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Abstract

In a large class of supersymmetric SO(10) and left-right models, requiring

that the effective theory below the scale of SU(2)R breaking be the MSSM

implies partial Yukawa unification with Yu = Yd and Ye = YνD . The same

result also emerges in models with a horizontal SU(3)H symmetry. As a result,

at the tree level, these models lead to vanishing quark mixing angles. We show

that the correct mixing pattern can be generated in these models at the loop

level from the flavor structure associated with the supersymmetry breaking

terms. We generalize the constraints on supersymmetric parameters from

flavor changing neutral current (FCNC) processes to include several squark

mass insertions and confirm the consistency of the scheme. The expectations

of this scheme for CP violating observables in the B meson system are quiet

different from the KM model, so it can be tested at the B factories.

I. INTRODUCTION

One of the fundamental problems of the standard electroweak model is the lack of un-
derstanding of the fermion mass hierarchies and the flavor mixings. The minimal supersym-
metric standard model (MSSM) which provides interesting resolution of the Higgs and the
symmetry breaking puzzles does not shed any light on this question [1]. Supersymmetric
grand unified theories do provide one framework within which question of flavor has been
addressed in a variety of ways. While there are several interesting ideas, no particularly
compelling model has emerged so far. It is worthwhile to pursue alternative approaches to
the flavor problem. In this paper, we discuss one such approach.

We discuss two extensions of the MSSM which may provide an interesting new solution
to the flavor question. At the tree level they lead to the equality of the up and the down type
Yukawa matrices which we call up-down unification. While this class of models does not
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explain the microscopic origin of fermion mass hierarchies, the up-down unification implies
that the quark mixing angles and the CP violating phase vanish at the tree level and arise
purely as a result of radiative corrections. This would explain the smallness of these mixing
parameters naturally. Flavor mixing associated with the soft supersymmetry breaking terms
play a crucial role in inducing such mixings; we will show that they are compatible with
existing flavor changing neutral current constraints (FCNC). We will argue that the required
flavor structure arise quite naturally in a variety of supersymmetry breaking schemes.

One class of models which exhibits up-down unification is the supersymmetric left–right
model with the seesaw mechanism [2] for small neutrino masses that has recently been
discussed as a possible solution to the question of R-parity violation [3] and strong and weak
CP violation problems of the MSSM [4]. The second class of models uses a horizontal SU(3)H
symmetry (local or global). The latter belongs to the class of models which generically leads
to relations between the masses of different generations of quarks. In our discussion however,
we do not make the additional assumptions that lead to such mass relations, for example,
specific pattern of VEVs for the Higgs fields. Rather, after we choose the Higgs sector, we
allow them to have arbitrary VEVs and follow its consequences. It turns out that they then
automatically lead to up-down unification in the sense we are going to discuss.

The main result that we wish to exploit in providing a radiative origin of quark mixings
is the following. If we assume that below the new theory scale, i.e., the SU(2)R scale vR in
the case of SUSYLR models and SU(3)H scale vH in the case of horizontal symmetry model,
the theory is given by MSSM, then it is easy to show that there is up-down unification that
leads to:

Yu = Yd

Yl = YνD . (1)

Strictly speaking, for the SU(3)H case, Yu = βqYd and Yl = βlYνD , where βq,l are ratios of
two Yukawa couplings. But by redefining tan β ≡ 〈Hu〉 / 〈Hd〉 one can set βq = βl = 1

While the up down unification is obvious in SO(10) with a single 10 of Higgs represen-
tation, its generality when any number of 10’s and 126 Higgses are included was noted in
Ref. [5]. This point was made in the context of SUSYLR model in Ref. [6]. To the best of
our knowledge, the SU(3)H example has not been discussed before.

Eq. (1) implies that at the tree level, the quark mixing angles all vanish. We then
show that consistent with the known constraints from flavor changing neutral currents and
vacuum being charge and color preserving and stable, it is possible to generate desired values
for the quark mixings. In this process we generalize existing constraints on the soft SUSY
breaking terms from FCNC effects by allowing for several squark mass insertions and find
that some may be relaxed.

This paper is organized as follows: in Sec. 2, we present the arguments leading to Eq.
(1) in the supersymmetric left-right and the SO(10) models; in Sec. 3, we derive the same
relations for the SU(3)H model. In Sec. 4, we outline our choice of soft supersymmetry
breaking terms; in Sec. 5, we discuss the one loop graphs that induce the correct flavor
mixings. In Sec. 6 we discuss the one loop effects from the off diagonal squark masses and
the constraints on their magnitude from flavor changing neutral current effects; in Sec. 7,
the same discussion is repeated for the off diagonal A-terms; and in Sec. 8 we discuss the
origin of CP violation.
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II. DERIVING UP-DOWN UNIFICATION IN THE LEFT-RIGHT AND SO(10)

MODELS

In this section, we present a brief review of the arguments leading to the up-down uni-
fication in the SUSYLR model followed by its extension to the SO(10) model. We start
by writing the superpotential of the SUSYLR model based on the gauge groupSU(2)L ×
SU(2)R × U(1)B−L × SU(3)c (we have suppressed the generation index):

W = h(i)
q QT τ2Φiτ2Q

c + h
(i)
l LT τ2Φiτ2L

c

+ i(fLT τ2∆L+ fcL
cT τ2∆

cLc)

+ M∆Tr(∆∆̄) + ∆c∆̄c) + λS(∆∆−∆c∆c) + µSS
2 + µijTr(τ2Φ

T
i τ2Φj)

+ WNR . (2)

Here we use the standard notation (see Ref. [7]) where Q,Qc denote the left handed and
right handed quark doublets, L, Lc denote the lepton doublets, Φi are the (2,2,0,1) Higgs
bi-doublets, ∆ and ∆c are the left and right handed Higgs triplets {(3,1,2,1) + (1,3,-2,1)}
and ∆̄ and ∆̄c are fields conjugate to ∆,∆c. WNR denotes non-renormalizable terms arising
from higher scale physics such as grand unified theories or Planck scale effects. The need
for the nonrenormalizable term has been discussed in Ref. [7] and we do not repeat it here
since it plays no role in our discussion.

We will work in the vacuum which conserves R-parity which implies that vR ≥ 1010 GeV.
In order to demonstrate the Yukawa unification, let us discuss the Higgs doublet spectrum
of the model at low energies. Suppose that at the scale vR, where SU(2)R breaks, we have
an arbitrary number of bi-doublet fields Φ’s. In order to get the MSSM at low energies, one
must decouple all but one pair of Hu and Hd from the low energy spectrum. This has been
called doublet-doublet splitting problem in literature. It is clear from the superpotential in
Eq. (2) that doublet Higgsino matrix is symmetric because of parity invariance. For two
bi-doublets for instance, it looks like:

MH =

(

µ11 µ12

µ12 µ22

)

. (3)

Eq. (3) is the mass matrix of bi-doublet Higgsinos, but since supersymmetry is broken at a
much lower scale, the Higgs bosons will be degenerate with the Higgsinos. If we now do fine
tuning to get one pair of Hu,d at low energies, the Hu,d appear as identical combinations of
the doublets in Φi’s. (Recall that a complex symmetric matrix may be diagonalized by the
transformation UTMHU = Mdiag

H . This means that the rotations on Φu
1 and Φu

2 to get the
MSSM Hu is identical to the rotation on Φd

1 and Φd
2 to get Hd.) As a result, at the MSSM

level, we have up down Yukawa unification, Eq. (1). It is clear that this result holds in the
presence of arbitrary number of bi-doublet fields.

A similar situation appears in the case of a class of SUSY SO(10) models. Let us assume
that the Higgs sector of the model has only 10 and 126’s and if there are 16-dimensional
spinor fields, they do not participate in the low energy doublets (i.e., they do not mix with
the 10 or 126). The main point here is that above the GUT scale there may be more than
one pair of MSSM doublets contained in some 10 or in one of the 126. In order to get the
MSSM below the GUT scale, one will have to diagonalize the doublet mass matrix so that
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one pair of light doublets remains light (doublet-doublet splitting). This may need a fine
tuning of parameters, or it may appear naturally via the Dimopoulos-Wilczek mechanism
[8]. We will not concern ourselves with its detail. Regardless of how many pairs of doublets
couple to fermions at the GUT scale, as long as the doublet mass matrix is symmetric, the
effective Yukawa couplings of the up and down sector Higgs (Hu and Hd) of the MSSM are
the same [5]. This leads to the afore-mentioned up-down unification [9]. Note that if the 16
and 1̄6 fields participate in the low energy doublets, the Hu and Hd couplings are in general
unrelated to each other [10].

There is one other class of SO(10) models where up-down unification of Eq. (1) would
hold. Suppose there is a single 10 of Higgs that couples to fermions. In this case, even if the
16 spinors participates in electroweak symmetry breaking (by mixing with the 10), because
there is only one Yukawa coupling matrix to begin with, Eq. (1) would hold. Note that in
this case tan β is not restricted to be equal to m0

t/m
0
b , this situation is analogous to the case

of SU(3)H (see below).

III. HORIZONTAL SYMMETRY AND UP-DOWN UNIFICATION

Let us now present a horizontal SU(3)H (local or global) model that leads to up-down
unification. Consider MSSM⊗SU(3)H as the high scale theory. Parity invariance is not
necessary here. We assume that the matter multiplets of the MSSM transform as the 3

dimensional representation under the group [11]. Let us assume that we have Higgs doublet
fields transforming as Φu,d(2,±1, 6∗) under the gauge group SU(2)L × U(1)Y × SU(3)H .
Let us include an isosinglet field pair S(1, 1, 6∗) and S̄(1, 1, 6). The Horizontal symmetry is

broken down at some high scale by the VEVs 〈S〉 =
〈

S̄
〉

= vHX where X is a symmetric

3× 3 matrix that does not commute with any of the SU(3) generators. The superpotential
for the theory contains the following terms:

WH = huQΦuu
c + hdQΦdd

c + ΦuΦdS + T (SS̄ − v2H) , (4)

where T is a singlet used to break the SU(3)H . In general one needs other fields such as
H−octets etc to get the correct symmetry breaking pattern. There is no need for us to be
explicit about them. It is clear from the superpotential that once S field acquires arbitrary
VEVs, we will get a symmetric 6 × 6 mass matrix for the Φu,d fields. Since we want the
MSSM to emerge at low energies, there will be some kind of fine tuning necessary at the
SU(3)H scale. Due to the symmetry of the Higgs mass matrix, the MSSM Higgses Hu,d will
come out as the identical linear combination of the various Φu,d fields. This will then lead
to the up-down unification Eq. (1) with βq = hd

hu
. A similar equation will also follow for

the lepton sector. Even if there are an arbitrary number of S fields, this result would hold.
Note that tan β is a free parameter here, not restricted to be equal to m0

t/m
0
b .

IV. NATURE OF SUPERSYMMETRY BREAKING TERMS

An immediate consequence of the above result (Eq. (1)) is that at the tree level the quark
mixing angles vanish. However, once soft supersymmetry breaking terms are taken into
account, they lead to correction to the tree level predictions via one loop diagrams. These
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diagrams not only correct the tree level mass spectrum bringing it more into agreement with
observations but they also provide an explanation of the smallness of the CKM angles in a
natural manner. In doing this, we will invoke two types of supersymmetry breaking terms:
(i) The bilinear mass terms involving the superpartner fields, and (ii) the trilinear terms
(the A terms) that arise in generic supergravity and string models.

It would be necessary to have the generation changing bilinear terms to be much smaller
than the generation diagonal bilinears in order to be compatible with known FCNC con-
straints. This type of a spectrum can be achieved in different scenarios of supersymmetry
breaking: e.g. (1) dilaton dominated supersymmetry breaking [12], (2) anomalous U(1)
model [13], (3) models with nonabelian flavor symmetry [14], (4) gauge and gravity medi-
ated supersymmetry breaking [15]. In all these models generational mixing bilinear terms
are much suppressed (by a loop factor in (1), a chirality factor in (3) and a ratio of scales
in (2) and (4)). The Kahler potential for these types of models can be written as:

K(z, z∗; yi, y
∗
i ) = M−2

P l (z
∗z + y∗i yi + ǫijy

∗
i yj) (5)

where ǫij are elements of a Hermiitian matrix, yi stand for the visible sector fields and z
is the hidden sector field. The ǫij contributes to departures from universality for the soft
scalar masses. The scalar masses can be written as follows:

m2
ij = m2

0(δij + ǫij) (6)

with ǫij ≪ δij .
If we use the trilinear A terms for the generation of the quark (and lepton) mixing angles,

the important requirement is that the generation dependence of the A terms be different
from the effective Yukawa couplings below the scale vR. A significant point is that in the
presence of a general Kahler potential there is no reason for the effective supersymmetry
breaking mass or the A terms surviving at the MSSM level to be proportional to the Yukawa
couplings since the unitary matrices that diagonalize the Higgs mass matrix will not in
general diagonalize the A matrices. One can therefore write

A
(a)
p,ij = m1Y

(a)
p,ij +m1ǫikY

(a)
p,kj . (7)

Here m1 is a supersymmetry breaking mass parameter, the subscript p stands for u, d, l
(quarks or leptons), and the superscript (a) denotes the Yukawa coupling to the Higgs field
Φa. Below the vR,H scale, the diagonalization of the bilinear µ terms to get one pair of
Hu, Hd diagonalizes only the first term in the above expression for A and leaves the second
term as arbitrary. Anticipating that FCNC effects require ǫ ≪ 1, we will then expect
departures from the proportionality between Y and A to be of order ǫ without any extra
strong suppressions due to mq/mW . The main reason for this is that we only expect one
linear combination of the vR scale Yp’s to lead to quark masses and the orthogonal one
remains free. The A term gets contributions from both the linear combination of Yp’s. For
example, in the SUSYLR model (Eq. (2)), suppose there are two bi-doublets Φi. The MSSM
doublet Hd will be a linear combination Hd = cos θΦd

1+sin θΦd
2 (and similarly for Hu). If the

angle θ is small, the Yukawa couplings h
(2)
q,ij can be large, not proportional to the small quark

masses. There could be other ways of generating departure from proportionality between
the A terms and the Yukawa couplings such as through the superpotentials as in models
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where the supersymmetry breaking is mediated by anomalous U(1) gauge symmetries using
more than one singlet.

In principle, both sources of flavor mixing will be present (Eqs, (6) and (7)). But for
conceptual simplicity, we shall assume one among the two to be dominant. The results will
change very little if both are combined. Furthermore, for most part, Eq. (6) and Eq. (7)
lead to the same phenomenology as far as FCNC processes are concerned. One difference
is in their cosmological implications. Color and charge breaking does restrict the nature of
the trilinear A terms, but not the bilinear terms, we shall discuss these in Sec. VII.

Although we begin with a parity–invariant theory in the cases of SUSYLR and SO(10)
models, since vR will be assumed to be much larger than the SUSY breaking scale, the soft
SUSY breaking parameters need not respect parity. Parity violation can show up in the soft
breaking sector if they involve the VEV vR that breaks SU(2)R. We will also discuss the
possibility of maintaining parity invariance in the soft terms.

In the horizontal SU(3)H models, it is very natural to have the leading (renormalizable)
term in the Kahler potential to be SU(3)H flavor symmetric. That would neatly resolve
the SUSY flavor problem of supergravity models. SU(3)H–violating terms can appear in
the Kahler potential as higher dimensional terms involving standard model singlet fields
suppressed by the Planck scale eg: K ⊃ (M−4

P l )(Q
†Q)(S†S). If the VEVs of such S fields

are somewhat smaller than MP l, the smallness of ǫij will be naturally explained.

V. ONE LOOP CONTRIBUTIONS TO QUARK MASSES AND MIXINGS

Let us restate the tree level mass relations predicted in these models. For simplicity, we
focus on the SUSYLR or SO(10) type models:

M0
u = tanβM0

d

M0
νD = tanβM0

ℓ . (8)

It follows that both the quark mass matrices can be diagonalized by the same unitary
matrix and hence the earlier assertion that VCKM = 1. The same comment holds for the
lepton sector too. Furthermore, since the Dirac masses for neutrinos are not known the
second mass sum-rule involving the leptonic sector can help predict the neutrino masses.
The mixing between different lepton generations would then arise from the see-saw formula
which involves the Yukawa coupling of the ∆c with off-diagonal elements (see the couplings
fc of Eq. (2)). That could potentially explain why the quark mixing angles are small (since
they are induced at loop level), while the leptonic mixings are large (they already exist at
the tree level). We will not discuss the leptonic mixing angles any further, we plan to return
to this interesting question in a future paper. Here we will focus instead on the quark sector.

Before discussing quark mixings, let us first discuss the consistency of observed quark
masses with the tree level predictions given in Eq. (8). Note that the above equation gives
m0

s

m0
c
=

m0

b

m0

t

at the scale vR. The superscript 0 on the masses signify that they are the tree level

masses evaluated at µ ∼ MSUSY . Since Yt = Yb, when renormalization group extrapolated
down to the weak scale, the relation is unchanged. Using the fact that at µ = MSUSY ≃ mt,
mb(µ) ≃ 2.9 GeV, mt ≃ 175 GeV, mc(µ) ≃ .67 GeV and ms(µ) ≃ .081 GeV, the above
relation among the tree level masses is seen to be off by almost a factor of eight. Clearly, large
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loop corrections must be invoked to resolve this discrepancy. Luckily, it has already been
pointed out in the literature [16,17] that in supergravity models (specially the ones with large
tan β), there are large radiative corrections to the bottom, strange and down quark masses
arising through one–loop diagrams involving the exchange of gluino and the squarks (see
Fig. 1). Analogous corrections to mu, mc and mt lack the tan β enhancement, so we focus on
the corrections to md, ms and mb. There are two ways to resolve the above mass conundrum:
(i) b–quark mass receives little correction from loops. In this case, tan β ≃ m0

t/m
0
b ∼ 60 as

in the SUSYLR model. Eq. (8) would then imply m0
s(µ) ≃ .011 GeV. The rest – actually

the bulk – of the strange quark mass (about .07 GeV) can arise from the one loop gluino
graph such as in Fig. 1. (ii) Loop corrections suppress the b–quark mass (Fig. 1 with all
external quarks being b). This can happen for moderate values of tan β ≃ 10. It will be
consistent with one version of SO(10) model that was discussed (with one 10 of Higgs which
mixes with 16), as well as the SU(3)H example. In this case the bulk of the strange quark
mass comes from the tree level. b–quark mass receives large negative loop correction. There
are two sources for mb: the gluino–squark exchange and the chargino-stop exchange.

δmb ≃
2αs

3π

mg̃

m2
q̃

(m0
bµ tanβ + A

(d)
33 m0) +

λ2
t

16π2

µ

m2
q̃

(m0
bµ+ A

(u)
33 m0 tanβ) . (9)

In writing Eq. (9) we have assumed mq̃ ≫ mg̃, µ, but in our numerical estimate we use the
exact expression. It might appear that the gluino exchange would lead to identical correc-
tions for δmb/mb and δms/ms, but the trilinear A

(u),(d)
33 may not eqaul A

(u),(d)
22 . Furthermore,

the chargino contribution, which is comparable to the gluino contribution, is absent for the
strange quark mass. We will discuss the numerical values of ms and mb after taking the
loop correction into account in the next section after allowing for flavor mixing in the squark
sector (which turns out to be significant for ms).

As far as the first generation quarks go, if we choose the Yukawa coupling at the tree level
such that mu ≃ .002 GeV (the right value) at MSUSY , then we would get a tiny tree level
value for md . However, as is well known, the entire md can arise in the process of generating
flavor mixing angles. That is, md ≃ θ2Cms works quite well. We will use this mechanism here
to generate md. (This will require existence of both dLsR and sLdR terms in the down quark
mass matrix. Only the former is needed for inducing θC , see comments below.) Analogous
expressions for ms, viz., ms ≃ V 2

cbmb, is too small to explain the magnitude of ms.
Let us now turn to the quark mixings. It is easier to induce off–diagonal elements in

the down–quark mass matrix (rather than the up–quark matrix) for two reasons: (i) The
one-loop diagram that would induce off–diagonal mixings have a tan β enhancement factor
in the down sector but not in the up sector, and (ii) the charm and top quark masses are
much larger in magnitude compared to the strange and bottom masses respectively, so the
off–diagonal elements that are necessary in the up–quark mass matrix to generate the CKM
mixings are larger (by about a factor of 10) compared to the ones needed in the down–
quark sector. As we already noted, there are two ways to generate the off-diagonal terms
in the quark mass matrices at the one loop level: (i) the off-diagonal terms in the bi-linear
squark masses and (ii) the off-diagonal A terms. In both cases we have to make sure that
the magnitudes of the Aij’s or ∆m2

ij ’s needed are not in conflict with constraints of flavor
changing neutral current effects [18]. We will see that there are parameter spaces where
Aij ’s or ∆m2

ij produce the required quark mixing without violating the bounds from the
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flavor changing neutral current. We now turn to address this important issue.

VI. QUARK MIXINGS FROM OFF-DIAGONAL SQUARK MASSES

Here we will generalize the FCNC constraints arising from K0 − K̄0 system [18] to allow
for several squark mass insertions that would be appropriate for our discussions. We will
find that some of the constraints get relaxed because of the multiple insertions.

Let us first list the minimal number of mixing parameters among the generations we
need in order to generate the quark mixings. These are determined as follows: The Cabibbo
angle Vus requires an effective entry dLsR in the down quark mass matrix. Similarly, Vcb

requires an entry sLbR. Rather than using direct left–right squark mixings of the same
flavor structure, we shall make use of the large b̃L − b̃R mixing that is already present in
the model. If in addition, we have d̃L − b̃L, b̃L − s̃L, and b̃R − s̃R, then effectively we can
induce both dLsR and sLbR in the quark sector. For example, dLsR can arise via the chain
d̃L − b̃L → b̃L − b̃R → b̃R − s̃R. Note that this set of parameters will also induce Vub via a
dLbR quark mass term which arises from d̃L − b̃L → b̃L − b̃R. We will discuss this constraint
in detail, but let us note that in the process of inducing Vus and Vcb, a non–zero value of Vub

will already be induced given by Vub ≃ VusVcb, which is roughly of the right order.
With this minimal set of SUSY flavor mixing parameters, we will generate adequate

values of all CKM mixing angles. However, since the d̃R field does not appear in this minimal
set, there will not be any significant correction to the d–quark mass. This deficiency will
be removed when we later introduce an additional flavor mixing parameter d̃R − b̃R. We
will show that md ≃ θ2Cms will be induced in this case, without conflicting with the FCNC
bounds. But at first we stick to the minimal set without d̃R − b̃R mixing.

We will use K0 − K̄0 to constrain the mixing terms. This constraint turns out to be the
most stringent. The only type of flavor changing operators generated by the above mixing
terms are:

Q1 = d̄αLγµs
α
Ld̄

β
Lγµs

β
L ,

Q2 = d̄αLs
α
Rd̄

β
Ls

β
R ,

Q3 = d̄αLs
β
Rd̄

β
Ls

α
R . (10)

The effective Hamiltonian involving these set of operators with different structure of the
flavor changing bilinears is given in [18]. We write below the Hamiltonian, but after gener-
alizing the loop functions to account for several squark mass insertions.

H = −
α2
s

216m2
q̃

{

(

δd12
)2

LL

(

24Q1 x f6(x) + 66Q1 f̃6(x)
)

+
(

δd12
)2

LR
(204Q2 x f6(x)− 36Q3 x f6(x))

}

(11)

where x = m2
g̃/m

2
q̃ , mq̃ is the average squark mass, mg̃ is the gluino mass, (δdij)LL,LR represent

the product of mass insertions ∆m2
ij/m

2
q̃ that give rise to a particular operator and the

functions f6(x) and f̃6(x) are given by :
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f6(x) =
1

60(x− 1)7
(197 + 25x− 300x2 + 100x3 − 25x4 + 3x5 + 60(1 + 5x) ln x) ,

f̃6(x) = −
1

30(x− 1)7
(−6− 125x+ 80x2 + 60x3 − 10x4 + x5 − 60x(1 + 2x) ln x) . (12)

The diagrams for K0 − K̄0 mixing are shown in the Fig. 2. In Fig. 2a we use the mixing
d̃L − b̃L, b̃L − s̃L in both the squark lines. In Fig. 2b we use the mixing d̃L − b̃L, b̃L − b̃R
and b̃R − s̃R in both the squark lines. We list the resulting constraints in Table 1 on the
ℜ(δ12) = ℜ(∆md2

12/m
2
q̃) for an average squark mass mq̃ = 700 GeV . We have used mK = 498

MeV, fK = 160 MeV and ms(1GeV ) = 150 MeV as input.

x

√

∣

∣

∣

∣

ℜ
(

δd12
)2

LL

∣

∣

∣

∣

√

∣

∣

∣

∣

ℜ
(

δd12
)2

LR

∣

∣

∣

∣

0.1 2.8× 10−2 7.5× 10−3

0.3 4.7× 10−2 8.0× 10−3

2.0 1.51× 10−1 1.2× 10−2

4.0 1.45× 10−1 1.5× 10−2

8.0 1.71× 10−1 2.0× 10−2

10 1.85× 10−1 2.2× 10−2

Table 1: Upper limits on the product of squark mixings from K0−K̄0 for an average squark
mass mq̃ = 700GeV and for different values of x = m2

g̃/m
2
q̃ . For other values of mq̃, the

limits can be obtained by multiplying the ones in the table by mq̃(GeV)/700. ℜ stands for
the real part. QCD corrections (not included in the Table) relax the bound in column 1 by
about 30% and tighten it for column 2 by a factor of 2.

Using Table 1 and expressing (δd12)LL,LR in terms of flavor changing mass insertions δij ’s
(where δij = ∆m2

ij/m
2
q̃, ∆m2

i,j is the flavor mixing term), we can put bound on the mixing
term δdLbLδbLsL from column 1 and on the product δdLbLδbLbRδbRsR from column 2. Note
that δbLbR can be obtained from our discussion of the loop correction to the b-quark mass.
It is of order ∼ 1/10 for tan β ≃ 25 (since δbLbR = mbµ tan β

m2

q̃

and if we choose µ =600 GeV,

tan β = 25, mq̃ = 700 GeV we get the above value). We can use this to put a bound on the
term δdLbLδbRsR from Table 1. It is important to note that the bounds obtained in Ref. [18]
are relaxed in our case due to the particular flavor structure. We also find that the QCD
correction [19] to (LL)2 term increases the bound by ∼ 30%. For the (LR)2, the upper
bound tightens by a factor of 2.

The off diagonal elements in the quark mass matrices are generated at the one loop level
via gluino-squark exchange. It is given by:

M23 =
2αs

3π
mg̃δsLbLδbLbRf1M , (13)

M12 =
2αs

3π
mg̃δdLbLδbLbRδsRbRf2M . (14)

The relevant diagrams are shown in Fig. 1. The loop functions that enter into the mass
terms are given by:
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f1M =
1

(1− x)2
(1− x+ x ln x) , (15)

f2M =
1

2(1− x)3
(1− x2 + 2x ln x) . (16)

The functions are given in the limit where all the diagonal squark masses are equal. Since
the mixing is small (∼ 1/10), using the same parameter space one finds that the functions
with unequal masses differ from the above ones by less than 4%.

The mixing angles Vcb and Vus arise from the down quark mass matrix elements M23 and
M12 respectively. To generate the correct mixing angle for the quarks, they must have the
values: M23 ≃ Vcbmb and M12 ≃ Vusms. Since the products of flavor changing transition
entries for squarks are already constrained by the known bounds from FCNC processes in
Table 1, we have to see if they allow us to generate the needed magnitudes of the Mij .
The M23 element proves to be the most restrictive on the product of δij ’s and once that
is satisfied M12 is automatically satisfied. In Table 2, we present the lower limits for the
products of the δij ’s required to generate the corresponding Mij’s. (We use Vcb = 0.034 and
Vus = 0.22.) In writing Table 2, we have assumed mq̃ = 700 GeV .

x |
(

δdM23

)

LR
| |
(

δdM12

)

LR
|

0.1 1.8× 10−2 6.2× 10−3

0.3 1.2× 10−2 4.7× 10−3

2.0 8.6× 10−3 4.4× 10−3

4.0 8.3× 10−3 4.9× 10−3

8.0 8.4× 10−3 5.7× 10−3

10 8.6× 10−3 6.2× 10−3

Table 2: The lower limits on the products of δij’s required to generate the desired quark
mixing angles (for mq̃ = 700 GeV ). The lower limits from column 2 should be compared
with the upper limits from column 2 of Table 1 (divided by a factor of 2 for QCD correction).
Compatibility is seen for x ≥ 0.3.

We can now express
(

δdM12

)

LR
≡ δdLbLδbLbRδbRsR and

(

δdM23

)

LR
≡ δsLbLδbLbR. The upper

limit on the first term can be read off from the second column of Table 1. Comparing with
the lower limit from column 2 of Table 2, we find that the bound is well satisfied for x > 0.3.
Like before if the limit on the δsLbL is desired one should multiply the numbers in Table 2,
first column by a factor (∼ 10) corresponding to b̃L − b̃R mixing.

There are two contributions to Vub, one goes as the product VusVcb and the other is
M13/mb. Here M13 is the loop contribution to the (1,3) entry of the down quark mass
matrix arising from a diagram analogous to Fig. 1b (replace sL by dL in Fig. 1b). The
estimate of M13 is obtained from Eq. (13) by the replacement δsLbL → δdLbL . Using the
relation Vub = VusVcb +M13/mb, setting its magnitude equal to 0.006, and allowing for the
two contributions to have a relative negative sign, we find that |M13| ≤ 0.045 GeV . For
mq̃ = 700 GeV and x = 0.1, this corresponds to the limit δdLbLδbLbR ≤ 0.012. On the other
hand, from the required value of Vus, we have a lower limit (for the same set of parameters)
δdLbLδbLbRδbRsR ≥ 6.2 × 10−3 (see Table 2). Comparing the two constraints, we find that
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δbRsR ≥ 0.5 . Thus there is large mixing in the b̃R − s̃R sector, but that is consistent with
all phenomenological constraints.

The process b → sγ does provide some useful limits. There is a diagram similar to Fig.
1b with sL replaced by sR and the squark line emitting a photon. From Ref. [18], b → sγ
puts a limit on the product δbRsRδbLbR ≤ 1.3 × 10−2(mq̃/500 GeV )2. For a squark mass of
1 TeV and for δbRsR ≃ 0.5, we see that δbLbR should be less than about 0.1. This would
seem to prefer the scenario with moderate tanβ, although the large tanβ scenario is not
inconsistent if µ is much smaller than the squark masses.

As for the diagonal strange quark mass, it arises from a diagram analogous to Fig. 1b.
The magnitude is given by Eq. (14) with δdLbL replaced by δsLbL . We will now show that
this is just of the right order needed.

Let us choose a definite set of numbers to check the self–consistency of the scheme. Let
mq̃ = 700 GeV and mg̃ ≃ 400 GeV , so that x ≃ 0.3. We also choose, for this example,
δbLbR = 0.1. The shift in b–quark mass from the gluino graph alone is then ∆mb = 0.7 GeV ,
which is small. Including the chargino diagram, this shift may even be smaller. Next
consider Vcb ≃ M23/mb. Setting it equal to 0.034 determines δsLbL ≃ 0.15. Setting the
diagonal mass of the strange quark arising from the gluino exchange equal to 0.03 GeV ,
we get δsRbR ≃ 0.65. Next we set |Vub| = |VusVcb − M13/mb| equal to 0.006. With a
relative negative sign between the two terms, we find δdLbL ≃ 0.065. This choice will now
determine Vus ≃ M12/ms, since there are no more parameters. We find it is given by
Vus ≃ (11 MeV/ms), where ms is the full strange quark mass at µ ∼ 175 GeV . This is of
the right size for ms(µ ∼ 175 GeV ) ≃ 0.05 GeV (corresponds to ms(1 GeV ) ≃ 0.133 GeV ).
This shows the consistency of the scenario.

So far in the flavor mixings of the squarks, we have not assumed left-right symmetry. If
we however demand left right symmetry is preserved by the soft supersymmetry breaking
terms, we will have an additional mixing term d̃R− b̃R. Such a mixing entry will also enable
us to induce acceptable d–quark mass. The strength of various operators would be related
by parity invariance. The new operators induced by this new term are:

Q̃1 : Q1(L ↔ R),

Q̃2 : Q2(L ↔ R),

Q̃3 : Q3(L ↔ R),

Q4 = d̄αRs
α
Ld̄

β
Ls

β
R,

Q̃4 : Q4(L ↔ R),

Q5 = d̄αRs
β
Ld̄

α
Ls

β
R,

Q̃5 : Q5(L ↔ R).

(17)

These new operators will introduce new terms in the Hamiltonian:

Hextra = −
α2
s

216m2
q̃

{

(

δd12
)2

RR

(

24 Q̃1 x f6(x) + 66 Q̃1 f̃6(x)
)

+
(

δd12
)

LL

(

δd12
)

RR

(

504Q4 x f6(x)− 72Q4 f̃6(x)

+ 24Q5 x f6(x) + 120Q5 f̃6(x)
)
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+
(

δd12
)2

RL

(

204 Q̃2 x f6(x)− 36 Q̃3 x f6(x)
)

+
(

δd12
)

LR

(

δd12
)

RL

(

−132Q4 f̃6(x)− 180Q5 f̃6(x)
)

}

. (18)

The LLRR diagram can appear without a LR mixing now, i.e., d̃L − b̃L and b̃L − s̃L on
one line of the box diagram and d̃R − b̃R and b̃R − s̃R on the other line of the same diagram.
The upper bound on the

(

δd12
)

LL

(

δd12
)

RR
term is shown in Table 3.

x
√

∣

∣

∣ℜ
(

δd12
)

LL

(

δd12
)

RR

∣

∣

∣

0.1 4.0× 10−3

0.3 4.3× 10−3

2.0 6.6× 10−3

4.0 8.5× 10−3

8.0 1.1× 10−2

10 1.3× 10−2

Table 3: Upper limits on the products of δ’s obtained for an average squark mass mq̃ =
700 GeV and for different values of x = m2

g̃/m
2
q̃. For other values of mq̃, the limits can be

obtained by multiplying the ones in the Table by mq̃(GeV)/700.
Before we discuss the consequences of Table 3, let us comment on the generation of

d–quark mass purely from mixing with s and b. Clearly, that requires the d̃R − b̃R mixing
term. There are two contributions to the d mass, one from mixing with the b and the other
from mixing with the s. The former has a magnitude ∼ V 2

ubmb, while the latter goes as
V 2
usms. Numerically the contribution from d− s mixing is more important and of the right

magnitude. So we focus on it. For this estimate to hold, the sLdR entry in the down quark
mass matrix should have the same magnitude as the dLsR entry. The lower limit on the
mixing parameters obtained by demanding that Md

21 ≥ θCms are the same as in Table 2,
second column. (One can simply replace L → R in Eq. (14) to getM21. All the relevant loop
functions are the same.) Similarly, the upper limits from FCNC on ℜ(δd21)LR are identical to
the numbers listed in Table 1, column 2. This is because of the parity inavariance respected
by the gluino box diagram. We see that there is broad agreement between the two sets of
numbers, implying that reasonable d–quark mass can be induced by pure mixing.

From Table 3 we find the upper limit on the mixing term
√

δdLbLδbLsLδdRbRδbRsR. As-
suming δdLbLδbLsL = δdRbRδbRsR, we can use the bounds shown in Table 3 to put upper limit
on δdLbLδbLsL. On the other hand, Table 2 gives the lower limit on δdLbLδbLsLδbLbR. If δbLbR
is ∼ 1/10, the lower limit surpasses the upper limit when multiplied by this factor of 10.
Thus, for the choice of parameters we have made, it is not possible to maintain left-right
symmetry in the soft SUSY breaking terms. This is not a disaster for the model since there
may be hidden sector effects which may be able to generate the necessary left-right breaking
effects in the soft SUSY breaking sector. This is especially so if the scale of SU(2)R break-
ing is higher than that of supersymmetry breaking. Another possibility is to use a different
choice of parameter space where δbLbR ∼ 1 so that bounds in the Table 3 do not contradict
the assumption of left-right symmetry. This choice, for example, would correspond to large
tan β ∼ 60, with µ ∼ 1 TeV (m0 = 450 GeV and mg̃ = 1.5 TeV). Such a large value of
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µ will require some fine tuning to obtain the Z-mass consistent with radiative electroweak
symmetry breaking, but is perhaps not out of question.

Other FCNC processes, such as from the loop induced dsZ vertex or ds-Higgs vertex,
satisfy all the phenomenological constraints, mainly due to the decoupling behavior of su-
persymmetric theories.

VII. QUARK MIXINGS FROM OFF-DIAGONAL A TERMS

The elements M12 and M23 can also be generated from the off diagonal A terms. Again
let us take a minimal flavor mixing structure. We assume that A23 gives rise to s̃Lb̃R
mixing and A12 gives rise to d̃Ls̃R mixing. If left–right symmetry is preserved, we need
two more A’s induce b̃Ls̃R and s̃Ld̃R terms (A21 and A32 respectively). We shall assume
A23 = A32 andA12 = A21 in this case. We also have a b̃Lb̃R term induced by the µ tanβ term
as before.

The FCNC bound on A12 can be obtained from the K0K̄0. The diagram will look like
the fig. 1 with one cross on each squark line, where the cross represents the A term. The
functions needed to calculate this diagram are given in the Ref. [18]. We find, for mq̃=600
GeV and mg̃ = 1 TeV, A12vd/m

2
q̃ has to be less than 7 × 10−3. For the same parameter

space, the lower bound on the A12vd/m
2
q̃ is 1 × 10−3 from the one loop dLsR mass diagram

involving gluino and squarks. The squark line will now have the d̃Ls̃R mixing term arising
from A12 (see Fig. 1). The function f1M is used for this calculation.

The sLbR mixing diagram will be generated by gluino mediation and in the squark line
the off–diagonal AsLbR appears. For mq̃=600 GeV and mg̃ = 1 TeV we find the bound on
the A23vd/m

2
q̃ ≥ 0.009 from the mass diagram. There is no significant upper bound on AbLsR

term from the available data. Hence we will have a viable solution with left right symmetry
intact.

Unlike the case of bi-linear mass terms, there could be two other indirect bounds for
the case of tri-linear A terms. These are the color and charge breaking bounds (CCB) and
unbounded from below (UFB) bound [20]. If these bounds are violated, the true vacuum of
the MSSM may be either unstable or it may be color and charge breaking. These indirect
bounds are not on the same footing as the FCNC bounds which are very direct. It is not
clear whether the CCB and UFB bounds are absolute bounds, they may be evaded in various
early universe scenarios [21], for example if our universe is in a metastable vacuum and if
the tunneling rate to the true vacuum is much slower than the age of the universe. They
may also be evaded if non–renormalizable terms in the potential are taken into account or
equivalently, if the theory gives in to a new theory at a higher energy scale. For completeness
we list these CCB and UFB bounds below.

The most stringent (for our purpose) CCB bound is given as [20]:

|A
(d)
ij | ≤ λ2

dk(m
2
dLi

+m2
dRi

+m2
d1
), k = Max(i, j) (19)

where m2
1 = m2

H2
+ µ2. The UFB bound is given as [20]:

|A
(d)
ij | ≤ λ2

dk(m
2
dLi

+m2
dRi

+m2
dνm

), k = Max(i, j) . (20)
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The UFB and CCB bound requires A23vd/m
2
q̃ ≤ 0.009. Hence we have a viable A23 mixing.

However A12 term is a problem. From the UFB and CCB bound we have A12vd/m
2
q̃ ≤ 0.0002,

which is smaller than the lower limit required for generating Vus. The problem with this
A12 term happens because the UFB or the CCB bound on this term involves the s-quark
coupling. The CCB bound involves m2

νm
and the UFB bound involves m2

1(= m2
H1

+ µ2). So
if we make m2

νm
or m2

H1
larger, it is possible to have a viable A1,2 mixing. FCNC constraint

can be satisfied in both the cases, although with a heavy supersymmetric spectrum.
In the left-right model leading to MSSM at low energies, these constraints need not apply

for the following reason: If we are working at the SU(2)L×SU(2)R×U(1)B−L×SU(3)c level,
it has been shown that below the scale vR, in addition to the interactions of MSSM, there
is an additional interaction of the form Wextra = fije

c
ie

c
j∆

c−− [7]. This gives new quartic
terms to the potential that invalidate the CCB bounds of MSSM in the lepton sector. If we
extend the gauge group to SU(2)L × SU(2)R × SU(4)c, there can be analogous interactions
involving quarks which can help avoid the CCB bounds in the quark sector. Also in this
class of models, above 1010 GeV a new theory takes over which can substantially alter the
vacuum structure.

Let us now point out that while we have conducted the discussion of the sections V-VII
within the framework of the SO(10) or SUSYLR type models, they are applicable to the
SU(3)H models without any modification. The only point worth noting here is that the
presence of the horizontal symmetry at a high scale implies that the soft breaking terms
must originate from basic interactions that are SU(3)H invariant after horizontal symmetry
breaking. Such a situation can always be arranged by including extra SU(3)H multiplets
(such as an H–octet) which do not couple to matter fields and giving them appropriate
VEVs. We do not elaborate on these points since they involve standard methods.

VIII. CP VIOLATION

The simplest way to introduce CP violation into this model is by assuming that the flavor
mixing parameters ǫij in Eqs. (6)-(7) are complex. In Tables 1 and 3 we listed the lower
limits on the flavor mixing parameters arising from the real part of the K0 − K̄0 amplitude.
There are constraints from the imaginary part too, they are more stringent by about a factor
of 200 compared to the numbers in Tables 1 and 3. This suggests that if the relevant phases
that enter into the gluino box diagram (see Fig. 2) are of order 3 × 10−3, these gluino box
diagrams themselves can explain the observed value of ǫ in the K meson system. Note that
if the phases of ǫij are of order 3× 10−3, the KM phase will be too small to account for ǫK .
This has implications for the B system.

If CP violation occurs only in the mixing, it might be though that this is a superweak
model of CP violation. But it is actually not. The direct CP violating parameter ǫ′/ǫ,
receives a one-loop contribution from the gluino penguin graph. This diagram has been
calculated in Ref. [22], and that result can be directly applied to the model we are discussing.
It was shown in Ref. [22] that ǫ′/ǫ = ( 1 to 3)×10−3 (modulo hadronic uncertainty). The
reason for such a relatively large value has to do with the chiral structure associated with
the gluino penguin graph of these models.

Thus there is “approximate CP invariance” [23] in this class of models. This means
that all the phases are small, of order 10−2, including the phases of the gluino mass, µ
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parameter and A and B terms. This is a welcome result since it can explain the smallness of
neutron and electron electric dipole moments, which is otherwise a puzzle in supersymmetric
models. With all phases being order 10−2, EDM of electron and neutron become consistent
with experiment. (We assume that the contribution to the neutron EDM from the strong
CP phase is rendered harmless either by the axion solution or by the constraints of left-right
symmetry [4].) KM model of CP violation is not operative here. This is especially significant
for CP asymmetries in the B meson system. In the KM model, many of the asymmetries are
large, of order 10% or larger. In our scenario, all asymmetries in the B system are expected
to be too small. The reason being the smallness of all CP violating parameters. (Recall that
the phase in the KM model is not small.) If at the B factory, CP asymmetries are measured
to be large, that could exclude this scenario.

IX. CONCLUSION

To summarize, we have discussed how the partial Yukawa unification that results in a
large class of SO(10) and SUSY left-right models as well as a class of horizontal symmetry
models provides a new way to understand the smallness of quark mixing angles. Generating
the appropriate flavor mixings requires a specific pattern for the soft breakings. As is well
known, there are strong constraints on the allowed pattern of soft breakings from flavor
changing neutral current effects. We have shown by a detailed analysis how the pattern
needed for our purpose is consistent with the constraints of FCNC effects. They are also
compatible with constraints arising by demanding that the vacuum be bounded from below
and that it conserves color and electric charge.

One place where this class of models may be subjected to experimental scrutiny is CP
violating asymmetries in the B meson system which will be measured at the B factories.
Unlike the KM model, all CP asymmetries in the B system are predicted to be too small, by
the requirement of approximate CP invariance. These models predict neutron and electron
EDM near the present experimental limits. A third crucial test of the model involves the
branching ratios of the Higgs into fermion pairs. Since the mass relation m0

s/m
0
b = m0

c/m
0
t is

corrected by suppressing m0
b via the one loop gluino contribution in one scenario, the higgs

branching ratio Γ(h → bb)/Γ(h → τ+τ−) will differ significantly from its standard model
value [24]. The same diagrams that contribute to off–diagonal quark and lepton mixings
can lead to flavor violating Higgs decays. Decays of the Higgs into lepton pairs h → l+i l

−
j

for i 6= j would provide dramatic signatures in support of this class of models. To have an
observable event rate, however, one would have wait for a Higgs factory such as the muon
collider. In contrast to Ref. [25], in our scheme the diagonal muon mass arises already at
the tree level, so no large effect is expected in the g − 2 of the muon.
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FIG. 1. Gluino-squark diagrams for the generation of down quark masses and CKM angles.
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FIG. 2. SUSY contributions to the K0 − K̄0 process.
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