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We predict that a lateral electrical current in antiferromagnets can induce non-equilibrium Néel-
order fields, i.e. fields whose sign alternates between the spin sublattices, which can trigger ultra-fast
spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered
current-induced fields analogous to the intra-band and to the intrinsic inter-band spin-orbit fields
previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their
rich physics and utility, we considered bulk Mn2Au with the two spin sublattices forming inversion
partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry mod-
eled by a Rashba spin-orbit coupling. We propose an AFM memory device with electrical writing
and reading.

PACS numbers: 75.50.Ee,75.47.-m,85.80.Jm

Commercial spin-based memory and storage devices
rely on one type of magnetic order, ferromagnetism, and
one basic principle, that the opposite spin orientations
in a ferromagnet (FM) represent the 0’s and 1’s [1].
Magnetic random access memory (MRAM) is a solid-
state-memory variant of the hard disk where the mag-
netic medium for storing and the magnetoresistive read-
element are merged into one. Unlike in hard disks, the
magnetic stray field of the FM is not used for reading the
FM bit and the latest spin–torque based MRAMs do not
even use magnetic fields coupled to the FM moment for
writing [2]. From this it appears natural to consider an-
tiferromagnets (AFMs) as active building blocks of spin-
tronic devices, where magnetic order is accompanied by
a zero net magnetic moment [3–5].

Antiferromagnets are attractive for spintronics because
they offer insensitivity to magnetic field perturbations,
produce no perturbing stray fields, are readily compat-
ible with metal, semiconductor, or insulator electronic
structure, can act as a magnetic memory, and can gener-
ate large magneto-transport effects [6–8]. For example,
two distinct stable states of an AFM with orthogonal
AFM spin-axis directions were set in an FeRh ohmic re-
sistor and shown to be insensitive to fields as high as 9
T at ambient conditions [9]. A ∼ 1% AFM anisotropic
magnetoresistance (AMR) was used to electrically detect
the states, in complete analogy to the ∼ 1% AMR of
NiFeCo based bits in the first generation of FM-MRAMs
[10]. Also in analogy with the development of FM spin-
tronics, very large (∼ 100%) magnetoresistance signals

were reported in AFM tunnel devices [7].

The AFM Néel-order spin-axis direction can be con-
trolled indirectly by a magnetic field via an attached
exchange-coupled FM [7, 8] or, without the auxiliary
FM, by techniques analogous to heat-assisted magnetic
recording [9, 11]. However, as with heat-assisted FM-
MRAM [12, 13], the speed and energy efficiency of this
method are limited. Here we predict a novel mechanism
for AFM spin-axis reorientation by a lateral electrical
current via Néel-order spin-orbit torque (NSOT) fields,
i.e., via non-equilibrium fields that alternate in sign be-
tween the two spin sublattices. This relativistic mecha-
nism does not involve FMs, heating, or magnetic fields,
and offers ultra-short times unparalleled in FMs.

The microscopic origin of our NSOT fields is analogous
to the relativistic spin-orbit torques (SOTs) observed re-
cently in magnets with broken bulk or structural inver-
sion symmetry [14–27], and is distinct in origin from
the non-relativistic spin-transfer torques [3, 28, 29]. We
demonstrate below two types of NSOTs in two model
systems.

A field-like NSOT appears in Mn2Au AFM [4, 30, 31],
whose MoSi2-type bct structure and AFM ordering are
shown in Fig. 1(a). It is analogous to the field-like SOT
arising from the inverse spin galvanic effect [14–22, 25],
observed previously in broken inversion-symmetry para-
magnets or FMs. However, Mn2Au is bulk centrosym-
metric and the current-induced NSOT arises from the
fact that the lattice can be divided into two sublattices,
which, individually, have broken inversion symmetry and

ar
X

iv
:1

41
0.

82
96

v1
  [

co
nd

-m
at

.m
tr

l-
sc

i]
  3

0 
O

ct
 2

01
4



2

form inversion partners [32]. Each sublattice gives oppo-
site inverse spin galvanic effects, resulting in the NSOT
field. The range of materials in which the relativistic
current-induced torques can occur is therefore not re-
stricted to FMs and, moreover, is not restricted to crys-
tals with global broken inversion symmetry. In Mn2Au,
the inversion partner sublattices coincide with the two
AFM spin sublattices which makes the material an at-
tractive candidate for observing the NSOT.

In AFMs where the two spin-sublattices do not form
inversion partners a NSOT can still occur. We illustrate
it below in a 2D square lattice where the same broken in-
version symmetry term in the Hamiltonian is shared by
both spin sublattices. Here the resulting NSOT is analo-
gous to the intrinsic anti-damping SOT recently observed
in broken bulk inversion symmetry FMs [27].

Models and methods: In Mn2Au we diagonalized a mi-
croscopic multi-orbital tight-binding Hamiltonian to ob-
tain the energy spectrum and eigenfunctions used in our
transport calculations. The form of the tight-binding
Hamiltonian was obtained following the procedure for
bimetallic alloys described in Ref. [33]. The accuracy
of the tight-binding energy spectrum is confirmed in
Fig. 1(b) by comparing the electronic structure to the
ab initio density-functional theory (DFT) calculations.
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FIG. 1: (a) Mn2Au crystal structure and antiferromagnetic
ordering. The two spin-sublattices have broken inversion sym-
metry as illustrated by the red and purple colors. The full
crystal is centrosymmetric around the Au atom as also high-
lighted in the figure. (b) Total, sublattice, and spin projected
density of states from the ab-initio calculation and for the
tight-binding Hamiltonian model.

The other model structure comprises a 2D AFM square
lattice with Rashba spin-orbit coupling due to the bro-
ken structural inversion symmetry and is relevant, e.g., to
common experimental geometries in which a thin AFM
film is interfaced with another layer. The model is

sketched in Fig. 2(a) and its Hamiltonian is given by

H =
∑
<ij>

Jdd ~Si · ~Sj +Htb +HR +
∑
i

Jsd~s · ~Si . (1)

Here Jdd is the local moment exchange constant, Jsd is
the local moment – carrier exchange constant, Htb is the
tight binding Hamiltonian for the carriers, and HR is the
Rashba spin-orbit interaction in a 2D system, given by

HR = VSO
∑
i

[(c†i↑ci+δx↓ − c
†
i↓ci+δx↑)

−i(c†i↑ci+δy↓ + c†i↓ci+δy↑) + H.c.], (2)

where VSO represents the spin-orbit coupling strength,
and δx, δy label the nearest neighbors direction.
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FIG. 2: (a) 2D AFM square lattice model with Rashba spin-
orbit coupling. (b) and (c) Band structure and the spin-
resolved density of states projected in each sublattice for the
AFM state. (d) and (e) Band structure and the spin-resolved
density of states for the FM state. Here the hopping param-
eter tN = 3.0 eV, Jsd = 1.0 eV, and Vso = 0.1 eV.

The current-induced nonequilibrium spin density δ~s
can be calculated via the Kubo linear response [19]:

δ~s =
~

2πL2
Re

∑
~kαβ

(~s)αβ(e ~E · ~v)βα[GA~kαG
R
~kβ
−GR~kαG

R
~kβ

],

(3)
where the Green’s functions are GR~kα(E)|E=EF

≡ GR~kα =

1/(EF−E~kα+iΓ), with the property GA = (GR)∗. Here,
L is the dimension of the 2D system, e is the charge of
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electron, ~E is the applied electric field, EF is the Fermi
energy, E~kα is the energy spectrum, and Γ is the spectral
broadening that models the effect of disorder. For small
Γ, we can separate the total δ~s into the intra-band and
inter-band contributions, with the intra-band term given
by

δ~sintra =
eE~
2Γ

∫
d3k

(2π)3

∑
α

(~s)~kα(vI)~kαδ(E~kα−EF ). (4)

Here (~s)~kα denotes the expectation value of the carrier
spin, and (vI)~kα the velocity component along the cur-
rent direction. This intra-band contribution in the Kubo
formalism is equivalent to the Boltzmann transport the-
ory expression [14–16, 19, 21] and, similar to the charge
conductivity, δ~sintra ∼ 1/Γ.

The inter-band contribution dominating in the clean
limit of Γ→ 0 is given by [19],

δ~sinter =
~
L2

∑
~kα 6=β

(f~kα − f~kβ)Im[(~s)αβ(e ~E · ~v)βα]

×
(E~kα − E~kβ)2 − Γ2

[(E~kα − E~kβ)2 + Γ2]2
. (5)

Here, the labels α and β correspond to different bands,
and f~kα,β is Fermi distribution function.

Results in Mn2Au: In Figs. 3(b),(c) we show the Γ-
independent intra-band NSOT field per applied current
for Mn2Au. It is evaluated from Eq. (4) and projected on
each sublattice, assuming AFM spin-axis rotation in the
[100]-[010] plane (φ = 0 corresponds to the [100] spin-axis
direction) and in the [110]-[001] plane (θ = 0 corresponds
to the [110] easy-spin-axis in Mn2Au). Current is applied
along the [100]-direction and the NSOT field is obtained
from the non-equilibrium spin density considering a typ-
ical exchange-coupling energy scale in transition metals
∼ 1 eV [34].

NSOT fields on each sublattice are non-zero and have
opposite sign. The largest component is in the [100] −
[010] plane in the direction perpendicular to the applied
current for all AFM spin-axis directions. The magnitude
of the NSOT field in the Mn2Au AFM is comparable
to the counterpart SOT fields observed in FM transition
metal structures. Note that for current along the [001]
direction the resulting NSOT field is zero.

The results imply that this intra-band NSOT is an
AFM counterpart of the inverse spin galvanic effect [35],
or the intra-band, field-like, SOT [14–22, 25], observed
previously in broken inversion-symmetry, spin-orbit cou-
pled paramagnets or FMs. We illustrate in Fig. 3(a)
how these current induced non-equilibrium fields arise
in structures with broken inversion symmetry. Here we
choose the case of a Rasbha spin-orbit coupled 2D sys-
tem for simplicity. The electric field induces an asym-
metric non-equilibrium distribution function of carrier
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FIG. 3: (a) Schematics of the intra-band, inverse spin galvanic
effect in a model Rashba system. Left panel represents equi-
librium distribution of spins (red arrows), right panel shows
the non-equilibrium redistribution resulting in a net in-plane
spin-polarization (thick red arrow) perpendicular to current
(green arrow). (b) Intra-band NSOT field in Mn2Au as a
function of the in-plane spin-axis angle. The sublattice index
A or B and component of the field x, y, or z ([100], [010],
[001]) are shown for each curve. (c) Same as (b) for the
out-of-plane spin-axis angle. (d) Schematics of the intrinsic
inter-band contribution to the non-equilibrium spin polariza-
tion. In equilibrium all spins are approximately aligned with
the exchange field which is considered to be stronger than
the Rashba field. A non-equilibrium in-plane Rashba field
(purple arrows) aligned perpendicular to the applied current
causes and out-of-plane tilt of the carrier spins on the shifted
Fermi surface. (e),(f) Inter-band NSOT fields as a function of
spin-axis angles in the 2D Rashba AFM for Γ = 0.01 eV and
EF = −2 eV. Other parameters of the model are as in Fig. 2
In all panels current is along the [100]-axis.

eigenstates and as a result a net polarization ensues that
depends on the scattering time, hence its link to extrinsic
scattering origin. In magnets, the non-equilibrium car-
rier spin density acts on magnetic moments as an effective
magnetic field when carrier spins are exchange-coupled to
the magnetic moments.

The full lattice of the Mn2Au crystal has an inversion
symmetry and the first expectation would be that there
is no current-induced spin-density. However, the lattice
is formed by two sublattices which, individually, have
broken inversion symmetry and form inversion partners
along the [001] axis. These coincide with the spin sublat-
tices of the AFM ground-state in Mn2Au, as highlighted
in Fig. 1(a). The two sublattices forming the inversion
partners in the Mn2Au crystal are at the origin of the
observed intra-band NSOT.

Results in the model 2D Rasba AFM: Since both
spin sublattices experience the same inversion symmetry
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breaking Rashba field in our 2D AFM model, the intra-
band contribution to the current induced spin polariza-
tion has the same sign on both spin sublattices, i.e., is not
staggered. A NSOT field is found, however, when evalu-
ating the inter-band term δ~sinter from Eq. (5). The Néel-
order current-induced field components projected on each
sublattice are shown in Fig. 3(e),(f) for the AFM spin-
axis rotation in the [100]-[010] plane and in the [100]-[001]
plane. Here we plot the corresponding NSOT field per
applied current along the [100]-direction.

The inter-band contribution described by Eq. (5) arises
from the time-dependent quantum-mechanical perturba-
tion of the eigenstates between collisions (illustrated in
Fig. 3(d)) and is the basis of the Berry curvature mecha-
nism introduced to explain the intrinsic anomalous Hall
effect [36], the intrinsic spin-Hall effect [37], and most
recently also the intrinsic anti-damping spin-orbit torque
in FMs [27, 38]. The key phenomenology which distin-
guishes the inter-band anti-damping spin-orbit field from
the intra-band field is the harmonic dependence on the
in-plane and out-of-plane spin-axis angles, as shown in
Figs. 3(e),(f). Another important feature, illustrated in
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FIG. 4: (a) z-component of the NSOT field in the 2D square-
lattice Rashba AFM for φ = 0 as a function of the Fermi
energy. (b) Same as (a) for the FM state of the 2D Rashba
square-lattice. (c) Schematics of the AFM dynamics in a stag-
gered field generating the field-like torque. (d) Schematics of
the electrical writing scheme via the NSOT in a memory de-
vice built in an AFM with cubic easy-axes. Black arrows rep-
resent the cross-wire writing currents and either of the current
lines can be also used for reading by the AMR. Red-blue ar-
rows show the current-induced AFM spin-axis reorientation.

Figs. 4(a),(b), is that the inter-band NSOT in the AFM
can be significantly larger than its FM SOT counterpart.
The inter-band nature of the term δ~sinter from Eq. (5)
implies that its magnitude is large when two sub-bands
linked by spin-orbit coupling have a small energy spacing.
In the calculations shown in Figs. 3(e),(f) and 4(a),(b) for

the model 2D lattice, we consider weak spin-orbit cou-
pling relative to the exchange energy strength [27]. The
smallest band splitting in this limit is governed by the ex-
change energy in the FM state while in the AFM state it
is given by the small spin-orbit splitting. The band struc-
tures with their corresponding splittings are plotted in
Fig. 2 together with the corresponding densities of states
(DOSs) showing the characteristic van Hove singularities
of the 2D square lattice. As shown in Figs. 4(a),(b), the
inter-band current induced spin-orbit fields are enhanced
in the vicinity of the DOS singularities in both the FM
and AFM states. However, in the AFM state with the
small energy spacing of the two spin-orbit coupled bands,
the enhancement is much larger, reaching three orders of
magnitude in the present calculations.

Discussion: In our 2D Rashba model we identified
a relativistic microscopic mechanism by which an elec-
trical current J driven in a plane of an AFM layer
with broken space-inversion symmetry generates an anti-
damping NSOT. It acts on the sublattice magnetizations
MA = −MB , in the form TA/B ∼MA/B×BA/B , where
BA/B ∼ [MA/B × (ẑ × J)]. The effective field BA/B

is staggered in this case due to the opposite magnetiza-
tions on the two sublattices. This is reminiscent of an
earlier phenomenological prediction of a non-relativistic
anti-damping spin transfer torque (STT) generated in an
AFM by an effective field BA/B ∼MA/B × pFM due to
a vertical spin-current from an adjacent FM layer polar-
ized along a vector pFM [39]. A detailed study of the
corresponding Landau-Lifshitz-Gilbert (LLG) dynamics
(assuming a fixed pFM ) showed that above a critical
current, at which the energy loss due to internal damp-
ing is compensated by the current-induced pumping, the
configuration of MA/B ‖ pFM becomes unstable and is
switched to a stable MA/B ⊥ pFM state [39]. Because
this is independent of the sign of the vertical current, the
STT cannot switch the AFM back to the MA/B ‖ pFM
configuration. In the case of our anti-damping NSOT,
pFM is replaced with ẑ × J and a reversible 90◦ reorien-
tation of the AFM can be achieved by redirecting the in-
plane current J between two orthogonal directions. Note
that this favorable property of an anti-damping torque in-
duced in the AFM by an in-plane current would apply not
only to our relativistic NSOT but also to a spin-injection
into the AFM from an adjacent paramagnet layer via the
relativistic spin Hall effect [23, 24].

The field-like STT acting on the AFM in the FM/AFM
bilayer has the form TA/B ∼ MA/B × BA/B with
BA/B ∼ pFM , i.e., BA/B does not have the desired stag-
gered property [29]. This illustrates why field-like non-
relativistic STTs have been neglected in the LLG dy-
namics induced by an electrical current in AFMs. In our
microscopic study of the Mn2Au we have demonstrated,
however, that a field-like torque TA/B ∼MA/B ×BA/B

with a staggered BA ∼ +ẑ× J and BB ∼ −ẑ× J can be
generated by current in special crystal structures in which
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the AFM spin sublattices coincide with the two inversion-
partner sublattices. The corresponding dynamics com-
prising (damped) elliptical precessional motion with op-
posite helicities of the two spin sublattices is sketched
in Fig. 4(c). For a detailed description of these modes
we refer to Eq. (9) and the corresponding discussion in
Ref. [40]. Again, as in the anti-damping NSOT case,
a cross-wire geometry can be used to reversibly switch
between two orthogonal AFM spin-axis directions us-
ing the field-like NSOT. For the theoretical (001)-plane
anisotropy energies in Mn2Au [4], our estimates of the
NSOT fields suggest sizable reorientations at current den-
sities ∼ 108 − 109 A/cm2, depending on the angle of the
applied in-plane current with respect to the easy and
hard anisotropy axes.

Ultra-fast (ps-scale) reorientation of the AFM spin-
axis in a staggered field was previously reported in an op-
tical pump-and-probe study of AFM TmFeO3 [41]. The
origin of the staggered field was different than consid-
ered here; the material had a temperature dependent
AFM easy-axis direction and the corresponding Néel-
order anisotropy field was induced by laser-heating the
sample above the easy-axis transition temperature. The
microscopic origin of the staggered field is not crucial,
however, for the time-scale of the spin-dynamics which in
AFMs is typically 2-3 orders of magnitude shorter than in
FMs [40]. We can therefore infer from these experiments
that the AFM spin-axis reorientation due to our current-
induced NSOT will not be limited by the ultra-fast AFM
spin dynamics itself but only by the circuitry time-scales
for delivering the electrical pulses which can be of or-
der ∼ 100 ps [42]. A schematic of a device that can be
used to reverse the AFM spin-axis electrically between
two orthogonal directions is illustrated in Fig. 4(d). In
a cross-wire geometry, each wire stabilizes via the NSOT
one of the two orthogonal spin-axis directions. An AFM-
AMR [8, 9] measured in one of the arms can then be used
to electrically detect the spin-axis direction. In an AFM
with cubic magnetic anisotropy, an all-electrical AFM
memory device can be realized based on this scheme.

We acknowledge fruitful discussions with R. Cam-
pion, K. Edmonds, A. Ferguson, B. Gallagher, X. Marti,
V. Novak, K. Olejnik, H. Reichlova, A. Rushforth, H.
Saidaoui, and P. Wadley, and support from the EU
European Research Council (ERC) advanced grant no.
268066, from the Ministry of Education of the Czech Re-
public grant no. LM2011026, from the Grant Agency
of the Czech Republic grant no. 14-37427G, from the
Academy of Sciences of the Czech Republic Praemium
Academiae, from the NSF grant no. DMR-1105512,
ONR grant no. 141110780, and the Alexander Von Hum-
boldt Foundation. A.M. was supported by the King Ab-
dullah University of Science and Technology
∗ The authors contributed equally.

[1] C. Chappert, A. Fert, and F. N. V. Dau, Nature Mat. 6,
813 (2007).

[2] www.everspin.com/PDF/ST-
MRAM Technical Brief.pdf.
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