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Abstract

The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid
fuels. Although the platform’s chemistry and engineering are well studied, relatively little is known about the mixed
microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively
fermenting platform communities incubated under contrasting temperature conditions (mesophilic 40uC; thermophilic
55uC), but utilizing the same inoculum and lignocellulosic feedstock. Community composition segregated by temperature.
The thermophilic community harbored genes affiliated with Clostridia, Bacilli, and a Thermoanaerobacterium sp, whereas the
mesophilic community metagenome was composed of genes affiliated with other Clostridia and Bacilli, Bacteriodia, c-
Proteobacteria, and Actinobacteria. Although both communities were able to metabolize cellulosic materials and shared
many core functions, significant differences were detected with respect to the abundances of multiple Pfams, COGs, and
enzyme families. The mesophilic metagenome was enriched in genes related to the degradation of arabinose and other
hemicellulose-derived oligosaccharides, and the production of valerate and caproate. In contrast, the thermophilic
community was enriched in genes related to the uptake of cellobiose and the transfer of genetic material. Functions
assigned to taxonomic bins indicated that multiple community members at either temperature had the potential to
degrade cellulose, cellobiose, or xylose and produce acetate, ethanol, and propionate. The results of this study suggest that
both metabolic flexibility and functional redundancy contribute to the platform’s ability to process lignocellulosic substrates
and are likely to provide a degree of stability to the platform’s fermentation processes.
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Introduction

As energy demands place increasing pressure on global fuel

reserves, the need to develop stable, renewable alternatives to fossil

fuels continues to become more urgent. Biomass-based fuels are

expected to help offset these demands and, in some cases, are

mandated to do so [1,2]. For example, the US National

Renewable Fuel Standard calls for the volume of renewable fuel

blended into US transportation fuels to increase from 9 billion

gallons in 2008 to 36 billion gallons by 2022 [3].

Biomass can be converted into liquid fuels using a number of

different biorefining approaches, one of which is the carboxylate

platform [4,5]. An alternative to the aseptic fermentation of simple

sugars (i.e., ethanol production from sugar or starch) or

thermochemical conversion processes, the carboxylate platform

operates under non-sterile conditions and uses a mixed community

of anaerobic microorganisms to convert lignocellulosic materials

into chemicals and liquid fuels [5,6]. These features allow the

platform to be flexible in terms of the variety of feedstocks it can

accommodate. Further, it is cost-effective in that it does not

require the addition of exogenous enzymes to carry out its

conversion and fermentation processes. The platform’s primary

products are short-chain carboxylates (e.g., acetate, propionate,

and n-butyrate (Figure 1A)), which can be transformed through

downstream chemistry into alcohols, jet fuel, and gasoline. The

spectrum of products produced by the platform is temperature

dependent [7,8,9] and can be varied in response to market

demands.

Although it has long been recognized that microbes are integral

to the functioning of the carboxylate platform, and a variety of

inoculum sources have been evaluated in attempts to improve

platform performance [10], the microbial communities that

underlie it have long been treated as a black box [4,11]. Recent

work, however, has begun to shed light on them, demonstrating
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that communities which perform well under the anaerobic, warm,

and relatively salty conditions of the carboxylate platform tend to

be dominated by bacteria and harbor substantial flexibility with

respect to the identities of the taxa involved in the platform’s

bioconversion processes [12,13]. Relatively simple consortia

dominated by Clostridium- and Bacillus-like organisms appear to

be characteristic of thermophilic fermentations, whereas sub-

stantially more diverse consortia enriched in Bacteroidetes,

Actinobacteria, and members of the Firmicutes typify mesophilic

fermentations [9,12,13]. Despite both temperature conditions

harboring many Clostridium-like organisms, few are shared in

common.

The composition of the carboxylate platform communities that

have been characterized to date suggests that, like many rumen

and gut communities, they operate synergistically, with different

portions of each community performing niche metabolic processes

that result in the cooperative degradation of materials that would

otherwise be difficult for individual species to digest [14,15,16].

Although the composition of platform communities provides

strong clues regarding the function of their component members,

16S rRNA-based data cannot actually confirm this. It is clear that

these communities can convert biomass into carboxylic acids, but

the specific means through which they do this (i.e., metabolic

pathways), and the degree to which parallel pathways are utilized

within and between communities, remain unknown.

Metagenomics, the direct sequencing and analysis of DNA from

mixed communities, provides a means through which functional

genes may be identified, pathways elucidated, and metabolic

strategies compared. Here we present the characterization of two

carboxylate platform fermentor metagenomes operating under

contrasting temperature conditions, which are known to harbor

distinctly different bacterial consortia produce divergent spectra of

mixed acid products [9]. The objectives of this study were to

identify the similarities and differences shared between these two

metagenomes and compare the fermentor metagenomes to those

of other well-established lignocellulose-degrading consortia.

Results

After 16 days’ incubation, the mesophilic and thermophilic

fermentations resulted in similar rates of biomass conversion,

selectivity, yield, and productivity (Table S1); however, the two

temperature conditions differed with respect to the abundances of

multiple acids within their product spectra (Table 1). Significant

differences were observed with respect to the abundances of

propionic (C3), valeric (C5), and caproic (C6) acids, each of which

was produced in greater quantities by the mesophilic community.

Shotgun sequencing efforts resulted in the production of more

than 2.5 million sequence reads per fermentor library, represent-

ing 900 and 588 Mbp of sequence data for the thermophilic and

mesophilic metagenomes, respectively (Table 2). A large pro-

portion of these reads assembled successfully into ‘‘large’’ contigs

(i.e., $1 kb), with one of the largest contigs exceeding 300 kb in

length. The degree to which the protein-coding genes contained

within each library could be associated with a predicted function,

KEGG orthology, or COG category ranged from 45 to 60%,

depending on the metric used but tended to be similar between the

two metagenomes (Table S2).

Both metagenomes harbored a core set of genes associated with

housekeeping, general metabolism, and other functions. Of the

Figure 1. Generalized pathways underlying the conversion of lignocellulose to short chain fatty acids in the carboxylate platform.
A) During primary fermentation, pentose and hexose sugars are converted into pyruvate, which may be converted downstream into a variety of
primary products (outlined in gray). B) These primary products may undergo secondary fermentation, including chain elongation with ethanol.
Multiple arrows indicate that several steps may be involved in the conversion of substrate to product.
doi:10.1371/journal.pone.0039689.g001
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approximately 4900 COGs, 5600 EC categories, and 11,900

Pfams evaluated, 11%, 2.5%, 3.3%, respectively, were found to

differ significantly between the two fermentor communities.

Despite such high levels of similarity, significant differences were

detected between the mesophilic and thermophilic metagenomes

with respect to the relative abundances of multiple Pfams

(Figure 2), COGs, and enzymes. These included the enrichment

of genes related to substrate binding, arabinose metabolism, and

the degradation of oligosaccharides in the mesophilic metagen-

ome, as well as the enrichment of genes related to the uptake of

cellobiose and transfer of genetic material (i.e., transposases,

integrases) in the thermophilic metagenome. Complete lists of the

functions that were found to differ significantly between the

metagenomes are provided in Tables S3, S4, and S5.

Glycosyl hydrolases, families of enzymes key to the degradation

of carbohydrate molecules, were well represented in the fermenter

metagenomes (Table 3). A total of 1314 GH were identified in the

thermophilic metagenome, and 3387 GH were identified in the

mesophilic metagenome, representing 0.45 and 0.6% of the

protein coding genes identified in each community, respectively.

The GH families detected represent known carbohydrate-active

enzymes, including cellulases, endohemicellulases, debranching

enzymes, and oligosaccharide-degrading enzymes. Each of the

GH families detected in the thermophilic fermentor metagenome

was also present in the mesophilic community, but significant

differences were found with respect to the relative abundances of

several. Of particular note were the enrichments of GH48, a family

of cellobiohydrolases, in the thermophilic metagenome and GH43,

a family of arabinose- and xylose-degrading enzymes, in the

mesophilic metagenome. The fermentor metagenomes resembled

other well-characterized lignocellulose-degrading metagenomes

[14,15,16,17] (Table 3), with the exceptions that the carboxylate

platform metagenomes tended to be enriched with respect to GH

48 and depleted with respect to the a-L-rhamnosidase associated

with GH 78.

The phylogenetic distribution of sequence reads indicated that

both fermentor metagenomes were dominated by genomes

resembling Clostridium- and Bacillus-like isolates (Figure 3). In

addition to these, reads associated with isolate genomes from the

Bacteroidia, c-Proteobacteria, b-Proteobacteria, and Actinobac-

teria were also detected. The two metagenomes also displayed

a high degree of coverage for several isolate genomes from the

bacterial classes mentioned above (Table 4). For example, the

55uC community contained sequence data representing approx-

imately 89% of the protein coding sequences harbored by

Thermoanaerobaterium thermosaccharolyticum DSM 571 and 86% of

the protein coding sequences contained within Symbiobacterium

thermophilum IAM 14863. Likewise, the 40uC community harbored

genes for multiple nearly complete Clostridium spp. genomes, much

of a genome resembling Klebsiella pneumoniae, and a large portion of

a Bacteroides sp. genome. Protein recruitment plots of the

metagenomes relative to these isolates are presented in Figures S1

and S2.

Multiple metagenome sequence bins were parsed from the

thermophilic and mesophilic fermentor communities (Table 5).

Three major bins were identified within the 40uC metagenome

and an additional 9 bins were identified within the 55uC
metagenome. The bins from the mesophilic community corre-

sponded to two organisms from the Bacteroidales and a member

of the Actinomycetales; however, no bins resembling members of

the Clostridia or Gammaproteobacteria (e.g., Klebsiella) were

parsed successfully from the mesophilic sequence library. Bins

generated from the thermophilic community were found to

represent multiple members of the Clostridiales and Thermo-

anaerobacterales, as well as a member of the Bacillales. Single

copy gene analysis was used to estimate bin completeness, and the

identification of duplicate conserved single copy genes was used as

an indicator of over-binning. Bin completeness ranged from 71–

100%, but in some cases it appears that over-recruitment of

sequence reads is likely to have occurred. In particular, Bin 10

from the thermophilic metagenome appears to represent multiple

species or strains of Thermoanaerobacterium, and Bin 1 from the

mesophilic metagenome is likely to represent multiple Bacteroides.

Major fermentation-related functions associated with each bin,

as inferred through pathway reconstruction, are also presented in

Table 5. Most bins appeared to have the potential to degrade

Table 1. Distribution and relative abundance (%) of fermentation products following 16 day’s incubation under contrasting
fermentation temperatures.

Relative abundance of acid products (%) 1

Treatment Acetic (C2) Propionic (C3) Butyric (C4) Valeric (C5) Caproic (C6)

40uC incubation 51.6360.84 a 12.8162.06 a 28.3961.64 a 2.6060.37 a 4.5660.72 a

55uC incubation 58.6962.84 a 1.3860.69 b 39.5262.54 a 0.4260.42 b ND b

1Values represent the mean of three replicates 6 SE, and all isomers of a given volatile fatty acid are summed together.
a, bWithin a column, the use of different letters as superscripts indicates a statistically significant difference between fermentation temperatures (p,0.05), as determined
by Student’s t-test.
ND refers to acid products that were not detected.
doi:10.1371/journal.pone.0039689.t001

Table 2. Metagenome summary statistics.

Metagenome Total number of reads
Total amount of sequence
(Mbp) Number of contigs Large contigs ($1 kb) Longest contig (bp)

55uC 2,129,475 683 23,406 18,329 233,318

40uC 2,261,434 482 29,995 19,452 312,540

doi:10.1371/journal.pone.0039689.t002
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cellulose, cellobiose, or xylose, as well as a variety of simple sugars.

Likewise, the potential to produce acetate, ethanol, and propionate

was distributed widely across the bins, but the potential for

butanoate and caproate production was detected less frequently

and limited to fewer sequence bins.

Discussion

Limited understanding of the microbial ecology of the

carboxylate platform has been identified as one of the major

barriers to its adoption and implementation at large, industrially

relevant scales [4]. It is known that an important interplay exists

with respect to the physiology of the platform’s microbial

communities and the conditions under which they operate, but

research regarding the ecology of these communities and the

potential to manage their biomass conversion abilities is still in its

early stages. Recent studies have begun to establish a baseline

understanding of the types of organisms associated with the

platform and the ways in which they vary under different

operating conditions [9,12,13]. The results of the work described

here extend these findings beyond 16S rRNA gene characteriza-

tions and provide new information regarding the metabolic

potential harbored by platform bacteria.

The taxonomic composition of the fermentor metagenomes

closely mirrors that which was observed using 16S rRNA gene

pyrotag sequence libraries [9]. The thermophilic metagenome

contained large numbers of sequences originating from Thermo-

anaerobacterium, Clostridia, and Bacilli, the same major taxa

identified in the fermentor via 16S rRNA gene libraries. Likewise

the mesophilic metagenome contained large numbers of sequence

reads originating from the dominant members of its associated16S

rRNA gene libraries, including members of the Clostridia,

Bacteroidia, Proteobacteria, and Actinobacteria. In some cases,

near-full length coverage was achieved for isolate genomes

representing these taxa (Table 4).

Despite harboring communities that differed dramatically from

a taxonomic point of view, the two metagenomes were quite

similar to one another with respect to their functional gene

content. Depending on the metric used (i.e., COG categories,

Pfams, EC categories), 80 to 97% of functions were present in

similar proportions across the two communities. As might be

expected, many of these functions were related to central

metabolism and general housekeeping, but they also included

genes and pathways related to lignocellulose degradation. The two

metagenomes shared similar types and abundances of cellulase

(Table 3), but at finer levels of detail differences among genes

related to substrate uptake and utilization were identified,

complementing the variation observed between the fermentor

metagenomes with respect to acid production and community

composition.

Relative to the thermophilic metagenome, the mesophilic

metagenome was significantly enriched in genes related to the

degradation of hemicellulose-derived oligosaccharides, and more

specifically, the five-carbon sugar, arabinose. In fact, nearly 9% of

the glycosyl hydrolases identified in the mesophilic metagenome

were related to GH43, a CAZy family composed of arabinases.

The potential for enhanced metabolism of arabinose in the

mesophilic metagenome makes sense given that the mesophilic

community was dominated by Bacteroidete-like organisms. Many

Bacteroidetes are known degraders of arabinose and other

hemicellulose-derived sugars, and some Bacteroides sp. have the

ability to convert arabinose to propionate [18]. Although we did

not quantify arabinose concentrations in our fermentor system, we

did quantify propionic acid concentrations (i.e., the conjugate acid

to propionate). Propionic acid concentrations were significantly

greater under mesophilic fermentation conditions (Table 1), and

the combination of abundant Bacteroidetes and enriched

arabinases provides a plausible explanation for enhanced propio-

nic acid production.

In contrast to the mesophilic arabinase enrichment, the

thermophilic metagenome was significantly enriched in genes

related to the uptake of cellobiose. Although one might interpret

this result to mean that the thermophilic metagenome had the

potential to utilize cellobiose more effectively, we would suggest

Figure 2. Pfams significantly enriched in the thermophilic (55uC, black) and mesophilic (40uC, gray) metagenomes. Negative Z-
normalized log odds ratio values indicate Pfams that were enriched in the mesophilic community, and a complete list of the Pfams that were found to
be significantly different between the two communities is provided in Table S3.
doi:10.1371/journal.pone.0039689.g002

Carboxylate Platform Metagenome Comparison

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e39689



that the two communities were equipped to process cellobiose

differently. In the thermophilic community, a C. thermocellum-like

organism would be expected to degrade cellulose via (extracellular)

cellulosomes [19], resulting in the release of cellobiose into the

surrounding medium and creating a potential need for cellobiose

transporters within the cellulose-degrader and among other

members of the community. Indeed, many of the thermophilic

taxa identified via taxonomic binning and isolate genome mapping

efforts were equipped for the uptake and utilization of cellobiose.

In contrast, the relative depletion of cellobiose transporters,

coupled with the relative enrichment of glucosidases (Tables S4

and S5), in the mesophilic community suggests that extracellular

degradation may be the dominant mode of cellobiose utilization

when the platform is operated under mesophilic conditions.

In addition to differences related to substrate uptake and

utilization, we also found the thermophilic metagenome to be

significantly enriched in genes related to the transfer of genetic

information, including transposases, viral integrases, and pilus

proteins (Figure 2). Although the larger implications of this finding

are uncertain, it is possible that the temperature conditions or

limited diversity associated with the thermophilic community

might be conducive to horizontal gene transfer [20]. Alternatively,

the detection of these genes may be a function of the evolutionary

history of the taxa we encountered, as horizontal gene transfer is

believed to have played an important role in the development and

distribution of cellulase systems [21].

Among the cellulose-degrading metagenomes described to date,

it has been typical to find cellulases and hemicellulases accounting

for 0.5% or more of protein-coding genes (e.g., [16,17,22]).

Table 3. Distribution of selected CAZy families biomass-degrading metagenomes.

Proportion of GH detected (%)

CAZy function GH family* 55uC reactor 1 40uC reactor 1 Termite hindgut 2 Wallaby foregut 3 Compost 4 Cow rumen 5

Cellulases GH5 3.12 2.27 7.96 1.80 2.58 5.23

GH6 0 0 0 0 0.94 0

GH7 0 0 0 0 0.17 . 0.01

GH9 1.22 1.03 1.28 0 2.92 2.86

GH44 0.08 0.03 0.85 0 0 nr 6

GH45 0 0 0.57 0 0.09 0.41

GH48* 1.07 0.27 0 0 0.09 0.01

Endo- GH8* 0.15 0.77 0.71 0.18 0.69 1.19

hemicellulases GH10* 3.65 1.95 6.54 1.97 4.21 3.69

GH11 0.46 0.27 1.99 0 0.60 0.59

GH12* 0 0 0 0 0.34 0

GH26* 1.60 0.53 2.13 0.90 1.63 1.33

GH28 1.07 1.51 0.85 0.36 0.77 1.70

GH53 1.29 0.89 1.71 1.62 0.26 nr

Debranching GH51* 3.96 2.16 2.56 2.15 1.03 nr

enzymes GH54 0 0 0 0 0 nr

GH62 0 0 0 0 0.43 . 0.01

GH67 0.91 1.06 1.42 0.90 2.06 0.43

GH78* 1.06 2.16 0 4.48 4.72 4.54

Oligosaccharide GH1 8.90 8.80 3.13 10.95 6.78 0.91

degradation GH2 4.41 5.23 3.27 4.31 3.78 5.17

GH3 7.31 8.18 9.81 12.92 7.04 10.25

GH29 1.90 1.59 0 0.36 2.23 3.38

GH35 0.84 1.00 0.43 0.54 0.52 0.57

GH38 1.98 2.04 1.56 0.54 1.55 0.98

GH39* 2.13 1.30 0.43 0.18 0.94 1.13

GH42* 1.98 2.92 3.41 1.44 1.89 1.34

GH43* 5.78 8.68 2.28 1.80 7.81 nr

GH52* 0.53 0.18 0.43 0 0 nr

All other GH 44.60 45.18 46.68 52.60 43.93 54.29

Total GH 1314 3387 703 557 1165 27,755

1This study; 2 Warneck et al. 2007; 3 Pope et al. 2010; 4 Allgaier et al. 2010; 5 Hess et al. 2011.
6nr – Not reported by authors.
*GH family names followed by an asterisk(*) indicate significant differences in GH family abundance between the reactor metagenomes, as detected by normalized log-
odds ratios and false discovery rate correction.
doi:10.1371/journal.pone.0039689.t003
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Similarly, 0.45% of the protein-coding genes identified in the

thermophilic metagenome, and 0.6% of the protein-coding genes

identified in the mesophilic metagenome, fell into these categories.

The carboxylate platform metagenomes also tended to resemble

other lignocellulose-degrading metagenomes with respect to their

general distribution of genes across glycosyl hydrolase families

(Table 3). Two notable exceptions were the enrichment of GH48

(a family of cellobiohydrolases) and the depletion of GH78 (an a-
L-rhamnosidase) in the carboxylate platform metagenomes

relative to the compost, cow rumen, and Tamar wallaby

metagenomes. Such shifts in GH abundance may be related to

differences in community composition, feedstock composition (i.e.,

sorghum vs. switchgrass vs. mixed plant biomass), or the chemistry

of the host environment. Given that these same GH families

differed significantly between the two fermentor metagenomes

(which utilized the same sorghum feedstock), community compo-

sition seems to be the most likely explanation.

In contrast to most of these other systems, our interest in the

carboxylate platform communities extended beyond lignocellulose

degradation and included the production of volatile fatty acids.

Acetate, propionate, and n-butyrate typically dominate the

product profile of the carboxylate platform, but smaller fractions

of valerate, caproate, and heptanoate are also commonly produced

[11]. Acetate typically accounts for .50% of the platform’s

product spectrum but may be produced in greater proportions

under thermophilic conditions [7,8]. The production of pro-

Figure 3. Phylogenetic distribution of metagenome reads according to best BLAST hits IMG database isolate genomes.
doi:10.1371/journal.pone.0039689.g003

Table 4. Metagenome coverage of isolate genomes.1

Fermentation Isolate genome
Metagenome
homologs

Isolate genome protein
coding genes 2 Coverage (%)

55uC Thermoanaerobacterium thermosaccharolyticum DSM 571 2475 2770 89

Symbiobacterium thermophilum IAM 14863 2872 3337 86

Moorella thermoacetica ATCC 39073 1960 2523 77

Clostridium thermocellum 3 2391 2979 – 3236 74 – 80

Geobacillus sp. 3174 3477 – 3828 83 – 91

40uC Clostridium botulinum 3872 2207 – 4097 94 – 175

Klebsiella pneumoniae 4426 5195 – 5768 77 – 85

Clostridium saccharolyticum DSM 2544 3040 4299 71

Bacteroides sp. 3482 3652 – 5959 58 – 95

Clostridium sp. 2492 2949 – 4266 58 – 86

Clostridium phytofermentans ISDg 2301 3902 59

1Ranges provided for isolate genome protein coding gene counts and coverage values are in cases where genome sequences of multiple isolates exist for a given
species.
2Values obtained from the IMG/M database (http://img.jgi.doe.gov/cgi-bin/m/main.cgi).
3Isolate strain designations used in instances where ranges are provided include:
C. thermocellum (DSM 4150, DSM 2360).
Geobacillus sp. (C56-T3, WCH70, G11MC16, Y4.1MC1, Y12MC52).
C. botulinum (type A-Hall, BoNT/A1 ATCC 19397, BoNT/A1 Hall, F Langeland, BonT/A3 Loch Maree, B Eklund 17B, BoNT/B1 Okra, NCTC 2916, type C-Eklund, Bf, E3 Alaska
E43, A2 Kyoto-F, Ba4 657, E1 BoNT Beluga, D 1873, F 230613 ).
K. pneumoniae (MGH78578, 342, NTUH-K2044, rhinoscleromatis ATCC 13884).
Bacteroides sp. (2_1_7, D2, dorei 5_1_36/D4, 9_1_42FAA, D1, 2_2_4, 1_1_6, 3_2_5, 4_3_47FAA, 2_1_16, 2_1_22, 2_1_33B, 3_1_33FAA, D20, 1_1_14, 20_3, 3_1_19,
3_1_23, D22).
Clostridium sp. ( L2-50, SS2/1, M62/1, 7_2 _3FAA).
doi:10.1371/journal.pone.0039689.t004
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pionate and butyrate also tend to vary with temperature [9].

Propionate production is typically reduced under thermophilic

conditions and was significantly so here (Table 1). In contrast,

butyrate production tends to be enhanced under thermophilic

conditions. Genes associated with the production of ethanol,

acetate, propionate, and butyrate were found in both metagen-

omes, and pathway reconstruction efforts suggest the presence of

full metabolic pathways for these products within many of the

thermophilic and mesophilic metagenome bins (Table 4).

Although several of the thermophilic metagenome bins appear

to have the ability to produce propionate, very little was detected

in the thermophilic product pool following 16 days’ fermentation.

Closer inspection of the thermophilic metagenome indicates that

in addition to possessing the suite of genes necessary for

propanoate production, it also contains the genes necessary to

perform propionate oxidation via the methylmalonyl-CoA path-

way [23]. Through this pathway, propionate may be oxidized to

acetate or butyrate. Thus, the lack of propionate in the

thermophilic product pool may be the result of its utilization in

the production of secondary metabolites. Alternatively, the

propanoate pathway may not be utilized actively, but rather

may be present as an adaptive strategy reserved for coping with

changing environmental conditions or substrate availability.

Long-chain fatty acids, including valerate and caproate, were

also of particular interest for this study, because of their high

energy densities, the relative ease with which they can be

converted into drop-in ready fuels, and their inherent coupling

to H2 production [24,25]. Valerate and caproate are typically

produced through the secondary fermentation of ethanol or

hydrogen and shorter-chain VFAs, in the absence of methanogens

[25] (Figure 1B). The enzymes butyryl-CoA dehydrogenase and

NADH: ferredoxin oxidoreductase (rnfABCDEFG) are considered

key to the chain-elongation reactions that transform acetate to

butyrate and butyrate to caproate [26], and a similar mechanism is

thought to be responsible for the elongation of propionate to

valerate [25]. Butyryl-coA dehydrogenase and acyl-coA dehydro-

genases potentially involved in the production of longer-chain fatty

acids were detected in both metagenomes. The COG category

representing this group of genes (COG1960) was significantly

enriched in the mesophilic metagenome (Table S4) and may have

contributed to the enhanced production of valerate and caproate

observed in the mesophilic fermentors.

Based parallel detection of functional genes and metabolic

pathways within the fermentor metagenomes and across the

metagenome sequence bins, the results of this study suggest that

both metabolic flexibility (in terms of the types of substrates that

may be metabolized) and a high level of functional redundancy are

likely to be important to the carboxylate platform’s ability to

process lignocellulosic substrates. Although many cellulolytic

microorganisms are considered to be specialists with respect to

substrate preference and utilization [21], metabolic pathway

reconstruction efforts focused within the fermentor metagenome

sequence bins suggest that many of organisms identified were not

limited to roles as specialist consumers, but rather, appear to have

the ability to utilize a wide variety of cellulosic- and hemicellulosic-

sugars. Likewise, many of these organisms also appear to share the

potential to produce multiple fermentation products, including

acetate and/or ethanol, propionate, and butanoate. The presence

of parallel metabolic pathways within each of the fermentor

communities may confer a degree of stability to the fermentation

process [27], despite evidence suggesting that the composition of

the communities themselves may be flexible and dynamic [9].

Historically, mixed-community fermentations have been per-

ceived as unstable and unpredictable [4,28]. As sequencing

technologies open the door to larger-scale and longer-term

characterization of these communities, new evidence is emerging

to suggest that these systems are more predictable than previously

thought [29]. It is anticipated that coupling an understanding of

the functional potential of fermentor communities, such as those

described here, with studies that evaluate the range of community

responses to perturbation and changes in operating parameters

will be invaluable to our ability to control and predict fermentor

performance and move forward in the implementation of these

technologies at large, industrially relevant scales.

Materials and Methods

Feedstock preparation, inoculum source, and fermentor
construction
As described in Hollister et al. [9], biomass from a photo-period

sensitive, high-tonnage sorghum cultivar (Sorghum bicolor (L.)

Moench) was obtained from the Sorghum Breeding and Genetics

Program at Texas A&M University and used as feedstock. Prior to

its use, the sorghum was dried, chipped, and treated with hot

water and lime (0.1 g Ca(OH) 2) and 10 mL distilled H2O per g

dry biomass; 2 h at 100uC) to enhance its digestibility [30].

Marine sediment, collected from Galveston, TX, USA, has

proven to be one of the best-performing carboxylate platform

inoculum sources identified to date [10]. As such, sediment

collected from Galveston served as the reactor inoculum.

Sediment was collected from a series of shoreline pits, at a depth

of 0.5 m, the point at which the sediment’s color transitioned from

yellow/brown to dark gray/black. Sediment samples were placed

into bottles containing deoxygenated water, 0.275 g L21 sodium

sulfate, and 0.275 g L21 cysteine hydrochloride, as described by

Thanakoses et al. [10]. The bottles were held on ice during

transport to the laboratory, and then they were stored at 220uC
until later use. Prior to inoculation, a single sediment sample was

thawed, shaken vigorously, and allowed to settle by gravity.

Aliquots of the resulting supernatant were used to inoculate the

fermentor vessels.

Fermentations were performed in a series of 1-L polypropylene

centrifuge bottles fitted with a stirring and venting apparatus [8].

Each fermentor contained 50 mL marine sediment inoculum, 36 g

lime-treated sorghum, 4 g dried chicken manure (included as

a nutrient source and potential source of additional inoculum;

obtained from the Poultry Science Center at Texas A&M

University, College Station, TX), and 350 mL deoxygenated

water, as well as calcium carbonate buffer (CaCO3, 15 g L21) and

iodoform (CH3I, 20 g L21, used to inhibit methane production).

Fermentors were flushed with N2 prior to capping and were rolled

continuously at 2 rpm throughout their incubation. Two in-

cubation temperatures (40 and 55uC) were utilized, and the

fermentors were set up in such a way that a set (n=3) of vessels

from each temperature treatment could be sacrificed for DNA

extraction. The metagenomes described here were collected as

a part of a larger study aimed at characterizing carboxylate

platform microbial community dynamics at multiple time points in

a typical laboratory-scale fermentation [9].

Fermentor monitoring and sample collection
Carbon dioxide (CO2) and methane (CH4) production, pH, and

total carboxylic acid concentrations were monitored every two

days over the course of the incubation, and as fermentations were

terminated, samples of both the solid and liquid phases were

collected for chemical analysis. Fermentor vessels were centrifuged

in a Beckman J-6B centrifuge (Beckman Coulter, Inc., Brea, CA,

USA) with a swinging bucket rotor at 32976g for 30 minutes to
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separate fermentor solids and liquids. An aliquot of supernatant

was collected and subjected to carboxylic acid analysis, as

described by Hollister et al. [9], and solids were analyzed to

determine the mass of the remaining undigested volatile solids

(VS). The solids were first dried at 105uC and then ashed at 550uC
[8]. The VS content of each sample was calculated as the

difference between its oven dry weight and its ashed weight.

Fermentor performance was characterized at multiple time

points using metrics such as conversion, selectivity, yield, and

productivity. Conversion was quantified as the proportion of VS

that had been digested relative to the quantity of VS initially

loaded into the fermentor. Selectivity was calculated as the fraction

of digested material converted specifically to carboxylic acids.

Yield was determined by calculating the ratio of total carboxylic

acids produced relative to the quantity of VS initially loaded into

the reactor, and productivity was defined as the rate of acid

production (g acid L21 d 21). Comparisons of these values, as well

as the relative abundances of various acid products at the mid-

point of the fermentation (i.e., when the metagenome samples

were collected), were conducted using paired, two-tailed Student’s

t-tests, and p-values ,0.05 were considered to represent significant

differences.

DNA extraction
Fermentor materials for the shotgun metagenome sequence

libraries were collected after 16 days’ incubation, the approximate

mid-point and typically most productive stage for laboratory-scale

carboxylate platform batch fermentations. Solids and liquids from

each replicate were combined in equal volumes to create a single

composite sample for each temperature condition. The composites

were stored at 280uC until DNA extraction. Just prior to

extraction, fermentor samples were thawed and centrifuged at

40006g for 10 min. DNA was extracted from the pellet materials

using a PowerMax soil DNA extraction kit (Mo Bio Laboratories,

Inc., Carlsbad, CA, USA), using a lysozyme-modified version of

the manufacturer’s protocol [31]. Following elution, DNA samples

were concentrated via ethanol precipitation and purified using

illustra MicroSpin S-400 HR columns (GE Healthcare Bio-

Sciences Corp, Piscataway, NJ, USA). DNA samples were quality

checked according to US DOE Joint Genome Institute (JGI)

protocols (http://my.jgi.doe.gov/general/index.html) and were

submitted to the JGI for sequencing.

Metagenome sequencing, assembly and analysis
DNA from the fermentor samples was used to construct 454

standard shotgun sequencing libraries according to manufacturer’s

recommended protocols. An additional 8 kb insert paired-end 454

library was constructed from the 40uC fermentor DNA. A total of

two full runs of 454 Titanium sequencing were completed for each

of the two communities: one shotgun and one paired-end for the

40uC community, and one run from each of two shotgun libraries

for the 55uC community. This yielded a total of 588 Mb

(,2.58 million reads) and 900 Mb (,2.59 million reads) of raw

sequence for the 40uC and 55uC communities, respectively.

Sequence reads were quality trimmed to an accuracy of 99.3%

using LUCY [32] and duplicate reads were identified and

removed prior to assembly. Filtered and quality trimmed reads

were assembled with Newbler version 2.4. Approximately 67% of

the filtered reads from the 40uC sample and 92% of the filtered

reads from the 55uC sample assembled into contigs, which

represented 58% and 76% of raw reads, respectively. All resulting

contigs and unassembled singlet reads were submitted to IMG/M

[33], a metagenome-specific version of the Integrated Microbial

Genomes (IMG) database annotation pipeline [34], which includes

multiple gene-finding algorithms and BLASTx search capabilities.

Reads were annotated through comparison with the KEGG

database via BLASTx, using an e-value cutoff of 161025 [34], and

enzyme EC numbers were assigned based upon KEGG orthology

(KO) terms [33]. COGs were identified via a reverse PSI-BLAST

of the CDD database, using an e-value cutoff of 161022 [34]. The

phylogenetic distribution of the metagenome protein coding

sequences was determined using best BLASTp hits to sequenced

isolate genomes at similarity cutoffs ranging from 30 to 90% [33].

Coverage of these isolate genomes was determined as described by

Lykidis et al. [35], whereby the proportion of best-BLAST hits to

metagenome protein coding genes was calculated relative to the

total number of protein coding genes contained in each isolate

genome. Differences in gene content (e.g., COGs, enzyme

categories, or Pfam classes) were identified using a Z-normalized

log odds ratio test, which evaluated the relative enrichment or

underrepresentation of gene categories between the two metagen-

omes. Significance values were adjusted for multiple comparisons

using a false discovery rate correction equivalent to p,0.05.

Specific corrected p-value cutoffs for KEGG, COG, and enzyme

category comparisons are provided in Tables S3, S4, and S5,

respectively.

Searches for glycosyl hydrolases (GH), as identified by the

CAZy database [36] and described by Warnecke et al. [16], were

performed through BLASTx searches and by evaluating hits to

Pfam hidden Markov models (HMM) in the IMG/M system. Top

hits to each contig were utilized. An e-value cutoff of 1026 was

used in conjunction with our BLAST results, and HMM searches

were implemented as described in Mavromatis et al. [34].

Differences in GH abundance were evaluated using the Z-

normalized log odds ratio test as described above, and p-values

were adjusted for multiple comparisons using a false discovery rate

correction equivalent to p,0.05.

The Classifier for Metagenomic Sequences software tool

(ClaMS-CLI; http://clams.jgi-psf.org/) was used to cluster the

metagenomic sequences into phylogenetic bins. The binning of

metagenomic sequences attempts to separate sequence data into

clusters that represent the taxa from which they were originally

derived. A kmer length of 3 was used in conjunction with a de

Bruijn chain algorithm, a distance cut-off of 0.01, and a training

set constructed from phylogenetic marker COGs that were

identified within each metagenome using IMG/M. Potential

outlier sequences were removed from bins on the basis of G+C
content (%) and depth of coverage; those that deviated more than

one standard deviation of the mean for G+C (%) and/or depth of

coverage from their respective bins were excluded from further

analyses.

Bin completeness was evaluated using pangenomic and single-

copy gene approaches, as described by Hess et al. [14]. Best

BLAST hits of the protein coding genes contained within each

metagenome bin were used to assign identities at the phylgenetic

order level. Collections of COGs from genomes corresponding to

the order of each bin were assembled from the finished genomes

available in the IMG database [32]. Those COGs that appeared

in all genomes of a given order were designated as core to the

pangenome and were used as the basis for evaluating bin

completeness (i.e. the % of core genes identified). Single copy

genes that occurred in a conserved manner across all available

finished genomes at a given phylogentic order were used to

evaluate potential ‘‘over-binning’’ among the sequence bins,

whereby the number of conserved single copy genes that were

detected multiple times were expressed as a proportion of the total

number of single copy genes expected. The identities of the

genomes used are provided in Table S6. Following bin verifica-
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tions, the functional pathways contained within each bin were

reconstructed utilizing KEGG orthology terms and the MinPath

software package [37].

Metagenome sequence data are available through the IMG/M

system (http://img.jgi.doe.gov/m) and are identified as ‘‘Mixed

Alcohol (MixAlco) bioreactor’’ samples. Sequence data may also

be accessed through the NCBI Sequence Read Archive under

accession SRA044949.

Supporting Information

Figure S1 Protein recruitment plots of the thermophilic
metagenome versus high-coverage isolate genomes. The
length of each genome is depicted along the x-axis. BLAST hits

with.30% identity are indicated by blue, hits with.60% identity

are indicated by green, and hits with .90% identity are indicated

by red.

(TIF)

Figure S2 Protein recruitment plots of the mesophilic
metagenome versus high-coverage isolate genomes. The
length of each genome is depicted along the x-axis. BLAST hits

with.30% identity are indicated by blue, hits with.60% identity

are indicated by green, and hits with .90% identity are indicated

by red.

(TIF)

Table S1 Fermentor performance metrics following 16
days’ incubation.
(DOC)

Table S2 Proportion of protein coding genes (%) re-
ceiving a functional annotation within each of the
databases listed.
(DOC)

Table S3 Pfams significantly enriched or depleted
between the thermophilic and mesophilic metagen-
omes, as determined using a z-normalized log odds
ratios (Z-LOR).

(DOC)

Table S4 COGs significantly enriched or depleted
between the thermophilic and mesophilic metagen-
omes, as determined by z-normalized log odds ratios
(Z-LOR).

(DOC)

Table S5 Enzymes significantly enriched or depleted
between the thermophilic and mesophilic metagen-
omes, as determined by z-normalized log odds ratios
(Z-LOR).

(DOC)

Table S6 Genomes used to identify phylogenetic order-
level core genes and conserved single copy genes (CSGS).

(DOC)
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