 we address some practical algorithms for generating adaptive grids. In §8
we apply these to solve some applied problems. To this end, we would like to add the
following remarks.

6.2. Remarks. (1) It should be noted that we have used first derivative adap-
tivity (5.2) in both the examples presented here and that the grid spacing ratio has
only one maximum and one minimum (Figs. 6.1(d), 6.2(d)). However, with different
adaptivity and different functions, the grid spacing ratio may have quite a few max-
ima and minima. In this situation, it is likely that Ry« has discontinuities in its first
derivative. These would arise when the location of the global maximum changes dis-
continuously as a function of k, which can happen when there are more than one local
maximum. The same scenario is likely to happen for the global minimum. Naturally,
similar situations also arise for the amax(k) and amin (k) curves.

(2) By introducing one free parameter k in the mapping (4.1), we have been
able to generate adaptive grids so that grid spacing ratio can be controlled with the
qualifications explained previously (see (6.9)). However, there exists a possibility of
introducing another parameter so that the generated grid has spacing ratios rmax = 4
and ryi, = 7.

7. A practical algorithm. In the previous section we described a simple al-
gorithm which works well with a large number of grid points. The algorithm is well
suited for the purpose of demonstrating the worth of the new adaptive grid genera-
tors. However, this algorithm needs to be modified so that it works with any arbitrary
number of adaptive grid points.

Since the boundary points z¢y and zn of the domain Q are known, construction
of adaptive grids using (6.1) requires solving a system of (N — 1) coupled equations.
The (N — 1) coupled difference equations (6.1) satisfy the equation

(7.1) X =AX +F,

where

X=(II)1,.’L‘2,.’E3,"‘,.’L'N_1)T, F=(0)010)"')07L)T,

and A is a tridiagonal matrix with

Ai'i = —7‘(:1)1;), Az’,i—-l = 7"(;’(,','), and Ai,i+1 =1.

The matrix equation (7.1) may be rewritten as

(7.2) QX =F,
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where Q@ = I — A is a diagonally dominant matrix. Equations (6.1) and (7.2) are
nonlinear due to the dependence of the matrices A and @) on the unknown solution
vector X. Equation (7.2) can be solved by various iterative methods. Note that R
depends on the constant ¢ and may seem to be a free parameter in the present method
of solving, subject to appropriate constraints discussed earlier.

Initially, the grid point coordinates are guessed and then these values are updated
by solving (7.2) in an iterative loop until some convergence criterion is met. The value
of the parameter ¢ may be kept constant at a user-specified value during iterations or
may be updated in each iteration using the following formula:

(7.3) (k) = / - %.

0

This is obtained by integrating (4.1) up to the first adaptive grid point. Note that
this is equivalent to (4.8) when the number of grid points tends to infinity.

Numerical experiments suggest that very high resolution can be obtained by using
an appropriate value for the constant c. In fact, we find that increasing c increases the
resolution. However, an inappropriate value for the constant ¢ may cause problems:
the converged grid values may be nonmonotonic or contain points from outside the
domain or both; or the iteration may not converge. Therefore the constant ¢ can not
be chosen arbitrarily. The following procedure has been found very successful in our
experiments: The constant ¢ should be initially calculated using (7.3) for the first few
iterations until the convergence rate slows down, and thereafter ¢ is to be held fixed
at a value between two to four times its current value. Also with some trial and error,
a suitable value of ¢ can be found which can be kept fixed all through the iterations.

It must be stressed at this point that some care should be exercised in selecting
the criterion for convergence, otherwise the error in the grid location can be more
than the smallest size of the adaptive grid, which is not known a priori. For example,
this may be dynamically set at 1% of the smallest grid spacing of the current iteration
level.

We consider yet another example which will also be of interest in the next section:

(7.4) f(z,t) = 1 — 2/etanh[z//],

where € is a constant. We chose € = 0.001. The grids were generated for this function
using the above algorithm with £k = 1, N = 201 and with various values of the
constant ¢. In Fig. 7.1 we show that the effect of varying the constant ¢ on the grid
properties for fixed k = 1. Notice that an increase in the value of c increases resolution
and grid spacing ratio. In this example, the maximum value of the resolution with
¢ = 0.01, ¢ = 0.015, ¢ = 0.02 and ¢ = 0.03 are, respectively, 2.49, 3.21, 3.59, and 4.13.
This is equivalent to having 310, 1621, 3900, and 13500 uniformly spaced points,
respectively. This is a remarkable gain obtained only with 201 adaptive grid points.
In contrast we obtain only a modest gain in resolution in the traditional method of
integration and interpolation. In the method we obtained a resolution of only 2.45,
equivalent to having only 280 uniformly spaced points.

Figure 7.1 also suggests that resolution may be nonuniform in the sense that
some part of the function may be highly resolved compared to other parts. If the
variation in resolution itself is rapid, then the resolved function may develop some-
what steep gradients even in the reference plane. Ideally, slow variation in resolution is
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Fi1Gc. 7.1. Adaptive grid properties as a function of the constant ¢ with fired N = 200 and fized
k = 1. (a) function (7.4) in the physical space; (b) function (7.4) in the index space; (c) discrete
resolution; (d) grid spacing ratio. Figures (b), (c) and (d) are in the reference frame. The values
of the constant c for four different families 1, 11, III, IV of the curves in each of the Figs. 6.1(b),
6.1(c), and 6.1(d) are 0.01, 0.015, 0.02, and 0.03, respectively. The curve between 1 and Il in Fig.
6.1(b) refers to curve II.

also desirable. Due to this nonuniformity, an adaptive grid with highest maximum
resolution may not always be desirable. In the Fig. 7.1 the adaptive grids obtained
with ¢ = 0.02 (curve III in the Fig. 7.1(b)) seems to be more desirable than that
(curve IV in Fig. 7.1(b)) with ¢ = 0.03.

8. Numerical examples. In the previous section, adaptive grids were numeri-
cally constructed by an algorithm based on our new grid generators. In this section we
apply these grids in tracking fronts that arise in convection-diffusion equations and
hyperbolic equations. In particular we consider one-dimensional Burgers’ equation
and Buckley-Leverett equation in porous media flows. Even though these equations
are simple examples, nonetheless these are valuable test cases for studying usefulness
of these grids. In a sequel, these adaptive grids will be applied to solving nonlinear
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Fi1G. 8.1. Comparison of adaptive and exact solution to Burgers’ equation at t = 0.0, 0.25, and
0.5, respectively. The wave travels to the right.

hyperbolic conservation laws by various numerical methods.

8.1. Burgers’ equation. Burgers’ equation is given by

(8.1) Us + Uy = €Ugg, z € [0,1],

where € is a constant. This constant is to be chosen sufficiently small to have sharp
diffusive fronts. In the computations below, we have used € = 0.01. An exact solution
to this equation is given by

(8.2) u(z,t) = 1 — 2y/etanh[(z — t)/Ve].

The initial and boundary data are chosen appropriately using (8.2). Note that the
initial data corresponds to the example used in §7, except for the value of e.

There are many methods for adaptive computations of partial differential equa-
tions. Since our main focus here is in the use of the grids, we have chosen a simple
method, namely, the static regridding method [26]. In static regridding method the
adaptive grids are generated at every time interval and computation is advanced one
time level on these adaptive grids.

The initial set of adaptive grids is generated using our algorithm of the previous
section using ¢ = 0.02 and N = 201 grid points. The values of the solution to the
equation above at the adaptive grid points are contrasted against the exact solution
in Fig. 8.1. The speed of the numerical front and other details are seen to be in-
distiguishable from the correct values within graphical accuracy. This run shows the
ability of these new sets of adaptive grid to resolve fronts accurately.

8.2. Buckley—Leverett equation. The one-dimensional Buckley—Leverett equa-
tion in porous media is given by

(83) st + fa(s) =0, z € [0,1],
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F1G. 8.2. The nonconvex flux function.

where

32

(84) f(s) = TTA=%

is usually referred to as the flux function. Appropriate initial and boundary data
will be specified later. Physically, (8.3) describes the conservation of mass of water
saturation s in porous media flow, e.g., water pushing oil in porous media [14]. The
constant g in (8.4) is the viscosity ratio of the two fluids. Notice that the function
f(s) is nonconvex with one inflexion point. The flux function is shown in Fig. 8.2 for
p=0.1.

Equation (8.1) is solved here by Glimm’s random choice method on an adaptive
grid generated by our method. The random choice method is a semianalytical tech-
nique based on a constructive existence proof for solutions of hyperbolic equations due
to Glimm [14]. This was developed into a numerical method by Chorin [7]. We give
a very brief description of the method. For details, see [7], [15], [23]. The solution at
any time level is approximated by piecewise constant data. To advance the solution
in time, the Riemann problem at each location of discontinuity is solved. The solu-
tion within each mesh cell at the new time level is the exact solution of the Riemann
problem at a point chosen at random within that mesh cell. The timestep is chosen
so that the Riemann problem solutions do not interact during that time interval. The
method is shown in Fig. 8.3.

In the example below we choose p = 0.1 and the following initial data:

s=8" fors<05 and s=0 fors>0.5,

where s* is shown in Fig. 8.2. This allows the initial discontinuity to travel at an
exact speed of 2.15831. Figure 8.4 compares the exact solution with the numerical
solution at four different time levels at time interval of 0.063. The results compare
very well and are within graphical accuracy.

Appendix. Some comments. It is worth noting an alternative formulation
which is equivalent to (4.1). On differentiating (4.1), we obtain
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F1G. 8.4. The comparison of numerical and ezact solutions of Buckley—Leverett equations at
three different time levels. The solutions are indistinguishable.

-1
(A1) T =— (li) ¢,

which can be inverted to yield

(A2) Coz = P(C)

with appropriate P(¢). This is the one-dimensional Poisson equation. This equation
has been used by Dwyer [13] and Matsuno and Dwyer [16] for adaptive grid genera-
tion. In [16], the finite difference approximation is iteratively solved with an initial
guess of z(¢) until some convergence criterion is met. In their study, Matsuno and
Dwyer encountered convergence problems in their iteration scheme for the second
test problem mentioned in §6 and suggested developing better methods for obtaining
the solution of grid Poisson equation. Thus, in their method there is no guarantee



THEORY AND APPLICATIONS OF ADAPTIVE GRIDS 1659

that the iteration will converge [16]. Their method also introduces constraints on the
choice of w(z). To elaborate on this, suppose the numerical approximation of z¢¢ is
second-order accurate, so that the z¢¢ is obtained from the following truncated Taylor
series.

(A3) Tip1 — T = T¢ + 1/2:1:(4.

For the mapping to be monotonic, ;11 — x; > 0, and hence from (A3) it follows that

(A4) xe +1/2x¢¢ > 0,

which is equivalent to

T S
(A5) 2C > =2,

Then, using the mapping (4.1), (A5) may be rewritten as

(A6) c% > =2,
¢

which is equivalent to

In [16], Matsuno and Dwyer arrive at the same restriction as (A7) but in a some-
what different manner.
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