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Error Threshold for Color Codes and Random 3-Body Ising Models
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We study the error threshold of color codes, a class of tapodd quantum codes that allow a direct im-
plementation of quantum Clifford gates suitable for entamgent distillation, teleportation and fault-tolerant
guantum computation. We map the error-correction process astatistical mechanical random 3-body Ising
model and study its phase diagram via Monte Carlo simulatidhe obtained error thresholdaf = 0.109(2)
is very close to that of Kitaev’s toric code, showing that@mted computational capabilities do not necessarily
imply lower resistance to noise.

PACS numbers: 03.67.Lx, 75.40.Mg, 03.67.Pp, 75.50.Lk

Protecting quantum states from external noise and errors is 25 T T T T T T T T T

central for the future of quantum information technologg- B ¢ —_ p, = 0.109(2) :
cause interaction with the environment is unavoidabléyact ° B S =
guantum error-correction techniques based on quantunscode = - m 1
have been devised to restore the damaged quantum states from L5 - B

errors caused by decoherer@eﬁl, 2]. These approaches are, i &
general, cumbersome and require many additional quantum
bits, thus making the system more error prone. An imagina-

LI L I B B BN B |

|
|
|
|
|

tive and fruitful approach to quantum protection is to explo 0o

topological properties of a system, e.g., by using the mentr o Do i b b L g g
ial topology of a surface to encode quantum states at the logi 0 0.02 004 006 008 01 012
cal level [3]. Topology is thus considered as a resourcefmuc p

like entanglementis a resource for quantum informatiokstas FIG. 1: (Color online)p—T. phase diagram for the random 3-body
Topological quantum computation is the combination of¢hes Ising model. Forp > p. ~ 0.109 the ferromagnetic order is lost.
two resources with the aim of winning the battle against de-The dotted line is a guide to the eye, the black circle repitssthe
coherence. These topological quantum error-correctidgso analytically known transition temperature of the 2D Isingdal. The

. - . . blue (solid) line represents the N-line. In the regime mdrkg a
are instances of stabilizer quantum codés [4], in whichrerro dashed line the exact determinatiorofp) is difficult.

are diagnosed by measuring certain check operators or stabi
lizers. In topological codes these check operators ard,loca

which, in practice, is an important_advantage. Morepver, e heen introducedﬂi,__hZ]. Using TCC, it is possible to im-
ror correction has a_deep connection to random spin mOdeEIement thewhole Clifford group of quantum gates and thus
in statistical mechanics and lattice gauge theofies [51- realize quantum distillation, teleportation, etc. Notieat, al-
One of the original motivations for introducing surface though we use the mapping of Refl [5], there is a difference
codes was to achieve error protection at the physical levelegarding the issue of types of homology involved: our model
through energy barriers that would remove the need for €xtehas a colored homology, while the Kitaev model has a sim-
nal recovery actions. Only the application of strong magnet ple homology. As a result, unlike the standard Ising model,
fields (compared to the topological coupling) destabilthes  the resulting statistical mechanical model has 3-bodyéaute
topological phasé [6]. However, several studie|[5| 7, 809, tions with a value o, a priori unknown, thus motivating the
and a rigorous proof [8] have shown that the toric code (TC)present study.
is not stable against thermal excitations, except in foonei- The question arises as to whether the wider computational
sions ESD?]- capabilities of TCCs imply a lower resistance to noise. We
Therefore, the study of active error correction in topolog-address this problem and show that the (error) thresholgeval
ical codesmS] is fully justified. Ultimately, the goal is not is p. = 0.109(2), which is comparable to values for the TC
only to achieve good quantum memories, but also to per,]. To computg,, we derive a statistical mechanical
form quantum computations with them. In this regard, themodel describing the error-correction process; a random 3-
TC E] is somehow limited since it only allows for a conve- body Ising model, with (classical) spins located at theivest
nient (transversal) implementation of a limited set of quam  of a triangular lattice. In addition to thermal fluctuatiottse
gates: Pauli gates of and Z type, and the CNOT gate. To mapping requires the introduction of quenched randomness
overcome this limitation, topological color codes (TCCyéa to the sign of the interactions that correspond to faultg.bit


http://arxiv.org/abs/0902.4845v2

eigenvalues is the error syndrome.

Error correction.— Color codes have a structure with sta-
bilizer generators which are either productsidfor Z Pauli
operators, but not both. This allows us to treat bit-flip and

AYAVAV_= \
v v v v ; ; v v phase errors separately, making the procedure classical:
‘ type (Z-type) errors produce violations &f-type (X-type)
AAAAAAA‘ { E vertex operators. Without loss of generality, let us coasid
‘ v ' 07 the bit-flip case, that is, errors of the fortkiy, := ®A€E XA,
A 7 \ AA 7\ ‘Aé\ whereF is the subset of triangles that suffered a bit-flip. Let
o ﬁv o/

AVA'\/ \

OF be the collection of vertices that are part of an odd num-
/ ber of triangles inF, i.e., the boundary of a set of triangl&s

is chosen so that the errdfg gives rise to a syndrome with
FIG. 2: (Color online) Lattice for the TCCs with 3-coloredrtiees. Z, = —1 at those vertices € dF, see FiglR. In trying to
Physical qubits of the error-correcting code corresponttiamgles correctthe error, we apply to the system bit-flips: with the

(stars mark the ‘boundaries’ of the sets of triangles disgda (a) ;L o
Boundary of a vertex. The stabilizer operatorX, , Z,, have sup- same boundary)” = JE. This is only successful as long as

port on the corresponding qubits. (b) Error pattern in thenfofa X&' X e =: Xp1 g is an element of the stabilizer group. Ge-
string net. The three vertices that form its boundary arehallin- ~ ometrically,D = E+E’ is a cycle: its boundar§ D is empty.
formation we have to correct the error. (c) Two error pagesith  Given a vertex, letdv be the subset of triangles meetingat
the same boundary. Because together they form the bountithg o \We say thatD is a boundary ifD = 3, dv for some subset
three vertices marked with a circle, they are equivalent. of trianglesV. In that caseX p is an element of the stabilizer
group. Thus, error correction is successful whendves a
boundary, i.e., ifD has trivial homology. In that case the real
One can then study the-T.. phase diagram of the model, see grror £ and the guessed errf belong to the same homology
Fig.[d, wherep is the probability for wrong-sign couplings to ¢|ass.
appear. For lovi’, p the model orders, which corresponds to Mapping to a random 3-body Ising model.—We consider

feasible error correction. The critical for error correctionis 5 standard error model based on stochastic errors in which

recovered from the critical along the Nishimori (N) line! [16] phase errorsZ and qubit bit-flip errorsX are uncorrelated

in thep—T" plane. and occur with probability at each qubit. We focus on the
The disordered 3-body Ising model on a triangular latticecorrection of bit-flip errors.

has not been studied before. However, in the absence of ran-| o P(E) be the probability for a given set of bit-flip er-

domness it is known to have a different universality classith 5 1. Up to ap-dependent facto?(E) « [p/(1 — p)]'F.

the standard Ising model, but with the same critical temperyye may also consider the total probability for the correspon
ature ]. Furthermore, the critical exponents can be COMing homology class? of errors, P(E) = S, P(E + D)
puted exactly ¥ = o = 2/3), which allows us to test the \yhereD runs over all boundaries. If we measure a syndrome

numerical results in the = 0 limit. JE, then the probability that it was caused by an error in the
Topological color codes.—To constructa TCC we start  homology class is

from any two-dimensional (2D) lattice in which all plaquestt

are triangles and vertices are 3-colorable, such that rho lin _ P(E)

connects vertices of the same color. The lattice is embedded P(E|OE) = mv @)

in a compact surface of arbitrary topology. Since informa- ! '

tion is encoded in topological degrees of freedom, the cede iwhere theD; are representatives of the homology classes of
nontrivial only when the topology of the surface is nontalyi  cycles [5]. Then, error correction is achievable if in theiti
e.g., a torus of genug > 1. So far, color codes have been of infinite system size we havg., P(E) P(E|OE) — 1.
introduced in the dual lattice (2-coleéx [11]). Here we préfe  Thatis,p < p. if for those syndromes which have a nonnegli-
work in the triangular lattice to have a more direct mapping gible probability to appear the error can be guessed wit tot
see FigLP. confidence.

We consider a physical system with a qubit at each lat- Following Ref. [5], we setxp(—2K) := p/(1 — p) (with
tice triangle, and introduce the following vertex operator g — J/T, T the temperature) for the N-line so thA{E)
that generate the stabilizer group ©f For each vertex exp(K 3" A 7a), where the sum is over all the triangular pla-
we have two types of operators which correspond to Pauljjuettes (qubits) angh = +1 < 0 whenA € E. By inserting
operators ofX or Z type, i.e., X, = @a.,cn Xa @and  classical spin variables; = +1 at the vertices and labeling

Zy = Qpawen Za. Thus, a vertex operator acts on all the triangles/\ with triplets of vertices/ijk) we write P(E)
nearby triangles, see Figl 2. Vertex operators pairwise-conmgs g partition function

mute and square to identity. The cadés defined as the sub-
space withX, = Z, = 1 Vv. To perform error correction P(E) x Z|K, 1] = ZeK 3ijk) TigkTi0 Tk 2)
one measures vertex operators. The resulting collectieti of p
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TABLE I: Simulation parametersL is the system size\s, is the a:; - Tc’fdata forgnll/éiiolrsdlﬁer?r?]t Sys.tt.eml sizes CI;?DSS
number of disorder samplefs,, = 2° is the number of equilibration atT. [see, for example Fi (@)]- The critical exponerfor

SWeepsTimin [Tinax] is the lowest [highest] temperature, aive: the the correlation length can be determined by a full scaling of
number of temperatures used. the data, as shown in Figl 3(b). We also probe the existence

of a spin-glass phase by computing the spin-glass finie-siz

p L Nsa b Tmin Tmax Nt .

0.00 12,18 20 18 2200 2350 31  correlation length.

0.00 24, 30 20 19 2200  2.350 31 The disorder in Eq[{2) increases the numerical complex-
0.00 36 20202200 2350 31 jty of the problem drastically with a behavior reminisceft o
0.02 12,18 5000 18  1.900  2.400 51 : . .

0.02 2430 5000 19  1.900  2.400 51 spin gIasses{IiO]. To speed up the simulations, we use the
0.02 36 5000 20  1.900  2.400 51 exchange Monte Carlo methad [21]. Equilibration is tested
0.04 12,18 5000 18  1.700  2.200 51 by a logarithmic binning of the data. Once the last three bins
0.04 24,30 5000 19 1700 2200 51 agree within errors, we define the system to be equilibrated.
0.04 36 5000 20  1.700  2.200 51 - . .

0.06 12,18 5000 18  1.600  2.100 51 Simulation parameters are shown in Tdble I.

0.06 24,30 5000 19  1.600  2.100 51 Error threshold.— Figure [3 shows the temperature-
g-gg - ijg 2888 %g 1-288 ;-(1]88 21 dependent finite-size correlation length for differentres of

0.08 9430 5000 19 1400  2.000 61 p. (a) Data fop = 0, t_hg ferromagnetic case. The da_shed line
0.08 36 5000 20  1.400  2.000 61 represents the transition temperature of the 2D Ising model

0.10—0.12 12,18 5000 18  0.750  2.600 38 T. ~ 2.2692 [22]. The agreement with the numerical data
0.10—0.12 24,30 5000 19 0.750  2.600 38 js excellent, suggesting that corrections to scaling aggine
0.10 —0.12 36 5000 20  0.750  2.600 38 : LTS ' : S

gible. (b) Finite-size scaling analysis of the data in (ahgs
the exact exponemt = 2/3. (c) — (h) Finite-size correlation
length for differentp values. Fop = 0.108 marginal behav-
ior appears and the determination of the transition is difffic
Because = 0.107 shows a transition, ang = 0.109 shows

Equation[(2) is a 3-body classical Ising model with the cou-
plings’ sign given byr. When allro = 1 the model is fer-

romagnetically ordered at Io. Negativer, introduce frus- marginal behavior, whereas — 0.110 shows no sign of a
tration in the form ohetsof domain walls. These can branch, transition, we conservatively estimate — 0.109(2) [@]_

anew featgre not present in the random bond Ising model asrpjg i ¢lose to estimates for the TC whefe” has been con-
sociated with the TC. . tinuously improved fron0.1094(2) [13] to 0.1093(2) [14]
The relative importance of the different error homologyando 109187 [IE] The pT. phase diagram is shown in
classesP (& +f_Di) d: ,Z[K’ Tji] n @) I;)gzen by the free Fig.[D; the solid (blue) line being the N-line. We have also
energy cost of introducing a domain wak, because verified that there is no spin-glass order in the model (not
Z[K, 7] shown). Finally, we ensure that our results do not violate
Z[Tlr]) . (3)  the quantum Gilbert-Varshamov bouhd|[1L3, 14,15, 24] where
v the encoding raté?(p) must satisfyR(p) < 1 — 2H(p),

The costA; must be averaged over all coupling configura-é{éﬁg —plogy(p)—(1—p) log, (1—p) the Shannon entropy,
tions, withp the probability for any triangle to hawe, = —1. ,126,/27]. For our estimate the bound is satisfied, since it
Thus we are led to the study of a random 3-body Ising modellies under the zero-rate probability~ 0.110027.
For low p and T (high K = J/T) the system is ordered Conclusions.— In summary, we have computed the er-
and domain-wall fluctuations are suppressel; diverges ror threshold for TCCs on a triangular lattice by mapping the
with the system size for nontrivial domain walls. The criti- Problem onto a 3-body random Ising model on a triangular
cal error thresholgb, for error correction is recovered from lattice. Using Monte Carlo simulations we find for the error
the p—T phase diagram as the critical along the N-line thresholdp, = 0.109(2) [2€]. Therefore, TCCs are as robust
e 2T = p/(1—p) [IE]_ as the Kitaev toric code with the added benefit of being able
Numerical details.— To determine the existence of to representthe whole Clifford group of quantum gates. The
a ferromagnetic phase we compute the finite-size corstudied 3-body random Ising model highlights the relation-
relation length [19].  We start by determining the Ship between spin-glass physics and information theory [29
wave-vector-dependent susceptibility given k) = e.g., fully connected systems, and presents a new class-of sy
(1/L?) Eij<SiSj>T exp|ik-(R;—R;)]. Here(- - - )7 denotes  tem exhibiting glassy behavior via 3-body interactionghwi
a thermal average arRl; the spatial location of the spins. The outspin-reversal symmetry. Future work will focus on the im
correlation length is given by pact of faulty measurements and the corresponding mapping
to a(2 + 1)-dimensional random gauge model.
Em = (1/2)sin™ (¢/2) v/ [X(0)]av/[X(@)]av — 1, (4) We thank A. F. Albuquerque and A. Landahl for use-
ful discussions. M.A.M.-D. and H.B. acknowledge finan-
whereq = (27/L, 0) is the smallest nonzero wave-vector andcial support from a PFI grant of EJ-GV, DGS grants un-
[+ ]av represents an average ovE, disorder (error) sam- der contracts, FIS2006-04885, and the ESF INSTANS 2005-
ples. & /L ~ X(LYY[T — T.)), i.e., if there is a transition 10. H.G.K. acknowledges support from the SNF (Grant

A;(1)=pF(K,7;) — fF(K,7) =In (
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FIG. 3: (Color online) Finite-size correlation lengfh /L as a function of temperatuf for different values op. (a)p = 0. The data cross at
the critical temperature of the 2D Ising model (dashed li(le) Finite-size scaling analysis of the data foe= 0 usingr = 2/3. The scaling
is very good showing that corrections to scaling are ndgkgi(c)—(f) Forp < p. = 0.109 there is signature of a transition (data for different

L cross) whereas fgr > p. the transition vanishes [panels (g)—(h)].
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