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Error Threshold for Color Codes and Random 3-Body Ising Models
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We study the error threshold of color codes, a class of topological quantum codes that allow a direct im-
plementation of quantum Clifford gates suitable for entanglement distillation, teleportation and fault-tolerant
quantum computation. We map the error-correction process onto a statistical mechanical random 3-body Ising
model and study its phase diagram via Monte Carlo simulations. The obtained error threshold ofpc = 0.109(2)
is very close to that of Kitaev’s toric code, showing that enhanced computational capabilities do not necessarily
imply lower resistance to noise.
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Protecting quantum states from external noise and errors is
central for the future of quantum information technology. Be-
cause interaction with the environment is unavoidable, active
quantum error-correction techniques based on quantum codes
have been devised to restore the damaged quantum states from
errors caused by decoherence [1, 2]. These approaches are, in
general, cumbersome and require many additional quantum
bits, thus making the system more error prone. An imagina-
tive and fruitful approach to quantum protection is to exploit
topological properties of a system, e.g., by using the nontriv-
ial topology of a surface to encode quantum states at the logi-
cal level [3]. Topology is thus considered as a resource, much
like entanglement is a resource for quantum information tasks.
Topological quantum computation is the combination of these
two resources with the aim of winning the battle against de-
coherence. These topological quantum error-correcting codes
are instances of stabilizer quantum codes [4], in which errors
are diagnosed by measuring certain check operators or stabi-
lizers. In topological codes these check operators are local,
which, in practice, is an important advantage. Moreover, er-
ror correction has a deep connection to random spin models
in statistical mechanics and lattice gauge theories [5].

One of the original motivations for introducing surface
codes was to achieve error protection at the physical level
through energy barriers that would remove the need for exter-
nal recovery actions. Only the application of strong magnetic
fields (compared to the topological coupling) destabilizesthe
topological phase [6]. However, several studies [5, 7, 8, 9,10]
and a rigorous proof [8] have shown that the toric code (TC)
is not stable against thermal excitations, except in four dimen-
sions [5, 9].

Therefore, the study of active error correction in topolog-
ical codes [5] is fully justified. Ultimately, the goal is not
only to achieve good quantum memories, but also to per-
form quantum computations with them. In this regard, the
TC [3] is somehow limited since it only allows for a conve-
nient (transversal) implementation of a limited set of quantum
gates: Pauli gates ofX andZ type, and the CNOT gate. To
overcome this limitation, topological color codes (TCC) have

FIG. 1: (Color online)p–Tc phase diagram for the random 3-body
Ising model. Forp > pc ≈ 0.109 the ferromagnetic order is lost.
The dotted line is a guide to the eye, the black circle represents the
analytically known transition temperature of the 2D Ising model. The
blue (solid) line represents the N-line. In the regime marked by a
dashed line the exact determination ofTc(p) is difficult.

been introduced [11, 12]. Using TCC, it is possible to im-
plement thewholeClifford group of quantum gates and thus
realize quantum distillation, teleportation, etc. Noticethat, al-
though we use the mapping of Ref. [5], there is a difference
regarding the issue of types of homology involved: our model
has a colored homology, while the Kitaev model has a sim-
ple homology. As a result, unlike the standard Ising model,
the resulting statistical mechanical model has 3-body interac-
tions with a value ofpc a priori unknown, thus motivating the
present study.

The question arises as to whether the wider computational
capabilities of TCCs imply a lower resistance to noise. We
address this problem and show that the (error) threshold value
is pc = 0.109(2), which is comparable to values for the TC
[13, 14, 15]. To computepc, we derive a statistical mechanical
model describing the error-correction process; a random 3-
body Ising model, with (classical) spins located at the vertices
of a triangular lattice. In addition to thermal fluctuations, the
mapping requires the introduction of quenched randomness
to the sign of the interactions that correspond to faulty bits.

http://arxiv.org/abs/0902.4845v2


2

FIG. 2: (Color online) Lattice for the TCCs with 3-colored vertices.
Physical qubits of the error-correcting code correspond totriangles
(stars mark the ‘boundaries’ of the sets of triangles displayed). (a)
Boundary of a vertexv. The stabilizer operatorsXv , Zv have sup-
port on the corresponding qubits. (b) Error pattern in the form of a
string net. The three vertices that form its boundary are allthe in-
formation we have to correct the error. (c) Two error patterns with
the same boundary. Because together they form the boundary of the
three vertices marked with a circle, they are equivalent.

One can then study thep–Tc phase diagram of the model, see
Fig. 1, wherep is the probability for wrong-sign couplings to
appear. For lowT , p the model orders, which corresponds to
feasible error correction. The criticalpc for error correction is
recovered from the criticalp along the Nishimori (N) line [16]
in thep–T plane.

The disordered 3-body Ising model on a triangular lattice
has not been studied before. However, in the absence of ran-
domness it is known to have a different universality class than
the standard Ising model, but with the same critical temper-
ature [17]. Furthermore, the critical exponents can be com-
puted exactly (ν = α = 2/3), which allows us to test the
numerical results in thep = 0 limit.

Topological color codes.—To construct a TCCC we start
from any two-dimensional (2D) lattice in which all plaquettes
are triangles and vertices are 3-colorable, such that no link
connects vertices of the same color. The lattice is embedded
in a compact surface of arbitrary topology. Since informa-
tion is encoded in topological degrees of freedom, the code is
nontrivial only when the topology of the surface is nontrivial,
e.g., a torus of genusg ≥ 1. So far, color codes have been
introduced in the dual lattice (2-colex [11]). Here we prefer to
work in the triangular lattice to have a more direct mapping,
see Fig. 2.

We consider a physical system with a qubit at each lat-
tice triangle, and introduce the following vertex operators
that generate the stabilizer group ofC. For each vertexv
we have two types of operators which correspond to Pauli
operators ofX or Z type, i.e.,Xv :=

⊗
△:v∈△ X△ and

Zv :=
⊗

△:v∈△ Z△. Thus, a vertex operator acts on all
nearby triangles, see Fig. 2. Vertex operators pairwise com-
mute and square to identity. The codeC is defined as the sub-
space withXv = Zv = 1 ∀v. To perform error correction
one measures vertex operators. The resulting collection of±1

eigenvalues is the error syndrome.
Error correction.— Color codes have a structure with sta-

bilizer generators which are either products ofX or Z Pauli
operators, but not both. This allows us to treat bit-flip and
phase errors separately, making the procedure classical:X-
type (Z-type) errors produce violations ofZ-type (X-type)
vertex operators. Without loss of generality, let us consider
the bit-flip case, that is, errors of the formXE :=

⊗
△∈E X△,

whereE is the subset of triangles that suffered a bit-flip. Let
∂E be the collection of vertices that are part of an odd num-
ber of triangles inE, i.e., the boundary of a set of trianglesE
is chosen so that the errorXE gives rise to a syndrome with
Zv = −1 at those verticesv ∈ ∂E, see Fig. 2. In trying to
correct the error, we apply to the system bit-flipsXE′ with the
same boundary,∂E′ = ∂E. This is only successful as long as
XE′XE =: XE+E′ is an element of the stabilizer group. Ge-
ometrically,D = E+E′ is a cycle: its boundary∂D is empty.
Given a vertexv, let∂v be the subset of triangles meeting atv.
We say thatD is a boundary ifD =

∑
V ∂v for some subset

of trianglesV . In that case,XD is an element of the stabilizer
group. Thus, error correction is successful wheneverD is a
boundary, i.e., ifD has trivial homology. In that case the real
errorE and the guessed errorE′ belong to the same homology
class.

Mapping to a random 3-body Ising model.—We consider
a standard error model based on stochastic errors in which
phase errorsZ and qubit bit-flip errorsX are uncorrelated
and occur with probabilityp at each qubit. We focus on the
correction of bit-flip errors.

Let P (E) be the probability for a given set of bit-flip er-
rorsE. Up to ap-dependent factor,P (E) ∝ [p/(1 − p)]|E|.
We may also consider the total probability for the correspond-
ing homology class̄E of errors,P (Ē) :=

∑
D P (E + D),

whereD runs over all boundaries. If we measure a syndrome
∂E, then the probability that it was caused by an error in the
homology class̄E is

P (Ē|∂E) =
P (Ē)∑

i P (Ē + D̄i)
, (1)

where theDi are representatives of the homology classes of
cycles [5]. Then, error correction is achievable if in the limit
of infinite system size we have

∑
E P (E)P (Ē|∂E) → 1.

That is,p < pc if for those syndromes which have a nonnegli-
gible probability to appear the error can be guessed with total
confidence.

Following Ref. [5], we setexp(−2K) := p/(1 − p) (with
K = J/T , T the temperature) for the N-line so thatP (E) ∝
exp(K

∑
△ τ△), where the sum is over all the triangular pla-

quettes (qubits) andτ△ = ±1 < 0 when△ ∈ E. By inserting
classical spin variablesσi = ±1 at the vertices and labeling
the triangles△ with triplets of vertices〈ijk〉 we writeP (Ē)
as a partition function

P (Ē) ∝ Z[K, τ ] :=
∑

σ

eK
P

〈ijk〉 τijkσiσjσk . (2)
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TABLE I: Simulation parameters:L is the system size,Nsa is the
number of disorder samples,teq = 2b is the number of equilibration
sweeps,Tmin [Tmax] is the lowest [highest] temperature, andNT the
number of temperatures used.

p L Nsa b Tmin Tmax NT

0.00 12, 18 20 18 2.200 2.350 31

0.00 24, 30 20 19 2.200 2.350 31

0.00 36 20 20 2.200 2.350 31

0.02 12, 18 5 000 18 1.900 2.400 51

0.02 24, 30 5 000 19 1.900 2.400 51

0.02 36 5 000 20 1.900 2.400 51

0.04 12, 18 5 000 18 1.700 2.200 51

0.04 24, 30 5 000 19 1.700 2.200 51

0.04 36 5 000 20 1.700 2.200 51

0.06 12, 18 5 000 18 1.600 2.100 51

0.06 24, 30 5 000 19 1.600 2.100 51

0.06 36 5 000 20 1.600 2.100 51

0.08 12, 18 5 000 18 1.400 2.000 61

0.08 24, 30 5 000 19 1.400 2.000 61

0.08 36 5 000 20 1.400 2.000 61

0.10 — 0.12 12, 18 5 000 18 0.750 2.600 38

0.10 — 0.12 24, 30 5 000 19 0.750 2.600 38

0.10 — 0.12 36 5 000 20 0.750 2.600 38

Equation (2) is a 3-body classical Ising model with the cou-
plings’ sign given byτ . When allτ△ = 1 the model is fer-
romagnetically ordered at lowT . Negativeτ△ introduce frus-
tration in the form ofnetsof domain walls. These can branch,
a new feature not present in the random bond Ising model as-
sociated with the TC.

The relative importance of the different error homology
classesP (Ē + D̄i) = Z[K, τ i] in (1) is given by the free
energy cost of introducing a domain wallDi, because

∆i(τ ) = βF (K, τ i) − βF (K, τ ) = ln

(
Z[K, τ ]

Z[K, τ i]

)
. (3)

The cost∆i must be averaged over all coupling configura-
tions, withp the probability for any triangle to haveτ△ = −1.
Thus we are led to the study of a random 3-body Ising model.
For low p and T (high K = J/T ) the system is ordered
and domain-wall fluctuations are suppressed:∆i diverges
with the system size for nontrivial domain walls. The criti-
cal error thresholdpc for error correction is recovered from
the p–T phase diagram as the criticalp along the N-line
e−2J/T = p/(1 − p) [18].

Numerical details.— To determine the existence of
a ferromagnetic phase we compute the finite-size cor-
relation length [19]. We start by determining the
wave-vector-dependent susceptibility given byχ(k) =
(1/L2)

∑
ij〈SiSj〉T exp[ik·(Ri−Rj)]. Here〈· · · 〉T denotes

a thermal average andRi the spatial location of the spins. The
correlation length is given by

ξm = (1/2) sin−1(q/2)
√

[χ(0)]av/[χ(q)]av − 1, (4)

whereq = (2π/L, 0) is the smallest nonzero wave-vector and
[· · · ]av represents an average overNsa disorder (error) sam-
ples. ξm/L ∼ X̃(L1/ν [T − Tc]), i.e., if there is a transition

at T = Tc, data forξm/L for different system sizesL cross
atTc [see, for example Fig. 3(a)]. The critical exponentν for
the correlation length can be determined by a full scaling of
the data, as shown in Fig. 3(b). We also probe the existence
of a spin-glass phase by computing the spin-glass finite-size
correlation length.

The disorder in Eq. (2) increases the numerical complex-
ity of the problem drastically with a behavior reminiscent of
spin glasses [20]. To speed up the simulations, we use the
exchange Monte Carlo method [21]. Equilibration is tested
by a logarithmic binning of the data. Once the last three bins
agree within errors, we define the system to be equilibrated.
Simulation parameters are shown in Table I.

Error threshold.— Figure 3 shows the temperature-
dependent finite-size correlation length for different values of
p. (a) Data forp = 0, the ferromagnetic case. The dashed line
represents the transition temperature of the 2D Ising model
Tc ≃ 2.2692 [22]. The agreement with the numerical data
is excellent, suggesting that corrections to scaling are negli-
gible. (b) Finite-size scaling analysis of the data in (a) using
the exact exponentν = 2/3. (c) — (h) Finite-size correlation
length for differentp values. Forp = 0.108 marginal behav-
ior appears and the determination of the transition is difficult.
Becausep = 0.107 shows a transition, andp = 0.109 shows
marginal behavior, whereasp = 0.110 shows no sign of a
transition, we conservatively estimatepc = 0.109(2) [23].
This is close to estimates for the TC wherepTC

c has been con-
tinuously improved from0.1094(2) [13] to 0.1093(2) [14]
and 0.109187 [15]. The p–Tc phase diagram is shown in
Fig. 1; the solid (blue) line being the N-line. We have also
verified that there is no spin-glass order in the model (not
shown). Finally, we ensure that our results do not violate
the quantum Gilbert-Varshamov bound [13, 14, 15, 24] where
the encoding rateR(p) must satisfyR(p) ≤ 1 − 2H(p),
H(p) = −p log2(p)−(1−p) log2(1−p) the Shannon entropy,
[25, 26, 27]. For our estimate the bound is satisfied, since it
lies under the zero-rate probabilityp ≃ 0.110027.

Conclusions.— In summary, we have computed the er-
ror threshold for TCCs on a triangular lattice by mapping the
problem onto a 3-body random Ising model on a triangular
lattice. Using Monte Carlo simulations we find for the error
thresholdpc = 0.109(2) [28]. Therefore, TCCs are as robust
as the Kitaev toric code with the added benefit of being able
to represent the whole Clifford group of quantum gates. The
studied 3-body random Ising model highlights the relation-
ship between spin-glass physics and information theory [29],
e.g., fully connected systems, and presents a new class of sys-
tem exhibiting glassy behavior via 3-body interactions, with-
out spin-reversal symmetry. Future work will focus on the im-
pact of faulty measurements and the corresponding mapping
to a(2 + 1)-dimensional random gauge model.
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cial support from a PFI grant of EJ-GV, DGS grants un-
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FIG. 3: (Color online) Finite-size correlation lengthξm/L as a function of temperatureT for different values ofp. (a)p = 0. The data cross at
the critical temperature of the 2D Ising model (dashed line). (b) Finite-size scaling analysis of the data forp = 0 usingν = 2/3. The scaling
is very good showing that corrections to scaling are negligible. (c)—(f) Forp . pc = 0.109 there is signature of a transition (data for different
L cross) whereas forp > pc the transition vanishes [panels (g)—(h)].
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