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Abstract

We use a fully self-consistent Hartree−Fock (HF) based continuum ran-

dom phase approximation (CRPA) to calculate strength functions S(E)

and transition densities ρt(r) for isoscalar giant resonances with multi-

polarities L = 0, 1 and 2 in 80Zr nucleus. In particular, we consider

the effects of spurious state mixing (SSM) in the isoscalar giant dipole

resonance (ISGDR) and extend the projection method to determine the

mixing amplitude of spurious state so that properly normalized S(E)

and ρt(r) having no contribution due to SSM can be obtained. For the

calculation to be highly accurate we use a very fine radial mesh (0.04 fm)

and zero smearing width in HF−CRPA calculations. We first use our

most accurate results as a basis to establish the credibility of the pro-

jection method, employed to eliminate the SSM, and then to investigate

the consequences of the common violation of self-consistency, in actual

implementation of HF based CRPA and discretized RPA (DRPA), as

often encountered in the published literature. The HF−DRPA calcula-

tions are carried out using a typical box size of 12 fm and a very large

box of 72 fm, for different values of particle-hole energy cutoff ranging
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from 50 to 600 MeV.

Typeset using REVTEX

2



I. INTRODUCTION

Hartree-Fock (HF) based random phase approximation (RPA) has been a very

successful theory in providing microscopic description of phenomena associated with

collective motion in nuclei [1]. Accurate information for important physical quan-

tities can be obtained by comparing the experimentally deduced strength function

distribution, S(E), with the results obtained from HF-RPA theory. In particular, the

strength function distributions of the isoscalar giant monopole resonance (ISGMR)

and the isoscalar giant dipole resonance (ISGDR) are quite sensitive to the value of

the nuclear matter incompressibility coefficient, Knm, [1–4], a very important physical

quantity since it is directly related to the curvature of the equation of state.

Over the last two decades, a significant amount of experimental work was carried

out to identify the strength distributions of the isoscalar giant resonances in nuclei,

particularly the ISGMR [3] and ISGDR [5]. The main development in the area of ex-

perimental investigation of the isoscalar giant resonances is the high accuracy data, of

excitation cross section, by α−particle scattering, obtained at Texas A&M University

using a beam analysis system (BAS), a multipole-dipole-multipole (MDM) spectrom-

eter and broad range multiwire proportional counter. The new system improved the

signal to background ratio by more than a factor of 15. This led to the discovery

of a high lying structure in the strength function of the ISGMR and the location of

the ISGMR in light nuclei. Also, accurate data on the ISGDR has been obtained for

a wide range of nuclei [5]. This has led to renewed interest in the nuclear response

function and the need to carry out detailed and accurate calculations of S(E) and the

transition density, ρt, within the HF-RPA theory. In particular there have been quite

a few recent HF-RPA [6–10] and relativistic mean field (RMF) based RPA [11,12]

calculations of the ISGDR , considering the issues of (i) spurious state mixing (SSM),

(ii) the strength of the lower component (at 1h̄ω) and (iii) the value of Knm deduced

from the centroid energy E1 of the ISGDR compression mode (at 3h̄ω).

Comparison between the recent data on the ISGMR and the results of HF based
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RPA calculations confirms the value of Knm = 210 ± 20 MeV, determined earlier in

[4]. It was first pointed out in Ref. [13] that the HF-RPA results for E1, obtained

with interactions adjusted to reproduce the ISGMR data, are higher than the ex-

perimental values [14,15] by more than 3 MeV and thus this discrepancy between

theory and experiment raises doubts concerning the unambiguous extraction of Knm

from energies of compression modes. This discrepancy between theory and exper-

iment was also reported in more recent experiments [5,16]. Recently, Shlomo and

Sanzhur [9] have addressed this discrepancy by carrying out accurate microscopic

calculations for S(E) and the excitation cross section σ(E) of the ISGDR, within the

folding model (FM) distorted-wave-Born-approximation (DWBA), with ρt obtained

from HF-RPA calculations and corrected for the SSM. They demonstrated that the

calculated σ(E) drops below the experimental sensitivity in the region of high exci-

tation energy containing 30-40% of the ISGDR energy weighted sum rule (EWSR).

This missing strength leads to a reduction of more than 3.0 MeV in the value of E1

and thus explains the discrepancy between theory and experiment.

Clearly accurate calculations of S(E) and σ(E) are needed. In fully self-consistent

HF-RPA calculations, the spurious isoscalar dipole (T = 0, L = 1) state (associated

with the center of mass motion) appears at energy E = 0 and no SSM in the ISGDR

occurs. It was pointed out in [9] that none of the calculations carried out for S(E)

and ρt and published in the literature are fully self-consistent. In some RPA calcu-

lations the mean field and the particle-hole interaction Vph are chosen independently.

Although this approach can provide physical insight on the structure of giant reso-

nances, it can not be used to accurately determine important physical quantity such

as Knm. In self-consistent HF-RPA calculation [17] one starts by adopting specific

effective nucleon-nucleon interaction, V12, such as the Skyrme interaction, and carries

out HF calculations. The parameters of the interaction are determined by a fit to

properties of nuclei (binding energies, radii, etc.). Then one solves the RPA equa-

tion using the particle-hole (p-h) interaction Vph which corresponds to V12. However,
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although not always stated in the literature, self-consistency is violated in actual im-

plementations of the RPA (and relativistic RPA) calculations. One usually makes the

following approximations: (i) use a Vph which is not consistent with V12. It is common

to neglect the two-body Coulomb and spin-orbit interactions in Vph and approximate

the momentum dependent parts in Vph, (ii) limiting the p-h space in a discretized

calculation by a cut-off energy Emax
ph , and (iii) introducing a smearing parameter (i.e.,

a Lorentzian with Γ/2). The consequences of these violations of self-consistency on

S(E) and ρt and of numerical inaccuracy are usually ignored in the literature.

In this work we present results of detailed investigations of the consequences of

common violations of self-consistency in actual implementations of HF based RPA,

for determining the response functions S(E) and ρt of isoscalar multipole (L=0,1

and 2) giant resonances. In particular, we consider the ISGDR and concentrate on

the effects of the SSM. We determine the effects of a violation of self-consistency

by comparing the calculated results for S(E)and ρt with those obtained from highly

accurate fully self-consistent HF- continuum RPA (HF−CRPA) calculations [18]. We

also extend the projection method for eliminating the effects of SSM, described in

Ref. [9], to properly normalize S(E) and ρt and determine the mixing amplitude of

the spurious state in the ISGDR.

In Section II we present an extension of the Green’s function based derivation

of the projection operator method for eliminating the effects of the SSM, described

in [9], to also account for the proper normalization of the S(E) and ρt(r) of the

ISGDR and determine the mixing amplitude of the spurious state, obtained in HF-

RPA calculations. We emphasize here that the method is quite general and applicable

for any scattering operator F and for any numerical method used in carrying out the

RPA calculation, such as configuration space RPA, coordinate space (continuum and

discretized) RPA and with and without the addition of smearing. We also provide in

this section the basic expressions used in the calculations and the presentation of our

results.
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In Section III we present and discuss our results. We first present the results

of a highly accurate and fully self-consistent HF−CRPA calculation of S(E) and

ρt(r) in 80Zr, which we use as a basis for a comparison with results obtained with

common violations of self-consistency. These accurate fully self-consistent HF−CRPA

results were obtained using Γ = 0 (i.e., no smearing) and very small mesh sizes of

drHF = 0.04 fm and drRPA = 0.04 fm with corresponding number of mesh points

NHF = 900 and NRPA = 300, used in the HF and the CRPA calculations, respectively.

We note that the values of S(E) and ρt(r) associated with a bound RPA state were

deduced from the residue of the RPA Green’s function. Next, we present our results

of fully self-consistent HF−CRPA calculations (with Γ = 0) carried out using various

mesh sizes drHF and drRPA and discuss the issue of numerical accuracy. We then

present and discuss the results obtained with certain violations of self-consistency

in CRPA and discretized RPA (DRPA) calculations and assess the effects on S(E)

and ρt(E) by comparing with the highly accurate fully self-consistent results over the

whole range of excitation energies. We point out that comparing the total energy

weighted transition strength with the EWSR may lead to incorrect conclusions. Very

recently the accuracy of the projection operator method in eliminating the effects of

the SSM on S(E) and ρt of the ISGDR was investigated in Refs. [9,19]. However,

in these works, the calculations carried out using mesh sizes dr ≥ 0.1 fm, were

not fully self-consistent. We emphasize that in the present work we have carried out

highly accurate self-consistent calculations, established the accuracy of the projection

operator method and provide assessments on the effects on S(E), EL and ρt of the

isoscalar resonances with L = 0, 1 and 2, which are due to common violation of self-

consistency in actual implementation of HF−RPA often encountered in the literature.

We note that preliminary results of the present work were presented earlier [20]. In

section IV we state our conclusion.
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II. FORMALISM

The RPA Green’s function G [17,18] is given by,

G = G0(1 + VphG0)
−1 , (1)

where G0 is the free p-h Green’s function given by,

G0(r, r
′, E) = −

∑

h

φh(r)
[

1

H0 − ǫh − ω
+

1

H0 − ǫh + ω

]

φh(r
′). (2)

Here H0 is the HF hamiltonian and ǫh and ψh are the single particle energy and the

wave function of the occupied state, respectively. The continuum effects (particle

escape width) are included by using

Glj(r, r
′, E) =

1

H0 − E
= −

2m

h̄2
ulj(r<)vlj(r>)/w, (3)

where r< and r> are the the lesser and the greater of r and r′, respectively, u and v are

the regular and irregular solution of H0, with the appropriate boundary conditions,

respectively and w is the Wronskian. The strength function S(E) and transition

density ρt, associated with the scattering operator,

F =
A
∑

i=1

f(ri) , (4)

are given by,

S(E)=
∑

n

|〈0|F |n〉|2 δ(E − En) =
1

π
Im [Tr(fGf)] , (5)

ρt(r, E) =
∆E

√

S(E)∆E

∫

f(r ′)
[

1

π
ImG(r ′, r, E)

]

dr ′ . (6)

Note that ρt(r, E), as defined in (6), is associated with the strength in the region of

E ±∆E/2 and is consistent with

S(E) =

∣

∣

∣

∣

∫

ρt(r, E)f(r) dr

∣

∣

∣

∣

2

/∆E . (7)
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It is important to note that S(E) and ρt of a state at energy En below the particle

escape threshold (or having a very small width) can be obtained from Eqs. (5) and

(6), respectively, by replacing 1
π
ImG(r ′, r, E) with

lim
E→En

ReG(r ′, r, E)(E −En), (8)

The energy weighted sum rule (EWSR) associated with the operator fLM =

f(r)YLM is given by [1],

EWSR(fYLM) =
∫

ESLM(E)dE =
h̄2

2m

A

4π



〈0|

(

df

dr

)2

+ L(L+ 1)

(

f

r

)2

|0〉



 . (9)

Using the equation of continuity and assuming that there is only one collective state

[23,24] with energy Ecoll, exhausting 100% of the EWSR associated with the scattering

operator fLM = f(r)YLM , one obtains the form for the corresponding transition

density,

ρcollt (r) = −
h̄2

2m

√

2L+ 1

EWSR(fLM)Ecoll

[(

1

r

d2

dr2
(rf)−

L(L+ 1)

r2
f

)

ρ0 +
df

dr

dρ0
dr

]

. (10)

Let us consider scattering operators, Eq. (4), with

f(r) = f(r)Y1M(Ω) , f1(r) = rY1M(Ω) , (11)

and write
1

π
ImG as the sum of separable terms

R(r ′, r, E) =
1

π
ImG(r ′, r, E) =

∑

n

dn(E)ρn(r)ρn(r
′) . (12)

Note that dn(E) accounts for the energy dependence of R(r ′, r, E). In the case of a

well defined resonance, or in a discretized continuum calculation, the sum in Eq. (12)

has only one term. In this case ρn is proportional to the transition density associated

with the resonance and may contain a spurious state contribution. In general, due to

the smearing with Γ/2, the sum in Eq. (12) may contain quite a few terms. We now

write ρn as

ρn(r) = anρn3(r) + bnρn1(r) , (13)
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with

an
2 + bn

2 = 1.0 . (14)

Note that ρn1(r) is due to SSM and ρn3, associated with the ISGDR, fulfills the center

of mass condition (for all n )

〈f1ρn3〉 =
∫

f1(r)ρn3(r) dr = 0 . (15)

We point out that in the projection method for eliminating the effects of SSM, de-

scribed in Ref. [9], it was assumed that an = 1.0 (in (13)).

Following the derivation described in Ref. [9], we first note that all ρn1 coincide

with the coherent spurious state transition density ρss(r) [21]

ρn1(r) = ρss(r) = −

√

√

√

√

h̄2

2m

4π

AEss

∂ρ0
∂r

Y1M(Ω) , (16)

where Ess is the spurious state energy and ρ0 is the ground state density of the

nucleus. Note that ρss in (16) is normalized to 100% of the energy weighted sum rule

(see (9) and (10)),

EWSR(rY1M) =
h̄2

2m

3

4π
A. (17)

Looking for a projection operator that projects out ρn1(r),

Fη =
A
∑

i=1

fη(ri) = F − ηF1 , (18)

with fη = f − ηf1, we find that the value of η associated with ρss is given by

η = 〈fρss〉/〈f1ρss〉. (19)

Using (15) and (19) we have

Sη(E) = 〈fηRfη〉 = 〈fR33f〉, (20)

where,
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R33 =
∑

dn(E)a
2
nρn3(r)ρn3(r

′). (21)

To determine ρt for the ISGDR we first use (6), (12), (13), (15) and (19) with Fη

and obtain

ρη(r) =
∆E

√

Sη(E)∆E

∑

cnan[anρa3(r) + bnρss(r)] , (22)

with cn = dn(E)〈fηρn3〉. To project out the spurious term from (22) we make use of

(15) and obtain

ρt(r) = ρη(r)− bρss , b = 〈f1ρη〉/〈f1ρss〉 . (23)

To properly normalize Sη(E) and ρt, we have to determine the mixing amplitudes

bn of the spurious state in the ISGDR. These amplitude can be obtained from the

response function to the scattering operator f1. Using (13), (15) and (16) we obtained

from (12),

S1(E) = 〈f1Rf1〉 = 〈f1R11f1〉 =
∑

dn(E)b
2
n〈f1ρss〉

2. (24)

Note that 〈f1ρss〉 can be obtained from the EWSR, Eq. (17),

〈f1ρss〉
2 = h̄22m

3

4π
A/Ess, (25)

and the SSM probabilities from

b2n =
S1(En)

〈f1ρss〉2
. (26)

In the present work we limit our discussion to the operator F3 =
A
∑

i=1
f3(ri), where

f(r) = f3(r) = r3Y1M(Ω). For this operator, the value of η associated with the

spurious transition density (16) is

η =
5

3
〈r2〉 , (27)

and

Sη(E) = S3(E)− 2ηS13(E) + η2S1(E), (28)

where S3(E) = 〈f3Rf3〉 is the strength function associated with f3 and S13 = 〈f1Rf3〉

is the non-diagonal strength function.
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III. RESULTS AND DISCUSSIONS

In the following, we present our results for isoscalar giant resonances (L = 0, 1

and 2) obtained within the HF based RPA framework as briefly outlined in the pre-

vious section. Calculations are performed for 80Zr (N = Z = 40). The two-body

interaction V12 is taken to be of a simplified Skyrme type,

V12 = δ(~r1 − ~r2)

[

t0 +
1

6
t3ρ

α(
~r1 + ~r2

2
)

]

, (29)

where α = 1/3, t0 = −1800 MeVfm3 and t3 = 12871 MeVfm3(α+1). For these values

of the interaction parameters the nuclear matter equation of state has a minimum at

E/A = −15.99 MeV, ρ0 = 0.157 fm−3 with Knm = 226 MeV, where E/A, ρ0 and Knm

being the binding energy per nucleon, matter saturation density and incompressibility

coefficient for symmetric nuclear matter, respectively. This choice of the two-body

interaction enables us to use the continuum RPA method to carry out a fully self-

consistent calculation for giant resonances. Following Ref. [22] one can write the mean

field potential Vmf as,

Vmf =
3

4
t0ρ(r) +

α + 2

16
t3ρ

α+1(r) (30)

and the particle-hole interaction Vph contributing to the isoscalar channel is given by

[17]

Vph = δ(~r1 − ~r2)

[

3

4
t0 +

(α+ 1)(α + 2)

16
t3ρ

α

]

. (31)

To begin with, we consider our results for isoscalar giant monopole, dipole and

quadrupole resonances which are fully self-consistent and numerically accurate. Then,

we shall analyze the influence of various numerical approximations on the centroid

energies and transition densities for these resonances. Finally, we shall illustrate the

possible effects of the violation of self-consistency on the properties of these isoscalar

giant resonances (ISGR).
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A. Self-consistent continuum RPA results

We now present our results of fully self-consistent HF−CRPA calculations for

80Zr, using the Skyrme interaction of Eq. (29) with spin-orbit and Coulomb inter-

actions switched off. It was pointed out in [18] that in order to have cancellations of

the hole-hole transitions occurring in G0 (Eq. (2)) and obtain numerically accurate

results, it is important to employ the same mean-field and the same integration algo-

rithm for the bound states and the single-particle Green’s function, using a small mesh

size in double precision calculations. In the following we first present our results of

highly accurate calculations obtained using drHF = 0.04 fm and drRPA = 0.04 fm, and

with no smearing (Γ = 0 MeV), which we use in the following as a basis for compar-

ison with other calculations. We note that in common implementations of HF-RPA

one usually adopts the values of (drHF , drRPA)=(0.1 fm, 0.3 fm) and a smearing pa-

rameter of Γ/2 ∼ 1.0 MeV. In the following we use the notation dr = (drHF , drRPA),

with the values given in units of fm.

To facilitate our discussions we have displayed in Table I the HF single-particle

energies for 80Zr obtained for drHF = 0.04 fm. In Table II we give the values for

the density radial moments 〈r2〉, 〈r4〉 and EWSRs (Eq. (9)) for various multipoles

evaluated for different values of mesh size in the HF calculation. In Table III we

present the values of energy weighted transition strengths (EWTS) for free and CRPA

responses obtained using the operators f3, f1 and fη with dr = (0.04, 0.04) and Γ = 0

MeV. The quantities SEW
1 , SEW

3 , SEW
13 and SEW

η in Table III denote the EWTS for

the corresponding strength functions S1, S3, S13 and Sη, respectively, see Eq. (28).

The transition strengths associated with sharp transitions were determined from the

residues of the Green’s function, using its real part (see Eq. (8)). For the free response

we get sharp peaks at the bound state single particle-hole transitions associated with

L = 1. These transitions can be easily identified from Table I as 0g → 0f (10.83),

1d → 1p (11.35), 2s → 1p (12.70), 1d → 0f (17.43), 1d → 0p (35.16), and 2s → 0p

(36.52), with corresponding transition energies given in brackets in MeV. We checked
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that the values of the EWTS for these sharp transitions agree with the corresponding

values obtained directly from the particle and hole wave functions.

For CRPA response, the sharp peaks occur below the particle threshold at 15.33

MeV. In addition to these sharp transitions, we have contributions from the con-

tinuum starting at the particle threshold. We obtained the contributions from the

continuum by integrating the energy weighted strength function using small enough

energy steps of dE = 0.01 MeV. It is seen from Table III that the spurious state mix-

ing is significantly larger for the free response (see 3rd column). Once the spurious

state mixing is eliminated using the projection operator fη we find from the 2nd and

5th columns of this table that most of the strengths of the free response in the 1h̄ω

region of excitation energy (E < 20 MeV) is spurious in nature. Only 6.8% of the

EWTS for the operator f3 contributes to the intrinsic excitations for E < 20 MeV.

On the other hand, in the case of CRPA, since the calculation is fully self-consistent

and numerically very accurate, the resonance occurring at 0.079 MeV is fully spurious

and it exhausts 99.99% of the EWSR associated with the operator f1. For E > 0.08

MeV, the values of S1 and S13 are so small that SSM is negligible. We see from the

Table III that the values of b2n is ∼ 10−8 (see Eq.( 26)) indicating that the SSM is so

small that one need not renormalize the strength Sη. For E > 0.08 MeV, the values

of the CRPA EWTS for the operators f3 and fη are the same within 1%. We would

like to emphasize that though the spurious state mixing is significantly large for the

free response, it is fully eliminated by using the projection operator fη giving rise to

99.95% of the expected EWSR which is quite close to the CRPA results. It may also

be added that the fraction energy weighted sum rule, FEWSR = EWTS/EWSR, for

the operator fη is 8.4% and 7.4% for E < 20 MeV in the case of free and CRPA

responses, respectively.

A proper test of a fully self-consistent calculation is to check how close ρt(r, Ess)

is to ρss, where ρt(r, Ess) is obtained from Eqs. (6) and (8) at the spurious state

energy Ess using f1. In Fig. 1 we compare the CRPA result for the ρt(r, Ess) with
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the coherent state transition density calculated using Eq. (16). It is seen in Fig.

1 that in this highly accurate HF−CRPA calculation ρt(r, Ess) coincides with ρss,

indicating a very negligible SSM.

We shall now present some plots for the strength functions for various multipoles

obtained from our most accurate calculations. For plotting purpose we used a very

small smearing width Γ/2 = 0.025 MeV. In Figs. 2 and 3 we have shown the free

and RPA response for the ISGDR, respectively. We see from Fig. 2 that most of the

spurious components lie in the low energy region (E < 20 MeV). As mentioned before,

we see that the response for the operators r3 and (r3−ηr) are indistinguishable in the

case of a fully self-consistent HF based CRPA calculation. It also appears from these

figures that particle-hole correlations do not alter the ISGDR strength distribution

(shown in Fig. 2) very much which suggests that the isoscalar dipole state is not a

very collective one. In Figs. 4 and 5 we have shown the plots for the ISGMR and

ISGQR response functions, respectively. We have also carried out these calculations

for dr = (0.24, 0.24) (not shown here) and find that they can not be distinguished

from our most accurate calculations. We also note that at the surface the transition

density for ISGMR looks like 3ρ0+rdρ0/dr as given by Eq. (10), whereas, the ISGQR

transition density looks more like dρ0/dr rather than rdρ0/dr as given by Eq. (10).

We point out that Eq. (10) was derived under the assumption that one collective

state exhausts the EWSR.

We have repeated the fully self-consistent calculations for Γ = 0 MeV, using

various values of drHF and drRPA. In Table IV we present CRPA results for the

EWTS only for dr = (0.24, 0.24) and (0.04, 0.24) with NRPA = 50. We see from Table

IV that the results for the operator f3 for the different combinations of the mesh size

differ by about 2.5%. The spurious state for dr = (0.24, 0.24) occurs at 0.7 MeV and

its excitation energy becomes imaginary for dr = (0.04, 0.24). By multiplying the

particle-hole interaction by a constant factor Vsc = 0.9916 we push the spurious state

to 0.1 MeV for dr = (0.04, 0.24) calculations. Nevertheless, we find that the SSM, or
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equivalently b2n is very small (∼ 10−6). Once the spurious components are eliminated

using the projection operator fη, we get 99.40% and 99.76% of the expected EWSR for

dr = (0.24, 0.24) and (0.04, 0.24), respectively. So far we have demonstrated that (i)

as long as the calculation is fully self-consistent and numerically highly accurate, there

is practically no spurious state mixing and (ii) the spurious state mixing introduced

due to the use of a large mesh size (0.24 fm) in a CRPA calculation can be projected

out using the operator fη.

In Tables V and VI we have collected the centroid energies and the FEWSR,

respectively, for the isoscalar resonances with L = 0, 1 and 2 calculated using different

combinations of the mesh size and a fixed value of Γ/2 = 0.025 MeV. We notice that

as long as the particle-hole interaction is not renormalized (i.e., Vsc = 1.0) the centroid

energies of the resonances do not deviate by more than 0.5% compared with the most

accurate values. Though the energy of spurious state is sensitive to the values of the

mesh sizes and increases from 0.08 MeV to 0.71 MeV with the increase of radial mesh

size from 0.04 fm to 0.24 fm, the centroid energy for ISGDR changes only by about

0.08 MeV. Even if Vsc is used to shift the spurious peak to 2.0 MeV, the centroid

energy for L = 0 and L = 1 resonance do not change appreciably. However, the

centroid energy for the L = 2 resonance goes up by about 2% (0.3 MeV) . It is also

clear from Table V and Figs. 3, 4 and 5 that the peak energy for ISGMR and ISGDR

is higher than their centroid energies by about 0.5 and 0.15 MeV, respectively. From

the Table VI we find that when dr = (0.04, 0.24), the values of the total EWTS for

ISGMR and ISGQR are overestimated by 1− 2%.

B. Influence of the smearing parameter Γ

One of the requirements to avoid any SSM is that one must not use any smearing

parameter (i.e., Γ = 0) and the calculations should be performed using a very fine

mesh in the co-ordinate space while solving HF and RPA equations. However, one

typically uses Γ/2 ∼ 1.0 MeV and the mesh dr ≥ 0.1 fm. If the smearing width is
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finite, the spurious state would have a long energy tail which can give rise to large

SSM. Because, ρss ∝ dρ0/dr, which is a surface peaked functions, and has a large

matrix element for the operator f3. One must project out the SSM by making use of

the projection operator fη.

In Fig. 6 we plot CRPA results for the spurious state and ISGDR strength func-

tions calculated using radial mesh size of 0.04 fm and smearing parameter Γ/2 = 1

MeV. We clearly see from the figure that the strength function for the spurious state

is extended up to a very high energy. The SSM caused due to the energy tail of the

spurious state is eliminated using the operator fη. In Table VII we give the values

of FEWSR, associated with the scattering operator fη, for the ISGDR for various

energy ranges up to 150 MeV obtained using different values for the mesh size and

the smearing parameter in the HF−CRPA calculation. Considering the values of the

FEWSR in each energy range ω1 − ω2 of Table VII it can be easily seen that these

values are practically the same as those obtained with Γ = 0, i.e., the SSM due to

non-zero Γ is completely projected out. For Γ/2 = 1.0 MeV the values for FEWSR

for E = 0 − 18 MeV is lower by about 1% as compared to that for Γ = 0. This

is because of the resonance at ∼ 17.0 MeV (see Fig. 3). If we integrate the energy

weighted strength for E = 0−20 MeV, this difference reduces from 1% to about 0.5%.

We also note that for Γ/2 = 1.0 MeV the total FEWSR obtained by integrating up

to E = 150 MeV is about 1% lower than the one obtained for Γ = 0. Of course,

this is because of the remaining strength beyond 150 MeV. For instance, in the case

of dr = (0.24, 0.24) and Γ/2 = 1.0 MeV we get FEWSR = 0.48% for the region for

E = 150− 300 MeV.

We point out that due to Γ 6= 0, the transition density ρt calculated using Eq.

(6) depends on the scattering operator f . The consequences of this on the S(E) and

ρt of the ISGDR was investigated and discussed in detail in Ref. [9] and we do not

repeat it here. We thus demonstrated that using the projection scattering operator

fη one can accurately eliminate the SSM effects occurring due to the use of a finite
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smearing parameter Γ/2.

C. HF−DRPA results

The continuum can be discretized by confining the nucleus in a box of finite size.

One can satisfactorily reproduce the continuum results, provided the calculations are

carried out using a box of very large size (i.e., dense discretization) and the cut-off for

the particle-hole excitation energy (Emax
ph ) set to be reasonably high. We now consider

our results obtained by discretizing the continuum using boxes of different sizes. The

length of the box is given by NHF times drHF , where NHF is the number of radial

mesh point used in a HF calculation. In the following, we present the results for

discretized RPA calculations obtained using dr = (0.08, 0.24) with NHF = 150 and

900 (box sizes of 12 and 72 fm, respectively). In Figs. 7a, and 7b we show the ISGDR

response for box sizes of 12 and 72 fm and smearing parameter Γ/2 = 0.25 and 1.0

MeV, keeping Emax
ph = 200 MeV, together with the corresponding results obtained

in HF−CRPA. We see that the DRPA results obtained for the larger box coincide

with the results obtained within CRPA. The transition strength gets fragmented if

the discretization is carried out using a small box. To avoid misleading interpretation

of the fragmentation and obtain agreement with the CRPA results, one needs to use

a larger value of the smearing parameter, consistent with the size of the box. To

examine more closely the effects of discretization on the response function we present

in Table VIII our DRPA results for the FEWSR over various energy ranges up to

150 MeV. It is evident from this table that the total FEWSR increases significantly

when Emax
ph is increased from 50 MeV to 200 MeV. This increase is about 5− 6% and

9−10% for Γ = 0.5 and 2 MeV, respectively. With a further increase in Emax
ph there is

no noticeable change in the value of the total FEWSR. It can be easily verified from

this table that the FEWSR associated with the low-lying ISGDR component(E < 20

MeV) increases from 6.4% to 6.9% when Emax
ph is increased from 50 to 200 MeV for the

case of NHF = 150 and Γ = 0.5 MeV and it further increases to 7.2% for NHF = 900
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(see also Table VII). Comparing the Tables VII and VIII we can conclude (see also

Figs. 7a and 7b) that with the proper choice of discretization and Emax
ph one can

mimic the continuum even for smaller values of Γ ∼ 0.5 − 1.0 MeV. Comparing the

values of FEWSR, in each of the energy range ω1 − ω2, of Table VIII with Table VII

we conclude that using fη one accurately eliminates SSM occurring due to the use of

a low value for Emax
ph .

In Table IX we have displayed the values of Ess and the centroid energies for

the L = 0, 1 and 2 isoscalar giant resonances. These results are obtained using

NHF = 900, Γ/2 = 0.25 MeV with different values of Emax
ph in HF-DRPA calculations.

The corresponding HF−CRPA results are given in the last row of the table. We

clearly see that as Emax
ph increases, the centroid energies E0, E1 and E2 converge to

their corresponding exact values obtained using HF-CRPA. However, this convergence

is slower for the spurious state energy Ess. For low values of Emax
ph we observe that

the centroid energy for ISGMR is overestimated by 0.5 MeV, which can significantly

effect the value of nuclear incompressibility. We also notice that E1 = 35.3 MeV is

little low for Emax
ph = 50 MeV, because of the fact that the resonance energy for the

ISGDR compressional mode is about 35.5 MeV (see also Fig. 3).

We saw in the previous subsection that the spurious transition density ρt(r, Ess)

obtained using a fully self-consistent CRPA calculation is indistinguishable from the

corresponding collective model form for ρss which is proportional to dρ0/dr. In Fig.

8 we show some of the DRPA results for ρt(r, Ess) and compare them with the ρss.

We see that for Emax
ph = 50 MeV ρt(r, Ess) deviates from dρ0/dr even for the case of

NHF = 900. However, for Emax
ph = 200 MeV, the ρt(r, Ess) from the DRPA is almost

identical to the collective model results. Thus, one must use a reasonably large value

for the cut-off energy, Emax
ph , in order to fully eliminate from the intrinsic excitations

the contribution due to SSM.
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D. Effects of violation of self-consistency

So far we have examined the various effects of numerical approximation on the

properties of the isoscalar giant resonances of multipolarity L = 0−2 and established

the validity of the projection operator method in eliminating the SSM effects from

the ISGDR. Here we report our investigations of the influence of certain violations of

self-consistency on the strength function for isoscalar giant monopole (L = 0), dipole

(L = 1) and quadrupole (L = 2) resonances. These investigations are quite important

in view of the fact that one often performs non self-consistent calculations for giant

resonances such as the use of a phenomenological nuclear mean field (e.g., Woods-

Saxon potential) and Landau-Migdal particle-hole interaction [8]. Moreover, one

often come across HF−RPA calculations carried out using particle-hole interaction

not consistent with the mean field used in HF. We present below the results for HF

based CRPA calculations carried out with the two-body interaction given in Eq. (29).

We use the parameter Vsc to renormalize the particle-hole interaction (i.e., t0 → t0Vsc

and t3 → t3Vsc in Eq. (31)) so that the position of the spurious state can be adjusted

close to zero. To study the consequences of the violation of self-consistency we vary

t0 and t3 only in the particle-hole interaction (only in Eq. (31)).

In Table X we summarize our results for the centroid energies for isoscalar giant

resonances for L = 0 − 2. The quantity K ′

nm is the nuclear matter incompressibility

coefficient associated with the renormalized parameters t0Vsc and t3Vsc. Here, t0 and

t3 are the values used in Eq. (31). Let us first consider the results obtained by varying

t0 by ±5% and ±10% and keeping t3 = 12871 MeVfm4. It can be clearly seen from the

table that the centroid energies for ISGMR and ISGDR significantly differ from their

corresponding self-consistent values even if Vsc is adjusted to give Ess = 0.1 MeV.

On the other hand, the centroid energy for ISGQR reattains its self-consistent value

when Vsc is adjusted to yield Ess = 0.1 MeV. One may understand this discrepancy

in terms of the incompressibility coefficient. With the renormalization of Vph, though,

Ess becomes close to zero, but values of K ′

nm in the RPA calculation remain quite
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different then the HF value of 226 MeV. In Fig. 9 we plot the values of E0 and

E1 versus
√

K ′

nm for the cases with Ess = 0.1 MeV. This plot clearly depicts the

systematic increase in E0 and E1 with increase in K ′

nm. One may be tempted to infer

at this point that as long as the nuclear matter incompressibility associated with

the particle-hole interaction and the mean field is the same, centroid energies for the

resonances considered here may come out to be reliable. In order to verify this, we

adjust t3 in particle-hole interaction in such a way that K ′

nm becomes 226 MeV when

t0 is varied by ±10%. We see from Table X that even if K ′

nm is adjusted to 226 MeV,

the values of E0 and E1 are off by about 10% and 3.5%, respectively. This is due

to the fact that the shape of the particle-hole interaction is not the same, though,

the K ′

nm is kept constant. We note that if the ISGMR centroid energy is determined

within 10% accuracy, the value of nuclear matter incompressibility will be correct

only within 20%.

Apart from the centroid energies for the giant resonances, it is also important

to investigate the effects on the strength function itself when the self-consistency is

not maintained. We looked into the plots for the strength functions S and Sη for the

operators f3 and fη, respectively, for the different cases listed in Table X. We find that

S3 ≥ Sη or S3 < Sη, depending on the sign of interference between the spurious state

and the intrinsic state (i.e., sign of the non-diagonal strength S13). As an illustrative

example, we show in Fig. 10 our results for the case in which t0 is varied by −10%

and Vsc = 1.7118. Similar is the case when t0 is varied by −5% and Vsc = 1.2938.

These values of Vsc were chosen so that Ess = 0.1 MeV. In Figs. 11a, 11b and 11c

we compare the fully self-consistent results for isoscalar giant resonances with those

obtained by varying t0 by ±5% in Eq. (31) and Vsc is adjusted to yield Ess = 0.1

MeV. We see that the strength function for ISGMR and ISGDR are significantly

different compared with their corresponding self-consistent results. Whereas, in case

of ISGQR not only their centroid energies, but also the strength function seem to

agree well with the corresponding self-consistent results. It is very important to
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point out that the violation of self-consistency causes redistribution of the strength

in such a way that the total EWTS remains unaltered. This redistribution may be

crucial in determining the energy weighted strengths associated with the low energy

and the high-lying energy components of the ISGDR. For example, the fraction of

the EWSR (in percent) for the energy range E = 0− 20 MeV is 6.94, 9.33 and 12.42

for t0 = −1710, −1800 and −1890 MeV fm3, respectively, and for E = 0 − 150 MeV

we have for the FEWSR = 99.76% in these three cases.

We now focus on the influence of self-consistency violation when the continuum is

discretized. As seen above, the discretization introduces two additional constraints,

namely, the box size used in HF calculations and the maximum allowed particle-hole

energy Emax
ph . We present here only the results for box size of 12 fm with Emax

ph = 50

and 200 MeV. In Fig. 12 we compare the ISGDR response function obtained for

t0 = −1620, -1800 and -1980 MeVfm3, keeping Emax
ph = 50 MeV. Similar results are

shown in Fig. 13 but obtained by raising Emax
ph to 200 MeV. From S3(E) we see

clearly that when the particle-hole interaction is in accordance with the mean-field

potential, the SSM is only due to Γ 6= 0. For the cases with t0 6= −1800 MeV fm3

one can immediately see a marked enhancement in spuriocity at E = 10 − 12 MeV.

Furthermore, it is startling to see that the total FEWSR associated with operator

fη for t0 = −1620 and −1980 MeVfm3 is 94.97% and 58.97%, respectively, and it is

95.13 % for t0 = −1800 MeVfm3. For t0 = −1710 MeVfm3 we get a total FEWSR =

88.39% which is once again too much off compared to its expected value. We repeated

the same analysis for box size 72 fm keeping Emax
ph = 50 MeV but did not find any

appreciable change in the values of the total FEWSR. However, when we raised the

Emax
ph from 50 to 200 MeV, we get the total FEWSR 99.63%, 100.52% and 99.94%

for t0 = −1620, −1800 and −1980 MeVfm3, respectively.

We also calculate the SSM probabilities (i.e., b2n) when self-consistency is not main-

tained. The values of b2n are extracted using an extremely small smearing parameter.

In case of t0 = −1620 MeVfm3 and Emax
ph = 50 MeV used in DRPA calculation, we
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find that Ess = 9.84 MeV. We get from Eq. (26), b2n = 2.4% for the state occurring

at ∼ 13 MeV. When Vsc is adjusted to push the spurious state energy Ess to about

0.1 MeV, the EWTS of the 13 MeV state, associated with SSM, remains unchanged.

Consequently b2n reduces by two orders of magnitude. We thus conclude that since the

values of b2n are less than a few percent even with large violation of self-consistency,

the renormalization of the strength function is not needed.

We have considered the effects on the ISGDR strength function when

Coulomb/spin-orbit interaction is switched on in the HF calculation, but, ignoring it

in the particle-hole interaction. We find that when spin-orbit interaction is included,

the strength function obtained using Γ/2 = 1 MeV hardly gets affected at any energy

and the differences can not be seen on the plots (not shown here). This is due to

the fact that the nucleus in question, 80Zr, is spin saturated, i.e., the single-particle

states with j = l ± 1/2 are occupied. However, this may not be the case for non

spin-saturated heavy nuclei. When we carried out similar exercise with the Coulomb

interaction, the mean field changes significantly and we find that the strength func-

tions gets shifted towards lower energy by about 2.0 MeV. We note that, with the

inclusion of Coulomb interaction, the particle threshold for protons reduces from 15.33

MeV to 3.5 MeV.

IV. CONCLUSIONS

We have carried out self-consistent HF based CRPA calculations for isoscalar

giant resonances with multipolarities L = 0, 1 and 2 for 80Zr nucleus as an example.

We demonstrate that if a self-consistent calculation is performed using zero smearing

width and a very fine radial mesh size (dr = 0.04 fm), the spurious state occurs at

Ess = 0.08 MeV and the ISGDR response for the operators f3 and fη are essentially

the same for the energy E > Ess which indicates no SSM and the corresponding

EWSR is reproduced remarkably well. When we use dr = 0.24 fm in HF and CRPA

calculations, Ess becomes about 0.7 MeV and there exists a small SSM. The amplitude

22



of this SSM (i.e., b2n) is ∼ 10−6, which is negligibly small and one need not renormalize

the projected strength function. Although the position of the spurious state is quite

sensitive to the radial mesh size and smearing parameter Γ, the centroid energy for

the isoscalar resonances for L = 0, 1 and 2 do not change by more than 0.5%.

We have also performed the calculation for L = 0, 1 and 2 isoscalar resonances by

discretizing the continuum using boxes of different sizes (12 and 72 fm) with Emax
ph

ranging from 50 − 600 MeV. We found that the strength distribution is fragmented

over a wide energy range for the case of the smaller box irrespective of Emax
ph . For

the case of discretization in a large box (72 fm) with Emax
ph = 200 MeV we find that

the strength distribution agrees reasonably well with the corresponding one obtained

from CRPA, if a moderate value of the smearing parameter (Γ/2 ∼ 1 MeV) is used.

The spurious state occurs at about 4.5 MeV for Emax
ph = 50 MeV for both the small

as well as large box discretization considered. With the increase of Emax
ph to 600 MeV,

we find that Ess approaches the corresponding value obtained within the CRPA. The

centroid energies for L = 0, 1 and 2 resonances converge to their corresponding exact

values obtained from HF−CRPA. This convergence is little slow in case of spurious

state energy. For Emax
ph = 50 MeV, the transition density ρt(r, Ess) at the spurious

state energy obtained using discretized RPA differs from the corresponding CRPA

results (which reproduce ρss). However, with increase of Emax
ph to 200 MeV, DRPA

results for the spurious state transition density ρt(r, Ess) become quite close to the

CRPA results. We also point out that one should use Emax
ph ≥ 200 MeV in order to

calculate the centroid energies of the isoscalar L = 0, 1 and 2 resonances with the

accuracy of 0.1 MeV, comparable to the experimental uncertainties.

We have demonstrated that the spurious state mixing due to the non-zero smearing

width and a choice of a coarse sized radial mesh can be accurately eliminated using

the projection operator fη. Furthermore, we show that the SSM due to a small

value of Emax
ph used in the DRPA calculation can be fully eliminated by applying the

projection method.
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We have investigated the consequences of violation of self-consistency on the S(E)

and ρt of the isoscalar L = 0,1 and 2 giant resonances by varying the parameter t0 by

±5% and ±10% in the patrticle-hole interaction. We find that if the self-consistency

is not maintained then the values of Ess and centroid energies for the L = 0 , 1 and

2 isoscalar resonances are significantly different compared with their self-consistent

values. Even if the particle-hole interaction is renormalized to shift Ess close to its

self-consistent value, the centroid energies for L = 0 and 1 resonances could not

be corrected. This is due to the fact that though the renormalization corrects the

value of Ess, the nuclear matter incompressibility coefficient, K ′

nm associated with the

particle-hole interaction is quite different than the one with the mean-field. However,

the L = 2 resonance is not very sensitive to the self-consistency violation as long as

the particle-hole interaction is renormalized to shift Ess close to its self-consistent

value. It is also important to point out that the violation of self-consistency causes

a significant redistribution of the transition strength. In particular, energy weighted

transition strength of the lower energy component (E < 20 MeV) of the ISGDR

response function may differ by 50%. The values of the SSM probabilities b2n were

found to be less than 1 − 2%. Therefore, one can neglect the renormalization of

the ISGDR strength function obtained using projection operator fη. Further, we

found that the total energy weighted transition strength for the operator fη remains

unaltered even with the violation of self-consistency.

Calculations were also carried out by changing the parameters appearing in the

particle-hole interaction in such a way that the nuclear matter incompressibility coeffi-

cient associated with it remains unaltered. We find that though the incompressibility

coefficient associated with the particle-hole and the mean field are kept the same, due

to the lack of self-consistency, the centroid energy for L = 0 and 1 isoscalar resonances

are off by 10% and 3.5%, respectively, compared to their self-consistent values. We

may remark that if the ISGMR centroid energy is determined with accuracy of 10%,

the value of Knm deduced from a comparison with experimental data is then accurate
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within only 20%.
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FIGURES

FIG. 1. Comparison of fully self-consistent HF−CRPA result for spurious state transi-

tion density (in arbitrary units) obtained using operator f1 in Eq. (6) with the corresponding

coherent state transition density . The HF−CRPA calculation is carried using radial mesh

size dr = (0.04, 0.04) with no smearing width (Γ = 0 MeV).

FIG. 2. Free response functions for ISGDR calculated using radial mesh size

dr = (0.04, 0.04) with Γ/2 = 0.025 MeV and η = 24.51 fm2. The long dashed curve

clearly manifests the existence of the spuriocity over the entire range of excitations but

predominant for the 1h̄ω region (E < 20 MeV).

FIG. 3. Same as Fig. 2 but for fully self-consistent HF−CRPA results. The response

for the operator f3 and fη is almost the same due to no spurious state mixing.

FIG. 4. Free and self-consistent HF−CRPA results for the ISGMR strength function

calculated using radial mesh dr = (0.04, 0.04), Γ/2 = 0.025 MeV.

FIG. 5. Same as Fig. 4 but for ISGQR.

FIG. 6. Strength functions for the spurious state and ISGDR calculated using radial

mesh size of 0.04 fm and smearing parameter Γ/2 = 1 MeV in CRPA. The SSM caused due

to long tail of spurisous state is projected out using the operator fη.

FIG. 7. Discretised RPA results for ISGDR response obtained using different values of

the smearing parameter (a) Γ/2 = 0.25 MeV and (b) Γ/2 = 1.0 MeV. The discretization is

performed usingNHF = 150 (dotted line) and NHF = 900 (solid line) with dr = (0.08, 0.24).

We use particle-hole cut-off energy Emax
ph = 200 MeV.
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FIG. 8. Comparison of the spurious state transition density obtained using discretized

RPA and collective model (dotted line) . The dash-dot, long dash and solid curves repre-

sent the DRPA results for NHF (Emax
ph ) = 150 (50 MeV), 900 (50 MeV), 900 (200 MeV),

respectively. The values of transition density do not change significantly when NHF in-

creased from 150 to 900, but, with increase in Emax
ph the DRPA results become closer to the

collective model results.

FIG. 9. The centroid energies E0 and E1 versus
√

K ′

nm for 80Zr. Here, K ′

nm denotes

the nuclear matter incompressibility coefficient associated with the parameters used in par-

ticle-hole interaction (see also the text).

FIG. 10. Non self-consistent CRPA results for the ISGDR strength functions for the

operators f3 and fη calculated using t0 = −1620 MeVfm3, radial mesh size dr = (0.04, 0.04)

and Γ/2 = 0.25 MeV. The strength function for the operator fη is larger than that for the

operator f3 for a wide range of energy.

FIG. 11. Influence of violation of self-consistency due to variation of t0 by +5% (dashed

line ) and −5% (dotted line) on the strength function for (a) ISGMR, (b) ISGDR and (c)

ISGQR . Solid line represents the self-consistent result (i.e., t0=-1800 MeVfm3).

FIG. 12. Comparison of DRPA results for ISGDR strength functions obtained for (a)

t0 = −1800, (b) t0 = −1620 and (c) t0 = −1980 MeV fm3. Numerical calculations for all

the cases are performed using, NHF = 150, dr = (0.08, 0.24), Emax
ph = 50 and Γ/2 = 0.25

MeV.

FIG. 13. Same as Fig. 12 but for Emax
ph = 200 MeV.
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TABLES

TABLE I. Hartree-Fock single particle energies (in MeV) for the bound states in 80Zr

nucleus obtained with the interaction parameters t0 = −1800 MeVfm3, t3 = −12871

MeVfm4 and α = 1/3 using the small mesh size dr = 0.04 fm.

Orbits 0s 0p 0d 1s 0f 1p 0g 1d 2s

Energy -45.50 -39.14 -31.02 -26.74 -21.42 -15.33 -10.59 -3.98 -2.62
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TABLE II. Values for density radial moments 〈r2〉 and 〈r4〉 in units of fm2 and fm4,

respectively, together with the EWSR associated with the scattering operator rnYLM , in

units of fm(2n)MeV, for different mesh size dr (in fm) used in the HF calculations.

EWSR

dr 〈r2〉 〈r4〉 rY10 r3Y10 (r3 − ηr)Y10 r2Y00 r2Y20

0.04 14.705 282.147 391.04 404545 169661 7667 19167

0.08 14.702 282.008 391.04 404346 169553 7665 19163

0.24 14.676 280.653 391.04 402403 168441 7651 19129
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TABLE III. The energy weighted transition strengths (SEW ) of the free and

fully self-consistent HF−CRPA for 80Zr nucleus (in fm6MeV) calculated using

drHF = drRPA = 0.04 fm, NRPA = 300 with no smearing width (Γ = 0 MeV).

Free response

Energy SEW
3 −2ηSEW

13 η2SEW
1 SEW

η

10.832306 87689 -221289 139609 6009

11.352610 47160 -99851 52854 163

12.709777 24341 -37010 14068 1399

17.437181 48562 -64831 21638 5369

35.163326 17114 -7514 825 10425

36.520494 5034 -2123 224 3135

15.0-18.0 465 393 528 1386

18.0-100.0 172707 -36767 5009 140949

100.0-150.0 1256 -609 89 736

Total 404328 -469601 234844 169571

CRPA response

0.078606 234852 -469709 234857 0

11.434169 4480 5 -1 4484

12.965783 1984 7 0 1991

15.0-18.0 6087 45 0 6132

18.0-100.0 156848 -42 2 156808

100.0-150.0 258 -13 1 246

Total 404509 -469707 234859 169661
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TABLE IV. Fully self-consistent HF−CRPA results for the energy weighted transition

strengths (in fm6MeV) for Γ = 0 MeV using different mesh sizes (in fm) and NRPA = 50 .

drRPA = drHF = 0.24

Energy SEW
3 −2ηSEW

13 η2SEW
1 SEW

η

0.714539 232751 -465617 232866 0

11.483532 4214 -18 0 4196

13.138693 2306 -124 2 2184

15.0-18.0 5693 263 3 5959

18.0-100 154096 792 11 154899

100-150 184 -7 1 178

Total 399244 -464711 232883 167416

drRPA = 6drHF = 0.24

11.429694 4470 43 0 4513

12.962171 1998 -2 -4 1992

15.0-18.0 6158 -43 1 6116

18.0-100.0 159022 -2693 45 156374

100.0-150.0 363 -126 19 256

Total 172011 -2821 61 169251

drRPA = 6drHF = 0.24, Vsc = 0.9916a

0.099965 237622 -474392 236771 1

11.430431 4505 -27 0 4478

12.959961 2025 -20 0 2005

15.0-18.0 6288 -157 3 6134

18.0-100.0 159324 -2992 52 156384

100.0-150.0 368 -128 19 259

Total 410132 -477716 236845 169260

a) Normalization of the particle-hole interaction to put the spurious state at 0.1 MeV.
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TABLE V. HF based CRPA results for the spurious state energy Ess and centroid

energy EL for the ISGMR (L = 0), ISGDR (L = 1) and ISGQR (L = 2) (in MeV) obtained

using Γ/2 = 0.025 MeV. For L = 0 and 2 resonances we use the energy range 0 − 80 MeV

and for L = 1 we use 28− 80 MeV.

drhf drrpa Vsc Ess E0 E1 E2

0.04 0.04 1.0 0.08 22.98 35.88 14.67

0.08 0.08 1.0 0.18 22.97 35.86 14.70

0.24 0.24 1.0 0.71 22.92 35.80 14.69

0.04 0.24 1.0 −−∗) 22.94 35.83 14.60

0.04 0.24 0.9916 0.09 22.98 35.85 14.70

0.04 0.24 0.9707 2.00 23.08 35.88 14.96

∗)Ess is imaginary.

34



TABLE VI. HF−CRPA results for fraction energy weighted sum rule (in percent) for

the spurious state (SS) and for L = 0 − 2 resonances calculated using various radial mesh

sizes drHF and drRPA (in fm) and the energy region 0 - 80 MeV for Γ/2 = 0.025 MeV∗.

See Table V for the corresponding values of Ess.

drHF drRPA Vscale SS L = 0 L = 1 L = 2

0.04 0.04 1.0 99.99 99.84 99.61 99.91

0.08 0.08 1.0 99.95 99.76 99.76 99.91

0.24 0.24 1.0 99.55 99.74 99.25 99.49

0.04 0.24 1.0 −− 102.05 99.57 101.18

0.04 0.24 0.9916 101.22 102.02 99.57 101.17

0.04 0.24 0.9707 101.58 102.96 99.34 101.15

∗For the spurious state we use Γ = 0 and Eq.(8).
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TABLE VII. CRPA results for the fraction energy weighted sum rule (in percent) of the

ISGDR obtained using the operator fη for the energy range ω1 − ω2 (in MeV) for various

combinations of the mesh size (in fm) and smearing parameter Γ/2 (in MeV).

ω1 − ω2

drHF drRPA Γ/2 0 - 15 15 - 18 18 - 100 100 - 150 Total

0.04 0.04 0.0 3.82 3.61 92.42 0.15 100.00

0.04 0.04 0.025 3.81 3.59 92.40 0.16 99.96

0.04 0.04 0.25 3.79 3.33 92.38 0.27 99.77

0.04 0.04 1.0 3.69 2.89 91.87 0.65 99.10

0.24 0.24 0.0 3.79 3.54 91.96 0.11 99.40

0.24 0.24 0.025 3.78 3.51 91.95 0.12 99.36

0.24 0.24 0.25 3.75 3.29 91.91 0.23 99.18

0.24 0.24 1.0 3.63 2.88 91.39 0.61 98.51

0.04 0.24 0.0 3.83 3.60 92.17 0.15 99.75

0.04 0.24 0.025 3.83 3.48 92.16 0.16 99.63

0.04 0.24 0.25 3.80 3.33 92.13 0.28 99.54

0.04 0.24 1.0 3.71 2.89 91.62 0.65 98.87

0.04∗ 0.24 0.0 3.82 3.61 92.17 0.15 99.75

0.04∗ 0.24 0.025 3.82 3.49 92.17 0.16 99.64

0.04∗ 0.24 0.25 3.79 3.34 92.14 0.28 99.55

0.04∗ 0.24 1.0 3.69 2.90 91.63 0.66 98.88

∗Vsc = 0.9916 and Ess = 0.1 MeV.
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TABLE VIII. HF−DRPA results for Ess and the fraction of energy weighted sum rule of

the ISGDR obtained using fη (in percent) in the energy range ω1−ω2 for various combina-

tions of NHF , E
max
ph and Γ/2 with Vsc = 1.0, NRPA = 50, drHF = 0.08 fm and drRPA = 0.24

fm. Values of ω, Ess, E
max
ph and Γ/2 are in MeV.

ω1 − ω2

NHF Emax
ph Γ/2 Ess 0 - 15 15 - 18 18 - 100 100 - 150 Total

150 50 0.25 4.4 3.65 2.74 88.74 0.00 95.13

150 200 0.25 1.3 3.81 3.07 93.22 0.42 100.52

150 400 0.25 −− 3.84 3.07 93.22 0.41 100.54

150 50 1.0 4.3 3.71 2.80 85.71 0.00 92.22

150 200 1.0 1.1 3.89 3.02 93.29 1.21 101.41

150 400 1.0 −− 3.92 3.03 93.26 1.21 101.42

900 50 0.25 4.7 3.64 3.11 85.01 0.00 91.77

900 200 0.25 1.5 3.79 3.43 90.68 0.44 98.34

900 400 0.25 1.0 3.82 3.43 90.67 0.44 98.36

900 50 1.0 4.6 3.70 2.80 82.82 0.00 89.32

900 200 1.0 1.4 3.88 3.03 91.16 1.22 99.29

900 400 1.0 0.7 3.90 3.04 91.15 1.21 99.30
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TABLE IX. Dependence of Ess and the centroid energies EL (L = 0, 1 and 2), in MeV,

on the value of Emax
ph (in MeV) used in HF−DRPA calculations. We have used the values

of NHF = 900, NRPA = 50, dr = (0.08, 0.24) and Γ/2 = 0.25 MeV. The corresponding

HF−CRPA results are placed in the last row.

Emax
ph Ess E0 E1 E2

50 4.7 23.92 35.34 16.11

75 3.3 23.51 35.76 15.51

100 2.9 23.25 35.66 15.14

200 1.5 23.09 35.55 14.82

400 1.0 23.02 35.51 14.73

600 0.9 23.02 35.51 14.72

∞ 0.7 23.01 35.46 14.70
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TABLE X. HF−CRPA results for the spurious state energy Ess, incompressiblity coeffi-

cient K ′

nm and centroid energy EL (in MeV) for isoscalar giant resonances for L = 0−2 with

different values of t0, t3 and Vsc used in the particle-hole interaction. These calculations are

performed using Γ/2 = 0.25 MeV and drHF = drRPA = 0.04fm.

t0 t3 Vsc K ′

nm Ess E0 E1 E2

-1800 12871 1.0 226 0.1 23.1 35.5 14.8

-1710 12871 1.0 258 6.7 26.3 37.9 17.4

-1710 12871 1.2938 321 0.1 26.0 38.2 14.7

-1620 12871 1.0 289 9.2 29.0 40.0 19.5

-1620 12871 1.7118 464 0.1 29.8 41.8 14.7

-1620 11875 1.0 226 5.9 24.9 36.7 16.8

-1620 11270 1.0 188 0.1 21.6 34.4 14.8

-1890 12871 1.0 194 −− 18.7 32.8 11.1

-1890 12871 0.7910 163 0.1 20.8 33.7 14.8

-1980 12871 1.0 162 −− 11.4 29.9 2.1

-1980 12871 0.6398 120 0.1 19.2 32.6 14.9

-1980 13875 1.0 226 −− 20.8 34.2 12.1

-1980 14500 1.0 266 0.1 24.3 36.6 14.7
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