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Abstract. A selfconsistent calculation of heavy-quark (HQ) and quarkonium
properties in the quark-gluon plasma (QGP) is conducted to quantify flavor
transport and color screening in the medium. The main tool is a thermodynamic
T -matrix approach to compute HQ and quarkonium spectral functions in both
scattering and bound-state regimes. The T -matrix, in turn, is employed to
calculate HQ selfenergies which are implemented into spectral functions beyond
the quasiparticle approximation. Charmonium spectral functions are used to
evaluate Eulcidean-time correlation functions, which are compared to results
from thermal lattice QCD. The comparisons are performed in various hadronic
channels, including zero-mode contributions consistently accounting for finite
charm-quark width effects. The zero modes are closely related to the charm-
quark number susceptibility, which is also compared to existing lattice ‘data’.
Both the susceptibility and the heavy-light quark T -matrix are applied to
calculate the thermal charm-quark relaxation rate, or, equivalently, the charm
diffusion constant in the QGP. Implications of our findings in the HQ sector for
the viscosity-to-entropy-density ratio of the QGP are briefly discussed.
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1. Introduction

In recent years rather remarkable properties of the quark-gluon plasma (QGP) have been
discovered, notably a liquid-like behavior deduced from the collective expansion of the
medium formed in collisions of heavy nuclei at the Relativistic Heavy Ion Collider (RHIC).
Hydrodynamic expansion models, based on the assumption of local thermal equilibrium,
require very short equilibration times, of the order of τtherm ' 1 fm/c or less, to account for
the experimental findings. The microscopic origin of the rapid thermalization remains one of the
outstanding problems raised by the RHIC data. It is further complicated by the fact that the very
notion of equilibrium erases information about its origin. A phenomenologically suitable probe
of thermalization in heavy-ion collisions should therefore interact strongly at the thermal scale,
but with a relaxation time on the order of the system’s lifetime (at RHIC, τQGP ' 5 fm/c). The
logical choice is thus heavy quarks, i.e. charm and bottom (Q = c, b), for which thermalization
is expected to be delayed by a factor m Q/T , quite comparable to τQGP/τtherm (see e.g. [1] for a
recent review).

Bound states of heavy quarks (charmonia and bottomonia) are believed to probe the
QGP from a somewhat different angle [2]–[6]. The dissolution pattern of the quarkonium
spectrum in matter is possibly the most direct way of diagnosing color-Debye screening of the
basic QCD force, fQ Q̄ = −∇VQ̄ Q(r), as a function of temperature (and/or density). In-medium
quarkonium spectroscopy therefore reveals insights into the deconfining hadron-to-parton phase
transition in QCD. In particular, the use of potential models has been revived recently, largely
triggered by the prospect that an in-medium potential can be extracted model-independently
from lattice QCD (lQCD) computations. Furthermore, lQCD generates Euclidean-time (τ )
correlation functions of quarkonia with good accuracy in different hadronic channels, which
provide useful constraints on model calculations of spectral functions in the timelike regime of
physical excitations. The extraction of reliable information from such comparisons requires
a realistic modeling of the continuum part (scattering regime) of the quarkonium spectral
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functions, i.e. not only its bound-state part. The account of interactions in the near-threshold
region is particularly important to describe situations where bound states dissolve into the
continuum, as in the case at hand. In connection with correlator analyses, a comprehensive
treatment of bound-state and continuum regimes has been performed using Schrödinger phase
shifts [7], a thermodynamic T -matrix [8] or a nonrelativistic Green’s function [9] approach.
Another important ingredient for a realistic description of quarkonium spectral functions in
the QGP is medium effects in the single-particle properties, i.e. in the heavy-quark (HQ)
propagation. These are closely related to HQ transport [10, 11] and the so-called zero-mode
contributions to quarkonium spectral and correlation functions [12, 13]. In particular, finite-
width effects on both quarkonia and heavy quarks have received little attention thus far [8, 14].

In the present paper we further develop our previous study of heavy quarks and quarkonia in
the QGP using a thermodynamic T -matrix approach [10]. First, we go beyond the quasi-
particle approximation for heavy quarks and perform a selfconsistent calculation of the HQ
selfenergy and the in-medium heavy-light T -matrix. The improved HQ spectral functions are
then implemented into an off-shell calculation of the quarkonium spectral functions. Secondly,
we expand our comparison with Euclidean correlator ratios to the scalar, vector and axialvector
channels. In these channels the presence of zero modes [12, 13], resulting from scattering of
a single heavy quark on medium constituents (‘particle–hole’ excitations), is known to impact
the large-τ behavior of the in-medium correlators appreciably. Thus far, these contributions
have been estimated in quasiparticle approximation neglecting finite width effects [9, 12, 13,
15, 16]. In a treatment of heavy quarks consistent with the T -matrix we evaluate the zero-
mode contribution accounting for their full spectral function, in particular finite-width effects.
This automatically yields predictions for the charm-quark number susceptibility, which can
be compared to lattice data and enable a more reliable extraction of in-medium quasiparticle
masses for heavy quarks.

The paper is organized as follows. In section 2 we give a short overview of the
T -matrix formalism employed in our calculations, specifically discussing its extension to off-
shell dynamics in the charm-quark propagation. Section 3 is devoted to properties of charmonia
in the QGP, i.e. their spectral functions including zero modes (section 3.1), Euclidean correlator
ratios in various mesonic channels (section 3.2) and a comparison of numerical results to
lQCD data using two different input potentials (section 3.3). In section 4 we first analyze the
selfconsistently calculated charm-quark selfenergies (section 4.1) and then apply these to obtain
the thermal relaxation rate and a schematic estimate of η/s (section 4.2), as well as the charm-
quark number susceptibility (section 4.3). We conclude in section 5.

2. Off-shell T -matrix at finite temperature

The formalism for calculating the T -matrix for quark-quark and quark-antiquark scattering
and bound states in the QGP, using two-body potentials estimated from HQ free energies
computed in lQCD, has been developed in [8, 10, 17]. Here we recollect the main elements while
referring to [10] for further details (e.g. a discussion of relativistic corrections and constraints
from vacuum spectroscopy and the high-energy perturbative limit). The starting point is the
Bethe–Salpeter equation, which after a three-dimensional (3D) reduction and partial-wave
expansion turns into a 1D integral equation for the scattering amplitude (T -matrix),

Tl,a(E; q ′, q)= Vl,a(q
′, q)+

2

π

∫
∞

0
dk k2 Vl,a(q

′, k)G12(E; k) Tl,a(E; k, q), (1)
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in a given color channel (a) and partial wave (l); the relative three-momentum moduli of the
initial, final and intermediate two-particle state are denoted by q = |q |, q ′

= |q′
| and k = |k |,

respectively (we restrict ourselves to vanishing total three-momentum, P = 0, of the two-
particle system). The explicit form of the intermediate two-particle propagator, G12, depends
on the 3D reduction scheme [18]–[21] (in slight deviation from [8, 10, 17] we here absorb
the Pauli blocking factor, (1 − 2 fF), into G12). In the following, we focus on the Thompson
scheme, since the Blankenbecler–Sugar scheme was found to generate some overbinding in
the vacuum quarkonium spectrum [10]. The T -matrix will be applied in both heavy-heavy
and heavy-light quark channels for which a static (potential) approximation can be justified
(i.e. the energy transfer is parametrically suppressed compared to the three-momentum transfer,
1q0 ∼ (1q)2/m Q �1q, where 1q = q′

− q). For the two-body potential, Vl,a, we follow our
previous work [10] using either the heavy-quark free (F) or internal (U ) energy computed in
lQCD, implemented into a field-theoretical model for color-Coulomb and confining terms [22]
with relativistic corrections (e.g. the Breit interaction [23]–[25] to account for color-magnetic
effects). To ensure the convergence of the Fourier transform from coordinate to momentum
space we subtract the infinite-distance limit of the potential according to

Va(r; T )= Xa(r, T )− X (r → ∞, T ), X = F or U, (2)

and interpret X∞(T )/2 ≡ X (r → ∞, T )/2 as a temperature-dependent correction to the bare
HQ mass (real part of selfenergy) induced by the condensate associated with the confining
force term. The use of either U or F as potential is believed to bracket the uncertainties in this
identification.

2.1. Two-particle propagator

In all previous applications of potential models in the QGP the quarks have been treated as
quasiparticles with either vanishing or constant [8, 10] width. However, as pointed out in [10],
this approximation implies that quarkonium spectral functions, ρα(E) (α: quantum numbers
of the composite mesonic (or diquark) state), do not possess the proper low-energy limit,
ρα(E → 0)∝ E . While this is not expected to significantly impact the mass and binding energy
of the bound states (for which the total energy is of order twice the HQ mass), the Euclidean
correlators calculated below involve an integration over ρα(E) starting from E = 0 with a
thermal weight which diverges for E → 0. In previous studies this problem has been evaded
by introducing a low-energy cutoff on the spectral function (sufficiently below the lowest bound
state as to not affect the correlator). However, recent studies of quark spectral functions [26] find
considerable low-energy strength in quarkonium spectral functions, e.g. due to particle–hole
like structures in the HQ propagator. Thus a more elaborate treatment in the T -Matrix equation,
properly accounting for off-shell dynamics, is in order.

The general off-shell expression of the uncorrelated 2-fermion propagator at finite
temperature, G12, figuring into the T -matrix equation, can be derived, e.g. within the Matsubara
formalism. One has

G12(�λ, k)= T
∑
ν

G1(zν,k)G2(�λ − zν,−k), (3)

where

G i(ω,k)=
1

ω2 − k2 − m2
i − 2mi6i(ω, k)

(4)
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(i = 1, 2) denotes the scalar part of the one-particle propagator, and zν = i(2ν + 1)πT (�λ) are
fermionic (bosonic) Matsubara frequencies. Using the spectral representations of the in-medium
(retarded) single-particle propagators,

G i(ω,k)=

∫
dω′

2π

ρi(ω
′, k)

ω−ω′
, ρi ≡ −2 Im G i , (5)

the Matsubara summation in equation (3) can be performed explicitly. After analytic
continuation to the real axis (�λ → E), the positive-energy contributions to the two-particle
propagator take the form

G12(E, k)=

∫
dω

π

∫
dω′

π
ρ+

1 (ω, k) ρ+
2 (ω

′, k)m1 m2
1 − fF(ω)− fF(ω

′)

E −ω−ω′ + i ε
, (6)

where

ρ+
i (ω, k)=

−1

ωi(k)
Im

1

ω−ωi(k)−6i(ω, k)
, ωi(k)=

√
k2 + m2

i (7)

denotes the positive-energy part of the quark spectral functions. The factor m1m2 in equation (6)
is specific to the Thompson reduction scheme, rendering the appropriate expression for G12

in the limit of on-shell quarks [21]. For the in-medium HQ mass, as mentioned above (recall
equation (2)), the infinite-distance value of the HQ potential is identified with a ‘mean-field’
contribution, i.e. as a real part of a selfenergy,

m Q = m0
Q +6MF

Q (T ), 6MF
Q (T )≡ X∞(T )/2. (8)

We neglect (momentum-dependent) HQ selfenergy contributions from scattering off thermal
gluons. The additional selfenergy figuring into the quark propagator in equation (7) is generated
from interactions with thermal light quarks and antiquarks and is therefore distinct from X∞(T ).
It will be computed from the heavy-light quark T -matrix, as discussed below. For calculating
the latter, we need to specify the light-quark masses, which we model by a thermal mass
proportional to gT with a coefficient to approximately match lQCD computations of the energy
density of the QGP in quasiparticle approximation. In addition, we supplement a moderate
imaginary part for the light-quark selfenergy, Im6q = −0.05 GeV, which is in the range of
values obtained in [17] in a similar approach for light quarks, and comparable to what we obtain
for heavy quarks. It is also comparable to results of the dynamical quasiparticle approach [27]
close to Tc, where 0q ' 0.1 GeV (increasing to about 0.2 GeV at 2 Tc), albeit in this approach
the effect from thermal gluons is larger (our results for quarkonium spectral function and HQ
transport are, however, largely insensitive to the light-quark width [14]).

The evaluation of the Matsubara sum in equation (3) also generates a contribution that
solely arises from thermal excitations (see, e.g. [28]). It involves one positive- and one negative-
energy part of the quark spectral functions which is why we referred to it as a ‘particle-hole’
contribution above. For mesonic channels of the T -matrix, 12 = Q Q̄, its imaginary part can be
cast into the form

Im Gph
12(E, k)= −

∫
dω

2π
ρ+

Q(ω, k)ρ+
Q(E +ω, k)[ f Q(ω, k)− f Q(E +ω, k)]. (9)

Here, the negative-energy part of the Q̄ spectral function has been turned into the positive-
energy part of the Q spectral function, i.e. the Q̄ line in the original Q Q̄ propagator has been
‘turned around’. Together with the Fermi distributions, the interpretation of this contribution
to G12 becomes apparent: an incoming Q, pre-existing in the heat bath according to f Q(ω, k),
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scatters into a Q with energy E +ω, Pauli-blocked according to f Q(E +ω, k). Gph
12 is, in fact,

precisely the zero-mode contribution discussed in the context of quarkonium correlators [9, 12,
13, 15]. We return to its evaluation in section 3.1 below.

2.2. Single-quark selfenergy

The HQ selfenergy, 6Q(ω, k), due to interactions with light anti-/quarks in the heat bath, is
calculated from the heavy-light (Qq) T -Matrix by closing its light-quark line with a quark
propagator weighted with a Fermi distribution function. Using the Matsubara formalism one
can express its imaginary part as [17, 28]

Im6Q(ω, k)=
dSI

6k

∫
p dp

(2π)2

∫ Emax

Emin

E dEIm Mq Q(E, ω, ωq(p), k, p)

× [ fF(ωq(p))+ fB(ω +ωq(p))] (10)

with

Mq Q(E, ω, ω
′, k, p)=

mq m Q

ωq(qcm) ωQ(qcm)
4π

∑
a=1,8

da[Ta,0(E, qcm)+ 3Ta,1(E, qcm)], (11)

where

q2
cm(E, k(4), p(4))=

(E2
− k2

(4) − p2
(4))

2
− 4k2

(4) p2
(4)

4E2
,

k2
(4) = ω2

− k2, p2
(4) = ω′2

− p2,

E2
min = (ω +ω′)2 − (k + p)2,

E2
max = (ω +ω′)2 − (k − p)2.

(12)

The spin–isospin factor dSI = 4N f counts the degeneracy of available meson (or diquark) states,
e.g. with total spin-0 and -1 for S-wave heavy-light scattering [14]. In the expression for the HQ
selfenergy, equation (10), the thermal light quarks are treated as zero-width quasiparticles so that
their spectral functions can be replaced by δ functions (but with thermal mass ∼ gT )1. We recall
that the gluonic contributions are entirely attributed to the mean-field type condensate term (for
HQ transport, we include HQ–gluon interactions to leading order in perturbation theory which
does not generate an imaginary part in the scattering amplitude). The real part of the selfenergy
is obtained by a dispersion relation which is a preferred procedure in a selfconsistent treatment
since the normalization of the spectral functions can easily be guaranteed. Our framework is
similar to the one utilized in [17] in the light-quark sector. However, in there the calculations
of the T -matrix were restricted to on-shell selfenergies, while here we use the full off-shell
selfenergy of the heavy quark which, in particular, enables to establish the correct low-energy
behavior of the mesonic spectral functions (in addition to refinements in the implementation of
the potential, as developed in [10], the nonpotential corrections are expected to be significantly
larger for light-quark interactions).

Let us finally comment on relations of imaginary parts in the two-body potential and the
single-quark selfenergy. Using effective field theory (EFT) at finite temperature it has been
found that the two-body potential operator figuring into a Schrödinger equation acquires an

1 This is mainly done for numerical reasons. We have checked that using an off-shell quark spectral function leads
to very similar results.

New Journal of Physics 13 (2011) 045007 (http://www.njp.org/)

http://www.njp.org/


7

imaginary part [29]–[32]. Diagrammatically, this implies that the potential possesses on-shell
cuts corresponding to dissociation processes of the composite (bound) state. In combination
with weak coupling techniques, two types of thermal dissociation contributions have been
identified for small binding energies, EB � T,m D ∼ gT , one originating from Landau damping
in the (spacelike) one-gluon exchange and the other one due to so-called color-singlet-to-octet
transitions [30]. The former dominates over the latter if EB � m D (as relevant for excited states
or the case of reduced in-medium J/ψ binding energies close to its dissolution temperature).
Landau damping is also the origin of the imaginary part of the two-body potential discussed
in [29, 31, 32]. The actual process is a scattering (or ‘quasifree’) dissociation [34], p + J/ψ →

p + c + c̄, induced by thermal partons p = g, q, q̄ (which generate the imaginary part of the one-
loop selfenergy of the exchanged gluon). In the limit of small binding (or large charmonium
size), the incoming thermal partons with energy ∼ T do not sense the size of the bound state
and thus the scattering effectively happens on an individual charm (or anti-charm) quark. In the
T -matrix formalism this process is encoded in the selfenergy of a single (anti-) charm
quark, which is included in our calculations. For larger binding energies the singlet-to-
octet mechanism, induced by absorption of a thermal gluon, becomes competitive and
eventually dominant; for EB > T the EFT potential becomes real and imaginary parts figure
through loop corrections, with the leading contribution from the singlet-to-octet break-up [30].
Diagrammatically, it corresponds to the gluo-dissociation process, g + J/ψ → c + c̄, first
analyzed by Bhanot and Peskin [33] (up to final-state interactions in the octet channel, which,
however, are suppressed by 1/N 2

c and thus numerically negligible). In our T -matrix formalism,
the inclusion of this process would require a coupled-channel treatment, with a cc̄-gluon
intermediate state, whose cut produces the corresponding decay channel. Such a calculation
is beyond the scope of the present work. Naively, gluo-dissociation is of lower order in αs than
quasifree dissociation, but the former runs out of phase space for small EB [34]. For large
binding, quasifree dissociation ceases since the thermal parton does not resolve the substructure
of the color neutral bound state [29, 31]. When formulated as a potential contribution, the large-
distance limit of its imaginary part coincides with twice the imaginary part of the charm-quark
selfenergy [29]. Therefore our T -matrix calculations using a real potential are well in line with
the use of a complex potential in a Schrödinger treatment. In the T -matrix, imaginary parts are
generated via unitarization of intermediate (on-shell) states including single-particle selfenergy
contributions.

3. Quarkonia

In this section we apply the selfconsistent T -matrix to charmonia with special consideration
of the zero-mode contribution (section 3.1) to the Euclidean correlators in different mesonic
channels, α = S, P S, V, AV , i.e. scalar, pseudoscalar, vector and axialvector, respectively
(section 3.2), followed by a discussion of numerical results using either U or F as underlying
two-body potential (section 3.3).

3.1. Spectral functions and zero modes

With the cc̄ T -matrix from equation (1) we proceed to determine the charmonium spectral
function including both bound and scattering states, as in [10]. The T -matrix signifies the
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rescattering contribution to the correlation function, which is schematically given by [8]

G = G0 + G0 T G0, (13)

where G0 denotes the free two-particle loop. This can be be represented diagrammatically as

G = , (14)

where compared to equation (6) the loop now also includes an integration over relative
momentum, k, as well as vertices (denoted by dots) specifying the quantum-number channel α.
The spectral function is then defined as usual by ρ = −2 Im G.

Quantitative comparisons to Euclidean correlator ratios as ‘measured’ in lQCD [35, 36]
require the inclusion of zero-mode contributions [12, 13], which turn out to be different
for different meson channels α. This, in particular, lifts the spin degeneracy within S-wave
(P S − V ) and P-wave (S − AV ) states of the T -matrix. This is not surprising since HQ
symmetry is not expected to be valid for zero modes. A relativistic evaluation of the vertices
figuring into ρzm

α ≡ −2 Im Gph
α is therefore in order. To be consistent with the treatment of the

T -Matrix we evaluate this contribution beyond the zero-width quasiparticle approximation (as
applied in the literature to date) by taking into account the finite width of the quark. As in
previous literature, we focus on the leading part of the zero-mode contribution, which does not
involve a two-body potential contribution2. Augmenting equation (9) with relativistic vertices
one obtains [12]

ρzm
α (P)= 2Nc

∫
d4k

(2π)4
Tr[(k/+ mc) 0 (r/+ mc) 0

†] × ρ+
c (k) ρ

+
c (r) [ f F(k0)− f F(r 0)]

= 2Nc

∫
d4k

(2π)4
4 F0(k, r,mc)× ρ+

c (k) ρ
+
c (r) [ f F(k0)− f F(r 0)], (15)

where we introduced the notation

r = P + k, 0 ∈ {1, γ5 , γ0, γi , γ5γi}, (16)

with r , k and P = (E,P) denoting 4-vectors for the purposes of the above two and the following
equation only. The kinematic factors arising from the different Dirac structures take the form

F1(k, r,m)= k · r + m2
c,

Fγ5(k, r,m)= k · r − m2
c,

Fγ0(k, r,m)= k0 · r0 + k · r + m2
c,

Fγi (k, r,m)= 3 r 0k0
− r · k − 3m2

c,

Fγ5γi (k, r,m)= 3 r 0k0
− r · k + 3m2

c;

(17)

a summation over spatial indices i is implied for the vector and axialvector case. In the
previously adopted zero-width approximation the zero-mode spectral function can be simplified
to [12]

ρzm
α (E,P → 0)= 2πE δ(E)χα(T ), (18)

2 A nonperturbative treatment of the particle–hole interaction would require a relativistic treatment solving the
Bethe–Salpeter equation, which goes beyond the potential approximation adopted here.
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where

χα(T )= − 2Nc

∫
d3k
(2π)3

(
c1 + c2

k2

ωc(k)2

)
∂ f c(ωc(k))
∂ωc(k)

(19)

denotes a generalized susceptibility with coefficients corresponding to different quantum
number channels according to

0 = 1 ⇒ c1,2 = 2,−2, 0 = γ5 ⇒ c1,2 = 0, 0,

0 = γ0 ⇒ c1,2 = 2, 0, 0 = γi ⇒ c1,2 = 0, 2,

0 = γ5γi ⇒ c1,2 = 6,−4.

In our numerical calculations reported below we evaluate ρzm
α directly from equation (15)

using the positive-energy charm-quark spectral function, equation (7), with the selfconsistently
determined off-shell selfenergy. This puts the treatment of the zero-mode contribution on the
same level as the cc̄ scattering and bound-state part using the two-particle propagator G12 in
equation (6).

3.2. Euclidean correlator ratios

The transformation of the spectral function to the Euclidean correlator is given by

Gα(τ, T )=

∫
dE

2π

[
ρα(E, T )+ ρzm

α (E, T )
]
K(τ, E, T ),

K(τ, E, T )=
cosh[E (τ − 1/2T )]

sinh[E/2T ]
.

(20)

As before, we focus an vanishing total three-momentum, P = 0, of the Q Q̄. The temperature
kernel K imprints an exponential τ dependence on the correlator. To better exhibit the in-
medium modifications of Gα(τ, T ) it is therefore common to analyze the correlator ratio

Rα
G(τ, T )=

Gα(τ, T )

Grec
α (τ, T )

, (21)

where the denominator is the so-called reconstructed correlator which is evaluated with the
kernelK at temperature T , but with a ‘reference’ spectral function typically taken as the vacuum
one (or at low temperature T ∗ where no significant medium modifications are expected).

3.3. Numerical results

Before turning to the numerical results for the finite-T spectral functions and correlator ratios
let us briefly summarize our input quantities, largely as given in [10] (where more details can be
found, including extensive analysis of the associated uncertainties). Our potentials (F or U ) are
based on fits to the lattice results for (2+1)-flavor QCD from [37]–[39] (‘potential 1’ in [10]).
In vacuum our off-shell calculations reproduce the results of [10] since in the limit of vanishing
c-quark width the propagator G12 reduces to the standard Thompson form. The bare charm-
quark mass is set to m0

c = 1.264 GeV, which, together with a vacuum selfenergy of X vac
∞
/2 =

0.6 GeV, gives a fair description of the spin-average masses of J/ψ-ηc, ψ ′ and χc states.
The full off-shell treatment with more realistic c-quark propagators in the present work

leads to moderate but significant changes for the in-medium results. In addition, the zero-mode
contributions in the V , S and AV channels (recall equation (15)) have a marked impact on
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the corresponding correlator ratios. For a comparison to lQCD correlator ratios we choose
the results of the N f = 2 computations from [36], which correspond more closely to our
input potentials than quenched calculations. The critical temperature in the simulations of
the lQCD correlator ratios [36] is Tc ' 210 MeV, which is not far from the one underlying
our potential [37], Tc ' 196 MeV. Therefore, rather than normalizing to the different Tcs, we
compare our results for the correlator ratios with the lQCD data in absolute units of Euclidean
time, τ . Each correlator ratio is plotted up to the midpoint, τ = 1/2T , of the total τ range (the
correlators are symmetric about this point). Thus, comparable temperatures are easily identified
by the same τ range in the plotted ratio (if one were to normalize all results to Tc, lQCD data at
given absolute temperature would be compared to T -matrix calculations at slightly lower T ).

The in-medium results using the internal energy, U , as potential are summarized in figure 1
in terms of the S- and P-wave spectral functions in the upper panels (degenerate for ηc-J/ψ and
for χc states) and the correlator ratios in the middle and lower panels (where the degeneracies
are lifted by the zero modes). Since the (magnitude of the) imaginary part of the selfconsistently
calculated c-quark selfenergy turns out to be around 0.050–0.100 GeV for low-momentum on-
shell charm quarks (cf figure 3 below), the closest comparison to our earlier quasiparticle results
is for the case of a constant (energy and three-momentum independent) imaginary part of
Im6Q = −0.05 GeV (figure 14 in [10]). In the S-wave spectral function we find slightly more
attraction for the ground-state peak for temperatures below 1.5 Tc (for higher T it dissolves, as
in [10]). Despite the larger on-shell width in our present treatment, which is up to twice as large
as in our previous quasiparticle calculations, the width of the J/9-ηc peaks is very similar.
This is a direct consequence of the energy and momentum dependence of the selfenergy which
decreases considerably off-shell (cf figure 3 below) and thus reduces the ‘operative’ width of
c-quarks in cc̄ bound states. It becomes apparent in the ηc correlator ratio (where no zero-mode
is active), which at the lowest considered temperature (1.2 Tc) drops to about 0.85 compared
to 0.9 in [10], even though the peak position of the bound state is shifted to slightly lower
energies in the present calculation (which tends to increase the large-τ correlator ratio). This
finding shows that a proper off-shell treatment is warranted to correctly account for the low-
energy strength in the spectral function, which has significant impact on the correlator ratio
at large τ . We are not very concerned that the drop to 0.85 is noticeably larger than in the
lQCD data since we have neglected several effects which will contribute further low-energy
strength to the spectral function, e.g. imaginary parts in the c-quark selfenergy from scattering
off thermal gluons, or coupled channels in the cc̄ T -matrix such as DD̄ and cc̄g (inducing
singlet-to-octet transitions). These are expected to be especially relevant close to Tc (D-meson
states will form close to Tc and gluo-dissociation is efficient for large charmonium binding,
EB > T ). On the other hand, we note that the P S correlator ratio is remarkably independent
of temperature and closer to one for intermediate and small τ than in [10] (e.g. no more than
∼2% above one), which improves the agreement with lQCD. In the V , S and AV channels
the zero-mode contributions lead to a marked enhancement of the correlator ratios at large τ ,
especially for the P-wave channels, where the c1 coefficient is nonzero (for the vector channel,
we sum over the spatial components only, corresponding to 0 = γi in equation (15)). Compared
to a zero-width treatment of the zero-mode contribution, corresponding to equation (19), the
inclusion of a finite quark width increases the correlator ratios at large τ by about 0.1–0.15.
Overall, the agreement of the calculated correlator ratios with N f = 2 lQCD data [36] included
in the middle and lower panels of figure 1 is fair. The largest discrepancies of about ∼30% at
both intermediate and large τ occur in the AV (χc1) channel, where the zero-mode contribution
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Figure 1. Charmonium spectral functions in the pseudoscalar (upper left panel)
and scalar (upper right) channel for different temperatures using the internal
energy, U , as Q Q̄ potential. In the middle and lower rows we show the
corresponding Euclidean correlator ratios in the pseudoscalar (middle left),
scalar (middle right), vector (lower left) and axialvector channels (lower right),
where the latter three include zero-mode contribution. The comparison to the
lattice data (indicated by symbols) [36] is made in absolute units of τ (limited
to 1/2T at each temperature), with Tc ' 210 MeV for the lattice data and
Tc ' 196 MeV underlying the potential for the T -matrix calculations (e.g. 1.4
T lat

c ' 1.5T Tmat
c ).
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Figure 2. Same as figure 1 but using the free energy, F , as Q Q̄ potential.

is the strongest. The extracted melting temperatures of the charmonium bound states are close
to our earlier determination with finite but constant width [10], i.e. about 1.5 Tc for the J/9 and
below 1.2 Tc for all other states (9 ′, χc).

The results obtained using the free energy, F , as potential are compiled in figure 2. As in
previous work [9, 10, 40], we find a much stronger suppression of the bound states compared
to using U , with a melting temperature for the S-wave ground state of 1.2 Tc or even lower,
whereas the P-wave spectral function is already structureless at this temperature. Nevertheless,
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Figure 3. Real and imaginary parts of the charm-quark selfenergy at vanishing
three-momentum in a QGP at different temperatures for the scenarios where the
internal (left panel) or free energy (right panel) is employed as potential. The
imaginary parts are negative definite, while the real parts change sign close to the
vertical lines, which indicate the effective charm-quark mass (on-shell energy)
at the respective temperature.

the correlator ratio in the ηc channel (no zero mode) is surprisingly T -stable and close to one:
the loss of low-energy strength due to the dissolved bound state is compensated by a reduced
cc̄ threshold in connection with a nonperturbative rescattering strength in the threshold region
generated through the T -matrix [8]. Indeed, the in-medium charm-quark mass (correction)
following from equation (8) for F∞ is significantly smaller than for U∞. This, however,
generates a markedly enhanced zero-mode contribution to the correlator ratios in the V , S
and AV channels, compared to the case with U as potential (the effect of the selfconsistently
calculated finite quark width in the zero modes is an about 10% enhancement at large τ ). In
particular, in the P-wave channels, the large-τ values exceed quite substantially the N f = 2
lQCD data. Apparently a potential closer to the internal energy is favored (with larger m∗

c but
stronger cc̄ binding).

4. Open-charm transport

We now turn to examining the numerical results for the single charm-quark properties in the
QGP, specifically its selfenergy (mass correction and scattering rate; section 4.1), thermal
relaxation rate (section 4.2) and number susceptibility (section 4.3). We recall that these are
selfconsistently computed via numerical iteration with the T -matrix in all heavy-light quark
channels (equation (1)).

4.1. Selfenergy

The real and imaginary parts of the charm-quark selfenergy following from the T -matrix are
displayed in figure 3 as a function of quark energy for vanishing three-momentum and for
three temperatures. The general structure is that of a maximum around the on-shell energy,
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ω ' m∗

c , in the imaginary part, associated with a typical zero crossing in the real part. The
peak structure is caused by Feshbach type resonances (or threshold enhancements) around the
heavy-light quark threshold in the T -matrix [10, 14]. These features are the reason that, upon
(off-shell) integration over ω in the two-particle propagator (T -matrix), the contributions from
the real part largely cancel, while the width effects drop significantly more quickly (and thus on
average are smaller) than for a constant quasiparticle particle width, as employed in previous
work [8, 10, 14].

More quantitatively, in the case of U as potential (left panel in figure 3), the on-shell
width of the charm quark reaches a value of up to 0c = −2 Im6c ' 250 MeV at the lowest
considered temperature (1.2 Tc), quite similar to what has been calculated in [14] using different
lQCD inputs for U . The magnitude decreases with increasing temperature (not as much as
in [14]), which is quite remarkable given the fact that the thermal densities of the thermal anti-/
quarks decrease appreciably (in the ‘T -%’ approximation, the selfenergy would be directly
proportional to the light-quark density,6c ∼ Tcqnq). It clearly reflects the weakening of the two-
body interaction as temperature increases, due to color-charge screening in both the Coulomb
and confining parts of the potential. In other words, the maximal interaction strength is realized
at the lowest temperature, just above Tc.

For the F-potential the c-quark selfenergy is reduced by approximately a factor of 6 at the
lowest temperature, which reduces to a factor of ∼2–3 at 2 Tc. In this scenario, no Feshbach
resonances form, but rescattering embodied in the T -matrix still produces a notable threshold
enhancement, which induces an on-shell width of about 40–70 MeV.

4.2. Thermal relaxation rate

Next we turn to the calculation of the thermal relaxation rate of charm quarks in the QGP,
employing a Fokker–Planck treatment following [41]. The relation of the drag coefficient,
A(p), to the T -matrix has been elaborated in [14], including all color configurations in
c-q and c-q̄ scattering in S- and P-waves. For a more realistic evaluation of the total coefficient,
we add to the T -matrix contribution the effect of c-quark scattering off thermal gluons, which
we approximate with the leading order perturbative diagrams (using αs = 0.4), including Debye
screening masses in the exchange propagators (t-channel gluon exchange gives the dominant
contribution). In figure 4 the full results for A(p) are compared to perturbative calculations in
which scattering off both anti-/quarks and gluons is obtained from the LO diagrams. Compared
to the quasiparticle treatment in [10], the full off-shell treatment leads to an approximately
10% increase of the drag coefficient at low three-momenta, while the deviations are small at
momenta of k > 2 GeV. This is well in line with the finding in [10] that the dependence of
the drag coefficient on the 3D reduction scheme of the T -matrix equation (relating to its off
energy-shell behavior via different two-particle propagators) is small. Thus, we confirm as a
robust feature that c-quark thermalization using the nonperturbative T -matrix is accelerated
over pQCD calculations by about a factor of 4 (2) when using U (F) as potential.

In addition to the direct calculation of the relaxation rate following from the collision term
in the Boltzmann (or Fokker–Planck) equation with the heavy-light T -matrix [10, 14], the off-
shell framework set up in the present paper enables an alternative method, namely from the
zero-energy limit of the heavy-quarkonium spectral function [11, 42],

γc =
T

mc Ds
, Ds =

1

χc(T )
lim
ω→0

ργi (ω, 0)

2ω
(22)
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Table 1. Comparison of charm-quark relaxation rates, γc(k = 0; T ), as obtained
from the heavy-light T -matrix [10] (second column) and from a Kubo formula
for the diffusion coefficient (third column) using the low-energy limit of
the heavy-quarkonium spectral function, equation (22), for the two different
scenarios for potential (upper and lower table). The last column lists a schematic
estimate of the viscosity to entropy-density ratio using the kinetic-theory
relation, equation (23), including the contributions from scattering off thermal
gluons (the quoted ranges only reflect the variation in the two preceding columns;
the true uncertainty is larger).

T (Tc) Heavy-light Quarkonium ‘η/s’
T -matrix spectral function

γc (1/fm) with U -potential
1.2 0.137 0.177 0.16–0.2
1.5 0.136 0.148 0.28–0.3
2.0 0.180 0.147 0.41–0.47
γc (1/fm) with F-potential
1.2 0.034 0.034 0.6
1.5 0.044 0.036 0.73–0.8
2.0 0.075 0.051 0.8–0.96
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Figure 4. Charm-quark relaxation rate as a function of three-momentum
for different temperatures using either the T -Matrix plus pQCD gluon
scattering [10] (upper three lines in left panel) or a pQCD calculation for
scattering off gluons and anti/quarks (lower three lines in left panel). The
T -matrix is computed using U (left) or F (right) as potential while pQCD
contributions are obtained with αs = 0.4.

(χc ≡ χ00: charm-quark number susceptibility, Ds: spatial diffusion constant). The values
extracted from this method correspond to the zero-momentum limit and are compared to the
pertinent values from the collision integral using the heavy-light T -matrix in table 1 (for a
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consistent comparison the contribution from scattering off thermal gluons is not included).
Note that the latter involves the Qq scattering amplitude squared, while the imaginary part
of the quarkonium spectral function is basically determined by the imaginary part of the single-
quark spectral function which, in turn, is obtained from the imaginary part of the heavy-light
scattering amplitude, cf equation (10). We find that the extraction from the low-energy limit
of the charmonium spectral function in the vector channel tends to give larger (smaller) values
at lower (higher) for both U and F as two-body potential. One of the uncertainties which is
presumably reflected by these deviations is the Fokker–Planck approximation when using the
heavy-light T -matrix to evaluate the diffusion coefficient. For example, in [43] it has been found
that a D-meson resonance model in the QGP can lead to a violation of the Einstein relation by
underestimating γc by up to 10% at temperatures of T ' 300 MeV, while the agreement is closer
at lower temperatures (less than 5% for T < 250 MeV; note that the D-meson like correlations
in the T -matrix dissolve for temperatures above 1.5 Tc ' 300 MeV). Overall, the discrepancies
between the two methods are within ∼30%, which, given the different schemes of evaluating
this transport coefficient, is not too bad. The systematic trends are similar when using F or U
as potential, and the large difference between these two scenarios is robust.

Let us end this section by a schematic evaluation of the widely discussed ratio of viscosity
to entropy density, η/s. Using kinetic theory, one can roughly relate this quantity to the spatial
HQ diffusion coefficient as [3]

η

s
≈

1

5
T Ds. (23)

The numerical coefficient probably constitutes a lower limit, applicable to a weakly coupled
system; it is most likely larger for strongly coupled liquids, e.g. ∼1/2 in gauge-gravity dual
theories (AdS/CFT) [44]. Nevertheless, the results for U suggest that η/s is not far from the
conjectured lower limit of 0.08 for quantum liquids. Moreover, its T -dependence seems to
indicate a minimum value when approaching Tc from above, which would resemble rather
generic behavior of substances in the vicinity of a critical point. This feature is also present
for the F-potential, albeit the T -dependence is less pronounced; of course, the values are also
much larger compared to the U -potential, by approximately a factor of 2–4. In fact, the η/s
value for F at 2 Tc is quite close to perturbative calculations [45, 46] where η/s ' 1 with little
T -dependence, indicating that resummation effects in the T -matrix do not play a large role
under these conditions.

4.3. Charm-quark number susceptibility

Quark-number susceptibilities, χq , which we already utilized in connection with the c-quark
diffusion coefficient, equation (22), can be computed quite accurately in lQCD [47] and
are therefore of great interest to constrain effective models of the QGP. For example, HQ
number susceptibilities have been used to extract effective in-medium charm- and bottom-quark
mass corrections by fitting a zero-width quasiparticle expression, equation (19), to the lQCD
results [48]. Here, we carry out a full off-shell calculation including finite-width effects through
the single c-quark propagators figuring into the charmonium spectral function [49],

χc(T )=
1

T

∫
∞

0

dE

2π

2

1 − exp(−E/T )
ρ00(E, 0). (24)
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For high T � m Q, 6Q , this quantity reduces to

χc(T )=
2 Nc

6
T 2. (25)

In figure 5 we summarize our results for the HQ susceptibility and compare to
lQCD data as well as the zero-width quasiparticle limit (equation (19)) used in previous
estimates. When plotted as a function of temperature over in-medium c-quark mass (left panel),
the results for the U -potential are slightly above those for F (note that the in-medium c-quark
mass is 10–20% larger for the U -potential, mostly due to the larger mass correction resulting
from U∞/2 compared to F∞/2). The full results using U are significantly above an off-shell
calculation where the imaginary parts are put to zero, which in turn agree very well with the
zero-width quasiparticle limit (dashed line). When plotted as a function of temperature (right
panel in figure 5), it turns out that the results for F are somewhat above those for U , due to the
smaller mc(T ). On the other hand, the finite-width effects in the full results using U produce
an increase in χc over the no-width limit, which corresponds to a c-quark mass decrease of
approximately 150–200 MeV in the zero-width quasiparticle expression. Thus, finite widths
considerably affect the extraction of the in-medium c-quark mass from the susceptibility. This
effect also leads to a significant improvement in the comparison to lQCD results: the full results
with U roughly lie in the uncertainty band encompassed by the lQCD results, while the full
results with F tend to lie at the upper end of that band. At the lowest considered temperature, the
results for U seem to lie below the Nt = 8 lQCD computations, but as indicated in connection
with the large-τ limit of the S-wave charmonium correlator ratios, we believe that further
width (and coupled-channel) corrections need to be included close to Tc before more precise
conclusions can be drawn. At least the underestimate of the lQCD data in our calculations for
χc and the large-τ limit of RP S,V is consistent.

5. Conclusions

We have conducted a study of charmonium and open-charm properties in the QGP using a
thermodynamic T -Matrix formalism. For the first time in the context of heavy quarks in the
QGP, we have implemented this scheme selfconsistently at the one- and two-body level (i.e.
selfenergy and scattering amplitude), including microscopically calculated off-shell effects, in
particular imaginary parts. Within the Matsubara formalism, the two-particle propagator in the
T -matrix equation automatically generates ‘zero-mode’ contributions, i.e. scattering off pre-
existing charm quarks in the heat bath. Following our earlier work [10], the two-body input
potential was constructed using a field-theoretical model for Coulomb and confining forces with
its four parameters fitted to finite-temperature lQCD data of the color-averaged HQ free energy.
As limiting cases of the interaction strength we have considered the resulting free and internal
energy as an underlying potential. Once the input potential and the bare charm-quark mass are
fixed (the latter is adjusted to reproduce the charmonium ground-state mass in vacuum), there
are no further tunable parameters in the heavy-heavy and heavy-light sector of our approach; HQ
interactions with gluons are treated perturbatively but turn out to play a minor role (even with
αs = 0.4). We are then able to comprehensively compute hadronic spectral functions in different
charmonium and D-meson channels, as well as HQ selfenergies and transport properties in
the QGP. Specifically, we have applied these quantities to calculate Euclidean correlator ratios
for charmonia (consistently including zero-modes in scalar and axial/vector channels) and the
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Figure 5. Charm-quark number susceptibility as a function of temperature
normalized to the zero mass limit, equation (25). Left panel: comparison of our
full off-shell calculations with finite width (using either U or F as potential) to
the zero width-limit using U and the quasiparticle expression, equation (19), with
T -dependent c-quark mass; the temperature on the x-axis has been rescaled by
the respective in-medium masses in each scenario. Right panel: comparison of
our results to lattice computations in 2+1-flavor QCD with different numbers, Nt ,
of lattice points in temporal direction; the dashed lines indicate the zero-width
quasiparticle results using equation (19) for fixed c-quark mass, increasing in
steps of 0.1 GeV from top to bottom.

charm-quark number susceptibility, which have both been ‘measured’ with good accuracy in
thermal lQCD. Overall, we find an encouraging degree of agreement between our results and
those in lQCD, especially at temperatures T > 1.5 Tc (possibly with a preference for using
U as potential), keeping in mind that neither F nor U , as computed in lQCD, necessarily
provide a rigorous definition of a two-body potential, as both quantities are computed from
differences of thermal averages. Especially close to Tc a more complete description of charm
and charmonia remains a challenge, requiring further refinements such as the inclusion of (pre-)
hadronic states in the Q Q and Qq T -matrices (coupled channels), a nonperturbative treatment
of interactions with thermal gluons and a careful assessment of retardation effects. The large
entropy contribution in the HQ free energy close to Tc indeed suggests many additional states
to play a role. Another extension of our approach concerns the three-momentum dependence
of charmonium correlators/spectral functions, for which interesting lQCD results are now
becoming available [50].

Our analyses and findings reveal the intricate relation between charmonium bound-state
properties and HQ diffusion in the QGP, which, in particular, cannot be captured by perturbative
treatments. The very same (resummed) force that generates resonance-like correlations (or
threshold enhancements) in charmonium spectral functions—crucial for properly describing the
lQCD correlator ratios—is operative in low-momentum charm-quark scattering (closely related
to zero modes), and thus most likely instrumental in reducing the pertinent thermal relaxation
times, as required in phenomenological applications to RHIC data [14, 51]. It remains an open
question how large c-quark momenta need to be for radiative processes to become competitive
with elastic scattering [1, 52].
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In conclusion, we believe that studying the many-body physics of HQ systems in the QGP
can indeed reveal valuable insights into the medium modifications of the basic QCD force via its
effects on bound-state properties and heavy-flavor transport. The nonperturbative nature of the
problem, especially in the vicinity of Tc, requires effective approaches whose predictive power
greatly benefits from constraints obtained from thermal lQCD. This will hopefully pave the way
toward illuminating and quantifying the properties of the QGP even in the case of rather strong
coupling, and help understand some of the fascinating phenomena observed in ultrarelativistic
heavy-ion collisions.
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