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An error was found in the constitutive equations (19) and (20) in our published 
manuscript: Ref. [1]. Here we correct them. The complete Ref [1] is also included 
in the discussion of this erratum. The central conclusions of our work (e.g. 
enhanced size-dependent piezoelectricity in nanostructures due to 
flexoelectricity) remain the same. In fact, corrected theoretical results in the case 
of BaTiO3 in piezoelectric phase compare better with atomistics than the original 
publication [1]. We provide here the corrected equations and for completeness, 
the revised figures as well. 
 
The correct constitutive equations are: 

11 11 3 3,3  Y S d P f Pσ = + −  (1) 

 
3 3 11 11,3E  'a P d S f S= + +  (2) 

 
By means of Poisson’s equation and in the absence of free charges and applied 
voltage (open circuit condition) the electric displacement is: 

3 0 3 3+ 0D E Pε= =  (3) 
Equations (2) and (3) lead to:  

1
0 3 11 11,3( ) ( , )  'a P x z d S f Sε −− + = +  (4) 

Hence, the correct effective beam bending rigidity (Equation (38) in Ref. [1]) 
becomes: 

2

1 1
0 0

'[1 ]
( ) ( )

d AffG YI
a Y a YIε ε− −= + +

+ +
 (5) 

The beam bending rigidity has the elastic, the piezoelectric and the size 
dependent flexoelectric contributions. 
 
The effective electromechanical coupling factor keff can be defined from energy 
consideration as the square root of the ratio of the convertible energy (electric 
energy) to the total input energy (mechanical energy) (se e.g. References [2,3]).  
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 (6) 

By means of Equations (2) and (4), the effective electromechanical coupling 
factor keff reduces to: 

2 2'( 12( ) )
1eff

fk d
Y h

χ ε
χ

= +
+

 (7) 

Hence, the normalized effective piezoelectric constant (with bulk piezoelectric 
constant) is: 

2'(1 12( ) )eff eff

piez piez

d k f
d k dh

= = +  (8) 

We used the flexoelectric constants values estimated by one of us [4] from ab 

initio calculations on BaTiO3 (BT) as nC5.46 
mBTf = . The piezoelectric constant of 

BT is taken from Ref. [5] 2

C4.4
mBTd = − .   

 
We note that the flexoelectric constants values from ab initio calculations are 
three orders of magnitude lower than the experimental estimates reported by 
Cross et al. [6]. In addition, the existence of such large discrepancy between the 
ab initio calculations [4] and the experimental values [6] was also confirmed by 
the work of another independent group from Cambridge [7]. The possible 
reasons behind this discrepancy are discussed in details in Ref. [4]. 

Figure 1. Normalized effective piezoelectric constant of cubic (non-piezoelectric) BT. The 
atomistic simulations are in good agreement with the theoretical model.  



 3

The piezoelectric-flexoelectric interaction term incorrectly found in Ref. [1] 
vanishes in the revised solution. Hence, our non piezoelectric results in Ref. [1] 
remain valid and the size-dependent behavior due to pure flexoelectricity is seen 
at the nanoscale (in good agreement with atomistic simulations see Figure 1). 
However, in the piezoelectric case (see Figure 2), the size dependency is also 
due to the existence of flexoelectricity and is appreciable down to few 
nanometers instead of micrometers (as was found in Ref. [1]). 
 
In Figure (2), the effective piezoelectric response is between 3 to 4 times the bulk 
values at sizes around 2nm. Our theoretical results show that the effective 
piezoelectric response is doubled at 2nm and increase up to 4 times the 
piezoelectric constant at 1nm. Thus, the atomistic simulations are able to capture 
the same order of magnitude as our theoretical results. The corrected results 
compare better with atomistics (see Figure 9 in [1]). The enhancement in the 
piezoelectric response is significant but it is only appreciable down to few 
nanometers. 

Figure 2. Normalized effective piezoelectric constant of tetragonal (piezoelectric) BT. The 
atomistic simulations are able to capture the same order of magnitude as the theoretical model. 
The enhancement in the piezoelectric response is seen at the nanosize.   
 
The results will change if flexoelectric values of [6] are used instead of first 
principle calculations. It is a puzzle that various atomistic models agree with each 
other (e.g. 4, 7) and so do experiments (e.g. 6, 7) but atomistic models do not 
agree with experiments for ferroelectrics. This issue remains unresolved and 
meanwhile to be consistent, when comparing our theoretical results to atomistics 
we used the flexoelectric properties from atomistics (and likewise, comparison of 
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various experimental results should be predicated on experimental flexoelectric 
values).  
 
The authors are very grateful to A. K. Tagantsev. G. Catalan, R. Maranganti and 
M. Gharbi for valuable discussions. 
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Abstract: Crystalline piezoelectric dielectrics electrically polarize upon application of uniform 
mechanical strain. Inhomogeneous strain, however, locally breaks inversion symmetry and can 
potentially polarize even non-piezoelectric (centrosymmetric) dielectrics. Flexoelectricty--the 
coupling of strain gradient to polarization-- is expected to show a strong size-dependency due to 
the scaling of stain gradients with structural feature size. In this study, using a combination of 
atomistic and theoretical approaches, we investigate the “effective” size-dependent piezoelectric 
and elastic behavior of inhomogeneously strained non-piezoelectric and piezoelectric 
nanostructures. In particular, to obtain analytical results and tease out the novel physical insights, 
we analyze a paradigmatic nanoscale cantilever beam. We find that in materials that are 
intrinsically piezoelectric, the flexoelectricity and piezoelectricity effects do not add linearly and 
exhibit a nonlinear interaction. The latter leads to a strong size-dependent enhancement of the 
apparent piezoelectric coefficient resulting in, for example, a “giant” 500% enhancement over bulk 
properties in BaTiO3 for a beam thickness of 5 nm. Correspondingly, for non-piezoelectric 
materials also, the enhancement is non-trivial (e.g. 80 % for 5 nm size in paraelectric BaTiO3 
phase). Flexoelectricity also modifies the apparent elastic modulus of nanostructures, exhibiting 
an asymptotic scaling of 1/h2 where “h” is the characteristic feature size. Our major predictions 
are verified by quantum mechanically derived force-field based molecular dynamics for two 
phases (cubic and tetragonal) of BaTiO3. 
 
I. INTRODUCTION 
In response to mechanical stimuli, certain crystalline dielectrics may electrically 
polarize. Assuming that the applied uniform mechanical strain, ε , is “small 
enough”1, empirical evidence and phenomenological considerations suggest the 
following relation: 

i ijk jk( ) ( ) (= )P d ε  (1) 
Indices (in some suitable Cartesian framework) are explicitly written to display 
the order of the matter tensors as prevalently understood in the literature. The 
third order tensor d is thus the piezoelectric matter tensor. Symmetry 
considerations restrict it be non-zero only for dielectrics belonging to 
crystallographic point groups that admit non-centrosymmetry3. 
 
Centrosymmetric dielectrics evidently are not expected to polarize under 
mechanical strain. A non-uniform strain field or the presence of strain gradients 
can however, locally break inversion symmetry and induce polarization even in 
centrosymmetric crystals. This phenomenon is termed flexoelectrictiy,4,5 inspired 
by a similar effect in liquid crystals6-8. In a naïve approach, we may simply 
append a term proportional to the strain gradients to Equation (1):   
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i ijk jk jk( ) ( ) ( ( ) (ijkl l= ) + ∇ )P d fε ε  (2) 

Here f is the so-called fourth order flexoelectric tensor. Thus, unlike the 
components of the third ordered tensor ‘d ’ (piezoelectric coefficients) which are 
non-zero for only selected (piezoelectric) dielectrics, the flexoelectric coefficients 
(components of the fourth order tensor ' f ') are, in principle,  non-zero for all 
dielectrics although of course they may be negligibly small for many materials.  
The reader is referred to Tagantsev9,10 who provides an overview of the subject. 
In a recent work, one of us11 has discussed a mathematical framework for 
flexoelectricity in detail, in addition to providing a review of this subject.   
 
Recently, flexoelectricity has caught the attention of several researchers and 
indeed some have proposed tantalizing notions related to this phenomenon. For 
instance, Cross and co-workers12 were the first to suggest that flexoelectricity 
should allow fabrication of “piezoelectric composites without using piezoelectric 
materials”. One of us has computationally analyzed such meta-materials while 
Cross13-15 et al have fabricated non-piezoelectric tapered pyramidal structures on 
a substrate that “effectively” act as piezoelectric meta-materials. Flexoelectricity 
is also seen to play an important role in the characteristics of ferroelectrics e.g. 
Catalan et al5 study the effect of flexoelectricity on the dielectric constant, 
polarization and Curie temperature in ferroelectric thin films under in-plane 
substrate induced epitaxial strain.  
 
Patently, the strength of the flexoelectric size-effects crucially depends upon 
either the numerical values of the flexoelectric coefficients or how large the strain 
gradients are. The latter is closely linked with the size-scale of the structure. 
Consider two embedded triangular inclusions16 (Figure 1) subject to a stress at 
two different length scales but with the same aspect ratios. While the strain field 
remains the same across both length scales, the strain gradients scale as 1/ai 
(where ai designates a distance between two points inside the inclusion). This 
simple notion is the essence of the size-effect displayed by flexoelectricity.  
 
Flexoelectric coefficients are not readily available but some reasonable estimates 
are known for some specific materials e.g. atomistic calculations for graphene 
(Dumitrica et. al.18 and Kalinin et. al.19) and lattice dynamics for NaCl (Askar and 
Lee20). Kogan21 has argued that for all dielectrics, /e a  ( ≈  10-9C/m) is an 
appropriate lower bound for the flexoelectric coefficients, where e  is the 
electronic charge and a  is the lattice parameter. Later experiments (Ma and 
Cross22) and simple linear chain models of ions (Marvan and Havranek23) 
suggested multiplication by relative permittivity for normal dielectrics. Much larger 
magnitudes ( ≈  10-6C/m) of flexoelectric coefficients than this lower bound are 
observed in certain ceramics24-26. Flexoelectricity, of course also exists in 
dielectrics that are already piezoelectric and in fact experimental evidence 
suggests that flexoelectric coefficients are unusually high in such materials---see 
the work of Cross and co-workers13, 22, 24-26 on ferroelectric perovskites like BST 
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( BST 100 /f C mµ= ), PZT ( PZT 0.5 2 /f C mµ= −  at lower and higher strain gradients), 
and PMN ( PMN 4 /f C mµ= ). Here we note that the flexoelectric coefficient of 
ferroelectric materials is quite high even in the paraelectric phase. Quite 
remarkably, Zubko et al27 have recently published the experimental 
characterization of the complete flexoelectric tensor for SrTiO3. 
 

 
Figure 1: Illustration of size-effects due to scaling of strain gradients. Subjected to the same far 
field stress, two triangular inclusions kept at the same aspect ratio but at different length scales 

will exhibit strain gradients that scale as 1/ai. 
 

In the present work, we analyze the role of flexoelectricity in both piezoelectric 
and non-piezoelectric nanostructures. In particular, we focus on the illustrative 
model problem of a nanoscale cantilever beam to obtain analytical expressions 
for the “effective” or “apparent” size-dependent piezoelectric coefficient and 
elastic modulus. The simplicity of the chosen model system allows a facile 
inference of various physical insights. On this note, we also observe that 
cantilever beams have important technological ramifications as actuators, 
sensors, energy harvesting among others28-33. Zhong et al.34 used atomic force 
microscopy to deflect the tips of aligned arrays of piezoelectric cantilever zinc 
oxide nanowires. Due to bending, such nano-harvesting devices show generated 
piezoelectric power efficiency up to 30%. To verify our predictions, we carry out 
atomistic calculations on both paraelectric and piezoelectric phases of BaTiO3 
(BT) nano cantilever beams under bending deformation. 
 
The paper is organized as follows. In Section II, we summarize the mathematical 
framework and the governing equations of flexoelectricity. In Section III, we 
develop solutions for the model nano-scale cantilever beam. Based on the 
analytical results for this paradigmattical problem, we present the key physical 
insights in Section IV and in particular discuss the possibility of giant 
piezoelectricity at the nanoscale and the size-dependent re-normalization of the 
elastic modulus. In Section V, we present our atomistic calculations and conclude 
in Section VI.  
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II. THEORY OF FLEXOELECTRICITY AND GOVERNING EQUATIONS 
In this section, our presentation closely follows the following references35-37 
including one of our recent papers11.  We note that the correct incorporation of 
flexoelectricity naturally necessitates the inclusion of polarization gradients also 
(the latter was first introduced by Mindlin35). The symbol Lin designates the set of 
all linear transformations and the associated inner product is defined 
as: , ( )Ttr=A B A B . 
 
For a dielectric occupying a volume V bounded by a surface S in a vacuum V’, 
with a total volume V*, Hamilton’s principle may be written as: 

2 2

*
1 1

1( , ) [ ( , , ) , ] 0
2

t t

t t V SV

dt H dV dt V dSδ ρ δ δ δ δ− + + + =∫ ∫ ∫ ∫ ∫0u u f u E P t u  (3) 

where u, P, f, E0 and t are respectively the displacement, the polarization, the 
external body force, electric field and surface traction.  
 
The electric enthalpy density H was defined by Toupin38 and divided into energy 
density of deformation and polarization denoted wL and a reminder. By extending 
the dependence of wL to include both strain and polarization gradients, the 
electric enthalpy density H takes the following form: 

0
1( , , , ) , ,
2

LH W ε ϕ ϕ ϕ= ∇∇ ∇ − ∇ ∇ + ∇S P u P P    (4) 

where S is the symmetric strain tensor, φ is the potential of the Maxwell self-field 
defined by  EMS = –∇φ and ε0 is the permittivity of the vacuum. 
 
Assuming an independent variation of the displacement, polarization, electric 
potential and their gradients, the variation of the electric enthalpy density δH is: 

 
0, , , , ,

, ,

Hδ δ δ δ δ ε ϕ δ ϕ

ϕ δ δ ϕ

= − + ∇∇ + ∇ − ∇ ∇

+ ∇ + ∇

T S E P T u E P

P P
       (5)

where,  

,   ,   ,   
L L L LW W W W∂ ∂ ∂ ∂

= = − = =
∂ ∂ ∂∇∇ ∂∇

T E T E
S P u P

        (6)

T is the stress tensor, Ē is the effective local electric force, T  and E  can be 
interpreted as higher order stress and local electric force respectively. 
 
Using the chain rule of differentiation, 

0 0

.( . ) . , .( . ) . , ,

.( ) . , .[( ) ] ( . )

Hδ δ δ δ δ ϕ δ

δ δ ε ϕ δϕ ε ϕ δϕ

= ∇ − ∇ +∇ ∇ − ∇ ∇ − −∇

+∇ − ∇ +∇ − ∇ + − − ∆ +∇

T u T u T u T u E P

E P E P P P
 (7) 

The kinetic energy in Equation (3) is written as: 
2 2

* *
1 1

1 , ,
2

t t

t tV V

dt dV dt dVδ ρ ρ δ= −∫ ∫ ∫ ∫u u u u  (8) 
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Substituting Equation (7) into the Hamilton principle Equation (3) and by use of 
divergence theorem, we find that, 

2

*
1

2

1

0

0

[ ( . .( . ) ), ( . ),

( . ) ] [ [( . ). ], . ,

, ] 0

t

t V

t

t S

dt

dV dt

dS

ρ δ ϕ δ

ε ϕ δϕ δ δ

ε ϕ δϕ

− +∇ −∇ ∇ + + −∇ +∇ +

+ − ∆ +∇ + − +∇ + −

− − ∇ + =

∫ ∫

∫ ∫

0u T T f u E E E P

P T T n t u E n P

P n

 (9) 

Hence, the equilibrium equations are 

0

.  where .   in V 
. 0  in V

. 0   in V and 0  in V

ρ

ϕ
ε ϕ ϕ

∇ + = = −∇

+∇ −∇ + =
′− ∆ +∇ = ∆ =

0

σ f u σ T T
E E E

P
 (10) 

whereas the corresponding boundary conditions on S are 

0

.  where .
. 0

( ). 0ε ϕ

= = −∇

=

− ∇ + =

σ n t σ T T
E n

P n
 (11) 

σ may be considered as the actual physical stress experienced by a material 
point and differs from the Cauchy stress T . The symbol  denotes the jump 
across the surface or an interface. 
 
Neglecting the contribution of higher order terms (fifth order tensors and higher)- 
the strain energy density can be expanded as 

1 1 1( , , , ) . . : : : :
2 2 2

: : : . . : . :

LW ∇∇ ∇ = + ∇ ∇ +

+ ∇ + + ∇ + ∇∇

S P u P P a P P b P S c S

S e P S d P P g P P f u
 (12) 

Finally, according to Equation (6), the constitutive equations are  

: : .

.

- . : : :

: : .

L

L

L

L

W

W

W

W

∂
= = + ∇ +

∂
∂

= =
∂∇∇
∂

= = + ∇ + ∇∇ +
∂
∂

= = ∇ + +
∂∇

T c S e P d P
S

T f P
u

E a P g P f u d S
P

E b P e S g P
P

      
(13) 

The coefficients of the displacement, polarization and their gradients defined 
above as “a”, “b”, “c”, “d”, “f”, “g” and “e” are material property tensors. The 
second order tensor “a” is the reciprocal dielectric susceptibility. The fourth order 
tensor “b” is the polarization gradient-polarization gradient coupling tensor and 
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“c” is the elastic tensor. The fourth order tensor “e” correspond to polarization 
gradient and strain coupling introduced by Mindlin33 whereas “f” is the fourth 
order flexoelectric tensor. “d” and “g” are the third order piezoelectric tensor and 
the polarization-polarization gradient coupling tensor.  
 
III. MODEL PROBLEM: CANTILEVER NANO-BEAM 
Piezoelectric materials generally have symmetry lower than cubic and (even for 
the latter) analytical calculations are all but impossible for general three-
dimensional bodies. A cantilever beam is a model system that degenerates to a 
one dimensional problem and is thus analytically tractable (albeit approximately). 
Figure (2) depicts the schematic of such a cantilever beam. We note that a 
closed-form solution of a cantilever predicated on classical piezoelectric theory 
(excluding the flexoelectric effect) has been derived by Weinberg39. The latter 
work ignores variation of electric field through the thickness of the beam and 
accordingly is only valid for materials with low electro-mechanical coupling. 
Subsequently Tadmor et al.40 have improved upon on that work by taking into 
account the variation of the electric field in the beam layers.  

 

 
Figure 2: Schematic of a rectangular cantilever beam. Initial and bent configurations are 

sketched. 
 

We adopt the usual assumptions made in analyzing slender beams e.g. beam 
thickness is much less than the radius of curvature induced by the mechanical 
and electrical loading and that beam cross section is constant along its length.  
In the adopted Oxyz Cartesian coordinate system (Figure 2), Ox corresponds to 
the centroidal axis of the undeformed beam, y-axis is the neutral axis and the z 
the symmetry axis. Although a rectangular cross-sectional beam is depicted in 
Figure (2), much of the derivation proceeds for an arbitrary cross-sectional 
shape. 
 
The displacement field is, 1 2 3( ( , ), 0, ( ))u x z u u x= =u u . As typical in the analysis of 
beams, the displacement is parameterized with respect to the out-of-plane 
displacement component:  
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3

3
1

2

( )
( ) ( )

0

u w x
du x dw xu z z

dx dx
u

=

= − = −

=

 (14) 

For narrow beams (b<5h), it is typical to assume that the 
stresses 33 3 22 20 and 0σ σ σ σ= = = = . The only relevant electric field component is 

3E . According to the physical stress defined in Equation (10), the non-vanishing 
component 11σ  is: 

11 1 11 111,1 113,3T T Tσ σ= = − −  (15) 
Without loss of generality we now assume tetragonal 4mm material symmetry. 
Most piezoelectrics are of the latter or higher symmetry (e.g. PZT 5H). 
Accordingly, we can re-write Equation (15) as: 

1 1 1 13 13 3,3 31 3( )c S e f P d Pσ = + − +  (16) 
in which the Voigt notation is used for the different coefficients and c1, d31, e13 
and  f13 designate respectively the elastic modulus, the piezoelectric constant, 
the polarization gradient and strain coupling constant and the flexoelectric 
coefficient of the one-dimensional beam.  
 
S1 is the axial strain which can be explicitly written under the beam assumptions 
as function of the radius curvature R(x): 

      

2

1 2

( )( , )
( )
z d w xS x z z

R x dx
= − = −

 
(17) 

Equation (14) may be rewritten with a somewhat simpler notation as: 
    1 1 3,3 3( )  PYS e f P Ydσ = + − −  (18) 

Here 1Y c= , 13e e= , 13f f=  and 31 /d d Y= −  .  
 
The notation in Equation (18) facilitates subsequent comparison with results 
obtained by Tadmor  et al40 for classical piezoelectric beams. 
 
Finally, the electric field induced by the polarization due to piezoelectricity and 
flexoelectricity (strain gradient term) is expressed as: 

1 1
3 0 33 3 55 11,3E P f Sε χ− −= −  (19) 

where 1 1
33 0 33aχ ε χ− −= =  is the reciprocal dielectric susceptibility. 

 
The total electric displacement in z-direction is given by 

3 1 3 55 11,3 ED d f Sσ ε= + +  (20) 

with 33ε ε= is the dielectric constant. Predicated on 1-D beam assumptions we 
have from Equation (20) 
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3 1 55 11,3
1E(x,z) ( ( ) ( , ) )D x d x z f Sσ
ε

= − −  (21) 

We define the “through-layer” average of any quantity as: 
1T(x) ( , )

Layer

T x z dz
h

= ∫
 

(22) 

Since the applied voltage difference is constant along the beam, 
3 55

1 11,3
( )D x h f hdhV Sσ
ε ε ε

= − + +  (23) 

We may thus write: 

3 1 55 11,3( ) VD x d f S
h
ε σ= − + +  (24) 

From Equation (18), the average layer stress is then: 

1 3,3 3( )  Pe f P Ydσ = − −  (25) 
Assuming a linear variation of the electric field in z and that the average layer 
electric field and voltage are respectively equal to V

h
−  and V , we find that 

3E V
h

= − , 
3,3 2

24E V
h

= −  and hence 3P  and 3,3P . 

 
Substituting Equation (24) into (21) with (25) we obtain an equation to solve for 
the electric polarization 

0
1 1 11,3( ( , ) ) ( , )V d x z P x z f S

h
ε χ σ σ

ε
′− − − = −  (26) 

in which 55f f′ = . 
 
Solving Equation (26), we obtain: 

2
0 0

2 2

24 ( )( )P(x,z)
( ) ( ) ( )

     

V V e fz f e f
h d R x R x d Y R x dYh
ε χ ε χξξ ξ′ −−

= − + − − −

 electrostatic pure flexoelectricitypure piezoelectricity piezoelectricity-flexoelectricity interaction
 (27) 

where
2

2
21e

kk
k

ξ = =
−

is defined as the the square of the expedient coupling 

coefficient41 ek and
2Ydk

ε
= is the so-called Electro Mechanical Coupling (EMC) 

coefficient.  
 
The first term in Equation (27) corresponds to polarization due to an applied 
voltage; the second is due to a pure piezoelectric effect; the third term is due to a 
pure strain gradient or flexoelectric effect (polarization exists even in the absence 
of applied voltage and piezoelectric effect as long as the strain is nonuniform) 
whereas the last two terms correspond to combined piezoelectric and 
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flexoelectric contributions and thus informs us of the nonlinear interaction 
between flexoelectricity and piezoelectricity.  
 
Note that our solution coincides with the results of Tadmor et al.40 if we neglect 
the higher order contribution of polarization and strain gradients 
( 0 and , 0e f f ′→ → ). In addition, if we further disregard the EMC ( 0ξ → ), we 
recover the classical result for a simple dielectric in which the electric field is a 
constant V

h
−  .     

To proceed further it is expedient to define the strain energy U: 

,
1 1
2 2ij ij ijm i jm

V V

U T S dV T u dV= +∫∫∫ ∫∫∫
 

(28) 

For the case of the 1-D beam it reduces to 
2 2

2 2
0 0

1 ( ) 1 ( )ˆ ˆ( ) ( )
2 2

L L

x x

d w x d w xU M x dx P x dx
dx dx= =

= − −∫ ∫
 

(29) 

where  

1 3
ˆ ˆ( ) ( , )     and    ( ) ( , )

A A

M x zT x z dydz P x f P x z dydz= =∫∫ ∫∫  (30) 

are the resultant moment and the higher order resultant moment respectively. 
In the absence of body forces, the work done by external forces due only to 
transverse loading ( )q x  is  

0

( ) ( ) ( )
L

x

W x q x w x dx
=

= ∫
 

(31) 

The total potential energy ∏ is obtained from Equations (29) and (31) as 
2

2
0 0

1 ( )ˆ ˆ( ( ) ( )) ( ) ( )
2

L L

x x

d w xU W M x P x dx q x w x dx
dx= =

∏ = − = − + −∫ ∫
 

(32) 

 
Its first variation is derived in a similar form as given by reference42  

0 0

2 2

2 2
0

ˆ ˆ( ) ( )ˆ ˆ[ ( ( ) ( )) ( )] [( ) ( )]

ˆ ˆ( ) ( )( ( )) ( )

L L

L

dM x dP xM x P x w x w x
dx dx

d M x d P x q x w x dx
dx dx

δ δ δ

δ

′∏ = − + + +

− + +∫
 

(33) 

By use of the principle of minimum potential energy ( 0δ ∏ = , e.g. reference43) and 
the fundamental lemma of calculus of variation (e.g. reference44) we have the 
following governing equation from Equation (33): 

2 2

2 2

ˆ ˆ( ) ( ) ( ) 0,                x  (0, )               d M x d P x q x L
dx dx

+ + = ∀ ∈  (34) 

 
The corresponding boundary conditions prescribed at the beam ends (x=0 and 
x=L) are: 
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( ) ˆ ˆ( ) ( )             or   

ˆ ˆ( ( ) ( ))      or    (x)

            

dw xM x P x
dx

d M x P x w
dx

⎧ +⎪⎪
⎨

+⎪
⎪⎩

 

(35) 

From Equations (30), (13) and (28) we can show that 
2

2

2
0 0

2 2

( )ˆ ( ) (1 )  

24 ( )( )ˆ( )  [ ]
( ) ( )

d w xM x YI
dx

V V e ff e fP x Af
h R x d Y R x dYh

ξ

ε χ ε χξξ

= − +

′ −−
= − + + +

 (36) 

where 2z  
A

I dA= ∫∫ is the second moment of cross-sectional area A. 

 
Thus, the equilibrium Equation (34) becomes  

                    
4

4

( ) ( )                 d w xG q x
dx

=  (37) 

where G is the beam bending rigidity defined as 

                   
2

2 2

( )[1 ]              Aff Af e fG YI
YI d Y I

ξξ
′ −

= + + +  (38) 

 
Once again, we point out that if we ignore the polarization and strain gradients 
effects ( 0 and , 0e f f ′→ → ), we recover the same bending rigidity as in refrence40. 
Also, if we neglect the EMC ( 0ξ → ), we recover the classical bending rigidity for 
a beam G YI= . Note that in the absence of piezoelectricity ( 0ξ → ), the 
renormalized bending rigidity is G YI Aff ′= + due to flexoelectric effect.    
 
The preceding derivation is for an arbitrary cross-sectional beam. As a concrete 
example, consider a rectangular cantilever beam subjected to a transversal point 
load N. The corresponding boundary conditions from Equation (35) are 

0
( ) (0)=0   and   | 0

ˆ ˆ( ( ) ( ))ˆ ˆ( ) ( ) 0   and  | =N  

            

x

x L

dw xw
dx

d M x P xM L P L
dx

=

=

=

+
+ =  

(39) 

In the absence of distributed transverse loading ( ( ) 0q x = ) the homogeneous 
equilibrium equation becomes  

             
4

4

( ) 0                 d w xG
dx

=  (40) 

where the solution is in the  form 

            3 21 2
3 4 ( ) x + x + x+                 

6 2
a aG w x a a=  (41) 
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By means of the BC in Equation (39), the beam deflection is then,  

 
2x (3 )( )             
6

N L xw x
G
−

=  (42) 

in which the bending rigidity G is defined by Equation (38) with 
3

12
bhI = and A bh= . 

Thus, we may use the classical well-known beam equation for deflection 
provided the rigidity (or in effect the elastic modulus) is renormalized according to 
Equation (38). 

 
IV. PHYSICAL INSIGHTS, POSSIBILITY OF “GIANT” SIZE-DEPENDENT 
PIEZOELECTRICITY AND SCALING OF ELASTIC MODULUS 
Based on the derivation in the preceding section, we may define an “effective” or 
“renormalized” piezoelectric constant which has contributions from both classical 
piezoelectricity and flexoelectricity.   
 
From Equation (38), we define the effective coupling coefficient as: 

           
2

2 2 2 2

12 ( - ) 12         eff
f e f ff
Y d h Yh

ξξ ξ
′

= + +  (43) 

Consequently, the “effective” piezoelectric coefficient is: 

               
(1 )

eff
eff

eff

d
Y

ξε
ξ

=
+

 (44) 

 
Figure 3: (Color online) Normalized effective piezoelectric constant of deformed PZT (dashed 
blue, dashed dark grey in print) and non-piezoelectric BT beams (solid red, light grey in print). 

The normalization is done with respect to the bulk piezoelectric constant of PZT (solid blue, dark 
grey in print) ( 274 /PZTd pC N= − ) and piezoelectric phase of BT ( 78 /BTd pC N= − ). 
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Figure (3) shows that for piezoelectric PZT cantilevers (dashed line), the effective 
piezoelectric constant is increased by 75% of the PZT bulk value 
( 274 /PZTd pC N= − ) at 20 nm. Even though cubic BT is not piezoelectric (red 
solid line), we still see a large apparent piezoelectric response below 10 nm. At 8 
nm, the apparent piezoelectric response of BT is 50% that of the bulk BT 
piezoelectric constant ( 78 /BTd pC N= − ). At 2 nm, the apparent piezoelectric 
response is double the one generated by a piezoelectric BT beam. An extremely 
high apparent piezoelectric response is seen at smaller sizes, reaching almost 5 
times the piezoelectric BT constant.  
 
Cross and co-workers report that ferroelectric phase (piezoelectric) BT has a 
high flexoelectric constant estimated45 to be 50 /BTf C mµ= . Figure (4) shows 
that for piezoelectric BT, the effective piezoelectric response increases by 20% of 
its bulk value at 8 mµ  and exhibits a “giant” 500 % increase at 5 nm! 

 

 
Figure 4:  Normalized effective piezoelectric constant of tetragonal (piezoelectric) BT beam. An 

enhancement of 20% of its bulk value at 8 mµ  and a 500 % increase at 5 nm is observed. 
 
Our theoretical results indicate that the apparent piezoelectric response is 
determined by a synergistic addition between piezoelectricity and flexoelectricity 
(e.g. Equation 27). By comparing PZT and piezoelectric BT results, the 
noteworthy increase in the piezoelectric response occurs at vastly different length 
scales. The effective piezoelectric constant as defined previously in Equation 
(44) depends on both piezoelectric constant (EMC) and the flexoelectric 
constant. The piezoelectric constant for PZT is higher than BT but it is of the 
same order of magnitude. However, the flexoelectric constant of BT is two orders 
of magnitude higher than that of PZT ( 100BT PZTf f= ) which explains the 
difference in the length scales at which the enhancement is observed. In the 
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case of non-piezoelectric (paraelectric) BT, the only contribution to the effective 
piezoelectric response is due to flexoelectricity. Therefore, the effect is smaller 
and only occurs at small scales (10s nanometers). 
 
We now show that flexoelectricity also impacts the observed or “apparent” elastic 
modulus. The normalized effective Young’s modulus (with bulk value) is defined 
as (see Equation 38 also): 

                      
2

2 2 2 2

12 ( - ) 12[1 ]             G f e f ffY
YI Y d h Yh

ξξ
′

′ = = + + +  (45) 

To illustrate our results, we pick the following values for the different parameters: 
A PZT 5H beam with rectangular cross-section defined by b=2h (b<5h, plane 
stress) and L=20h loaded with a force magnitude N=100 Nµ  so that we remain in 
the elastic domain. The flexoelectric coefficient f  is obtained from reference12 

0.5 /PZTf C mµ= . A 21/ h scaling is evident in Equation (45) and is illustrated in 
Figure (5): smaller beams appear stiffer due to the flexoelectric effect (dashed 
line). Note that the normalized effective Young’s modulus according to Tadmor et 
al.40 is little larger than one because of the EMC contribution. 

 
Figure 5: Normalized Young’s modulus of a rectangular PZT cantilever beam. The dashed line 
illustrates the size dependency of the elastic modulus and exhibits a 1/h2 scaling where h is the 

beam thickness. The horizontal solid line is for the results of Tadmor et al. for classical 
piezoelectric beam that excludes the flexoelectric effect. 

 
V. ATOMISTIC SIMULATIONS 
In previous sections, based on the phenomenon of flexoelectrcity and an 
appropriate mathematical description, we have argued the possibility of giant 
piezoelectricity is piezoelectric nanostructures and certainly an enhancement 
even in non-piezoelectric ones. In this section we present discrete atomistic 
calculations based on a (quantum mechanically derived) force field to confirm 
some of our predictions. We have avoided atomistic calculation of PZT since the 
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core-shell potential available for it is not parameterized appropriately for the 
physical insights sought by the present work. Therefore we focused our attention 
mainly on BT. At temperature above the Curie temperature TC of 393K, BT is in 
its stable paraelectric cubic phase (Pm3m). Below Tc, BT undergoes three 
ferroelectric phase transitions. The cubic structure changes to tetragonal (P4mm) 
symmetry at TC, orthorhombic (Amm2) at 278K and the last phase transition, 
rhombohedral (R3m) occurs at 183K. In prior work, one of us, Cagin et al.46 has 
developed a suitable polarizable charge distribution Force Field for  BT to use in 
molecular dynamics (MD) simulations based on ab initio quantum mechanical 
calculations. One distinctive feature of this force field is that charge transfer and 
atomic polarization are treated self-consistently and is thus quite appropriate for 
studying ferroelectrics. The charge is described as a Gaussian distribution for 
each of the core and the shell. The total core charge has positive fixed amplitude 
centered on the nucleus whereas the negative valence (shell) charge is 
determined via charge equilibration and is allowed to move off the nuclear center. 
The two Gaussian charge distributions interact with Coulombic (electrostatic) 
forces. Nonbonded interactions between neutral atoms and molecules (short 
range Pauli repulsion and long range attractive van der Waals dispersion) are 
described by the Morse potential. Our previous MD calculations46 indicate that 
the polarizable charge distribution FF potential for BT is able to correctly predict 
experimentally observed paraelectric (cubic) to ferroelectric (tetragonal) phase 
transition among other features. One of us has also recently successfully used it 
to study antiferroelectricity in cubic and ferroelectric phases of BT47.  
 
Our calculations were carried out using MST package48. Beam thicknesses were 
varied from 1 single unit cell (4.01A as lattice parameter) to 2 nm while length 
was set to 4 nm. Several simulations were performed and results were averaged 
over all the runs. To reproduce our theoretical work conditions, simulated 
rectangular cantilevers were held fixed at one side then bent to the shape 
dictated by the simple 1D deflection solution defined previously in Equation (40) 
(Figure 6---deflection amplified to be seen).  
 

 
Figure 6: Atomistic representation of a cantilever beam under bending. The square dotted block 

is for aesthetic perspective. 
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For a given strain gradient, we determine the average polarization for different 
runs with different BT beam sizes in both ferroelectric and paraelectric phases. In 
the case of non-piezoelectric BT (Figure 7), MD calculations are in a good 
agreement with the predictions of our theoretical model from previous section. 
Only few points are calculated by MD are shown and the solid line is interpolated 
using the least square technique providing a guide to the eye.  
 
For piezoelectric BT, as shown in the previous section, the effective piezoelectric 
response shows an enhancement at a higher length scale of few micrometers 
and reaches gigantic proportions at the nanoscale (Figure 8). Such “giant” 
enhancements are duly confirmed by atomistic calculations.  
 
There are of course some (inconsequential) differences between the theoretical 
model and MD results. The theory is developed under the assumptions of 
simplified 1D problem whereas the simulations are carried out on 3D 
nanostructures. In addition, our model sensitively depends on several material 
properties (Young’s modulus, dielectric, piezoelectric and flexoelectric constants) 
values of which could be over or under estimated by the experimental values we 
have used. At such small scales, other phenomena, in particular surface 
piezoelectricity/flexoelectricity9, which are not taken into account by our model, 
may become important.  
 

 
Figure 7: Normalized effective piezoelectric constant of cubic (non-piezoelectric) BT. Only a few 
points are obtained from atomistic simulations. The least square fit shows good agreement with 

the predictions of the theoretical model. 
 
We have also computed and contrasted the effective elastic modulus with our 
theoretical results. The energy difference between the beam bent configuration 
and the undeformed one is the strain energy or the work done by the applied 
force. The strain energy U is: 
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                    20

1 1 1
    

2 2 ( )
     

L

V

U S dv YI dx
R x

σ= =∫ ∫  (46) 

We estimate the normalized effective Young’s modulus from the following 
relation:  

          
2 3

     '  
6
N LY
YI U

=  (47) 

We note that a similar technique was used by Miller and Shenoy49 to explain 
atomistically the size dependency of the Young’s modulus of nanosized elements 
and the flexural rigidity of beams in bending due to surface energy effects.  
 

 
Figure 8: Normalized effective piezoelectric constant of tetragonal (piezoelectric) BT. Since the 
atomistic calculations were carried for very small sizes, the right inset corresponds to a zoomed-

in view around 3 nm. The atomistic results fluctuate around a constant value (Least square fit 
(solid line)) and qualitatively match the theoretical predictions. 

 



 21

 
Figure 9: Normalized Young modulus for a BT cantilever beam. The least square fit of the 

atomistic simulations demonstrates reasonable agreement down to 2 nm.  
 
The atomistic results for the Young’s modulus for BT are contrasted wih 
theoretical ones in Figure (9). Once again, down to about 2 nm or so, there is is 
good agreement (and below which, as already explained, results diverge).  

 
VI. SUMMARY 
 
We have argued that flexoelectricity exhibits a size-effect and thus should have 
important ramifications for the apparent piezoelectric and elastic behavior of 
nanostructures. Certainly in some dielectrics, flexoelectric coefficients are quite 
high and coupled with large strain gradients possible at the nanoscale, the effect 
of flexoelectricity can be non-trivial. In particular, using a model system of a 
cantilever nano-beam, we are able to analytically show that in materials that are 
already piezoelectric, the effect of flexoelectricity is multiplicative and combines 
nonlinearly with the intrinsic piezoelectricity. The nonlinear flexoelectric-
piezoelectric interaction manifests itself as a “giant” increase in the apparent 
piezoelectric response at small sizes for materials that are intrinsically 
piezoelectric (duly confirmed via accurate atomistic calculations for BT). As is 
well-known in the classical piezoelectricity literature, a polarized elastic solid 
shows a renormalized (size-independent) elastic constant. This is true in 
flexoelectricity induced elasticity renormalization as well although the behavior is 
size-dependent and scales as ~1/h2.  
 
We find it interesting that classical piezoelectric theory when supplemented with 
flexoelectricity is able to capture the electromechanical behavior of 
nanostructures almost down to 2 nm’s. Needless to say, without incorporation of 
flexoelectricity, the size-effects observed in the atomistic calculations cannot be 
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reconciled. An auxiliary benefit of the present work, thus, is that continuum 
piezoelectricity duly supplemented with flexoelectricity may be employed to study 
nanoscale piezoelectricity in a computationally expedient manner rather than 
using atomistic calculations which have clear computational limits in terms of 
system size and computational expense. 
 
Currently very little experimental work is available on piezoelectricity bent nano-
beam as it is highly challenging to perform controlled experiments at that scale. 
In that regard we note that in some cases (e.g. in piezoelectric phase of BaTiO3) 
the size effect predicted by us are also manifest at micron size beams thus 
providing a facile route for experimental verification of our presented scaling laws. 
Furthermore, the approach and conclusions of this work will remain relevant for 
same order of magnitude structures such as lattice-mismatched epitaxial thin 
films50. The latter work examined the influence of strain gradients (through 
flexoelectric coupling) on the ferroelectric properties of films with decreasing 
thickness. Another example is the case of asymmetric three-component 
ferroelectric superlattices51 where authors confirm enhancement in polarization 
by similar phenomena (breaking the inversion symmetry of the lattice). 
 
 
Our theoretical model neglects some effects that may become important at small 
sizes e.g. surface flexoelectricity and surface piezoelectricity9. Regarding the 
latter, we have minimized its influence in atomistic calculations by ensuring the 
centro-symmetry of surfaces. Surface flexoelectricity has been discussed at 
length by Tagantsev9 and is not included in our theoretical model (although this 
phenomenon is automatically accounted for in the atomistic calculations). 
Evidently, surface flexoelectricity is likely to be important only below 2 nms or so 
for the materials we have investigated (given the close agreement up to that 
point between our atomistic and theoretical results).  
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