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ABSTRACT

We obtain new non-extremal rotating black hole solutions in maximal five-dimensional

gauged supergravity. They are characterised by five parameters, associated with the mass,

the two angular momenta, and two independently-specifiable charge parameters. Two of

the three charges associated with the U(1)3 Cartan subgroup of the SO(6) gauge group

are equal, whilst the third can be independently specified. These new solutions generalise

all the previously-known rotating solutions in five-dimensional gauged supergravity with

independent angular momenta. They describe regular black holes, provided the parameters

lie in appropriate ranges so that naked singularities and closed-timelike curves (CTCs) are

avoided. We also construct the BPS limit, and show that regular supersymmetric black

holes or topological solitons arise if the parameters are further restricted in an appropriate

manner.

http://arxiv.org/abs/0709.0559v1


1 Introduction

The development of the AdS/CFT correspondence in string theory [1, 2, 3] has led to a

growing interest in the construction of five-dimensional solutions in gauged supergravity,

which can be related to four-diemensional boundary field theories. Of particular interest

in this context are the solutions for five-dimensional black holes which are asymptotic to

AdS spacetime at large distance. The AdS/CFT correspondence is more solidly grounded

in the case of BPS configurations, which are protected by supersymmetry. Asymptotically-

AdS BPS black holes must necessarily have non-zero rotation in order to be free from

naked singularities or other pathologies. Thus when considering non-BPS black holes, it

is appropriate to include rotation as well, so that one can take a smooth limit, free of

pathologies, to reach the BPS configurations.

From the standpoint of the AdS/CFT correspondence one is most interested in find-

ing such black-hole solutions within the maximal SO(6)-gauged N = 8 five-dimensional

supergravity, since this is the theory that arises from the Pauli reduction of the type IIB

superstring on S5. Black holes with Abelian gauge fields can therefore carry 3 indepen-

dent charges, associated with the three U(1) factors in the Cartan subgroup of SO(6).

Equivalently, one can think of such charged black holes as solutions of N = 2 gauged five-

dimensional supergravity coupled to two additional vector multiplets. (These two vectors,

plus the graviphoton of the N = 2 supergravity itself, carry the three charges.) The general

black-hole solution should then be characterised by its mass, the two independent angular

momenta associated with rotations in the two orthogonal spatial 2-planes, and the three

independent charge parameters.

The currently-known charged non-extremal rotating black-hole solutions in the five-

dimensional gauged supergravity are as follows. For black holes with two the independent

rotation parameters, the uncharged solution (Kerr-AdS) was found in [4] and the solution

with all three charges equal was found in [5]. In addition, a solution with only one charge

non-zero was found in [6], and a solution where two charges are equal, with the third

having a specific non-vanishing charge related to the other two was found in [7]. In the

much simpler situation where the two rotation parameters are set equal, the solution with

three independent charges was obtained in [8].

The general non-extremal solution with two independent rotations and three indepen-

dent charges is still unknown. The purpose of the present paper is to advance one step

further to this goal. Here, we construct the solution for a non-extremal black hole in five-

diemensional gayged supergravity with the two independent angular momenta and with
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two independent charge parameters. This corresponds to the situation where two of the

three charges in the general solution are set equal, whilst the third can be independently

specified. For appropriate specialisations of the charge parameters in our new solution, all

the previous cases in [5], [6] and [7] mentioned above can be obtained.

Having constructed the non-extremal solution we may also consider the limit where

a BPS bound is attained. In general this describes a supersymmetric configuration with

singularities or closed timelike curves (CTCs) outside a Killing horizon. By making a further

specialisation of the parameters, we can obtain a class of “regular” BPS black holes, with

neither naked singularities nor naked CTCs. This additional specialisation also ensures that

the Hawking temperature at the horizon is zero, as it must be for a regular supersymmetric

black hole.

2 The Black Hole Solution

As with earlier work on non-extremal asymptotically-AdS rotating black holes, the com-

plexity of the equations of motion and the absence of any solution-generating techniques

means that the only practicable method for finding solutions involves a large measure of

guesswork and trial and error, followed by explicit verification of the field equations. In this

task we were aided greatly by knowledge of the solutions in the previously-obtained special

cases, especially those in [5], [6] and [7].

The five-dimensional Lagrangian for the bosonic sector of N = 2 gauged supergravity

coupled to two vector multiplets can be written as

L =
√−g

[

R− 1

2

2
∑

α=1

(∂ϕα)
2 +

3
∑

i=1

(

4g2X−1

i − 1

4
F i
µνF iµν

)

]

+
1

24
|εijk|εuvρσλF i

uvF j
ρσAk

λ , (1)

where g is the gauge-coupling constant, and the quantities Xi are formed from the two

scalar fields ϕ1 and ϕ2 in the vector multiplets:

X1 = e
− 1√

6
ϕ1−

1√
2
ϕ2

, X2 = e
− 1√

6
ϕ1+

1√
2
ϕ2

, X3 = e
2√
6
ϕ1

. (2)

We find that the following is a solution of the resulting equations of motion:

ds2 = H
2/3
1
H

1/3
3

{

(x2−y2)
(dx2

X
− dy2

Y

)

−x2X(dt+y2dσ)2

(x2−y2)fH2
1

+
y2Y

[

dt+(x2+2ms21)dσ
]2

(x2−y2)(γ+y2)H2
1

−U
(

dt+y2dσ+
(x2−y2)fH1

[

abdσ+(γ+y2)dχ
]

ab(x2−y2)H3−2ms3c3(γ+y2)

)2






, (3)
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A1 = A2 =
2ms1c1(dt+y

2dσ)

(x2−y2)H1

,

A3 =
2m
{

s3c3(dt+y
2dσ)−(s21−s23)

[

abdσ+(γ+y2)dχ
]}

(x2−y2)H3

, (4)

X1 = X2 =
(H3

H1

)1/3
, X3 =

(H1

H3

)2/3
, (5)

where

f = x2 + γ + 2ms23 , γ = 2abs3c3 + (a2 + b2)s23 ,

U =

[

ab(x2 − y2)H3 − 2ms3c3(γ + y2)
]2

(x2 − y2)2(γ + y2)fH2
1
H3

,

H1 = 1 +
2ms21
x2 − y2

, H3 = 1 +
2ms23
x2 − y2

, (6)

and si ≡ sinh δi, ci ≡ cosh δi. The functions X and Y are given by

X =
−2mx2+(ã2+x2)(b̃2+x2)+g2(ã2+2ms21+x

2)(b̃2+2ms21+x
2)(2ms23+γ+x

2)

x2
,

Y =
(ã2+y2)(b̃2+y2)

[

1+g2(γ+y2)
]

y2
, with ã ≡ ac3+bs3 , b̃ ≡ bc3+as3 . (7)

The solution is characterised by the mass parameter m, the two rotation parameters a

and b, and the two charge parameters δ1 and δ3. It is evident from (4) that the charges

carried by the gauge fields A1 and A2 are equal, whilst that carried by A3 is independently

specificiable.

The solution can be rewritten in an asymptotically non-rotating frame, in terms of

a canonically-normalised time coordinate τ and azimuthal coordinates φ and ψ having

independent periodicities 2π by means of the transformation

t =
(1 + g2γ)τ

ΞaΞb
− a(a2 + γ)φ

(a2 − b2)Ξa
+
b(b2 + γ)ψ

(a2 − b2)Ξb
,

σ =
g2τ

ΞaΞb
− aφ

(a2 − b2)Ξa
+

bψ

(a2 − b2)Ξb
,

χ =
g4abτ

ΞaΞb
− bφ

(a2 − b2)Ξa
+

aψ

(a2 − b2)Ξb
, (8)

where

Ξa ≡ 1− g2a2 , Ξb ≡ 1− g2b2 . (9)

It is also useful to defined new coordinates r and θ to replace x and y,

x2 = r2 − γ − 2

3
m(2s21 + s23) ,

y2 = −ã2 cos2 θ − b̃2 sin2 θ = −γ − a2 cos2 θ − b2 sin2 θ . (10)
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For later convenience, we also define a new radial metric function ∆r(r) by

∆r(r) =
x2X(x)

r2
=⇒ dx2

X(x)
=

dr2

∆r(r)
, (11)

where x is given in (10). After rewriting the full metric (3) in terms of these new coordinates

as defined in (8) and (10), it can be seen that it describes a rotating black hole with an

horizon of S3 topology located at the largest root r = r0 of the function ∆r(r) . At large

distance, r → ∞ , the metric approaches anti-de Sitter spacetime
(

Rµν → −4g2gµν
)

,

ds2 ∼ −(1 + g2r2)∆θ

ΞaΞb
dτ2 +

dr2

g2r2
+
ρ2dθ2

∆θ
+
r2 + a2

Ξa
sin2 θdφ2 +

r2 + b2

Ξb
cos2 θdψ2 , (12)

where

ρ2 ≡ r2 + a2 cos2 θ + b2 sin2 θ , ∆θ ≡ 1− g2a2 cos2 θ − g2b2 sin2 θ . (13)

3 Conserved Charges and Thermodynamics

The angular momenta can be determined from the Komar integrals J = 1/(16π)
∫

S3 ∗dK,

where K = Kµdx
µ and Kµ∂/∂xµ = ∂/∂φ or ∂/∂ψ. These give, respectively,

Jφ =
πm

[

a
(

c23 + s23 + Ξb(s
2
1 − s23)

)

+ bc3s3(1 + g2a2)
]

2Ξ2
a Ξb

,

Jψ =
πm

[

b
(

c23 + s23 + Ξa(s
2
1 − s23)

)

+ ac3s3(1 + g2b2)
]

2ΞaΞ
2
b

, (14)

The conserved electric charges are given by Qi = 1/(16π)
∫

S3(X
−2

i ∗F i+ 1

2
|εijk| Aj∧Fk),

evaluated over the sphere at infinity. We find

Q1 = Q2 =
πms1c1
2Ξa Ξb

, Q3 =
πm[s3c3 − g2ab(s21 − s23)]

2Ξa Ξb
. (15)

The conserved mass E could in principle be calculated using the conformal technique of

Ashtekar, Magnon and Das [9, 10], but in practice it is easier to evaluate it by integrating

the first law of thermodynamics,

dE = TdS +ΩφdJφ +ΩψdJψ +
∑

i

ΦidQi , (16)

where T is the Hawking temperature, S is the entropy, Ωφ and Ωψ are the angular velocities

of the horizon and Φi are the potential differences between the horizon and infinity. To do

this, we first construct the Killing vector ℓ that becomes null on the horizon at r = r0, given

by

ℓ =
∂

∂τ
+Ωφ

∂

∂φ
+Ωψ

∂

∂ψ
. (17)
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We find that the anglar velocities are given by

Ωφ =
b(ab+ 2ms3c3) + a[1 + g2(b2 + r20 +

2

3
m(s21 − s23))][r

2
0 − 4

3
m(s21 − s23)]

ab(ab+ 2ms3c3) + [a2 + b2 + r2
0
+ 2

3
m(s2

1
− s2

3
)][r2

0
− 4

3
m(s2

1
− s2

3
)]

,

Ωψ =
a(ab+ 2ms3c3) + b[1 + g2(a2 + r20 +

2

3
m(s21 − s23))][r

2
0 − 4

3
m(s21 − s23)]

ab(ab+ 2ms3c3) + [a2 + b2 + r2
0
+ 2

3
m(s2

1
− s2

3
)][r2

0
− 4

3
m(s2

1
− s2

3
)]

, (18)

The surface gravity κ is given by

κ2 = lim
r→r0

gµν(∂µℓ
2)(∂νℓ

2)

(−4ℓ2)
, (19)

From this, we find that the Hawking temperature T = κ/(2π) is given by

T =
r0∆

′
r(r0)

√

r2
0
− 4

3
m(s2

1
− s2

3
)

4π{ab(ab + 2ms3c3) + [a2 + b2 + r2
0
+ 2

3
m(s2

1
− s2

3
)][r2

0
− 4

3
m(s2

1
− s2

3
)]} , (20)

where ∆′
r(r0) means the derivative of ∆r(r) evaluated at r = r0 .

The entropy S is equal to a quarter of the area of the 3-sphere horizon at r = r0, and

is given by

S =
π2[ab(ab+ 2ms3c3) + (a2 + b2 + r20 +

2

3
m(s21 − s23))(r

2
0 − 4

3
m(s21 − s23))]

2Ξa Ξb

√

r2
0
− 4

3
m(s2

1
− s2

3
)

. (21)

Finally, the electrostatic potentials Φi on the horizon are given by evaluating ℓµAi
µ at

r = r0. The potentials at infinity vanish in the gauge we are using. Thus we find

Φ1 = Φ2 =
2ms1c1[r

2
0 − 4

3
m(s21 − s23)]

ab(ab+ 2ms3c3) + (a2 + b2 + r2
0
+ 2

3
m(s2

1
− s2

3
))(r2

0
− 4

3
m(s2

1
− s2

3
))
,

Φ3 =
2m[s3c3(r

2
0 +

2

3
m(s21 − s23)) + ab(s21 − s23)]

ab(ab+ 2ms3c3) + (a2 + b2 + r2
0
+ 2

3
m(s2

1
− s2

3
))(r2

0
− 4

3
m(s2

1
− s2

3
))
. (22)

Using all the above results, we are in a position to evaluate the right-hand side of the

first law (16), and to integrate it up to obtain the conserved mass E. It is highly non-trivial

that the right-hand side turns out to be an exact differential, and this provides a useful

check on the algebra. We find that the conserved mass is given by

E =
mπ

[

(c23 + s23)(2Ξa + 2Ξb − Ξa Ξb) + 4g2abs3c3(Ξa + Ξb)
]

4Ξ2
a Ξ

2
b

+
mπ(s21 − s23)

[

2
(

Ξa + Ξb + g4(a4 + b4)
)

+ g2(a2 + b2)(Ξa Ξb − 2)
]

4Ξ2
a Ξ

2
b

. (23)

It is straightforward to check that the angular momenta, electric charges and conserved

mass, along with the other thermodynamic quantities calculated here, agree in the appro-

priate limits with previous results. Thus setting s1 = s3 yields the previous results in [5]

for the case of 3 equal charges; setting s1 = 0 yields the results in [6] and [7] for the case

of a single non-zero charge; and setting instead s3 = 0 yields the results in [7] for the case

with 2 charges equal and the third non-vanishing but related to the other two.
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4 BPS Limit and Supersymmetric Black Holes

A BPS limit of the non-extremal solutions will arise if the conserved charges satisfy the

condition1

E = gJφ + gJψ +

3
∑

i=1

Qi . (24)

The solution then admits a Killing spinor, implying that it is a supersymmetric supergravity

background. Substituting our results from the previous section, we find (24) implies that

e2δ1+2δ3 = 1 +
2

g(a+ b)
. (25)

(Recall that δ1 and δ3 are the charge parameters in the original metric, with si = sinh δi,

etc.)

The existence of a Killing spinor η allows one to write down an everywhere-timelike

Killing vector Kµ = η̄Γµη. This will take the form

K =
∂

∂τ
+ g

∂

∂φ
+ g

∂

∂ψ
. (26)

Because its admits a spinorial square root, the Killing vector K has a manifestly negative

norm (see, for example, [11], and also [5]), and in fact one can show that when (25) is

satisfied

K2 = −h−4/3
1

h
−2/3
3

[

ρ2 +
m
[

(2 + ga+ gb)2 − g2(a+ b)2e4δ3
]

(3∆θ − (1 + ga)(1 + gb))

6g2(a+ b)2(1 + ga)(1 + gb)(2 + ga+ gb)e2δ3

− 2m

3g2(a+ b)2e2δ3

]2

, (27)

where

h1 = ρ2 +
2

3
m(s21 − s23) , h3 = ρ2 − 4

3
m(s21 − s23) . (28)

This result is useful for studying the occurrence of closed timelike curves (CTCs) in the

BPS metric. First, we note that the metric can be cast in the form

ds2 = −r
2∆r(r)∆θ sin

2 θ cos2 θdt2

Ξ2
a Ξ

2
b BφBψ

+ h
2/3
1
h
1/3
3

[

dθ2

∆θ
+

dr2

∆r(r)

]

+Bψ(dψ + v1dφ+ v2dt)
2 +Bφ(dφ+ v3dt)

2 , (29)

where the functions Bφ, Bψ and vi can be read off by comparing (29) with the original form

of the metric. In order not to have CTCs, it must be that Bφ and Bψ are non-negative

outside the horizon. After imposing (25), we can write

K2 = −r
2∆r(r)∆θ sin

2 θ cos2 θ

Ξ2
a Ξ

2
b BφBψ

+Bψ(g + v1g + v2)
2 +Bφ(g + v3)

2 , (30)

1Equivalent BPS conditions arise for all other choices of signs in this equation.
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and so on the horizon, where ∆r(r) = 0, the negativity of K2 implies that Bφ or Bψ must be

negative, and hence except for special cases there will be CTCs on and outside the horizon

in the BPS solutions.

4.1 Supersymmetric black holes

One way to avoid the occurrence of CTCs outside the horizon in the BPS solutions is to

arrange by means of a further condition on the parameters that K2, given by (27), actually

vanishes on the horizon. As in cases studied previously, such as that of three equal charges

in [5], this condition is precisely equivalent to the condition that the derivative of the metric

function ∆r(r) vanishes on the horizon at r = r0. In other words, it has a double root there:

∆r(r0) = 0 = ∆′
r(r0) . (31)

As can be seen from (20), this means that the Hawking temperature vanishes. This is

indeed a necessary condition for having a regular supersymmetric black hole, since the

inequivalent energy distribution functions for bosons and fermions in a thermal state at

non-zero temperature are manifestly incompatible with supersymmetry.

A convenient way to solve the zero-temperature condition (31) in addition to the BPS

condition (25) is to regard (25) as placing a constraint on the value of the gauge-coupling

constant g as a function of the rotation and charge parameters. (This has the advantage

of allowing not only the two angular momenta, but also the two charge parameters, to be

adjusted freely, and this makes it easier to compare results with previously-known cases

such as δ1 = δ3, δ1 = 0 or δ3 = 0.) The zero-temperature condition (31) can then be solved

for the mass parameter m, implying that

M =
eδ1+δ3

[

(a2 + b2) sinh(2δ1 + 2δ3) + 2ab cosh(2δ1 + 2δ3)
]

2 sinh(δ1 + δ3) sinh 2δ1
. (32)

If the solution is chosen so that both (25) and (32) are satisfied, then it can describe a

regular supersymmetric black hole. It is still necessary to restrict the remaining 3 parameters

to lie within appropriate regions, in order that the metric be free of any CTCs outside the

horizon, but these remaining conditions take the form of inequalities rather than further

functional relations between the parameters. They are generalisations of the restrictions

found in [5] for the case when the three charges were equal. One can, for example, see that

if ga and gb are sufficiently small and positive, and the charge parameter δ3 is sufficiently

large, then there will be no CTCs outside the horizon.

The supersymmetric black holes that we have obtained here will correspond to the

Q1 = Q2 specialisation of the supersymmetric 3-charge black holes coostructed in [12].
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4.2 Topological solitons

A second way of eliminating CTCs in the BPS solutions is if the product BφBψ is propor-

tional to ∆r(r), and hence one or other of Bφ or Bψ vanishes on the horizon. In this case,

the BPS condition (25) is supplemented by the further condition

m =
2k3k4(a+ b)(1 + ga)(1 + gb)(2 + ga+ gb)e2δ3

k2
1
k2

, (33)

with

k1 = (2 + ga+ gb)2 − g2(a+ b)2e4δ3 ; (34)

k2 = (2 + ga+ gb)(a+ b+ 2gab) − (a+ b)(2 + ga+ gb+ 2g2ab)e4δ3 ;

k3 = (2 + ga+ gb)
[

2a− gb2 + gab(1 − ga− gb)
]

+ g(a+ b)2(2 + gb+ g2ab)e4δ3 ;

k4 = (2 + ga+ gb)
[

2b− ga2 + gab(1 − ga− gb)
]

+ g(a+ b)2(2 + ga+ g2ab)e4δ3 .

(In this case, we have chosen to use (25) to eliminate δ1.) The metric now describes a

smooth topological soliton, with r = r0 being a regular origin of polar coordinates at which

Bφ → 0, and free of conical singularities, provided that the quantisation condition

ak4 − bk3
g(a− b)b(1− ga)

[

2g2b

k1
− 1 + gb

k2
− g(a− b)(1− gb)

k4

]

= 1 (35)

is satisfied. These topological solitons generalise examples found in [5] in the case that the

three charges were equal.

5 Conclusions

The most general non-extremal black holes with an S3 horizon topology in maximal SO(6)-

gauged five-dimensional supergravity would be characterised by a total of six parameters,

comprising the mass, the two independent angular momenta, and three independent electric

charges supported by the three abelian gauge fields in the U(1)3 Cartan subgroup of SO(6).

They could equivalently be regarded as solutions in N = 2 gauged supergravity coupled to

two vector multiplets.

In this paper, we have constructed the most general such non-extremal rotating black

holes found to date. They are characterised by five parameters, namely the mass, the two

angular momenta, and two independently-specifiable charge parameters. They correspond

to the situation where two of the three charges in the most general solution are set equal,

but with no restrictions otherwise. These solutions encompass and extend all previously-

obtained results for black holes with independent rotation parameters in five-dimensional

gauged supergravity.
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We calculated the conserved angular momenta and charges for the new solutions; the

entropy and Hawking temperature; and the angular velocities and electric potentials on the

horizon. From this, we showed that the first law of thermodynamics is integrable, and we

obtained the expression for the mass of the black holes.

We then studied the BPS limit of the solutions, and showed how further restrictions

on the remaining parameters would give rise to regular supersymmetric black holes and to

smooth topological solitons.

The results we have obtained in this paper should have applications in the sudy of the

AdS/CFT correspondence. It would be of considerable interest to find the more general

6-parameter black-hole solutions in five-dimensional maximal gauged supergravity, in which

the three electric charges, as well as the mass and the two angular momenta, are indepen-

dently specificable. These can be expected to be considerably more complicated than the

solutions constructed until now.
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[5] Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black

holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95, 161301

(2005), hep-th/0506029.
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