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Abstract

We analyze the gravitational wave signatures of a network of metastable cosmic strings. We con-
sider the case of cosmic string instability to breakage, with no primordial population of monopoles.
This scenario is well motivated from GUT and string theoretic models with an inflationary phase
below the GUT/string scale. The network initially evolves according to a scaling solution, but with
breakage events resulting from confined monopoles (beads) being pair produced and accelerated
apart. We find these ultra-relativistic beads to be a potent source of gravitational waves bursts,
detectable by Initial LIGO, Advanced LIGO, and LISA. Indeed, Advanced LIGO could observe
bursts from strings with tensions as low as Gµ ∼ 10−12. In addition, we find that ultra-relativistic
beads produce a scale-invariant stochastic background detectable by LIGO, LISA, and pulsar tim-
ing experiments. The stochastic background is scale invariant up to Planckian frequencies. This
phenomenology provides new constraints and signatures of cosmic strings that disappear long before
the present day.
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1 Introduction

Cosmic strings can be produced in any phase transition where the vacuum group manifold is not
simply connected, e.g., during the breaking of a U(1) symmetry. As topological defects, they appear
to be completely stable at the level of the effective action where the U(1) symmetry is manifest.
However, stability may break down in the ultraviolet. If, for example, the U(1) symmetry is
embedded into a non-abelian gauge group at some higher energy scale, there must exist monopoles
somewhere in the spectrum. The flux from these monopoles is confined under the U(1) symmetry
breaking, and so hybrid defects can exist with strings ending on beads (we distinguish between
monopoles and beads: the latter have their flux confined into strings). A second source of instability
for global defects can arise from non-perturbative effects such as instantons, which generically
lift the vacuum degeneracy to isolated points. The cosmic strings then become boundaries of
domain walls. Both instabilities can lead to a rapid demise of the network, rendering cosmic
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strings metastable at best. The question of cosmic string stability in the context of hybrid defects
was originally investigated in Grand Unified Theories (GUT). The Langacker-Pi mechanism [1],
whereby monopoles created at the GUT phase transition have their flux confined into strings, was
proposed to solve the monopole problem. It eliminated the monopoles by confining their flux into
cosmic strings, which would in turn oscillate and quickly decay to radiation. In this paper, we
will be interested in looking at the phenomenological signals of such a decaying network of cosmic
strings.

Cosmic strings formed in the early universe could result in a myriad of astrophysical phenom-
ena. These include ultra-high energy cosmic rays [2], gamma ray bursts [3], radio wave bursts [4],
magnetogenesis [5], strong lensing [6, 7, 8], weak lensing [9], microlensing [10, 11], along with effects
on the cosmic microwave background (CMB) polarization [12], the CMB spectrum at small angular
scales [13, 14], and the cosmic 21 cm power spectrum [15].

One of the most exciting recent predictions is the observability of cosmic strings via their grav-
itational wave signals. Cosmic string produce powerful bursts of gravitational radiation that could
be detected by interferometric gravitational wave detectors such as LIGO, Virgo, and LISA [16, 17].
In addition, the stochastic gravitational wave background can be detected or constrained by vari-
ous observations including Big Bang Nucleosynthesis (BBN), pulsar timing experiments [18], and
interferometric gravitational wave detectors [16, 19].

An appealing source of cosmic strings from string-theoretic models such as brane inflation has
led to a renewal of activity in recent years [20]. In such a scenario, the inflaton is represented by the
relative location of a D-brane within the compactified extra dimensions. In some models, inflation
ends with brane-antibrane annihilation, and the resulting open-string tachyon condensation leads
to the formation of co-dimension two topological defects, as is typical in hybrid-inflationary models.
In the generic case, a network of cosmic -F and/or -D strings is produced. The phenomenology of
a network of stringy cosmic strings is richer than the standard abelian Higgs cosmic strings due to
new parameters such as the spectrum of tensions [21, 22], intercommutation probability [23] (see
[24] for discussion of bursts from intercommutation) lensing [25], and as we shall discuss here, a
decay rate per unit length.

While the production of cosmic strings is essentially guaranteed following brane anti-brane
annihilation (or more general hybrid inflationary models), the stability of such strings is model
dependent. In the context of heterotic string theory, it was realized early on that the strings would
be unstable due to the formation of domain walls stretching between various parts of the network
[26] (the tension was also too high in these early models). The situation was reanalyzed in the
context of Type IIB flux compactification first by Copeland, Myers and Polchinski [21] and another
source of instability, to breakage, was discussed. These two instabilities are complimentary, in the
sense that typically exactly one will occur. This was further analyzed in [27] where it was shown
that the generalized Green-Schwarz mechanism eliminates the domain wall instability leaving only
the possibility of breakage on beads. The reason breakage is merely a possibility is because it is often
not clear what the monopole is (or even if it exists) at the level of the low energy effective action.
Multiple examples of stringy monopoles are known, ranging from BI-ons [28] to configurations of
branes (for a recent example see [29]). In some cases, the strings carry a fraction of the minimum
magnetic charge, and the network of strings, instead of having endpoints, has multiple strings ending
on a given bead. (An important example is the “baryon” D3 branes described in [30]). This leads
to so-called cosmic necklaces, and they have interesting phenomenology of their own [31, 32, 33, 34].

In this paper, we will be interested in the scenario where the strings are unstable to breakage due
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to monopoles/beads. We will not rely on any specific string-theoretic models, and we will assume
vanilla cosmic strings and beads; they are neutral under every long range force except gravity.

Group theoretic considerations require that the symmetry breaking scheme must produce monopoles
at a higher scale than the subsequent cosmic strings. The pattern of symmetry breaking is [35] (see
also [36] for more discussion on cosmic strings in GUT models)

G→ H × U(1)→ H , (1)

where G is a semi-simple Lie group. Monopoles are created under the first symmetry breaking,
and their flux is confined under the second, forming a network of beads and strings. A corollary of
such a sequence is that the cosmic strings are at best metastable. Such a scenario has previously
been considered [37, 38], and it was found that the beads rapidly annihilate due to the confining
potential generated by the strings. The close proximity of beads means that such a network is
unstable. However, in the special case where the monopole creating phase transition occurs before
inflation and the string production phase after inflation, there will not be any primordial population
of beads.4 Such a network is merely metastable. Strings will then only decay via the Schwinger
process (see [39]), whose time scale is given by the decay rate per unit length

Γ2 =
µ

2π
exp

(
−πm2/µ

)
, (2)

where µ is the string tension and m is the bead mass. We parametrize the bead mass in units of the
string tension by the parameter κ = m2/µ. From the symmetry breaking pattern above κ & 1. A
derivation of Eq. (2) is given in Appendix A. For large values of κ (for example, κ > 86 if the tension
is Gµ ∼ 10−7), the cosmic string lifetime is greater than the age of the universe, and the network
is stable for all practical purposes. For small values of κ, the network decays almost immediately
upon formation.

Martin and Vilenkin first studied the gravitational waves produced by these hybrid defects [40].
They calculated the power radiated per frequency interval after solving the Nambu-Goto equations
of the string/bead system. They assumed a network with a nonzero primordial monopole → bead
population and calculated the total power and stochastic background of the resulting gravitational
waves. In this paper we extend their calculation to include an analytic solution of the waveform
in different frequency intervals, and we consider the string motivated scenario in which the initial
population of monopoles is absent due to inflation.

We also calculate the phenomenology of highly focused gravitational wave bursts. In a celebrated
paper [16], Damour and Vilenkin have shown that a network of cosmic strings can be observed via
experiments like LIGO and LISA through the gravitational wave bursts produced by cusps and
kinks on string loops. We find that intense bursts are produced by the acceleration of the ultra-
relativistic monopoles, and we present the range of parameters where we can hope to detect these
bursts. This calculation is of theoretical interest in its own right since a cosmic string ending on
beads is the archetype of gravitational radiation emitted from a linearly accelerated mass, a problem
famous for its simplicity and paradoxes, as we will review.

Our main results are that for a moderate tuning of the monopole mass, Advanced LIGO will
be able to detect strings whose tension exceeds Gµ ∼ 10−12. We also find that a stochastic signal

4In brane inflation models, cosmic strings are naturally produced at the end of inflation, while monopoles are not
[20].
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persists for networks which decay at any time between reheating and the present day. Because
loop production is highly suppressed when the typical length of segment becomes sub-horizon, the
gravitational wave phenomenology from an unstable network is complimentary to that of stable
cosmic strings: an initial “stable string” epoch of loops is usurped by oscillating segments, followed
eventually by the complete demise of the string network.

The spectrum is very nearly independent of both frequency and κ = m2/µ. The frequency
cutoffs range from the Hubble scale to well beyond the Planck scale. This is an indication that
massive (e.g., dilaton) radiation may contribute to the phenomenology [41, 42].

In §2, we review the issue of metastability, with particular emphasis on the recent models
motivated by string theory. In §3, we calculate the gravitational waveform and power radiated by
strings ending on massive beads. In §4, we track the cosmology of such a network and find the
density and length distribution of cosmic strings. We then calculate the observational signals from
such a network in §5 before concluding. We have relegated many of the more technical details to a
series of appendices.

2 Metastable Cosmic Superstrings

Cosmic strings can decay by either becoming the boundary of a domain wall (the strings are
confined) or by developing boundaries themselves through nucleation of bead endpoints (the strings
are screened). Because the boundary of a boundary does not exist, these two types of instabilities are
mutually exclusive. To see how they arise, let us start with a global cosmic string whose dynamics
is well described outside the core by the Kalb-Ramond action

S = −µ
∫

Σ

d2σ + η

∫
Σ

B2 −
∫

R3,1

d4x 1
12
HµνρH

µνρ , (3)

where Σ is the string worldsheet, B2 is a 2-form with H3 = dB2 the associated field strength, µ is the
string tension and η its charge. We have suppressed the Einstein-Hilbert term. In 3+1 dimensions,
the massless 2-form is dual to an axion: dB2 = ?dφ. The Kalb-Ramond action (Eq. 3) therefore
represents a cosmic string with a magnetically sourced long-range axionic force. There is a global
U(1) shift symmetry of the axion φ → φ + c, and since this string carries a global charge, local
breakage is forbidden by topological considerations. Interestingly this fails to protect the strings, as
domain walls will confine and rapidly eliminate them [43, 21]. This occurs when instantons generate
a periodic potential for the axion of the form V (φ) = Λ4(1+cosφ) where Λ is some non-perturbative
energy scale. At the minimum of the instanton potential, the global U(1) is broken to a discrete
subgroup, and domain walls arise. As the axion winds around the global strings, it will necessarily
have “to go over the bump” of the periodic potential; therefore the string is always going to be
the boundary of a domain wall (see Fig. 1). In general, the wall’s tension can be high and will
confine the strings together. Hence we expect a rapid demise of the string-domain wall network.
The phenomenology of such an hybrid network may be interesting, and so we leave this for future
work.

We will be interested in the case of a local string which has no long range axionic force. The
abelian Higgs model is the archetype of such a local cosmic string, but it is illuminating to minimally
generalize the Kalb-Ramond action to include a gauge field. Consider the action

S = −µ
∫

Σ

d2σ + η

∫
Σ

B2 −
∫

R3,1

d4x
(

1
12
HµνρH

µνρ + 1
4
FµνF

µν
)

+ ξB2 ∧ F2 , (4)
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Figure 1: As the axion winds around the string, the non-perturbative potential V (ϕ) must attain
its maximum in some direction. A domain wall thus confines any string. Such walls will pull infinite
strings towards each other and cause rapid demise of string loops.

where F2 = dA is the U(1) field strength and the last term is the coupling between the axion and
the gauge field parametrized by ξ. This can be shown to be equivalent to the abelian Higgs model in
the limit where the massive Higgs is integrated out of the theory. The B2∧F2 spontaneously breaks
the U(1) gauge symmetry and the gauge field picks up a mass ξ. This is just the Stückelberg model.
(In string theory, these types of terms can implement the generalized Green-Schwarz mechanism for
anomaly cancellation). The massive gauge field has eaten the axion, and it now propagates three
degrees of freedom. There is no long range axionic interaction, and the charge is therefore screened.
Gauge invariance forbids an instanton potential for the axion, and it again appears as if the string
is completely stable.

This is no longer generically true when we consider the possible UV completion of the theory.
Indeed, the U(1) could have been embedded in a non-abelian gauge group at some higher scales,
in which case heavy monopoles will exist for the string to break on. In string theory, more exotic
UV completions can also lead to monopoles. For example, by generalizing the kinetic term of the
gauge field (which we took to be canonical in Eq. 4) to the Born-Infield action (a non-linear gener-
alization of Maxwell’s theory), one can show the existence of monopole-like solutions representing
the endpoint of a string on a brane [28]. That is, even if the gauge group remains U(1) at high
energy, a cosmic (p, q)-string can still break on a brane in string theory and the endpoints will look
like monopoles (or dyons) in four dimensions. The only way to forbid the existence of monopoles
which could serve as a given string’s endpoint is to use the Dirac quantization condition, whereby
such a local string is properly classified as a stable Aharonov-Bohm string.

Polchinski has conjectured that monopoles of minimum Dirac charge always exists in string
theory [44]. This reduces the stability question to that of the existence of particles of fractional
electric charge (in units of the abelian Higgs charge). If no fractional electric charges exist, than
the Dirac monopole will carry the same charge as the string (flux tube), and breakage can occur.
If particles exist of electric charge 1/M , then bead nucleation will only permit q-strings to decay
into q −M strings, and so only M coincident strings can break completely. One can thus look at
stability in two equivalent ways. On the one hand, if the necessary magnetic charge for a string to
terminate on does not exist, the string cannot break. To forbid the existence of such an object in
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Figure 2: In the context of warped compactifications, different mass scales for the beads/monopoles
are possible depending on the specific model. Heavy (bulk scale) beads (left) form when a distant
throat is responsible for the instability. Light beads (κ & 1) form (right) when branes exist near
the tip of the inflationary throat. We assume inflation has already ended in these illustrations.
The orange (dimmer) rectangle represents the far IR, where the strings reside. Black rectangles are
D-Branes.

a UV independent way, we simply require that the charge quantization satisfy Dirac’s bound

2πgmin = 1/emin , (5)

and then introduce particles of electric charge equal to a fraction of the abelian Higgs charge.
Alternatively, one can show that by introducing particles of fractional electric charge, there will
exist an observable Aharonov-Bohm phase upon transport of these particles around the string
at arbitrary distances. This topological phase forbids breakage (assuming no additional massless
fluxes exist) for the same reason that a global string cannot break, namely causality. Experiments
far from the string should not be sensitive to a simultaneous event near the core. If no experiment
can detect the enclosed string, breakage can occur, and so the lifetime of the strings becomes a
phenomenological parameter. In summary, there are three different cases:

• Global strings which are unstable to domain wall formation.

• Local strings with no Aharonov-Bohm phase, these are not stable due to breakage via monopoles.

• Local strings with an Aharonov-Bohm phase detectable at infinity. These strings are com-
pletely stable.

In this paper, we will exclusively discuss the second case where the strings break on monopoles/beads.
The lifetime is going to be determined by the mass of these beads. Because this is strongly model
dependent, we will simply illustrate a range of possibilities in the context of brane inflation in a
warped throat [45] (see Fig. 2).
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In this scenario, the cosmic strings are formed at the bottom of a warped throat where the brane
and anti-brane annihilate. If there are spectator branes near the tip after annihilation (which can
be stabilized at various positions [46]), the string should be able to break directly on them and we
expect the mass of the monopoles to be of the same order as the string tension (both set by the
warped string scale), and therefore we expect κ ∼ O(1) although numerical factors can be quite
important5. If the other branes at the tip are slightly separated, then κ can be greater than one,
while if the branes are in different throats then we expect κ � 1 and a very long-lived network
(this case was emphasized in [21]). More exotic monopoles configurations (from various wrapped
branes) can also exist in these constructions [29]. We expect κ & 1 for these monopoles where the
numerical factor depend on the specific setup under consideration; for the rest of this paper we will
take it to be a free parameter. We find that the decay of the network is observable for values of
κ . 80, which is not necessarily a fine-tuned mass range for the beads.

3 Gravitational Wave Signal

A straight cosmic string with two bead endpoints will oscillate back and forth once its length is
subhorizon, producing gravitational wave bursts in the process. This is illustrated in Fig. (3). A
cosmic string with endpoints is the archetypical consistent system of piecewise uniform acceleration6.
The beads are being pulled by the string and accelerate with constant proper acceleration a = µ/m,
in the straight string approximation. At the fly-by, the acceleration abruptly switches sign, and this
discontinuity releases a burst of radiation of characteristic spectrum 1/f 2. Interestingly, this is not
responsible for most of the radiated power. It is the ultra-relativistic oscillation which produces the
most radiated power from the segments, as was first pointed out by Martin & Vilenkin [40]. The
spectrum from this dominant piece has the scale invariant 1/f form.

3.1 Radiation from a Uniformly Accelerated Mass

Radiation from uniform acceleration is plagued with several conceptual issues [47, 48, 49, 50, 51, 52].
As in electrodynamics, the crux of the matter has to do with a radiation reaction which is pro-
portional to

...
x and therefore vanishes for an hyperbolic trajectory. This has led some physicists

(such as Pauli) to incorrectly proclaim that there should be no radiation (in the case of electro-
magnetism) from uniform acceleration, since it would violate energy conservation. The solution
to Maxwell’s equations for an isolated, uniformly accelerated charge is both simple and singular:
the field strength on the light-front is proportional to a delta-function. It is known that a particle
undergoing uniform acceleration over an arbitrarily long finite proper time does radiate. This fact
does not undermine conservation of energy or the equivalence principle. We expect a similar result
to hold for gravitational radiation.

In the next section we will compute the spectrum of gravitational radiation from the piecewise
uniformly accelerated beads following the work of [40]. This problem has already been studied

5This was pointed out to us by J. Blanco-Pillado.
6In E&M one can imagine an external force that provides the uniform acceleration. In GR, this “external force”

will perturb the metric as well and should be included. The solution for a uniformly accelerated mass in GR leads
to a class of metric called C-metric [53] (see also [54]). This class of metric always include conical deficit angles, i.e.,
cosmic strings. Therefore, a cosmic string with endpoints is the self consistent way of getting uniform acceleration
in general relativity.
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Figure 3: An open cosmic string with bead endpoints. The beads are uniformly accelerated until
the fly-by occurs at some minimum impact parameter b, at which point the acceleration abruptly
change sign. The presence of kinks (not shown) on the string will also lead to abrupt change in the
acceleration.

extensively in the context of E&M (see for example [55]). Before going into the detailed calculation,
we can summarize all the key features. The waveform is a strong 1/f burst with the following
properties:

• The power radiated is approximately independent of the length of the segment

• The power radiated is approximately independent of the mass of the bead

• The radiation is scale invariant for 1 < fl < γ2
0

The scale invariance of the burst of radiation is a rather unusual feature. This should be thought
of as a consequence of the ultra-relativistic kinematics. (A similar behavior was found for the
ultra-relativistic rotating rod by Martin & Vilenkin.) Naively, one would expect the discontinuous
acceleration to produce a strong 1/f 2 burst. Instead, the even stronger 1/f waveform is dominant
whenever γ0 � 1.

3.2 Gravitational Waveforms

For a periodic source with period T , the solution to the linearized Einstein equations in the wave
zone has the form

hµν(x, t) =
∞∑

n=−∞

ε(n)
µν (x, ωn)e−ikn·x , (6)

where

ε(n)
µν (x, ωn) =

4G

r
(Tµν(kn)− 1

2
ηµνT

λ
λ (kn)) , (7)

is the polarisation tensor, and

T µν(kn) =
1

T

∫ T

0

dt

∫
d3xT µν(x)eikn·x , (8)
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is the Fourier transform of the stress-energy tensor. The wave vector is given by kµn = ωn(1, Ω̂),
with ωn = 2πn/T , and Ω̂ is a unit vector pointing from the source to the point of observation. If the
bead-string system is confined to the z-axis then the stress-energy tensor only has three non-zero
components: T 00, T 03 and T 33. The conservation equations ∇µT

µν = 0 in Fourier space is

ωnT
0ν − kiT iν = 0 , (9)

which leaves only one independent component.
We need the stress-energy tensor of the idealized setup of a straight string connecting two beads.

This was first calculated by Martin & Vilenkin [40] directly from the Nambu-Goto equations of
motion. The stress energy tensor (simplest choice is T 03) is given in the time-domain by

T 03(t,x) = m(γ0v0 − a|t|)[δ(x− x1(t)ẑ)− δ(x + x1(t)ẑ)] , (10)

where

xi(t) = (−1)i
sgn(t)

a
(γ0 −

√
1 + (γ0v0 − a|t|)2) (11)

is the position of the two beads (by symmetry x1(t) = −x2(t)) and γ0 and v0 are the maximum
gamma factor and speed of the beads, respectively. In this case, the period of motion is T = 2γ0v0

a
,

where a = µ/m is the proper acceleration of the beads and the frequency is

ωn =
nπa

γ0v0

, (12)

The maximum length of the system, when the beads are at rest, is l = 2(γ0−1)
a

and so for ultra-
relativistic beads we have, to good approximation, that T ∼ l. The Fourier transform of Eq. (10)
is,

T 03(ωn,k) = mγ0v0In(u) , (13)

with

In(u) =

∫ 1

0

ξdξ[cos(nπ(1− ξ − u

v0

+ u
√
ξ2 + 1/(γ0v0)2))

− cos(nπ(1− ξ +
u

v0

− u
√
ξ2 + 1/(γ0v0)2))] (14)

and u = k3/ωn. We may take the unit vector that defines the direction of travel of the wave to be

Ω̂ =

 cosφ sin θ
sinφ sin θ

cos θ

 (15)

so that u = cos θ. The Fourier transform of the stress-energy tensor is thus

T µν(kn) = mγ0v0In(u)


u 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1/u

 (16)
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and its trace is

T λλ (kn) = mγ0v0(u− 1

u
)In(u) . (17)

The polarisation tensor reads

ε(n)
µν (x, ωn) =

2Gmγ0v0

r
In(u)

×


u+ 1/u 0 0 1

0 u− 1/u 0 0
0 0 u− 1/u 0
1 0 0 u+ 1/u

 .

(18)

As shown in Appendix C, the gravitational wave is linearly polarized and the plus polarization can
be written as

ε+(x, ω) =
2Gmγ0v0

r

u2 − 1

u
In(u) . (19)

The waveform in the frequency domain is simply obtained by multiplying by the period h(f, r) =
Tε+(x, ω). As was shown in [40], the large frequency (n � γ2

0) behavior of the waveform is 1/f 2.
In Appendix D, we re-derive this result using a continuous approximation that shows clearly that
this tail of the waveform is coming from the discontinuity.

Almost all of the energy is radiated in the frequency range 1 < n < γ2
0 . A good approximation

of the waveform in this regime can be obtained by dropping the second term in the square root of
Eq. (14) and performing the integral

h(f, r) =
16Gmγ0v0l

r

sin2(nπ(1− u)/2)

n2π2(u2 − 1)
. (20)

Changing variable to ξ = nπ(1− u)/2 gives

h(f, r) =
4Gmγ0v0l

r

sin2 ξ

nπξ(1− ξ/(nπ))
. (21)

The burst is highly focused around θ ≈ 0 which corresponds to small ξ. Together with the fact that
n is large, we can drop the second term in denominator. All the angular dependence is therefore
describe by sin2 ξ

ξ
which is zero at ξ = [0, π, · · · ] and has its first maximum at ξ =

√
2. The beaming

angle can be well approximated by the position of the second zero at ξ = π

θf ≈
O(1)√
n

, (22)

This can be written in term of the frequency using n = f(1 + z)l. We will consistently refers to f
as the observed frequency, while l is the physical (maximal) length at time of burst. The waveform
at its maximum value is

h(f, r) ≈ C
Gµ

r

l

f
(23)
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with C = 2
√

2 sin2
√

2
π

. This is valid for γ0 � 1, v0 ∼ 1. Note that there is no redshift factor (1 + z)
in this expression. The waveform swiftly goes to zero for f < 1/T ∼ 1/l and the approximation we
have made breaks down for n� γ2

0 . Hence most of the power is radiated in the frequency range

1

(1 + z)l
< f <

γ2
0

(1 + z)l
. (24)

The 1/f dependence of the waveform signals a very strong burst7 and leads to a scale invariant
spectrum with constant power emitted per logarithmic frequency interval, as we will now show.

3.3 Energy and Power

The power radiated per frequency interval is [40]

Pn = 2n2π2Gµ2

∫ 1

0

du (1/u− u)2 |In(u)|2 , (25)

where In(u) is given by Eqn.(14). Again, there are two interesting frequency intervals, the ‘scale
invariant’ range 1 . n � γ2

0 , and the ‘convergent range’ 1 � γ2
0 � n. We can analytically

determine the power radiated in each mode in the limit γ0 →∞:

Pn =
4Gµ2

n2π2

(
3γE − 4Ci(2πn) + Ci(4πn) + log(4n3π3) + 4nπSi(2πn)− 2nπSi(4πn)

)
, (26)

where Ci and Si are the cosine integral and sine integral functions, respectively, and γE is the Euler
constant. We can find the beaming angle by examining the integrand in Eq. (25). In the ‘scale
invariant’ range, the radiation is beamed in a cone of apex angle θn ≈

√
1/n, and the power in the

nth mode is approximated by

Pn ≈
4Gµ2

n
. (27)

The ‘scale invariant’ part of the radiation is thus constant per logarithmic frequency interval, and
it dominates the total power radiated,

P ≈ 4Gµ2

γ2
0∑

n=1

1

n
≈ 4 ln(γ2

0)Gµ2 . (28)

There is a small correction to this formula coming from the 1/n2 part at high frequency but it can
be safely neglected for large enough γ0. It is instructive to re-derive the waveform from energy
considerations. For a single burst, the meaningful quantity is the energy

dE ≈ 4Gµ2ldf

f
1/(1 + z)l ≤ f ≤ γ2

0/(1 + z)l , (29)

7We can roughly define a burst as a wave with a long tail in the frequency domain. The longer the tail in frequency
domain the sharper the emission was in the time domain. For comparison, bursts from cusps and kinks go like f−4/3

and f−5/3 respectively [16]. The bursts we consider here are much stronger.
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which is beamed in a cone of angle θf ≈
√

1/(1 + z)fl. The gravitational wave energy from an
isotropic burst is given by

dE = 4πr2M2
Pf

2h2(f)df . (30)

Thus if all the radiation is contained in a cone of solid angle θ2
f , the waveform must satisfy

dE = r2θ2
fM

2
Pf

2h2(f)df , (31)

and so comparing with Eq.(29) yields the waveform (assuming the burst is aimed directly at us)

h(f) ∼ Gµ

r

l

f
. (32)

For observation within a narrow frequency band, the beaming angle appears narrowed by redshift.
This is because an observation of a frequency f today corresponds to a higher emitted frequency,
and thus a narrower cone of radiation. Since the energy in a gravitational burst must scale like
1/a, all of the redshift dependence is in the observed beaming angle, and the waveform remains
unchanged. This means that sources at very large redshift are just as bright but are less often
directed at us.

3.4 Beyond the Straight String Approximation

In the idealized straight string approximation, at the time of fly-by all the energy of the string/beads
system is located in a region smaller than the corresponding Schwarzschild radius, and a black hole
should form. This will not occur for segments with some minimum impact parameter, due to
angular momentum. Given that the Schwarzschild radius is rs = MBH

m2
p

, and that the energy of our

system is of the order µl, we will form a black whenever the impact parameter b satisfies

b <
µl

m2
p

∼ Gµl . (33)

In this paper we work under the assumption that for most strings, the impact parameter is always
larger than this bound. This is legitimate, since for a network of scaling cosmic strings the segments
will contain a number of kinks. Kink-bead interactions are very similar to fly-bys, since in both
cases the bead’s acceleration is piecewise constant with sharp discontinuities. Such strings will not
form black holes since the bead impact parameter is of order the length of the segment. If the
average number of kinks per segment falls significantly below one, black hole formation must be
considered. This may yield interesting phenomenology in its own right.

One may wonder whether the presence of kinks will alter the observable signal from such a
network and here we argue that it does not. We will assume that the kink angle is quite small, in
which case it may be thought of as a perturbation on a straight string.

Under this assumption, we expect a string with k weak kinks to produce the same total power,
but divided into k separate bursts. Starting fully extended and at rest, the beads will accelerate
toward the segment center of mass, and encounter k kinks on the way. The first kink will cause
a burst in the low frequency range, since the bead has not had a chance to reach its top speed.
Successive bursts will be higher and higher in frequency, since the bead is moving faster and faster,
until the maximum speed is reached.
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Since the kinks have little effect on the bead velocity we can simply divide up the (flat) energy
spectrum of the straight string scenario into k distinct domains. This means that the each of
the k bursts represents a different interval in frequency space, but their amplitude is identical to
the simple case. In essence, the kinks act like a prism, dividing the burst into coequal frequency
domains. For experiments sensitive to either a narrow frequency band or total power, there can be
no distinction between a single co-linear bursts, and prismatically scattered bursts.

3.5 The Rate of Bursts

Let the number density of bead-antibead pairs connected by a string of length between l and l+ dl
at time t be

n(l, t)dl. (34)

By length here we mean the fully stretched out length of the system when the beads are at rest.
Each bead-antibead pair oscillates in a time T ∼ l and the number of bursts per unit spacetime
volume we observe at time t is

ν(l, t)dl ∼ 1

l
n(l, t)dl. (35)

We have restricted ourselves to the case when the beads are relativistic and the radiation is highly
beamed. We do not observe all bursts, rather we only observe a fraction

∆(l, f, z) ∼ 1

4(1 + z)fl
Θ(γ0 − 1)Θ ((1 + z)fl − 1) Θ

(
γ2

0 − (1 + z)fl)
)
, (36)

with γ0 ∼ µl/m. The first term on the right hand side is the beaming fraction for an angle
θf ∼ ((1 + z)fl)−1/2, the first Heaviside Θ-function (second term) ensures that we are in the
relativistic regime γ0 � 1, and the second and third Heaviside Θ-functions ensure that we are in
the regime given by Eq. (24) where the waveform Eq. (23) is valid. Although in Eq. (36) we have
included the upper bound on the frequency for clarity, it turns out to be irrelevant. The condition
γ2

0 > (1 + z)fl can be turned into a bound on the length of the segment of string connecting the
beads, l > (1 + z)f(Gµ)−1κl2p, where lp is the Planck length. For typical values of Gµ and κ even
for the largest possible redshifts the lower bound on l is within a few orders of magnitude of the
Planck length.

Time and distances can be written as cosmology dependent functions of the redshift t(z) =
H−1

0 ϕt(z), r(z) = H−1
0 ϕr(z) and dV (z) = H−3

0 ϕV (z)dz. These functions depend on cosmological
parameters and need to be computed numerically as described in Appendix A of [17], where a
vanilla Λ-CDM model was used with recently measured parameters that can be found in [56]. One
can obtain reasonable (good to about 20%) analytic approximations for the cosmological functions
using variations of the expressions introduced in [16]. In particular the following expressions,

ϕt = (1 + z)−3/2(1 + z/zeq)
−1/2, (37)

ϕr =
z

1 + z/3.5042
, (38)

ϕV = 12z2(1 + z/1.6)−13/2(1 + z/zeq)
−1/2, (39)

seem to work well (with zeq = 5440). We note that for consistency, the value of H0 that should be
used with these functions is 73 km/s/Mpc [56]. This allows us to write the rate of bursts we expect
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to see from a volume dV (z) (the proper volume in the redshift interval dz), from bead-antibead
pairs with lengths in the interval dl as,

dR

dV (z)dl
= (1 + z)−1ν(l, z)∆(l, f, z) ,

dR

dzdl
= H−3

0 (1 + z)−1ϕV (z)ν(l, z)∆(l, f, z). (40)

The first (1 + z) factor comes from the relationship between the observed burst rate and the cosmic
time. To compute the rate of bursts an estimate of the minimum detectable amplitude Amin needs
to be performed (see section 5.1). A matched filter search returns the amplitude A of a template,

h(f) = At(f) (41)

where in this case t(f) = f−1, and the dimensionless amplitude is given by

A = C
GµlH0

ϕr(z)
, (42)

where again C =
√

8 sin2(
√

2)/π. We can write the length as a function of the amplitude,

l(A, z) =
Aϕr(z)

CGµH0

,
dl

dA
=
l(z, A)

A
, (43)

and change variables to write the rate as a function of the amplitude. In the end we perform the
integrals to compute the rate above the minimum detectable amplitude

R>Amin
=

∫ ∞
Amin

dA

∫ ∞
0

dz
dR

dzdA
(44)

and see how that rate compares with one event per year (say). In the following sections, we will
compute n(l, t) and Amin and the results for the rate is shown for LIGO, Advanced LIGO, and
LISA in Fig.(4).

3.6 Stochastic Background

A stochastic background of gravitational waves is produced by the incoherent superposition of all
bursts ever produced by the network. It is typically expressed as the ratio of the energy density
of gravitational waves to the critical density today. To derive an expression for the stochastic
background we begin with the expression for the plane wave expansion for the metric perturbation
[57],

hab(t, ~x) =
∑
A

∫ ∞
−∞

df

∫
S2

dΩ̂ hA(f, Ω̂)ei2πf(t−Ω̂·~x/c) eAab(Ω̂). (45)

Here A = +,× labels polarisations, Ω̂ is the direction of propagation of the gravitational wave and
eAab(Ω̂) is the polarisation tensor. If the stochastic background is isotropic, stationary, unpolarised,
and uncorrelated the ensemble average of the Fourier amplitudes hA(f, Ω̂) satisfies [57]

〈h∗A(f, Ω̂)hA′(f
′, Ω̂′)〉 = δ2(Ω̂, Ω̂′)δAA′δ(f − f ′) H(f). (46)
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This expression defines H(f). The relation between H(f) and Ωgw(f) is [57]

H(f) =
3H2

0

32π3
|f |−3 Ωgw(|f |) . (47)

where H0 is the Hubble parameter which we take to be H0 = 73 km/s/Mpc [56]. In the following
we describe how to compute H(f) using Eq. (46). We start with an expression for the metric
perturbation as a function of the frequency evaluated at a particular point in space (we take ~x = ~0
for convenience),

hab(f,~0) =
∑
A

∫
S2

dΩ̂ hA(f, Ω̂)eAab(Ω̂). (48)

From Eq. (48) it is clear that if we multiply both sides of Eq. (46) by eabA′(Ω̂
′), integrate over the

sphere (
∫
S2 dΩ̂′) and sum over polarisations (

∑
A′), we obtain,

〈h∗A(f, Ω̂)hab(f ′,~0)〉 = eabA (Ω̂)δ(f − f ′) H(f). (49)

Similarly, multiplying both sides by eAab(Ω̂), integrating over the sphere (
∫
S2 dΩ̂) and summing over

polarisations (
∑

A), we obtain,

〈h∗ab(f,~0)hab(f ′,~0)〉 = 16πδ(f − f ′) H(f). (50)

Here we have used the fact that
∑

A e
A
abe

ab
A = 4. To remove the delta function we borrow a trick from

[16]. In the limit f → f ′ the delta function takes the formally infinite time interval δ(f − f ′)→ T ,
so that

〈|hab(f,~0)|2〉 = 16πT H(f). (51)

The factor of T will cancel eventually. We have seen that the gravitational wave signal is linearly
polarised which means that for a wave traveling along the ẑ direction we can write the metric
perturbation as

hab(f,~0) = h(f)

 cos 2ψ sin 2ψ 0
sin 2ψ − cos 2ψ 0

0 0 0

 . (52)

If we average over the polarisation angle ψ we get 〈h∗ab(f,~0)hab(f,~0)〉 = 2〈|h(f)|2〉, and hence,

H(f) =
1

8πT
〈|h(f)|2〉. (53)

Thus we can write,

Ωgw(|f |) =
4π2

3H2
0

f 3 1

T
〈|h(f)|2〉. (54)

The strain (Eq. 23) and the rate of bursts (Eq. 40) enter the ensemble averaged strain through

〈|h(f)|2〉 = T

∫
dz

∫
dl h2(f, z, l)

dR

dzdl
. (55)

Thus, the stochastic background produced by the incoherent superposition of bursts is

Ωgw(f) =
4π2

3H2
0

f 3

∫
dz

∫
dl h2(f, z, l)

dR

dzdl
, (56)
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where the integrals are over all redshifts z and over all lengths l connecting the bead pairs.
As pointed out by Damour and Vilenkin [16], if we are interested in the confusion noise produced

by the network of beads and strings we must avoid the biasing of Ωgw(f) that could result from
including large amplitude rare events. We can accomplish this by excluding events that occur less
frequently than the typical duration of bursts. The duration of a burst as seen in an instrument
with peak sensitivity at frequency f is O(f−1). Only bursts that overlap, i.e., small amplitude
frequent bursts contribute to the Gaussian background we are trying to estimate. We can follow
the procedure developed in [19]. We begin by expressing the rate as a function of the strain and the
redshift rather than the length and the redshift. We can do this change of variables using Eq. (145)
to write

dR

dhdz
=
l

h

dR

dldz
. (57)

We then integrate the rate over all redshifts and find the strain h∗ for which the rate at and above
that strain becomes smaller than the peak experiment frequency f . Namely we find the value of h∗
such that,

R(> h∗) =

∫ ∞
h∗

dh

∫ ∞
0

dz
dR

dhdz
, (58)

and evaluate

Ωgw(f) =
4π2

3H2
0

f 3

∫ h∗

0

dhh2

∫ ∞
0

dz
dR

dzdh
. (59)

Equation (59) gives the so-called confusion noise produced by the network, a Gaussian background
that needs to be included along with other sources of noise to estimate the total noise present in
our detectors. If the confusion noise is sufficiently large it can have adverse effects on our ability to
detect individual bursts.

For stochastic background searches that use cross correlations between detectors, such as those
performed by LIGO, it is not necessary to remove the large amplitude events in our estimate
of Ωgw(f), and Eq. (56) may still be used. Large infrequent bursts will contribute to the cross-
correlation in our estimate of Ωgw(f), even though cross-correlations are not the optimal procedures
for finding such bursts. These large infrequent bursts are optimally detected using other techniques:
Matched-filters if they are sufficiently large amplitude (as described above), or methods optimized
for non-Gaussian stochastic background detection [58].

4 Cosmological Evolution

The cosmic string network forms at the end of brane inflation (or similar hybrid inflationary scenario)
without any beads present. This infinite string network begins to decay immediately, resulting
almost exclusively in super-horizon length segments. As long as the typical segment length is
super-horizon, the evolution will be identical to that of an infinite string network, and scaling is
readily expected despite the presence of a small number of sub-horizon (oscillating) segments.

At a time t∗ the typical segment length becomes sub-horizon. We will call this the beginning
of the short string epoch. Much like matter-era cosmic strings, these segments are smoother and
straighter than the segments during the long string epoch. The strings during this epoch will
cease to obey a scaling solution. This is because the segments will have a drastically reduced
intercommutation probability due to low peculiar velocities. The segment energy density will thus
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increase relative to the scaling solution during the short string epoch until either it begins to
lose significant energy to gravitational radiation, or the universe becomes matter dominated. The
violation of scaling during the short string epoch can thus increase the energy density relative to
long cosmic strings by a factor of at most (Gµ)−1/4, which is significant in our parameter space. The
network will continue to fragment into shorter segments, causing the energy loss to gravitational
radiation to eliminate most of the network around the time t = t∗∗. The primary phenomenological
quantity that we must determine is the number density of string segments of a given energy.

4.1 Number Density of Segments: n(l, t)dl

Let n(l, t)dl be the number density of bead-antibead pairs connected by a string of length between l
and l+dl at time t. As before, we define the length l of a segment by its maximum possible length:
l = E/µ. Then the energy density in cosmic string is given by∫ ∞

0

n(l, t)µldl = ρcs. (60)

Notice we do not need to distinguish between “infinite strings” and finite segments: the former are
more accurately characterized as having a super-horizon length. We do not track loops explicitly.
Instead, we note that loops are not produced by segments which have begun to oscillate. Before we
perform a careful derivation of n(l, t)dl, it is enlightening to first consider a simple estimate that
can be done in the scaling regime. We can treat the cosmic string network as a single worldsheet
where decay events are uncorrelated points on the sheet. This means a metastable cosmic string
of decay rate per unit length Γ2 will have decay events obeying a Poissionian distribution. The
probability of a worldsheet proper area A containing k nucleation events is given by

Pk(A) =
(AΓ2)ke−AΓ2

k!
. (61)

Thus at a time t, the probability for a given string to be of length l is given by the probability
that exactly zero decay events have occurred in the worldsheet area lt, i.e., in the entire past of
the segment, times the probability that one or more decay events did occur in an area tdl. (We are
asking for a segment of length at least l and at most l + dl.) Using Eq. (61) the probability of a
segment having such a length is given by

P (l, t)dl = Γ2t exp(−Γ2lt)dl . (62)

We can relate P (l, t)dl to the number density n(l, t)dl via Eq. (60)

n(l, t)dl = P (l, t)dl
ρcs(t)∫∞

0
P (l′, t)µl′dl′

(63)

where ρcs(t) ∼ µ/t2 is fixed by the scaling solution. Thus we have

n(l, t)dl = Γ2
2 exp (−ltΓ2) dl (64)

This simple argument is expected to be valid in the scaling regime when most of the strings are
super-Hubble in length. The number density of segments of finite length goes to zero both when
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Γ2 → 0 (the network is stable) and when Γ2 → ∞ (the network decays immediately). For a fixed
length and time, n(l, t) has a maximum at Γ2 = 1/lt. Therefore the time (t∗) at which a significant
fraction of the segments in the network are subhorizon l ∼ t is

〈l〉 ∼ H−1 ⇐⇒ t = t∗ := Γ
−1/2
2 (65)

To correctly account for the deviation from scaling and the gravitational back-reaction, we need a
more thorough analysis. Because n(l, t) is a length density it satisfies the continuity equation

∂n(l, t)

∂t
= − ∂

∂l

(
l̇n(l, t)

)
− 3

ȧ

a
n(l, t) + g , (66)

where gdldt is the number density of pairs produced with lengths between l and l + dl, at a time
between t and t+dt. The function l̇ incorporates the effects of the geometry on individual segments,
i.e., Hubble stretching and drag. We can characterize explicit terms within g as being one of three
types: loop producing, segment intercommutation, and segment breaking. Loop production provides
a stable solution for ρcs(t) = µ

∫
n(l, t)ldl, the scaling solution. Two-segment intercommutation will

not be explicitly important and breaking will eventually destroy the scaling solution. We write

g = gloop + gic + gbreak . (67)

In Appendix B, we discuss each term in more detail. Here we simply argue that intercommutation
and loop production ensure scaling in the absence of breaking.8 To make the problem tractable,
we will coarse grain over the scale of loop production and treat it as a continuous shortening of
segments. The result is an l̇ which now includes the effects of both the geometry (expansion) and
loop production,

l̇ = l̇H + l̇loop (68)

= 3Hl − 2l

t
(scaling solution) (69)

It is readily seen that the Boltzmann equation (Eq. (66)) with g = 0 and the above l̇ has a scaling
solution with ρcs ∼ µ/t2 in both the matter and radiation eras. We are now ready to include
breakage with

gbreakdl = Γ2

(
2

∫ ∞
l

n(l′, t)dl′ − ln(l, t)

)
dl (70)

The breakage formula can be motivated as follows. The breakage rate of strings of length l is Γ2l,
which explains the last term. The first term can be understood by considering the process by which
n(l, t)dl increases. This is entirely due to breaking longer strings, those of length l′ > l. The rate at
which longer strings break to produce those of length between l and l+dl is given by the number of
longer strings present (hence the integral), and the measure of string where a break yields a shorter
string of length between l and l + dl, i.e., 2dl. The factor of two is because the breaking point

8The main effect of intercommutation is to create a small scale structure on the strings that leads to the creation
of loops. Loop production is the dominant channel for energy losses in the network. It is also sufficient for scaling -
one can turn off gravity and the “infinite” network still scales.
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can be closer to either of the two endpoints of the longer string. Because string breakage should
not affect the string energy density, we can easily check that d

dt

∫∞
0
µln(l, t)dl is independent of Γ2,

which it is. Finally, the last ingredient we will need to solve the Bolztmann equation is the energy
loss in gravitational waves as sub-horizon strings oscillate. We already calculated the total power
radiated by an oscillating segment[40],

P ≈ 4 ln(γ2
0)Gµ2, (71)

and the energy comes out of the length of string connecting the pair (we think of the beads coming
to rest, and with each oscillation the string gets a little shorter because of GW emission). Thus the
length of string (when the beads are at rest) decreases as

l̇gw ≈ −4 ln(γ2
0)Gµ l . H−1 (72)

We will parametrize this as l̇gw = −ΓGµ with typical values Γ ∼ 50 due to large γ factor of the
beads. The phase transition at t = t∗ leads to a network that consists of subhorizon segments,
which are straightened by expansion, but not stretched. These will oscillate and fragment until
their GW radiation becomes dominant, at a time of order t∗∗, after which the network disappears.
We can estimate t∗∗ by comparing the power lost to scaling versus the power lost to gravitational
radiation:

d

dt

( µ
t2

)
∼ ΓGµ2

∫ ∞
0

n(l, t)dl (73)

⇒ t∗∗ = t∗/
√

ΓGµ = 1/
√

Γ2ΓGµ (74)

Notice t∗∗ does not depend on expansion, unlike t∗. We should therefore think of t∗∗ as the
network lifetime irrespective of the scaling solution9.

4.2 Solutions

During the long string epoch, the network will satisfy the scaling Boltzmann equation (now an
integro-differential equation given gbreak in Eq. 70),

∂n(l, t)

∂t
= − ∂

∂l

[(
3Hl − 2l

t

)
n(l, t)

]
− 3Hn(l, t) + gbreak , (75)

whose solution is
n(l, t) = 4Γ2

2 exp(−2Γ2lt) , (76)

where we have assumed radiation dominance for now. This solution is, up to a factor of two in
the exponential, exactly what we obtained in our simplistic derivation of Eq. (64). After the long
string epoch, the strings will begin to oscillate, which will drastically alter their appearance and
behavior. In particular, we can now ignore Hubble stretching and loop production, and therefore
the only contribution to l̇ is from energy loss to gravitational radiation. The Boltzmann equation
then reads

∂n(l, t)

∂t
= − ∂

∂l
ΓGµn(l, t)− 3Hn(l, t) + gbreak , (77)

9We thank K. Olum for pointing this out.
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which has the solution

n(l, t) = Γ2
2 exp(−Γ2lt)

√
t

t∗
exp(−1

2
ΓGµΓ2t

2) . (78)

where one recognizes the previously defined t∗∗ = 1/
√

ΓGµΓ2 in the exponential. The complete evo-
lution of the segments (including the cases where the network decay in the matter era) is extremely
well approximated by

n(l, t) = Γ2
2

√
med {t, t∗,max{t∗, teq}}

t∗
e−Γ2l(t+min{t,t∗,teq})e−

1
2
t2/t2∗∗ , (79)

where med{} is the median. The exact solution is given in Appendix B.

5 Results

In this section we examine the parameter space of the theory to find detectable bursts and stochastic
background signals.

5.1 The Minimum Detectable Burst Amplitude

To produce an estimate of the minimum detectable amplitude we follow the analysis in [17] for
cosmic string cusps closely. As we have seen, the gravitational waveforms in the frequency domain
are

h(f) = At(f), (80)

with t(f) = f−1. We will use the conventional detector-noise-weighted inner product [59],

(x|y) ≡ 4<
∫ ∞

0

df
x(f)y∗(f)

Sh(f)
, (81)

where Sh(f) is the single-sided spectral density defined by 〈n(f)n∗(f ′)〉 = 1
2
δ(f − f ′)Sh(f), where

n(f) is the Fourier transform of the detector noise. The template t(f) can be normalised using the
inner product σ2 = (t|t) so that t̂ = t/σ, and (t̂|t̂) = 1. For an instrumental output s(t), the signal
to noise ratio (SNR) is defined as,

ρ ≡ (s|t̂). (82)

In general, the instrument output is a burst h(t) plus some noise n(t), s(t) = h(t) +n(t). When the
signal is absent, h(t) = 0, it is easy to show the SNR is Gaussian distributed with zero mean and
unit variance. When a signal is present, the average SNR is

〈ρ〉 = 〈(h|t̂)〉+ 〈(n|t̂)〉 = (Aσt̂|t̂) = Aσ, (83)

and the fluctuations also have unit variance. This means that for an SNR threshold ρth, on average,
only events with amplitude

Ath ≥
ρth

σ
, (84)
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Figure 4: Burst detection rate for LIGO (left), Advanced LIGO (center), and LISA (right). The solid
curve represents the BBN constraint on string tension from loops i.e., long-lived strings, whereas
the dashed curve represents the BBN constraint on string tension from bead induced bursts.

will be detected. The form of the Initial LIGO noise curve is well approximated by [60],

Sh(f) =

[
1.09× 10−41

(
30Hz

f

)28

+ 1.44× 10−45

(
100Hz

f

)4

+ 1.28× 10−46

(
1 +

(
f

90Hz

)2
)]

s. (85)

The first term arises from seismic effects, the second from thermal noise in the optics, and the third
from photon shot noise. A reasonable operating point for the pipeline involves an SNR threshold
of ρth = 4. The value of the amplitude is related to ρ, the SNR, and σ, the template normalisation,

σ2 = 4<
∫ ∞

0

df
t(f)2

Sh(f)
= 4

∫ ∞
0

df
f−2

Sh(f)
. (86)

Because of Eq. (84) an event with an SNR close to the threshold, ρ∗ ≈ 4 will on average have
an amplitude A∗ ≈ 6 × 10−22. Events on average will not be optimally oriented so we need to
increase the amplitude by

√
5 to account for the averaged antenna beam pattern of the instrument.

So we expect Amin ≈ 10−21 for the Initial LIGO noise curve. For Advanced LIGO we expect to
do about an order of magnitude better so we take Amin ≈ 10−22. For LISA, our estimate of the
minimum detectable amplitude is Amin = 4 × 10−21. This estimate was made using a LISA noise
curve that includes confusion noise from galactic white dwarf binaries, assuming that some of the
binary signals can be fitted out[61, 62].
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5.2 Burst Detection by LIGO, Advanced LIGO, and LISA

We want to calculate the rate of bursts

R>Amin
=

∫ ∞
Amin

dA

∫ ∞
0

dz
dR

dzdA
(87)

with

dR

dzdA
=

ϕV (z)ν(A, z)∆(A, z)

H3
0 (1 + z)

m

2µ

√
(1 + z)ϕr(z)

BGµH0A
, (88)

which can be obtained from Eq. (40) by doing a change of variable from l to A using Eq. (43).
The integral over amplitude goes to infinity to good approximation. More precisely, there is an
amplitude (length) cutoff set by the size of the horizon, since only strings with length l < 1/H will
oscillate and produce bursts.

With some approximations, it is possible to obtain an analytic expression for the observed burst
rate. First we will work at large redshift z � zeq to simplify all of our cosmological functions. The
number density of segments in the radiation era is given by Eq. (78) and we can make the further
approximation that the network decay suddenly at time t = t∗∗ and set the density to zero beyond
that point. Therefore we divide the density into the scaling regime t < t∗, the non-scaling (short
string) regime t∗ < t < t∗∗ and the post string regime t∗∗ < t.

n(l, t) = 4Γ2
2e
−2Γ2lt


1 t < t∗
1
2
eΓ2lt

√
t/t∗ t∗ < t < t∗∗

0 t∗∗ < t
(89)

With this density, we get

dR

dzdA
∝ 1

A2f


(Gµ)3M4

p

H2
0z

7 e−2πκe−aA/z
2

z > z∗
(Gµ)13/4M

9/2
p

H
5/2
0 z8

e−9πκ/4e−aA/(2z
2) z∗ > z > z∗∗

0 z < z∗∗

(90)

where

a ∝
e−πκM2

p

H2
0

. (91)

The integrals over A, z can be done exactly, and the results can be written in terms of incomplete
gamma functions. We found that for most parameter values, the detectable signal is dominated by
the radiation emitted at z∗∗ which can be before or after zeq. We therefore had to resort to numerical
integration to incorporate the signal coming from low redshift. For all numerical work, we assumed
the scaling epoch describes an average of 40 long strings per Hubble volume. The results are shown
for LIGO, Advanced LIGO, and LISA in Fig. (4). The straight solid lines in all plots delineate
the region of parameter space for which radiation from string loops is in conflict with BBN. In the
simplest case, this restricts the string tension to satisfy Gµ < 7× 10−6 [63]. Because no loops will
exist for times after t∗, we have shown where this bound can no longer be reliably applied with
the vertical kink in the solid curve. Interestingly, when loops dissappear before BBN, the tension
remains constrained by the stochastic radiation from beads.
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5.3 Stochastic Background Observation and Constraints

Figure 5: The upper graph shows the total density of gravitational waves. The value is nearly
independent of m for a large part of parameter space. We have traced out the portion of the
parameter space excluded by BBN from loops (solid curve) and beads (dashed curve). Interestingly,
BBN probes values down to the expected theoretical bound m2 & µ. Because the contours are
linearly independent of the contours in the burst figures, it may be possible to determine both the
bead mass and the string tension. On the lower graph we show the spectrum in the LIGO band.
The sensitivities of Initial and Advanced LIGO are also shown[64].

With some simple approximations, it is possible to determine the main properties of the stochas-
tic background per logarithmic frequency interval

Ωgw(f) =
4π2

3H2
0

f 3

∫ zmax

z∗∗

dz

∫ lmax

lmin

dl h2(f, z, l)
dR

dzdl
. (92)

The answer does not depend much on the upper bounds of the integrals and they can be taken to
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Figure 6: Spectrum in the pulsar band. The current bound of 3.9× 10−8 is shown [18].

infinity. The lower bounds are set by

z∗∗ ∼
(

70

H0

)1/2

(Γ2ΓGµ)1/4 ,

lmin ∼
1

zf
. (93)

For a decaying network of cosmic strings, all the energy density is transferred to gravitational
waves. If the decay is relatively sudden, the energy density in the gravitational waves is going to be
dependent only on the energy in the network before decay, and is independent of the time at which
the network decays. We therefore expect the stochastic background to be only weakly dependent
of κ, in the case when the network disintegrates during the radiation era. In addition, due to
the peculiar waveform associated with the ultra-relativistic beads, the spectrum is independent of
frequency. If the network always obeyed the scaling solution (with energy density ρcs ∝ Gµ/t2),
then we would expect the stochastic background to be proportional to Gµ. Because short strings
scale like matter, there is a deviation from scaling and there is a growth of string energy density for
times between the short string epoch (t > t∗) and the demise of the network at t∗∗ (or teq, whichever
comes first).

The deviation from scaling between t∗ and t∗∗ provides an important factor of
√
t∗∗/t∗ =

(ΓGµ)−
1
4 to the energy density. Because of this, the stochastic background actually obeys

Ωgw ∝ (Gµ)3/4 , (94)

which is an attractive feature of Fig. (5) since it allows much lower tensions to produce an observable
signal. A similar effect is well known for cosmic string loops[43]. We computed the total gravitational
power and spectrum numerically, as shown in Fig. (5) and (6). The solid lines in all plots represents
the region of parameter space for which radiation from string loops is in conflict with BBN. In the
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simplest case, this restricts the string tension to satisfy Gµ < 7 × 10−6 [63]. Again, because no
loops will exist for times after t∗, we have shown where this bound can no longer be reliably applied
with the vertical kink in the solid curve. Interestingly, when loops are eliminated before BBN, the
tension remains constrained by the stochastic radiation from beads. This is illustrated with the
dashed line in all plots, defined by the BBN constraint Ωgw(z > zBBN) < 1.5 × 10−5. Here, Ωgw is
defined as the quantity measured today from all sources more distant than zBBN = 5.5× 109.

Not only are segments of all sizes radiating, but each burst spans a tremendous range of fre-
quencies, from the length of the segment to well beyond the Planck scale. Because of the scale
invariance, the total power is simply expressed as

Ωgw = Ωgw(f) ln
fmax
fmin

(95)

for any f ∈ [fmin, fmax], where the upper and lower bounds are related to the trans-Planckian and
Hubble scales respectively, during the short string epoch, as is illustrated in Figs. (7). Of course our
calculation breaks down past Planckian frequencies, and the fact that we have enough energy to
excite these very high energy gravitons may indicate that massive, universally coupled fields (such
as the dilaton in string theory) are important. In any case, the ultra-high frequency background is
totally decoupled from gravitational wave experiments.

Figure 7: On the left we show the spectrum for Gµ = 10−6. The spectrum is scale invariant
over wavelengths between the Hubble size and well beyond the Planck size. Nearly half of the
gravitational wave energy density was emitted at super-Planckian frequencies. On the right we
have the spectrum for Gµ = 10−12. The IR and UV cutoffs are narrower than for high tension
strings. From this figure, it is clear that lower frequency experiments, e.g. pulsar timing, are
ill-suited to probe a wide range of the bead mass, especially for low tension strings.

It can be understood why the lower tension strings will not produce the Hubble-limited long
wavelengths found in the higher tension cases (compare the two cases in Fig. 7). Because the lower
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string tensions allow a longer period of scaling violation (i.e., segments scaling like matter during
the radiation era), the Hubble length grows much larger than the typical segment size during their
radiation peak near t∗∗. Similarly, the lighter strings do not bring the beads to the same speeds
occurring for higher tension neworks, and the UV cutoff is lower as well.

6 Conclusion

The most model independent constraint on cosmic strings, whether meta-stable or stable, comes
from BBN, which we find restricts the string tension to satisfy (c.f. Fig.5)

Gµ . 10−5 (96)

for any bead mass. This can include strings which decay immediately after formation, and which
are completely decoupled from further observations. The remaining observables depend upon the
degree to which cosmic strings are stable. Theories of cosmic strings can only rarely claim the
strings to be absolutely stable. We find interesting phenomenology for meta-stable strings with
bead mass within the range

1 .
m2

µ
. 100 . (97)

The degree to which this is a fine-tuning depends greatly on the mechanism responsible for string
breakage. For the bead mass range 40 . m2/µ . 80, a stochastic background is detectable by
Advanced LIGO for tensions Gµ & 10−11. For the longer-lived strings with 70 . m2/µ . 80, meta-
stable strings provide a burst signal detectable by Advanced LIGO for string tensions as low as
Gµ ∼ 10−12. The waveform of these bursts (1/f) is very distinctive, and a detection would confirm
the ultra-relativistic nature of the source. Already, initial LIGO rules out a relatively narrow range
of κ for tensions as low as Gµ ∼ 10−10. A measurement of these bursts together with the stochastic
background would enable one to determine both the string tension and the bead mass. This can be
seen from the linear-independence of the contours in Figs. (4 & 5).

An interesting feature of the predicted stochastic background is the degree to which it is scale
invariant. For higher tension strings, the spectrum extends between the Hubble scale (at the time of
emission) to the Planck scale, and possibly beyond. In the upper range, one would expect universally
coupled massive fields to be radiated with equal power as gravitational radiation [41, 42]. For lower
tension strings, the dominant contribution to the gravitational power comes from shorter strings.
For this reason, low frequency experiments such as pulsar timing are ill-suited to constrain the
parameter space of meta-stable cosmic strings.

Eventually, it may also be interesting to seek specific models within string theory where both
the cosmic string tension and the value of κ are predicted and presumably are related (models are
known where κ is much greater than one and is unrelated to the cosmic string tension). We have
only studied the case of a network of cosmic strings breaking due to beads, although it would be
very interesting to study the phenomenological signals of the other possible network instability:
a network of domain walls ending on cosmic strings. We expect that gravitational waves will be
produced with a similarly characteristic spectrum.
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A Decay Rate from the Path Integral

Let us calculate the string decay rate (following [65]). If we treat the string’s ground state as an
approximate energy eigenstate, the decay rate per unit length is equal to twice the imaginary part
of the energy density. The Euclidean action is given by

SE = µ

∫
Σ

dA + m

∫
∂Σ

ds

= µXT − µ
∫ 2π

0

dθ
ρ2(θ)

2
+m

∫ 2π

0

dθ
√
ρ2(θ) + ρ̇2(θ) ,

where the degree of freedom is the boundary, ∂Σ ↔ ρ(θ). We will only consider the portion of Σ
that fits in a large rectangle of side lengths X and T , and we assume the string is flat. The path
integral gives the vacuum energy density relation

〈0| exp(−HXT )|0〉 = N

∫
[Dρ] exp(−SE[ρ]) (98)

We define µ by the perturbative result 〈H〉 = µ, and the leading corrections to this can be
calculated in the semiclassical dilute instanton gas approximation. It can be readily shown that the
above action has saddle points for ∂Σ equal to any number of non-overlaping circles of radius m/µ.
For a solution with n such holes, the value of the action satisfies

SE[n× S1]− µXT =: nS0 = nπm2/µ . (99)

In the semi-classical approximation, we expand the path integral around its saddle points. The
dilute gas approximation is valid in the limit X,T → ∞, so we ignore the overlap and write the
path integral equation as

〈
e−HXT

〉
= N

∞∑
n=0

∫
Xn,Tn

dxndtn

2nn!

exp (−nS0 − µXT )

2n
√
det′n

(100)

We are summing over the number of instantons and their positions, dividing by the symmetry
factor n!. The quantity det′ is the determinant of the second functional variation of the action,
representing fluctuations about a single instanton. (We have set the perturbative contribution to
the determinant to one by putting the physical parameters into the action.) The prime indicates
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that we ignore the zero modes, since these correspond to the position, which has already been
integrated over. The instanton is expanded in eigenfunctions of the second functional variation as

ρ(θ) = m/µ+
∑
j∈Z

cj√
π


cos(jθ) j < 0

1/
√

2 j = 0
sin(jθ) j > 0

(101)

The functional measure is

[Dρ] =
∏
j

dcj√
2π

=
dxdt

2

′∏
j

dcj√
2π

, (102)

where the prime indicates we remove the zero modes (j = ±1). The single negative mode (j = 0)
corresponding to dilatations ensures an imaginary contribution to the vacuum energy, i.e., a non-
zero decay rate. Associated to this negative mode is an overall factor of 1/2, since the path integral
is divergent only for c0 → +∞, and not as c0 → −∞. (This is the factor that Sagredo missed.)
The result is

〈exp(−HXT )〉 = N exp

(
−

1
2
XTe−S0

2
√
det′

− µXT
)

(103)

with

det′ := det′
[
−µ∂2

θ − µ
]

(104)

=
∏

j∈Z j 6=±1

µ(j2 − 1) = −π2/µ2 . (105)

We evaluated the determinant using the Riemann zeta function. Hence

〈H〉 = µ− i µ
4π

exp
(
−πm2/µ

)
, (106)

and so the bead pair production rate per unit length is

Γ2 =
µ

2π
exp

(
−πm2/µ

)
. (107)

B Calculating the Number Density n(l, t)dl

The number density of segments satisfies the Boltzmann equation

∂n(l, t)

∂t
= − ∂

∂l

(
l̇n(l, t)

)
− 3

ȧ

a
n(l, t) + g , (108)

where we distinguish between three different source terms:

g = gloop + gic + gbreak (109)
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with

gbreakdl = Γ2

(
2

∫ ∞
l

n(l′, t)dl′ − ln(l, t)

)
dl (110)

gicdl = Γic
2

(
1
2

∫ ∞
l/2

n(l′, t)dl′ − ln(l, t)

)
dl (111)

gloop = (difficult) (112)

Thus there are three interactions: Loop production is the process by which the network loses
energy in the form of small loops which fragment and decay. Intercommutation causes two segments
to trade a quantity of string, keeping the total energy and number of segments fixed. Breakage
increases the number of segments but leaves the energy unaffected.

We motivated the breakage formula in the main text. The intercommutation interaction gic can
be motivated as follows: A string of length l will intercommute at a rate equal to its length times
the intercommutation rate per unit length, Γic

2 . (This rate is easily determined from the scaling
solution, but will not be important for us.) This explains the second term. The creation of segments
of length l must involve a string longer than l/2, since we only need to consider two-string collisions.
This explains the integral, and the coefficient is over-constrained by the fact that intercommutation
should leave both the energy and number of segments constant, each of which demands the 1

2
.

Since intercommutation of segments preserves both the total number of segments and their average
length, we will ignore its effect on n(l, t)dl. (The essential feature of this interaction is it attempts
to evolve n(l, t)dl into a power-law distribution. Intercommutation will extend the large l tail of
n(l, t)dl, but this is of little relevance for the short strings which actually radiate.)

Unfortunately, gloop is difficult to write down, since it depends strongly on how wiggly the strings
are, which depends on how much string is present. Luckily, we can infer its value from the scaling
solution. We expect the network will scale as long as most of the string is in superhorizon segments.
During scaling, two strong effects yield an attractor solution: stretching of superhorizon strings, and
production of subhorizon loops. Fewer strings cause fewer intercommutations, leading to straighter
strings and lower loop production. Stretching then causes the string energy density to grow toward
the attractor value. Too many strings will cause an increase in intercommutation events, making
strings more wiggly, and more prone to loop production. In the spirit of coarse graining, we will
think of loop production simply as a continuous shortening of string segments:

gloop → l̇loop (113)

A key feature is that a segment’s length loss due to loop production is proportional to the segment
length. There are thus three important contributions to l̇, namely Hubble stretching, gravitational
radiation, and loop production.

l̇ = l̇H + l̇gw + l̇loop (114)

Here we will define loop production as being consistent with the scaling solution, whereby the string
energy density scales like ρcs ∼ µ/t2. Because l̇loop ∝ l, there is a unique way to do this.

Gravitational radiation is only important for very short segments. Scaling should cease when
loop production becomes negligible. This will happen if the strings become smooth, due to reduced
intercommutation. We expect such behavior during the short string epoch, when the network will
be dominated by sub horizon sized segments with a density of a few per Hubble volume. Since
these segments will have slow peculiar velocities, intercommutation will be very rare.
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Strings longer than twice the Hubble length are always dominated by potential energy, and so
the length (energy) is increased by expansion:

l̇H =
ȧ

a
l(1− 2

〈
v2
〉
) l� 2H−1 (115)

For long segments, 〈v2〉 ∼ .4, depending on how much intercommutation is going on. If we set
g = 0, the super-horizon string network would dominate the universe:∫ ∞

dlµln(l, t) ∼ 1

a2+2〈v2〉 (116)

We know that the network will obey the scaling solution during the long string epoch. Since a
scaling network obeys

ρcs =

∫ ∞
0

µln(l, t)dl ∼ µ/t2 , (117)

we can use this constraint to find the effective l̇ simply by integrating Eqn.(66). The result is

l̇ = l̇H + l̇loop + l̇gw (118)

= 3Hl − 2l

t
(scaling solution) (119)

As discussed in the text, the scaling solution will apply for t < t∗, after which

l̇ ≈ −ΓGµ . (120)

With an explicit expression for l̇, we can then solve the Boltzmann equation exactly, obtaining

n(l, t) =


(2Γ2)2e−2Γ2lt t ≤ t∗ ≤ teq
(t+t∗)2Γ2

2√
t3t∗

e−Γ2l(t+t∗)e−(t−t∗)(t+3t∗)/2t2∗∗ t∗ ≤ t ≤ teq√
teq

t∗

(t+t∗)2Γ2
2

t2
e−Γ2l(t+t∗)e−(t−t∗)(t+3t∗)/2t2∗∗ t∗ ≤ teq ≤ t

(121)

for t∗ ≤ teq, and

n(l, t) =


(2Γ2)2e−2Γ2lt t ≤ teq ≤ t∗

Γ2
2

(t+teq)2

t2
e−Γ2l(t+teq) teq ≤ t ≤ t∗

(t+teq)2

t2
Γ2

2e
−Γ2l(t+teq)e−(t−t∗)(t+2teq)/2t2∗∗ teq ≤ t∗ ≤ t

(122)

for teq ≤ t∗.

C Gauge Invariant Degrees of Freedom

In order to obtain the gauge invariant part of the gravitational wave we only need consider the
spatial components

εij(x, ω) =
2G

r
T 03(k)

 cos θ − 1/ cos θ 0 0
0 cos θ − 1/ cos θ 0
0 0 cos θ + 1/ cos θ

 (123)
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The transverse-traceless part of the polarization tensor can be obtained using the projection
operator [66]

Pij = δij − Ω̂iΩ̂j, (124)

as follows
εTT = PεP − 1

2
Tr(Pε). (125)

If the wave were to lie entirely on the z-axis the projector would be

Pij =

 1 0 0
0 1 0
0 0 0

 . (126)

So that some arbitrary polarization tensor

εij =

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 . (127)

becomes

εTTij =

 (ε11 − ε22)/2 ε12 0
ε21 (ε22 − ε11)/2 0
0 0 0

 . (128)

The so called +- and ×-polarisations are defined by

ε+ ≡ 1
2
(ε11 − ε22) (129)

and
ε× ≡ ε12 = ε21. (130)

For a wave not traveling in the z-direction we can perform a rotation so that the wave vector
does lie on the z-axis and then apply the arguments outlined above. This can easily be done noting
that

Rx(θ)Rz(
π

2
− φ)Ω̂ = ẑ. (131)

The rotated metric perturbation polarization tensor is therefore

ε′ = Rx(θ)Rz(
π

2
− φ)εRT

z (
π

2
− φ)RT

x (θ), (132)

with the rotation matrices defined by

Rz(a) =

 cos a − sin a 0
sin a cos a 0

0 0 1

 , (133)

and

Rx(a) =

 1 0 0
0 cos a − sin a
0 sin a cos a

 (134)
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as usual.
If we perform the rotation Eq. (132) on Eq. (123) we obtain

εij(x, ω) =
2Gm

r
T 03(k)

 cos2 θ−1
cos θ

0 0

0 − cos2 θ−1
cos θ

−2 sin θ

0 −2 sin θ 3 cos2 θ−1
cos θ

 . (135)

The transverse traceless part is therefore

εTTij (x, ω) =
2Gm

r

cos2 θ − 1

cos θ
T 03(k)

 1 0 0
0 −1 0
0 0 0

 (136)

from which the +- and ×-polarisations can easily be read off,

ε+ =
2Gm

r

cos2 θ − 1

cos θ
T 03(k) (137)

and
ε× = 0. (138)

D Gravitational Waveform at High Frequency

Here we compute the gravitational waveform produced by a discontinuity in the bead acceleration
which can occur when beads cross on a straight string or when a bead encounters a kink on a string.
We start from the results of Martin and Vilenkin [40] and calculate the gravitational waveform for
a fly-by of a bead - antibead pair using a Taylor expansion around the time of the crossing. We
start with the stress-energy tensor given by Eq. (10) but rather than using Eq. (11), we can Taylor
expand x1(t) around t = 0 writing x1(t) ≈ v0t. The Fourier transform of Eq. (10) then reads

T 03(k) =
m

2π

∫ ∞
−∞

dt(γ0v0 − a|t|)
[
eiω−t − eiω+t

]
, (139)

where ω± = ω(1± v0 cos θ). This integral can be done trivially. The integral,

m

2π

∫ ∞
−∞

dt(γ0v0 − a|t|)eiωt =
am√
2ππω2

, (140)

where we’ve thrown out a static field piece proportional to δ(ω). This means,

T 03(k) =
am√
2ππ

[
1

ω2
−
− 1

ω2
+

]
. (141)

Similarly as in the main text, the gravitational wave is linearly polarized and the plus polarization
can be written as

ε+(x, ω) =
2G

r

am√
2ππ

[
1

ω2
−
− 1

ω2
+

]
cos2 θ − 1

cos θ
(142)
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If the beads are relativistic the radiation is beamed in the direction of the bead velocity. If the
direction of observation is along that direction then one of the 1/ω2

− or 1/ω2
+ is large and the other is

O(1), i.e., we are only observing the radiation from one of the two beads. If we choose the direction
so that cos θ ≈ 1, since a = µ/m we can write the waveform as

ε+(x, ω) =
2Gµ

r
√

2ππω2

1

(1− v0 cos θ)2

cos2 θ − 1

cos θ
(143)

In the region where most of the energy is radiated, i.e. Angles θ ∼ 1/γ0 with γ0 � 1, we can use
the small angle approximation and set v0 ≈ 1 to obtain,

ε+(x, ω) ≈ 2Gµ

r
√

2ππ

(γ0

ω

)2

. (144)

Note that although we have done the computation for the fly-by of a bead - antibead pair the
waveform is valid up to factors of O(1) for a bead encounter with a kink on the string which also
produces a discontinuity in the acceleration. In the case of a fly-by, if the beads miss each other
with impact parameter b, or for a bead encounter with a kink smoothed on such a length scale,
we expect the waveform to be suppressed at frequencies above b−1. For a bead - antibead pair
connected by a string of length l we expect the impact parameter b to be of O(l), so unless the
strings are very straight most of the signal will be at frequencies near l−1. On the other hand kinks
smooth gravitationally very slowly, remaining sharp for the lifetime of the bead - antibead system.
Therefore beads connected by a kinky string will encounter sharp kinks and radiate every oscillation
for the lifetime of the system. Neglecting gravitational wave back-reaction, the kink-bead collision
can be solved exactly. We can write the strain at frequency f for a burst produced at a distance r,

h(f, l, z) ≈ GµH0

(1 + z)ϕr(z)

(
µl

mf

)2

(145)

The amplitude is suppressed by an extra factor of (1 + z) due to the redshifting of the frequency f
(see the discussion in section IV of [16]).

References

[1] P. Langacker and S. Y. Pi, “Magnetic Monopoles In Grand Unified Theories,” Phys. Rev.
Lett. 45, 1 (1980).

[2] P. Bhattacharjee and G. Sigl, “Origin and propagation of extremely high energy cosmic
rays,” Phys. Rept. 327, 109 (2000) [arXiv:astro-ph/9811011].

[3] V. Berezinsky, B. Hnatyk and A. Vilenkin, “Gamma ray bursts from superconducting cosmic
strings,” Phys. Rev. D 64, 043004 (2001) [arXiv:astro-ph/0102366].

[4] T. Vachaspati, “Cosmic Sparks from Superconducting Strings,” arXiv:0802.0711 [astro-ph].

[5] D. Battefeld, T. Battefeld, D. H. Wesley and M. Wyman, “Magnetogenesis from Cosmic
String Loops,” JCAP 0802, 001 (2008) [arXiv:0708.2901 [astro-ph]].

33

http://arxiv.org/abs/astro-ph/9811011
http://arxiv.org/abs/astro-ph/0102366
http://arxiv.org/abs/0802.0711
http://arxiv.org/abs/0708.2901


[6] K. J. Mack, D. H. Wesley and L. J. King, “Observing cosmic string loops with gravitational
lensing surveys,” Phys. Rev. D 76, 123515 (2007) [arXiv:astro-ph/0702648].

[7] M. A. Gasparini, P. Marshall, T. Treu, E. Morganson and F. Dubath, “Direct Observation
of Cosmic Strings via their Strong Gravitational Lensing Effect: I. Predictions for High
Resolution Imaging Surveys,” arXiv:0710.5544 [astro-ph].

[8] J. L. Christiansen, E. Albin, K. A. James, J. Goldman, D. Maruyama and G. F. Smoot,
“Search for Cosmic Strings in the GOODS Survey,” Phys. Rev. D 77, 123509 (2008)
[arXiv:0803.0027 [astro-ph]].

[9] S. Dyda and R. H. Brandenberger, “Cosmic Strings and Weak Gravitational Lensing,”
arXiv:0710.1903 [astro-ph].

[10] D. F. Chernoff and S. H. H. Tye, “Cosmic String Detection via Microlensing of Stars,”
arXiv:0709.1139 [astro-ph].

[11] K. Kuijken, X. Siemens and T. Vachaspati, “Microlensing by Cosmic Strings,”
arXiv:0707.2971 [astro-ph].

[12] D. Baumann et al., “CMBPol Mission Concept Study: A Mission to Map our Origins,”
arXiv:0811.3911 [astro-ph].

[13] A. A. Fraisse, C. Ringeval, D. N. Spergel and F. R. Bouchet, “Small-Angle CMB Tem-
perature Anisotropies Induced by Cosmic Strings,” Phys. Rev. D 78, 043535 (2008)
[arXiv:0708.1162 [astro-ph]].

[14] L. Pogosian, S. H. Tye, I. Wasserman and M. Wyman, “Cosmic Strings as the Source of
Small-Scale Microwave Background Anisotropy,” JCAP 0902, 013 (2009) [arXiv:0804.0810
[astro-ph]].

[15] R. Khatri and B. D. Wandelt, “Cosmic (super)string constraints from 21 cm radiation,”
Phys. Rev. Lett. 100, 091302 (2008) [arXiv:0801.4406 [astro-ph]].

[16] T. Damour and A. Vilenkin, “Gravitational wave bursts from cusps and kinks on cosmic
strings,” Phys. Rev. D 64, 064008 (2001) [arXiv:gr-qc/0104026].

[17] X. Siemens, J. Creighton, I. Maor, S. Ray Majumder, K. Cannon and J. Read, “Gravi-
tational wave bursts from cosmic (super)strings: Quantitative analysis and constraints,”
Phys. Rev. D 73, 105001 (2006) [arXiv:gr-qc/0603115].

[18] F. A. Jenet et al., “Upper bounds on the low-frequency stochastic gravitational wave back-
ground from pulsar timing observations: Current limits and future prospects,” Astrophys.
J. 653, 1571 (2006) [arXiv:astro-ph/0609013].

[19] X. Siemens, V. Mandic and J. Creighton, “Gravitational wave stochastic background from
cosmic (super)strings,” Phys. Rev. Lett. 98, 111101 (2007) [arXiv:astro-ph/0610920].

34

http://arxiv.org/abs/astro-ph/0702648
http://arxiv.org/abs/0710.5544
http://arxiv.org/abs/0803.0027
http://arxiv.org/abs/0710.1903
http://arxiv.org/abs/0709.1139
http://arxiv.org/abs/0707.2971
http://arxiv.org/abs/0811.3911
http://arxiv.org/abs/0708.1162
http://arxiv.org/abs/0804.0810
http://arxiv.org/abs/0801.4406
http://arxiv.org/abs/gr-qc/0104026
http://arxiv.org/abs/gr-qc/0603115
http://arxiv.org/abs/astro-ph/0609013
http://arxiv.org/abs/astro-ph/0610920


[20] N. T. Jones, H. Stoica and S. H. H. Tye, “Brane interaction as the origin of inflation,” JHEP
0207, 051 (2002) [arXiv:hep-th/0203163].

S. Sarangi and S. H. H. Tye, “Cosmic string production towards the end of brane inflation,”
Phys. Lett. B 536, 185 (2002) [arXiv:hep-th/0204074].

[21] E. J. Copeland, R. C. Myers and J. Polchinski, “Cosmic F- and D-strings,” JHEP 0406,
013 (2004) [arXiv:hep-th/0312067].

[22] H. Firouzjahi, L. Leblond and S. H. Henry Tye, “The (p,q) string tension in a warped
deformed conifold,” JHEP 0605, 047 (2006) [arXiv:hep-th/0603161].

[23] M. G. Jackson, N. T. Jones and J. Polchinski, “Collisions of cosmic F- and D-strings,” JHEP
0510, 013 (2005) [arXiv:hep-th/0405229].

[24] M. G. Jackson and X. Siemens, “Gravitational Wave Bursts from Cosmic Superstring Re-
connections,” arXiv:0901.0867 [hep-th].

[25] B. Shlaer and M. Wyman, “Cosmic superstring gravitational lensing phenomena: Predic-
tions for networks of (p,q) strings,” Phys. Rev. D 72, 123504 (2005) [arXiv:hep-th/0509177].

[26] E. Witten, “Cosmic Superstrings,” Phys. Lett. B 153, 243 (1985).

[27] L. Leblond and S. H. H. Tye, “Stability of D1-strings inside a D3-brane,” JHEP 0403, 055
(2004) [arXiv:hep-th/0402072].

[28] C. G. Callan and J. M. Maldacena, “Brane dynamics from the Born-Infeld action,” Nucl.
Phys. B 513, 198 (1998) [arXiv:hep-th/9708147].

[29] H. Verlinde, “On metastable branes and a new type of magnetic monopole,” arXiv:hep-
th/0611069.

[30] S. S. Gubser and I. R. Klebanov, “Baryons and domain walls in an N = 1 superconformal
gauge theory,” Phys. Rev. D 58, 125025 (1998) [arXiv:hep-th/9808075].

[31] L. Leblond and M. Wyman, “Cosmic Necklaces from String Theory,” Phys. Rev. D 75,
123522 (2007) [arXiv:astro-ph/0701427].

[32] J. J. Blanco-Pillado and K. D. Olum, “Monopole annihilation in cosmic necklaces,”
[arXiv:0707.3460].

[33] J. J. Blanco-Pillado and K. D. Olum, “Monopole antimonopole bound states as a source of
ultra-high-energy cosmic rays,” Phys. Rev. D 60, 083001 (1999) [arXiv:astro-ph/9904315].

[34] V. Berezinsky and A. Vilenkin, “Cosmic necklaces and ultrahigh energy cosmic rays,” Phys.
Rev. Lett. 79, 5202 (1997) [arXiv:astro-ph/9704257].

[35] J. Preskill and A. Vilenkin, “Decay of metastable topological defects,” Phys. Rev. D 47,
2324 (1993) [arXiv:hep-ph/9209210].

35

http://arxiv.org/abs/hep-th/0203163
http://arxiv.org/abs/hep-th/0204074
http://arxiv.org/abs/hep-th/0312067
http://arxiv.org/abs/hep-th/0603161
http://arxiv.org/abs/hep-th/0405229
http://arxiv.org/abs/0901.0867
http://arxiv.org/abs/hep-th/0509177
http://arxiv.org/abs/hep-th/0402072
http://arxiv.org/abs/hep-th/9708147
http://arxiv.org/abs/hep-th/0611069
http://arxiv.org/abs/hep-th/0611069
http://arxiv.org/abs/hep-th/9808075
http://arxiv.org/abs/astro-ph/0701427
http://arxiv.org/abs/0707.3460
http://arxiv.org/abs/astro-ph/9904315
http://arxiv.org/abs/astro-ph/9704257
http://arxiv.org/abs/hep-ph/9209210


[36] R. Jeannerot, J. Rocher and M. Sakellariadou, “How generic is cosmic string formation in
SUSY GUTs,” Phys. Rev. D 68, 103514 (2003) [arXiv:hep-ph/0308134].

[37] X. Martin and A. Vilenkin, “Gravitational wave background from hybrid topological de-
fects,” Phys. Rev. Lett. 77, 2879 (1996) [arXiv:astro-ph/9606022].

[38] A. Vilenkin, “Cosmological Evolution Of Monopoles Connected By Strings,” Nucl. Phys. B
196, 240 (1982).

[39] A. Monin and M. B. Voloshin, “The spontaneous breaking of a metastable string,” Phys.
Rev. D 78, 065048 (2008) [arXiv:0808.1693 [hep-th]]. A. Monin and M. B. Voloshin, “De-
struction of a metastable string by particle collisions,” arXiv:0902.0407 [hep-th].

[40] X. Martin and A. Vilenkin, “Gravitational radiation from monopoles connected by strings,”
Phys. Rev. D 55, 6054 (1997) [arXiv:gr-qc/9612008].

[41] T. Damour and A. Vilenkin, “Cosmic strings and the string dilaton,” Phys. Rev. Lett. 78,
2288 (1997) [arXiv:gr-qc/9610005].

[42] E. Babichev and M. Kachelriess, “Constraining cosmic superstrings with dilaton emission,”
Phys. Lett. B 614, 1 (2005) [arXiv:hep-th/0502135].

[43] Vilenkin A., Shellard E.P.S, 1994, Cosmic strings and other topological defects. Cambridge
Univ.Press., Cambridge.

[44] J. Polchinski, “Open heterotic strings,” JHEP 0609, 082 (2006) [arXiv:hep-th/0510033].

[45] S. Kachru, R. Kallosh, A. Linde, J. M. Maldacena, L. P. McAllister and S. P. Trivedi,
“Towards inflation in string theory,” JCAP 0310, 013 (2003) [arXiv:hep-th/0308055].

[46] O. DeWolfe, L. McAllister, G. Shiu and B. Underwood, “D3-brane Vacua in Stabilized
Compactifications,” JHEP 0709, 121 (2007) [arXiv:hep-th/0703088]. C. M. Brown and
O. DeWolfe, “Nonsupersymmetric brane vacua in stabilized compactifications,” JHEP 0901,
039 (2009) [arXiv:0806.4399 [hep-th]].

[47] T. Fulton and F. Rohrlich, ”Classical radiation from a uniformly accelerated charge,” Ann.
Phys. (N.Y.) 9, 499 (1960); F. Rohrlich, Nuovo Cimento 21, 802 (1961).

[48] Schwinger, J. S. (1998). Classical electrodynamics. Reading, Mass: Perseus Books.

[49] D. G. Boulware, “Radiation From A Uniformly Accelerated Charge,” Annals Phys. 124,
169 (1980).

[50] H. Bondi and T. Gold, “The Field Of A Uniformly Accelerated Charge, With Special Ref-
erence To The Problem Of Gravitational Acceleration,” Proc. Roy. Soc. Lond. A 229, 416
(1955).

[51] S. Parrott, “Radiation from a charge uniformly accelerated for all time,” Gen. Rel. Grav.
29, 1463 (1997) [arXiv:gr-qc/9711027].

36

http://arxiv.org/abs/hep-ph/0308134
http://arxiv.org/abs/astro-ph/9606022
http://arxiv.org/abs/0808.1693
http://arxiv.org/abs/0902.0407
http://arxiv.org/abs/gr-qc/9612008
http://arxiv.org/abs/gr-qc/9610005
http://arxiv.org/abs/hep-th/0502135
http://arxiv.org/abs/hep-th/0510033
http://arxiv.org/abs/hep-th/0308055
http://arxiv.org/abs/hep-th/0703088
http://arxiv.org/abs/0806.4399
http://arxiv.org/abs/gr-qc/9711027


[52] P. Candelas and D. w. Sciama, “Is There A Quantum Equivalence Principle?,” Phys. Rev.
D 27, 1715 (1983).

[53] W. Kinnersley and M. Walker, “Uniformly accelerating charged mass in general relativity,”
Phys. Rev. D 2 (1970) 1359.

[54] J. Podolsky and J. B. Griffiths, “Uniformly accelerating black holes in a de Sitter universe,”
Phys. Rev. D 63, 024006 (2001) [arXiv:gr-qc/0010109].

[55] A. Nikishov and V. I. Ritus, Soviet Physics JETP, Volume 29, Number 6, 1093 (1969)

[56] S. Eidelman et al., Phys.Lett.B592, 1 (2004); O. Lahav and A. R. Liddle, “The cosmological
parameters 2005,” arXiv:astro-ph/0601168.

[57] B. Allen and J. D. Romano, “Detecting a stochastic background of gravitational radiation:
Signal processing strategies and sensitivities,” Phys. Rev. D 59, 102001 (1999) [arXiv:gr-
qc/9710117].

[58] S. Drasco and E. E. Flanagan, “Detection methods for non-Gaussian gravitational wave
stochastic backgrounds,” Phys. Rev. D 67, 082003 (2003) [arXiv:gr-qc/0210032].

[59] C. Cutler and E. E. Flanagan, “Gravitational waves from merging compact binaries: How
accurately can one extract the binary’s parameters from the inspiral wave form?,” Phys.
Rev. D 49, 2658 (1994) [arXiv:gr-qc/9402014].

[60] A. Lazzarini, R. Weiss (1996), LIGO technical report, LIGO-E950018-02; A. Abramovici,
et al. Science 256 (1992) 325; ”Proposal to the National Science Foundation – The Con-
struction, Operation, and Supporting Research and Development of a Laser Interferome-
ter Gravitational-Wave Observatory”, December 1989, Thorne, Drever, Weiss, amd Raab,
PHY-9210038.

[61] S. A. Hughes, “Untangling the merger history of massive black holes with LISA,” Mon. Not.
Roy. Astron. Soc. 331, 805 (2002) [arXiv:astro-ph/0108483].

[62] L. Barack and C. Cutler, “Confusion noise from LISA capture sources,” Phys. Rev. D 70,
122002 (2004) [arXiv:gr-qc/0409010].

[63] R. R. Caldwell and B. Allen, “Cosmological Constraints On Cosmic String Gravitational
Radiation,” Phys. Rev. D 45, 3447 (1992).

[64] B. Abbott et al. [LIGO Collaboration], “Searching for a stochastic background of gravita-
tional waves with LIGO,” Astrophys. J. 659, 918 (2007) [arXiv:astro-ph/0608606].

[65] S. R. Coleman, “The uses of instantons,” Subnucl. Ser. 15, 805 (1979).

[66] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” San Francisco 1973, 1279p

37

http://arxiv.org/abs/gr-qc/0010109
http://arxiv.org/abs/astro-ph/0601168
http://arxiv.org/abs/gr-qc/9710117
http://arxiv.org/abs/gr-qc/9710117
http://arxiv.org/abs/gr-qc/0210032
http://arxiv.org/abs/gr-qc/9402014
http://arxiv.org/abs/astro-ph/0108483
http://arxiv.org/abs/gr-qc/0409010
http://arxiv.org/abs/astro-ph/0608606

	Introduction
	Metastable Cosmic Superstrings
	Gravitational Wave Signal
	Radiation from a Uniformly Accelerated Mass
	Gravitational Waveforms
	Energy and Power
	Beyond the Straight String Approximation
	The Rate of Bursts
	Stochastic Background

	Cosmological Evolution
	Number Density of Segments: n(l,t)dl
	Solutions

	Results
	The Minimum Detectable Burst Amplitude
	Burst Detection by LIGO, Advanced LIGO, and LISA
	Stochastic Background Observation and Constraints

	Conclusion
	Decay Rate from the Path Integral
	Calculating the Number Density n(l,t) dl
	Gauge Invariant Degrees of Freedom
	Gravitational Waveform at High Frequency

