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Abstract

Numerical modeling of wave propagation in heterogeneous media is important in many applica-
tions. Due to the complex nature, direct numerical simulations on the fine grid are prohibitively
expensive. It is therefore important to develop efficient and accurate methods that allow the use of
coarse grids. In this paper, we present a multiscale finite element method for wave propagation on
a coarse grid. The proposed method is based on the Generalized Multiscale Finite Element Method
(GMsFEM) (see [13]). To construct multiscale basis functions, we start with two snapshot spaces in
each coarse-grid block where one represents the degrees of freedom on the boundary and the other
represents the degrees of freedom in the interior. We use local spectral problems to identify important
modes in each snapshot space. These local spectral problems are different from each other and their
formulations are based on the analysis. To our best knowledge, this is the first time where multiple
snapshot spaces and multiple spectral problems are used and necessary for efficient computations.
Using the dominant modes from local spectral problems, multiscale basis functions are constructed
to represent the solution space locally within each coarse block. These multiscale basis functions are
coupled via the symmetric interior penalty discontinuous Galerkin method which provides a block
diagonal mass matrix, and, consequently, results in fast computations in an explicit time discretiza-
tion. Our methods’ stability and spectral convergence are rigorously analyzed. Numerical examples
are presented to show our methods’ performance. We also test oversampling strategies. In particular,
we discuss how the modes from different snapshot spaces can affect the proposed methods’ accuracy.

1 Introduction

Numerical modeling of wave propagation is important in many applications that include geophysics,
material science, and so on. For example, in geophysics applications, wave propagation simulations
play an important role in determining subsurface properties [32, 31, 29, 23, 30, 24]. These approaches
include finite difference methods, finite element methods, and spectral methods that use polynomials
basis [11, 19, 27, 18, 25, 20, 22, 21, 26, 33, 34, 35]. While these methods have different strengths
and weaknesses, all of them tend to have limitations associated with discretization, especially in 3-D
applications as frequency content of the simulated wavefield increases. Though the solutions to the wave
equation have been shown to be accurate when the grid is fine enough [12], the practical limitations
in discretization caused by limitations in computational power restrict this accuracy. An example of an
application where this may be important is in the modeling of fractured media, where establishing reliable
and accurate relationships between the properties of reflected seismic wavefields and variations in the
density, orientation and compliance of fractures may help provide important constraints for hydrocarbon
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production. While more general finite element and spectral element methods may be able to address some
problems by adapting grids to conform to heterogeneous structures, there are basic limitations associated
with representing fine-scale features, and there is therefore a need to find approaches that reliably and
accurately incorporate fine-scale features in a coarsely gridded model.

In this paper, we present a multiscale finite element method for wave propagation simulations on
a coarse grid. The proposed method is based on the Generalized Multiscale Finite Element Method
(GMsFEM) which was proposed in [13] and couples multiscale basis functions via a discontinuous Galerkin
coupling (cf. [14]). To construct multiscale basis functions, we start with two snapshot spaces in each
coarse-grid block where one represents the degrees of freedom on the coarse grid’s boundary and the other
represents the degrees of freedom in the interior. We use local spectral problems to identify important
modes in each snapshot space. These local spectral problems are different from each other and their
formulations are based on the analysis. Once local basis functions are identified, we couple these basis
functions via Interior Penalty Discontinuous Galerkin method [17, 28].

Because these basis functions are discontinuous, the interior penalty discontinuous Galerkin (IPDG)
method, for example [17, 10, 28], is an appropriate choice for solving the time-dependent partial differential
equation. It generally yields a block diagonal mass matrix, hence the time stepping is very efficient. The
staggered discontinuous Galerkin methods [3, 4] have been recently developed for the accurate wave
simulations. By using a carefully chosen staggered grid, the resulting method is also energy conserving.
Moreover, it is proved that (see [1, 6]) such method gives smaller dispersion errors, and therefore it
is superior for the wave propagation. The staggered idea has also been extended to other problems,
see for example [7, 8, 9, 5]. Recently, we have used standard MsFEM basis within staggered methods
[2, 16]. These methods allow some limited upscaling and provide energy conserving numerical methods
on staggered grids. In this paper, our goal is to construct a systematic enrichment by appropriately
choosing snapshot spaces and corresponding local spectral problems.

We will focus our discussions on two-dimensional problems. The extension to three-dimensional
problems is straightforward. Let Ω ⊂ R

2 be a bounded domain of two dimensions. The paper’s aim is to
develop a new multiscale method for the following wave equation

∂2u

∂t2
= ∇ · (a∇u) + f in [0, T ]× Ω (1)

with the homogeneous Dirichlet boundary condition u = 0 on [0, T ] × ∂Ω. The extension to other
boundary conditions will be reported in a forthcoming paper. The function f(x, t) is a given source. The
problem (1) is supplemented with the following initial conditions

u(x, 0) = g0(x), ut(x, 0) = g1(x).

We assume that the coefficient a(x) is highly oscillatory, representing the complicated model in which
the waves are simulated. It is well-known that solving (1) by standard methods requires a very fine
mesh, which is computationally prohibited. Thus a coarse grid solution strategy is needed. Next we
present our fine scale solver. The fine scale solution is considered as the exact solution when we discuss
the convergence of our multiscale method in the following sections. We assume that the domain Ω is
partitioned by a set of rectangles, called fine mesh, with maximum side length h > 0. We denote the
resulting mesh by T h and the set of all edges and vertices by Eh and N h respectively. We assume that
the fine-mesh discretization of the wave equation provides an accurate approximation of the solution.
The fine scale solver is the standard conforming bilinear finite element method. Let Vh be the standard
conforming piecewise bilinear finite element space. We find uh ∈ Vh such that

(
∂2uh

∂t2
, v) + a(uh, v) = (f, v), ∀v ∈ Vh, (2)

where the bilinear form a is defined by

a(u, v) =

∫

Ω

a∇u · ∇v, ∀u, v ∈ Vh (3)
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and (·, ·) represents the standard L2 inner product defined on Ω.
The numerical results are presented for several representative examples. We investigate the GMs-

FEM’s accuracy and, in particular, how choosing modes from different snapshot spaces can affect the
accuracy. Our numerical results show that choosing the basis functions from interior modes can improve
the accuracy of GMsFEM substantially for wave equations. These results differ from those we observe
for flow equations [13].

The paper is organized as follows. In Section 2, we will present the new multiscale method. Numerical
results are shown in Section 3. Stability and spectral convergence of the semi-discrete scheme are proved
in Section 4. In Section 5, the convergence of the fully-discrete scheme is also proved. Finally, conclusions
are presented.

2 The generalized multiscale finite element method

In this section, we will give a detailed description of our new generalized multiscale finite element method.
The method gives a numerical solver on a coarse grid, providing an efficient way to simulate waves in
complicated media. As we will discuss next, the local basis functions are obtained via the solutions of
some local spectral problems which are used to obtain the most dominant modes. These modes form the
basis functions of our multiscale finite element method.

We introduce a coarse mesh that consists of union of connected fine-mesh grid blocks which is denoted
by T H and the set of all edges by EH . We denote the size of the coarse mesh by H . Even though it
is convenient to choose rectangular coarse grid blocks, the shapes of the coarse grid blocks can be quite
general and our analysis can be applied without the assumption of rectangular coarse grid blocks.

For each coarse grid block K, we define ∂T h(K) be the restriction of the conforming piecewise bilinear
functions with respect to the fine mesh on ∂K. We remark that, for a coarse grid edge e ∈ EH that is
shared by two coarse grid blocks K1 and K2, the values of the two functions in ∂T h(K1) and ∂T h(K2)
on e are in general different. The union of all ∂T h(K) is denoted by ∂T h. Moreover, we define H1(T H)
as the space of functions whose restrictions on K belongs to H1(K).

2.1 Global IPDG solver

We will apply the standard symmetric IPDG approach to solve (1) on the coarse grid T H . The method
follows the standard framework as discussed in [17, 28], but the finite element space will be replaced by
the space spanned by our multiscale basis functions. We emphasize that the use of the IPDG approach
is an example of the global coupling of our local multiscale basis functions, and other choices of coarse
grid methods are equally good. The key to our proposed method’s success of is the construction of our
local multiscale basis functions.

First, we introduce some notations. For each interior coarse edge e ∈ EH , we let K− and K+ be
the two coarse grid blocks having the common coarse edge e. Then we define the average and the jump
operators respectively by

{v}e =
v+ + v−

2
,

[u]e = u+ − u−,

where u± = u|K± and we have assumed that the normal vector on e is pointing from K+ to K−. For
each coarse edge e that lies on the boundary of Ω, we define

{v}e = v, [u]e = u

assuming the unit normal vector on e is pointing outside the domain. Let VH be a finite dimensional
function space which consists of functions that are smooth on each coarse grid blocks but are in general

3



discontinuous across coarse grid edges. We can then state the IPDG method as: find uH(t, ·) ∈ VH such
that

(
∂uH

∂t2
, v) + aDG(uH , v) = l(v), ∀ v ∈ VH , (4)

where the bilinear form aDG(u, v) and the linear functional l(v) are defined by

aDG(u, v) =
∑

K∈T H

∫

K

a∇u · ∇v +
∑

e∈EH

(
−
∫

e

{a∇u · n}e [v]e −
∫

e

{a∇v · n}e [u]e +
γ

h

∫

e

a[u]e [v]e

)

l(v) = (f, v)

where γ > 0 is a penalty parameter and n denotes the unit normal vector on e. The initial conditions for
the problem (4) are defined by uH(0) = PH(g0) and (uH)t(0) = PH(g1), where PH is the L2-projection
operator into VH .

Let T > 0 be a fixed time and ∆t = T/N be the time step size. The time discretization is done in
the standard way, we find un+1

H ∈ VH such that

(un+1
H , v) = 2(un

H , v)− (un−1
H , v)−∆t2

(
aDG(u

n
H , v)− l(v)

)
, ∀ v ∈ VH (5)

in each time step. Throughout the paper, the notation un represents the value of the function u at time
tn. The initial conditions are obtained as follows

u0
H = PH(g0),

u1
H = u0

H +∆t PH(g1) +
∆t2

2
ṽ,

where ṽ ∈ VH is defined by

(ṽ, v) = (f(0), v)− aDG(g0, v), ∀ v ∈ VH .

2.2 Multiscale basis functions

In this section, we will give the definition of the space VH . We will discuss the choice of our basis functions
on one single coarse grid block K, as the definitions on other coarse grid blocks are similar. We recall
that K is the union of a set of rectangular elements. We decompose the space VH into two components,
namely

VH = V 1
H + V 2

H .

The restrictions of VH , V 1
H and V 2

H on K are denoted by VH(K), V 1
H(K), and V 2

H(K) respectively. More-
over, the restriction of the conforming space Vh on K is denoted by Vh(K).

Definition of V 1
H(K). To define V 1

H(K), for each fine grid node xi on the boundary of K, we find
wi,K ∈ Vh(K) by solving ∫

K

a∇wi,K · ∇v = 0, ∀ v ∈ Vh(K) (6)

with boundary condition wi,K = 1 at xi and wi,K = 0 at the other grid points on the boundary of K.
The functions wi,K defined above are the a-harmonic extensions of the unit basis functions of ∂T h(K).
We let n be the number of these a-harmonic extensions and define

V 1
H(K) = span{w1,K , · · · , wn,K}.

We remark that n is the number of boundary grid points on ∂K and its value changes with K. In our
numerical simulations, we do not need to use all of these basis functions and use a local spectral problem
in the space of snapshots to identify multiscale basis functions by choosing dominant modes. We use
E to denote the sum of the reciprocal of the eigenvalues of the local spectral problem. We will choose
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the eigenfunctions corresponding to small eigenvalues so that the sum of the reciprocals these small
eigenvalues is a small percentage of E. The use of eigenfunctions corresponding to small eigenvalues
means that we use the coarse component in V 1

H(K) as the approximation space.
Local spectral problem on V 1

H(K). The spectral problem we propose is

∫

K

a∇wµ · ∇v =
µ

H

∫

∂K

wµv, ∀ v ∈ V 1
H(K). (7)

We assume that the eigenvalues are ordered so that 0 = µ1 < µ2 ≤ µ3 ≤ · · · ≤ µn. The corresponding
eigenfunctions in the snapshot space are denoted by w̃i,K , i = 1, 2, · · · , n, which are normalized with
respect to the L2-norm on ∂K. We denote the total energy on the coarse grid block K by EK which
is defined by EK =

∑n
i=2 µ

−1
i . We can then choose the first p eigenvalues so that the sum

∑p
i=2 µ

−1
i is

a portion of the total energy EK . Note that we can take different p for different coarse grid blocks K.
Finally we define

Ṽ 1
H(K) = span{w̃1,K , · · · , w̃p,K}.

Clearly, Ṽ 1
H(K) ⊂ V 1

H(K).
Definition of V 2

H(K). The space V 2
H(K) contains functions in Vh(K) that are zero on the boundary

of K, which is denoted by V 0
h (K).

Local spectral problem on V 2
H(K). We will use a suitable (another) spectral problem to identify

the important modes. The proposed eigenvalue problem has the following form: find zλ ∈ V 0
h (K) such

that ∫

K

a∇zλ · ∇v =
λ

H2

∫

K

zλv, ∀ v ∈ V 0
h (K). (8)

Assume that the eigenvalues are ordered so that λ1,K ≤ λ2,K ≤ · · · and the corresponding eigenfunctions
are denoted by zi,K , which are normalized with respect to the L2-norm on K. In practice, for each coarse
grid block, we can take the first m eigenfunctions, and the space V 2

H(K) is spanned by these functions,
that is

V 2
H(K) = span{z1,K , · · · , zm,K}.

In principle, one can choose different numbers of eigenfunctions for the space V 2
H(K) for different coarse

grid blocks. Nevertheless, our numerical results show that only the first few eigenfunctions are enough
to obtain a reasonable accuracy.

Orthogonality of V 1
H(K) and V 2

H(K). Finally, we point out the following orthogonality condition
which will be used in our analysis. For any v ∈ V 1

H(K) and u ∈ V 2
H(K), we conclude by (6) that

∫

K

a∇v · ∇u = 0. (9)

This means that the two spaces V 1
H(K) and V 2

H(K) are orthogonal.

3 Numerical Results

In this section, we will present some numerical examples to show the performance of our multiscale
method. The media that we will consider is a heterogeneous field which is a modified Marmousi model
(see the left plot of Figure 1). We have also considered more regular periodic highly heterogeneous fields
and observed similar results. We will compare both the accuracy and efficiency of our method with
the direct fine scale simulation defined in (2). To compare the accuracy, we will use the following error
quantities

e2 =
‖uH − u‖L2(Ω)

‖u‖L2(Ω)
, e2 =

√∑
K∈T H |

∫
K
uH −

∫
K
u|2

√∑
K∈T H |

∫
K
u|2

, eH1 =
‖∇(uH − u)‖L2(Ω)

‖∇u‖L2(Ω)
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which are the relative L2 norm error, the relative L2 norm error for coarse grid averages and the relative
L2 norm error of the gradient. We will also consider the jump error on coarse grid edges defined by

eJump =
∑

e∈EH

∫

e

[u]2e.

Moreover, we let toff be the time needed for offline computations and ton be the online computational
time. These quantities are used to compare the efficiency of our method with direct fine scale simulation.
To perform a fair comparison, we will use the same time step size for both of our GMsFEM and the fine
scale method, since we only consider spatial upscaling in this paper. However, we note that multiscale
basis functions can be used for different source terms and boundary conditions which will provide a
substantial computational saving. Furthermore, we will take γ = 2 and Ω = [0, 1]2 for all of our examples.
The initial conditions g0 and g1 are zero. Throughout the paper, all computational times are measured
in seconds.

The Ricker wavelet with frequency f0 = 20

f(x, y) = (10)2e−102((x−0.5)2+(y−0.5)2)(1− 2π2f2
0 (t− 2/f0)

2)e−π2f2
0 (t−2/fo)

2

is used as the source term. We will compute the solution at time T = 0.4. The coarse mesh size is taken
as H = 1/16. Each coarse grid block is divided into a 32× 32 grid, that is, n = 32. Thus, the fine mesh
size h = 1/512 and there are totally 128 and 961 local basis functions in the space V 1

H(K) and V 2
H(K)

respectively on each coarse grid block. The time step size for both GMsFEM and the fine grid solver is
taken as ∆t = h/80 in order to meet the stability requirement and the computation time for fine grid
solution is 55.06. We will compare the accuracy and efficiency of our method using the solution computed
at the time T = 0.2, which is shown in the right figure of Figure 1.
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Figure 1: Left: a subset of the Marmousi model. Right: fine grid solution.

In Table 1 and Table 2, we present the errors and computational times for the case with m = 1,
that is, we only use the first eigenfunction in the space V 2

H . We see that if we use 80% of the total
energy, the number of basis functions is between 33 and 40 on each coarse grid while the computational
time for the offline procedure is 1019.06 and the time for online computations is 32.43. Note that the
online computational time is about 59% of that of the online computational time of the direct fine grid
simulation. The relative L2 error and the relative error for cell averages are only 3.92% and 2.74%
respectively. In addition, the relative error for the gradient is 14.86% and the jump error is 0.003. When
75% of the total energy is used, the number of basis functions is reduced to a number between 24 and 29
while the computational time for the offline procedures is 326.83 and the time for online computations
is 18.21. The time for the online computation is 33% of the time required for direct fine grid simulation.
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The relative L2 error and the relative error for cell averages are increased slightly to 4.23% and 3.12%,
respectively. In Table 1, we also present the values of µmin for the space V 1

H . Moreover, the eigenvalues
are shown in Figure 3. The numerical solutions for these cases are shown in Figure 2. We note that
the error decay is not fast mostly due to the error contribution because of the modes corresponding to
the interior. Even though the error between the GMsFEM solution and the solution computed using the
entire snapshot space V 1

H is very small, the overall error between the GMsFEM solution and the fine-scale
solution may not be small because we have only used one basis function in V 2

H . Next, we will add more
basis functions from V 2

H and compare the errors.

Energy Number of basis e2 e2 eH1 eJump µmin

75% 24-29 0.0423 0.0312 0.1542 4.7304e-04 1.9414
80% 33-40 0.0392 0.0274 0.1486 3.0671e-04 2.9992

Table 1: Errors for various choices of energy for the space V 1
H .

Energy toff ton
75% 326.83 18.21
80% 1019.06 32.43

Table 2: Offline and online computational times.
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Figure 2: Left: 75% energy. Right: 80% energy.
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Figure 3: Eigenvalues for the space V 1
H .

Next, we will investigate the use of more eigenfunctions in the space V 2
H that will allow reducing the

overall error. To do so, we consider the first case where 75% energy in the space V 1
H is used and we

consider using various number of eigenfunctions in V 2
H . The errors and computational times are shown

in Table 3 and Table 4. In general, we obtain better numerical approximations as more eigenfunctions
are used. When two eigenfunctions are used (this corresponds to using less than 3% of the total local
degrees of freedom in constructing all GMsFEM basis functions), the relative error is 3.52% and the
online computational time is 18.64. When five eigenfunctions are used, the relative error is 1.93% and
the online computational time is 18.21. Thus, we see that adding a few eigenfunctions in the space V 2

H

will improve the multiscale solution. This indicates that for the multiscale wave simulations, the modes
that represent the interior nodes can improve the accuracy of the method and play an important role in
obtaining an accurate solution. The numerical solution for these 4 cases are shown in Figure 4. We see
that our method is able to capture the solution well. We also report the largest eigenvalue used in Table
3.

m e2 e2 eH1 eJump λmin

1 0.0423 0.0312 0.1542 4.7304e-04 3.4805e+04
2 0.0352 0.0259 0.1346 4.7030e-04 3.4873e+04
3 0.0227 0.0187 0.0945 4.5931e-04 5.5906e+04
5 0.0193 0.0163 0.0833 4.5910e-04 6.9650e+04

Table 3: Errors for various number of eigenfunctions in V 2
H for using 75% energy in V 1

H .

m toff ton
1 326.83 18.21
2 368.89 18.64
3 405.73 19.88
5 528.47 25.96

Table 4: Offline and online computational times for various number of eigenfunctions in V 2
H for using

75% energy in V 1
H .
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Figure 4: Numerical solutions with various number of eigenfunctions (m) in the space V 2
H for using 75%

energy in V 1
H . Upper-left: m = 1. Upper-right: m = 2. Lower-left: m = 3. Lower-right: m = 5.

We would like to remark that the computational gain will be higher when implicit methods are used or
we employ finer grids to resolve the problem. In the latter case, the CPU time for coarse-grid simulations
will not change.

3.1 The use of oversampling

In this section, we present the performance of the method when the basis functions in the space V 1
H are

obtained by oversampling. We consider the previous example. The oversampling technique is used and
the harmonic extension problems are solved on enlarged coarse grids, which are obtained by extending
the original coarse grids by H/16 on each side. The results for using one basis functions in V 2

H and various
number of basis functions in V 1

H are shown in Table 5. Moreover, we compute the errors using 73% energy
for V 1

H and various number of basis functions in V 2
H . The results are presented in Table 6. We observe

that there is no improvement in this case. This is due to the error from the modes representing internal
nodes.

Energy Number of basis e2 e2 eH1 eJump µmin

73% 24-30 0.0673 0.0583 0.1866 5.2038e-04 1.6755
79% 33-40 0.0640 0.0548 0.1827 3.4797e-04 2.5681
84% 45-55 0.0626 0.0534 0.1809 2.6388e-04 3.7918

Table 5: Simulation results with one basis function in V 2
H .

4 Stability and convergence

In this section, we will prove the stability and convergence of the generalized multiscale finite element
method constructed in Section 2. We will first state and prove some preliminary results, and then prove
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m e2 e2 eH1 eJump λmin

1 0.0673 0.0583 0.1866 5.2038e-04 3.4805e+04
2 0.0596 0.0524 0.1666 5.1865e-04 3.4873e+04
3 0.0488 0.0449 0.1332 5.0929e-04 5.5906e+04
5 0.0449 0.0419 0.1220 5.0793e-04 6.9650e+04

Table 6: Errors and computational times for various number of eigenfunctions in V 2
H for using E = 73%.

the main convergence theorem for the semi-discrete scheme (4).

4.1 Preliminaries

Before we analyze the convergence of our GMsFEM, we first prove some basic results. To do so, we
introduce some notations and state the assumptions required in our analysis. For functions u, v ∈
H1(T H), we define the bilinear form a(·, ·) by

a(u, v) =
∑

K∈T H

∫

K

a∇u · ∇v.

Moreover, for any function u ∈ H1(T H), we define the a-norm by

‖u‖a =

(
a(u, u) +

γ

h

∑

e∈EH

‖a 1
2 [u]e‖2L2(e)

) 1
2

and the a-semi-norm by
|u|a = a(u, u)

1
2 .

Furthermore, the broken H1-norm for u ∈ H1(T H) is defined as

‖u‖H1(T H) =

(
∑

K∈TH

|u|2H1(K) +
γ

h

∑

e∈EH

‖[u]e‖2L2(e)

) 1
2

.

Assumption 1 The function a(x) is bounded, that is, there exist positive numbers a0 and a1 such that

a0 ≤ a(x) ≤ a1, ∀x ∈ Ω.

This assumption implies that the norms ‖ · ‖a and ‖ · ‖H1(T H ) are equivalent.

In the following, we will describe the consistency of the method (4). We define the consistency error
by

Ruh
(v) = l(v)− (

∂2uh

∂t2
, v)− aDG(uh, v), ∀ v ∈ VH , (10)

where uh is the fine grid finite element solution defined in (2). Clearly, we have

Ruh
(v) = 0, ∀ v ∈ V 2

H (11)

since V 2
H ⊂ Vh. Thus, we only need to estimate Ruh

(v) for v ∈ V 1
H . The following lemma states that the

method (4) is consistent with the fine grid solution defined by (2). The proof will be presented in the
Appendix.
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Lemma 1 Let uh and u be the finite element solution defined in (2) and the exact solution of the wave
propagation problem (1) respectively. If u ∈ H2(Ω), then we have

|Ruh
(v)| ≤ C(u, f)h‖v‖a, v ∈ V 1

H (12)

where C(u, f) is a constant which depends on the solution u and the source term f but independent of
the fine mesh size h. This inequality gives the consistency of our method.

Next we will prove that the bilinear form aDG satisfies the following coercivity and continuity condi-
tions for suitably chosen penalty parameter γ > 0.

Lemma 2 Let γ be sufficiently large. Then we have

1

2
‖v‖2a ≤ aDG(v, v), ∀ v ∈ VH (13)

and
aDG(u, v) ≤ 2‖u‖a‖v‖a, ∀u, v ∈ VH . (14)

Proof: By the definition of aDG, we have

aDG(v, v) =
∑

K∈T H

∫

K

a∇v · ∇v +
∑

e∈EH

(
− 2

∫

e

{a∇v · n}e [v]e +
γ

h

∫

e

a[v]2e

)
,

and by the definition of the a-norm, we have

aDG(v, v) = ‖v‖2a − 2
∑

e∈EH

(∫

e

{a∇v · n}e [v]e
)
. (15)

Using the Cauchy-Schwarz inequality, we obtain

2
∑

e∈EH

( ∫

e

{a∇v · n}e [v]e
)
≤ 2h

γa0

∑

e∈EH

∫

e

{a∇v · n}2e +
a0
2

∑

e∈EH

γ

h

∫

e

[v]2e

which implies

2
∑

e∈EH

(∫

e

{a∇v · n}e [v]e
)
≤ h

γa0

∑

K∈T H

∫

∂K

(a∇v · n)2 + 1

2

∑

e∈EH

γ

h

∫

e

a[v]2e.

Since v is a piecewise linear function, there is a uniform constant Λ > 0 such that

2h
∑

K∈T H

∫

∂K

(a∇v · n)2 ≤ Λa1|v|2a. (16)

So we have

2
∑

e∈EH

( ∫

e

{a∇v · n}e [v]e
)
≤ Λa1

2γa0
|v|2a +

1

2

∑

e∈EH

γ

h

∫

e

a[v]2e.

Therefore, from (15), we obtain
1

2
‖v‖2a ≤ aDG(v, v), ∀ v ∈ VH

if we take γ ≥ Λa1a
−1
0 . Thus, we have proved (13).

11



We can prove (14) in the similar way. By the definition of aDG, we have

|aDG(u, v)|

=

∣∣∣∣∣
∑

K∈T H

∫

K

a∇u · ∇v +
∑

e∈EH

(
−
∫

e

{a∇u · n}e · [v]e −
∫

e

{a∇v · n}e · [u]e +
γ

h

∫

e

a[u]e · [v]e
)∣∣∣∣∣

≤ I1 + I2 + I3 + I4,

where

I1 =
∑

K∈T H

|
∫

K

a∇u · ∇v|, I2 =
∑

e∈EH

|
∫

e

{a∇u · n}e · [v]e|,

I3 =
∑

e∈EH

|
∫

e

{a∇v · n}e · [u]e|, I4 =
∑

e∈EH

γ

h

∫

e

|a[u]e · [v]e|.

First, we note that I1 and I4 can be estimated easily as follows:

I1 ≤
(
∑

K∈T H

∫

K

a|∇u|2
) 1

2
(
∑

K∈T H

∫

K

a|∇v|2
) 1

2

,

I4 ≤
(
∑

e∈EH

γ

h

∫

e

a[u]2e

) 1
2
(
∑

e∈EH

γ

h

∫

e

a[v]2e

) 1
2

.

For I2, we can estimate as follows

I2 ≤
(
h

γ

∑

e∈EH

∫

e

{a∇u · n}2e

) 1
2
(
∑

e∈EH

γ

h

∫

e

[v]2e

) 1
2

≤
(

h

γa0

∑

K∈T H

∫

∂K

(a∇u · n)2
) 1

2
(
∑

e∈EH

γ

h

∫

e

a[v]2e

) 1
2

≤ (
Λa1
γa0

)
1
2 |u|a

(
∑

e∈EH

γ

h

∫

e

[v]2e

) 1
2

.

The same idea can be applied to estimate I3 to obtain

I3 ≤ (
Λa1
γa0

)
1
2 |v|a

(
∑

e∈EH

γ

h

∫

e

a[u]2e

) 1
2

.

Finally, combining the above estimates, we have

|aDG(u, v)| ≤ 2‖u‖a‖v‖a

when γ ≥ Λa1a
−1
0 .

�

Next, we will prove the convergence of the semi-discrete scheme (4). First, we define the following
error quantities. Let

η = uh − wH , ξ = uH − wH , and ε = uh − uH , (17)

12



where wH ∈ VH is defined by solving the following elliptic projection problem

aDG(wH , v) = aDG(uh, v) +Ruh
(v), ∀ v ∈ VH . (18)

Notice that ε is the difference between the multiscale solution uH and the fine grid finite element solution
uh. Moreover, η measures the difference between the fine grid solution uh as its projection wH . In the
following, we will prove estimates for ε. First, we let

‖ε‖L∞([0,T ];L2(Ω)) = max
0≤t≤T

‖ε‖L2(Ω) and ‖ε‖L∞([0,T ];a) = max
0≤t≤T

‖ε‖a.

Then we will prove the following two inequalities, which estimate the error for the solution ε by the error
for the projection η and the initial errors I1 and I2, which are defined in the statements of the theorems.

Theorem 1 Let ε, η and ξ be the error quantities defined in (17). Then we have the following error
bound

‖εt‖L∞([0,T ];L2(Ω)) + ‖ε‖L∞([0,T ];a)

≤ C
(
‖ηt‖L∞([0,T ];L2(Ω)) + ‖η‖L∞([0,T ];H1(T H)) + ‖ηtt‖L1([0,T ];L2(Ω)) + I1

)
,

(19)

where I1 = ‖ξt(0)‖L2(Ω) + ‖ξ(0)‖H1(T H ).

Proof: First, using (4) and the definition of ξ, we have

(ξtt, v) + aDG(ξ, v) = (f, v)− ((wH)tt, v)− aDG(wH , v).

Then by (12), we have
(ξtt, v) + aDG(ξ, v) = (ηtt, v). (20)

Taking v = ξt in (20), we have

(ξtt, ξt) + aDG(ξ, ξt) = (ηtt, ξt),

which implies
1

2

d

dt

(
‖ξt‖2L2(Ω) + aDG(ξ, ξ)

)
≤ ‖ηtt‖L2(Ω)‖ξt‖L2(Ω).

Integrating from t = 0 to t = τ , we have

‖ξt(τ)‖2L2(Ω) +
1

2
‖ξ(τ)‖2a ≤ ‖ξt(0)‖2L2(Ω) + 2‖ξ(0)‖2a + 2

∫ τ

0

‖ηtt‖L2(Ω)‖ξt‖L2(Ω)

≤ ‖ξt(0)‖2L2(Ω) + 2‖ξ(0)‖2a + 2 max
0≤t≤T

‖ξt‖L2(Ω)

∫ T

0

‖ηtt‖L2(Ω).

Therefore, we obtain

‖ξt‖2L∞([0,T ];L2(Ω)) + ‖ξ‖2L∞([0,T ];a) ≤ C
(
‖ξt(0)‖2L2(Ω) + ‖ξ(0)‖2a + (

∫ T

0

‖ηtt‖L2(Ω) dt)
2
)
.

Finally, (19) is proved by noting that ε = η − ξ.

�

Theorem 2 Let ε, η and ξ be the error quantities defined in (17). Then we have the following error
bound

‖ε‖L∞([0,T ];L2(Ω)) ≤ C
(
‖ηt‖L1([0,T ],L2(Ω)) + ‖η‖L∞([0,T ];L2(Ω)) + I2

)
, (21)

where I2 = ‖ξ(0)‖L2(Ω).
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Proof: Integrating by parts with respect to time in (20), we have

−(ξt, vt) + ∂t(ξt, v) + aDG(ξ, v) = ∂t(ηt, v)− (ηt, vt).

Taking v(x, t) =
∫ γ

t
ξ(x, τ)dτ , we have vt = −ξ and v(γ) = 0. So,

(ξt, ξ)− ∂t(ξt, v)− aDG(vt, v) = ∂t(ηt, v) + (ηt, ξ),

which implies that

1

2

d

dt
‖ξ‖2L2(Ω) − ∂t(ξt, v)−

1

2

d

dt
aDG(v, v) = ∂t(ηt, v) + (ηt, ξ).

Integrating from t = 0 to t = γ, we have

1

2
‖ξ(γ)‖2L2(Ω) −

1

2
‖ξ(0)‖2L2(Ω) + (ξt(0), v(0)) +

1

2
aDG(v(0), v(0)) = (ηt(0), v(0)) +

∫ γ

0

(ηt, ξ).

Since ξt − ηt = (uH − uh)t, we obtain

(ξt(0)− ηt(0), v(0)) = ((uH − uh)t(0), v(0)) = 0.

Using the coercivity of aDG, we have

‖ξ(γ)‖2L2(Ω) ≤ ‖ξ(0)‖2L2(Ω) + 2

∫ γ

0

‖ηt‖L2(Ω) ‖ξ‖L2(Ω)

≤ ‖ξ(0)‖2L2(Ω) + 2 max
0≤t≤T

‖ξ‖L2(Ω)

∫ T

0

‖ηt‖L2(Ω).

Hence (21) is proved by noting that ε = η − ξ.

�

From Theorem 1 and Theorem 2, we see that, in order to estimate the error ε = uh − uH , we will
need to find a bound for η given that the initial values ξt(0) and ξ(0) are sufficiently accurate.

4.2 Convergence analysis

In this section, we will derive an error bound for η = uh−wH . Notice that, on each coarse grid block K,
we can express uh as

uh =

n∑

i=1

ci,Kw̃i,K +

n0∑

i=1

di,Kzi,K = u1,K + u2,K

for some suitable coefficients ci,K and di,K determined by a L2-type projection, where n0 is the dimension
of V 0

h (K). We write uh = u1+u2 with ui|K = ui,K for i = 1, 2. Moreover, we recall that C(u, f), defined in
(34), is the constant appearing in the consistency error estimate in Lemma 1. In the following theorem,
we will give an estimate for the difference between the fine grid solution uh and the projection of uh

into the coarse space VH defined in (18). The theorem says that such difference is bounded by a best
approximation error ‖uh − v‖a and a consistency error hC(u, f). We emphasize that, even though the
coarse mesh size H is fixed, but the fine mesh size h can be arbitrary small, and hence the consistency
error is small compared with the best approximation error ‖uh − v‖a.

Theorem 3 Let wH ∈ VH be the solution of (18) and uh be the solution of (2). Then we have

‖uh − wH‖a ≤ C(‖uh − v‖a + hC(u, f)), ∀ v ∈ VH . (22)
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Proof: By the definition of wH , we have

aDG(wH , v) = aDG(uh, v) +Ruh
(v), ∀ v ∈ VH .

So, we have
aDG(wH − v, wH − v) = aDG(uh − v, wH − v) +Ruh

(wH − v).

By (13), (14) and (12), we get

‖wH − v‖2a ≤ 2aDG(wH − v, wH − v)

= 2aDG(uh − v, wH − v) + 2Ruh
(wH − v)

≤ C(‖uh − v‖a + hC(u, f))‖wH − v‖a.

Finally, we obtain

‖uh − wH‖a ≤ ‖uh − v‖a + ‖wH − v‖a
≤ C(‖uh − v‖a + hC(u, f)).

�

From the above theorem, we see that the error ‖uh − wH‖a is controlled by the quantity ‖uh − v‖a
for an arbitrary choice of the function v ∈ VH . Thus, to obtain our final error bound, we only need to
find a suitable function v ∈ VH to approximate the finite element solution uh. In the following theorem,
we will choose a specific v in Theorem 3 and prove the corresponding error estimate.

Theorem 4 Let uh ∈ Vh be the finite element solution. Then we have

‖uh − φ‖2a ≤
∑

K∈T H

( H

µp+1,K
(1 +

2a1γH

hµp+1,K
)

∫

∂K

(a
∂u1

∂n
)2 +

H2

λm+1,K
‖f − utt‖2L2(K)

)
, (23)

where the function φ ∈ VH is defined as

φ|K =

p∑

i=1

ci,Kw̃i,K +
m∑

i=1

di,Kzi,K = φ1,K + φ2,K .

Proof: For a given coarse grid block K, using the orthogonality condition (9), we have

∫

K

a|∇(uh − φ)|2 =

∫

K

a|∇(u1 − φ1)|2 +
∫

K

a|∇(u2 − φ2)|2

which implies
‖uh − φ‖2a = ‖u1 − φ1‖2a + |u2 − φ2|2a,

where we write φ = φ1 + φ2 and φi|K = φi,K , for i = 1, 2. We will first estimate ‖u1 − φ1‖2a. By the
definition of a-norm, we have

‖u1 − φ1‖2a =
∑

K∈T H

( ∫

K

a|∇(u1 − φ1)|2 +
∑

e∈EH

γ

h

∫

e

a|[(u1 − φ1)]e|2
)

≤
∑

K∈T H

(∫

K

a|∇(u1 − φ1)|2 +
2γ

h

∫

∂K

a|(u1 − φ1)|2
)

≤
∑

K∈T H

(∫

K

a|∇(u1 − φ1)|2 +
2a1γ

h

∫

∂K

|(u1 − φ1)|2
)
.

(24)
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Next, we will estimate the right hand side of (24) for each K.
We note that the eigenvalue problem (7) is motivated by the right hand side of (24). In particular,

based on the right hand side of (24), we consider

∫

K

a∇wµ · ∇v +
1

H

∫

∂K

wµv = µ̂

∫

K

R(wµ) ·R(v), ∀ v ∈ V 1
H(K), (25)

where the choice of R, e.g., R =
√
a∇wµ, depends on how we would like to bound the error. Indeed,

choosing the eigenvectors that correspond to the largest LK eigenvalues, one can guarantee that the best
LK dimensional space in the space of snapshots is given by the first LK dominant eigenvectors. The choice
of R(·) is important and can influence the eigenvalue behavior. For example, the use of oversampling
domains both for the snapshot space and the eigenvalue can provide a faster convergence. In this paper,
we take

R =
√
a∇wµ,

which allows estimating the right hand side of (24) by the energy norm. Note that, in (7), we use the
smallest eigenvalues to determine the basis functions which is the same as choosing the largest eigenvectors
that correspond to the largest eigenvalues of (25) because µ̂ = 1 + 1

µ .

Note that the eigenvalue problem (7) is equivalent to

a
∂wµ

∂n
=

µ

H
wµ on ∂K.

So, for each K,

∫

∂K

(a
∂u1,K

∂n
)2 =

∫

∂K

(a
∂

∂n
(

n∑

i=1

ci,Kwi,K))2 =

∫

∂K

(

n∑

i=1

µi,K

H
ci,Kwi,K)2 =

n∑

i=1

(
µi,Kci,K

H
)2, (26)

where we have used the fact that
∫
∂K

wi,Kwj,K = δij . Then, by using the eigenvalue problem defined in
(7), we have

1

h

∫

∂K

|(u1,K − φ1,K)|2 =
1

h

4n∑

i=p+1

c2i,K ≤ H2

hµ2
p+1,K

4n∑

i=p+1

(µi,K

H

)2
c2i,K

and ∫

K

a|∇(u1,K − φ1,K)|2 =

4n∑

i=p+1

µi,K

H
c2i,K ≤ H

µp+1,K

4n∑

i=p+1

(
µi,K

H
)2c2i,K .

Note that, by using (26), we have,

4n∑

i=p+1

(
µi,K

H
)2c2i,K ≤

4n∑

i=1

(
µi,K

H
)2c2i,K =

∫

∂K

(a
∂u1,K

∂n
)2.

Therefore

‖u1 − φ1‖2a ≤
∑

K∈T H

( H

µp+1,K
(1 +

2a1γH

hµp+1,K
)

4n∑

i=p+1

(
µi,K

H
)2c2i,K

)

≤
∑

K∈T H

( H

µp+1,K
(1 +

2a1γH

hµp+1,K
)

∫

∂K

(a
∂u1

∂n
)2
)
.

(27)

Next, we will estimate |u2 − φ2|2a. Since uh satisfies

∫

K

a∇uh · ∇v =

∫

K

(f − (uh)tt) v, ∀ v ∈ V 0
h (K).
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Putting v = zi,K , we obtain

λi,K

H2
di,K =

∫

K

a∇uh · ∇zi,K =

∫

K

(f − (uh)tt) zi,K .

We define fi,K =
∫
K
(f − (uh)tt) zi,K . Then we have fi,K =

λi,K

H2
di,K and

n0∑

i=1

f2
i,K ≤ ‖f − (uh)tt‖2L2(K).

Hence,

|u2 − φ2|2a =
∑

K∈T H

∫

K

a|∇(u2 − φ2)|2

=
∑

K∈T H

∑

i≥m+1

λi,K

H2
d2i,K

≤
∑

K∈T H

H2

λm+1,K

∑

i≥m+1

λ2
i,K

H4
d2i,K

=
∑

K∈T H

H2

λm+1,K

∑

i≥m+1

f2
i,K

≤
∑

K∈T H

H2

λm+1,K
‖f − (uh)tt‖2L2(K).

�

We note that, by the technique in [14], we can also derive a bound for ‖u1 − φ1‖a as follows

‖u1 − φ1‖2a ≤
∑

K∈T H

∑

i≥p+1

c2i,K .

This bound shows the decay of the error when more basis functions are used.
The bound in (23) gives the spectral convergence of our GMsFEM. Notice that, the term

H
∑

K∈T H

∑

∂K

(a
∂u1

∂n
)2

is uniformly bounded and can be considered as a norm for u1. Thus, (23) states that the error behaves
as O(µ−1

p+1,K + λ−1
m+1,K). We note that the eigenvalues increase (and go to the infinity as the fine mesh

size decreases) and thus the error decreases as we increase the coarse space dimension.
Combining the results in Theorem 3 and Theorem 4, we obtain

‖η‖2a ≤ C
∑

K∈T H

(
H2

λm+1,K
‖f − utt‖2L2(K) +

H

µp+1,K
(1 +

2a1γH

hµp+1,K
)

∫

∂K

(a
∂u1

∂n
)2

)
+ h2C(u, f)2.

Similarly, we obtain

‖ηt‖2a ≤ C
∑

K∈T H

(
H2

λm+1,K
‖ft − uttt‖2L2(K) +

H

µp+1,K
(1 +

2a1γH

hµp+1,K
)

∫

∂K

(a
∂(u1)t
∂n

)2

)
+ h2C(ut, ft)

2.

Finally, using these bounds for η, as well as the estimates proved in Theorem 1 and Theorem 2, we obtain
estimates for the error ε.
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5 Fully discretization

In this section, we will prove the convergence of the fully discrete scheme (5). To simplify the notations,
we define the second order central difference operator δ2 by

δ2(un) =
un+1 − 2un + un−1

∆t2
.

From the semi-discrete scheme (4), we have

((uh)
n
tt, v) + aDG(u

n
h, v) = (fn, v)− Run

h
(v)

and the fully discrete scheme (5) can be written as

(δ2(un
H), v) + aDG(u

n
H , v) = (fn, v), for n ≥ 1.

Moreover, we define

rn =

{
un
tt − δ2(wn

H), for n ≥ 1,

∆t−2(ξ1 − ξ0), for n = 0,
(28)

and

Rn = ∆t
n∑

i=0

ri.

In order to prove the convergence for the fully discrete scheme, we first prove the following lemma.
The result will be needed in the derivation of an upper bound for the time step size ∆t.

Lemma 3 There exists a positive constant β(h) such that

aDG(v, v) ≤ β(h)−1‖v‖2L2(Ω), ∀ v ∈ VH .

Moreover, the constant β(h) can be taken as h2a−1
1 (24 + 32

√
3Λ + 16γ)−1.

Proof: We first note that, if p is a linear function defined on the interval I = [x1 − h/2, x1 + h/2],
then we have

‖p‖2L∞(I) ≤
4

h
‖p‖2L2(I) (29)

|p|2H1(I) ≤
12

h2
‖p‖2L2(I). (30)

Then by the definition of aDG and the Cauchy-Schwarz inequality, we have

aDG(v, v)

≤
∑

K∈T H

∫

K

a|∇v|2 − 2
∑

e∈EH

(∫

e

{a∇v · n}e · [v]e +
γ

h

∫

e

a[v]2e

)

≤
∑

K∈T H

∫

K

a|∇v|2 + 2(
∑

K∈T H

h‖a∇v · n∂K‖2L2(∂K))
1
2 (
∑

e∈EH

h−1‖[v]‖2L2(e))
1
2 +

γ

h

∑

e∈EH

∫
a[v]2e.

Then by using (16), a ≤ a1 and estimating the jump terms by L2(∂K) norms, we have

aDG(v, v)

≤ a1

(
∑

K∈T H

∫

K

|∇v|2 + 2(
∑

K∈T H

Λ

∫

K

|∇v|2) 1
2 (
∑

e∈EH

h−1‖[v]‖2L2(e))
1
2 +

γ

h

∑

e∈EH

∫
[v]2e

)

≤ a1

(
∑

K∈T H

∫

K

|∇v|2 + 4(
∑

K∈T H

Λ

∫

K

|∇v|2) 1
2 (
∑

K∈T H

h−1‖v‖2L2(∂K))
1
2 +

2γ

h

∑

K∈T H

‖v‖2L2(∂K)

)
.

(31)
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Thus, it remains to estimate ‖∇v‖L2(K) and ‖v‖L2(∂K).
We will estimate the term ‖∇v‖L2(K) first. For a given coarse grid block K, we can write it as the

union of fine grid blocks K = ∪F⊂KF , where we use F to represent a generic fine grid block. Since the
fine grid blocks are rectangles, we can write F as a tensor product of two intervals, namely, F = IFx × IFy .
For any v ∈ VH we can also write the restriction of v on F as v(x, y) = vF,1(x)vF,2(y).

∫

K

|∇v|2 =
∑

F⊂K

∫

F

|∇v|2

=
∑

F⊂K

(
h(v′F,2)

2

∫

IF
x

(vF,1(x))
2 + h(v′F,1)

2

∫

IF
y

(vF,2(y))
2

)

=
∑

F⊂K

(∫

IF
y

(v′F,2(y))
2

∫

IF
x

(vF,1(x))
2 +

∫

IF
x

(v′F,1(x))
2

∫

IF
y

(vF,2(y))
2

)
.

Then, using (30), we have

∫

K

|∇v|2 ≤ 12h−2
∑

F⊂K

(∫

IF
y

(vF,2(y))
2

∫

IF
x

(vF,1(x))
2 +

∫

IF
x

(vF,1(x))
2

∫

IF
y

(vF,2(y))
2

)

= 24h−2
∑

F⊂K

∫

F

|v|2.

Next, we estimate the term ‖v‖L2(∂K). For a generic fine grid cell F , we write IFx = [x1, x2] and
IFy = [y1, y2]. Then, by using (29),

‖v‖2L2(∂K) =
∑

F⊂K

∫

∂F∩∂K

(vF )
2

=
∑

F⊂K

(∫

∂F∩(Ix×{y1})

(vF,2(y1)vF,1(x))
2 +

∫

∂F∩(Ix×{y2})

(vF,2(y2)vF,1(x))
2

)

+
∑

F⊂K

(∫

∂F∩({x1}×Iy)

(vF,1(x1)vF,2(y))
2 +

∫

∂F∩({x2}×Iy)

(vF,1(x2)vF,2(y))
2

)

≤ 4

h

∑

F⊂K

(∫

∂F∩(Ix×{y1})

∫

[y1,y1+h]

vF,2(y)
2(vF,1(x)

2 +

∫

∂F∩(Ix×{y2})

∫

[y2−h,y2]

vF,2(y)
2vF,1(x)

2

)

+
4

h

∑

F⊂K

(∫

∂F∩({x1}×Iy)

∫

[x1,x1+h]

vF,1(x)
2vF,2(y)

2 +

∫

∂F∩({x2}×Iy)

∫

[x2−h,x2]

vF,1(x)vF,2(y)
2

)

≤ 4

h

∑

F⊂K

(∫

F

(vF,2(y)vF,1(x))
2 +

∫

F

(vF,1(x)vF,2(y))
2

)

=
8

h
‖v‖2L2(K).

Consequently, combining the above results and using (31),

aDG(v, v) ≤
a1
h2

(
24 + 32

√
3Λ + 16γ

)
‖v‖2L2(Ω).

�

Finally, we will state and prove the convergence of the fully discrete scheme (5).
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Theorem 5 Assume that the time step size ∆t satisfies the stability condition ∆t2 < 4β(h). We have

max
0≤n≤N

‖εn‖L2(Ω) ≤ C

(
‖ε0‖L2(Ω) + max

0≤n≤N
‖ηn‖L2(Ω) +∆t

N∑

n=0

‖Rn‖L2(Ω)

)
. (32)

Proof: Notice that

(δ2(un
H − wn

H + wn
H − un

h), v) + aDG(u
n
H − un

h, v) = ((uh)
n
tt − δ2(un

h), v) +Run
h
(v).

Using the definitions of ξ and wH , we have

(δ2(ξn), v) + aDG(ξ
n, v) = (rn, v), for n ≥ 1.

So we have

(
ξn+1 − ξn

∆t
, v)− (

ξn − ξn−1

∆t
, v) + ∆t aDG(ξ

n, v) = ∆t(rn, v).

Summing up, for n ≥ 1,

(
ξn+1 − ξn

∆t
, v)− (

ξ1 − ξ0

∆t
, v) + ∆t

n∑

i=1

aDG(ξ
i, v) = ∆t

n∑

i=1

(ri, v).

To simplify the notations, we define

Ξn = ∆t

n∑

i=1

ξi, for n ≥ 1; and Ξ0 = 0.

Then we get (
ξn+1 − ξn

∆t
, v

)
+ aDG(Ξ

n, v) = (Rn, v), n ≥ 1.

Substituting v = ξn+1 + ξn, we have

‖ξn+1‖2L2(Ω) − ‖ξn‖2L2(Ω) +∆t aDG(Ξ
n, ξn+1 + ξn) = ∆t(Rn, ξn+1 + ξn),

and summing for all n ≥ 1, we have

‖ξn+1‖2L2(Ω) − ‖ξ1‖2L2(Ω) +∆t

n∑

i=1

aDG(Ξ
i, ξi+1 + ξi) = ∆t

n∑

i=1

(Ri, ξi+1 + ξi).

Notice that we have Ξn+1 − Ξn−1 = ∆t(ξn+1 + ξn) for n ≥ 1. So

∆t
n∑

i=1

ãDG(Ξ
i, ξi+1 + ξi) =

n∑

i=1

aDG(Ξ
i,Ξi+1 − Ξi−1)

=
n∑

i=1

aDG(Ξ
i,Ξi+1)−

n−1∑

i=0

aDG(Ξ
i,Ξi+1)

= aDG(Ξ
n,Ξn+1).

Moreover,

aDG(Ξ
n,Ξn+1) = aDG(

Ξn + Ξn+1

2
,
Ξn + Ξn+1

2
)− aDG(

Ξn − Ξn+1

2
,
Ξn − Ξn+1

2
)

≥ −∆t2

4
aDG(ξ

n+1, ξn+1).
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So we have

‖ξn+1‖2L2(Ω) −
∆t2

4
aDG(ξ

n+1, ξn+1) ≤ ‖ξ1‖2L2(Ω) +∆t

n∑

i=1

(Ri, ξi+1 + ξi), n ≥ 1.

Using the assumption ∆t2 < 4β(h), we have Cs = 1− ∆t2

4β(h)
> 0. Therefore,

Cs‖ξn+1‖2L2(Ω) ≤ ‖ξ1‖2L2(Ω) +∆t

n∑

i=1

(Ri, ξi+1 + ξi)

≤ ‖ξ1‖2L2(Ω) + 2∆t max
1≤i≤n+1

{‖ξi‖L2(Ω}
n∑

i=1

‖Ri‖L2(Ω)

≤ ‖ξ1‖2L2(Ω) +
Cs

2
max

1≤i≤n+1
{‖ξi‖L2(Ω)}2 +

2

Cs

(
∆t

n∑

i=1

‖Ri‖L2(Ω)

)2

.

Then

max
1≤i≤n+1

{‖ξi‖L2(Ω)} ≤
√

2

Cs
‖ξ1‖L2(Ω) +

2

Cs
∆t

n∑

i=1

‖Ri‖L2(Ω).

Since ξ1 = ξ0 +∆t2r0, we have

max
1≤i≤n+1

{‖ξi‖L2(Ω)} ≤ C

(
‖ξ0‖L2(Ω) +∆t2‖r0‖L2(Ω) +∆t

n∑

i=1

‖Ri‖L2(Ω)

)

and using the definition of R0,

max
1≤i≤n+1

{‖ξi‖L2(Ω)} ≤ C

(
‖ξ0‖L2(Ω) +∆t

n∑

i=0

‖Ri‖L2(Ω)

)
.

Thus,

max
0≤i≤n+1

{‖ξi‖L2(Ω)} ≤ C

(
‖ξ0‖L2(Ω) +∆t

n∑

i=0

‖Ri‖L2(Ω)

)
.

Finally, by using the relation ε = η − ξ, we obtain (32).

�

Next, we will estimate the right hand side of (32). To do so, we prove the following lemmas.

Lemma 4 We have

‖r0‖L2(Ω) ≤ C(∆t−1‖ηt‖L∞([0,T ];L2(Ω)) +∆t‖(uh)ttt‖C([0,T ];L2(Ω))).

Proof: By (28), we have r0 = ∆t−2(ξ1 − ξ0) and by the definition of u0
H , we have

(u0
H − u0, v) = 0, ∀ v ∈ VH .

Then using the definitions of ξ1 and ξ0, we have

(ξ1 − ξ0, v) = (u1
H − w1

H , v)− (u0
H − w0

H , v)

= (u1
h − w1

H , v) + (u1
H − u1

h, v)− (u0
h − w0

H , v)

= ((u1
h − u0

h)− (w1
H − w0

H), v) + (u1
H − u1

h, v).
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The first term can be estimated in the following way

|((u1
h − u0

h)− (w1
H − w0

H), v)| ≤
∣∣∣(
∫ t1

0

∂t(uh − wH), v)
∣∣∣

≤ ∆t ‖ηt‖L∞([0,T ];L2(Ω))‖v‖L2(Ω).

To estimate the second term, by the Taylor’s expansion, we get

u1
h = u0

h +∆t (uh)
0
t +

∆t2

2
(uh)

0
tt +

∆t3

6
(uh)ttt(·, s), where 0 < s < t1.

By the definition of u1
H ,

(u1
H , v) = (u1

h, v) = (u0
h +∆t(uh)

0
t +

∆t2

2
(ṽ, v)

Thus,

(u1
H − u1

h, v) =
∆t2

2
(ṽ − (uh)

0
tt, v)−

∆t3

6
((uh)ttt(·, s), v)

=
∆t2

2
[(f0, v)− a(u0

h, v) + ((uh)
0
tt, v)]−

∆t3

6
((uh)ttt(·, s), v)

= −∆t3

6
((uh)ttt(·, s), v)

which proves the Lemma.

�

Lemma 5 For n ≥ 1, we have

‖rn‖L2(Ω) ≤ C(∆t−1

∫ tn+1

tn−1

‖ηtt(·, τ)‖L2(Ω) +∆t

∫ tn+1

tn−1

‖(uh)tttt(·, τ)‖L2(Ω)).

Proof: By the definition of rn,

‖rn‖L2(Ω) = ‖(uh)
n
tt − δ2wn

H‖L2(Ω)

≤ ‖δ2(wn
H − un

h)‖L2(Ω) + ‖(uh)
n
tt − δ2un

h‖L2(Ω).

Using the identity

vn+1 − 2vn + vn−1 = ∆t

∫ tn+1

tn−1

(
1− |τ − tn|

∆t

)
vtt(τ)dτ,

the first term can be estimated as follows

(δ2(wn
H − un

h), v) =
1

∆t

∫ tn+1

tn−1

(1− |τ − tn|
∆t

) (((wH)tt − (uh)tt), v) (τ)dτ

≤ 1

∆t

∫ tn+1

tn−1

‖ηtt(·, τ)‖L̃2(Ω) ‖v‖L̃2(Ω)dτ.

To estimate the term ‖(uh)
n
tt − δ2un

h‖L2(Ω), we use

δ2un
h = (uh)

n
tt +

1

6∆t2

∫ tn+1

tn−1

(∆t− |τ − tn|)3(uh)tttt(·, τ)dτ.

This implies

‖(uh)
n
tt − δ2un

h‖L2(Ω) ≤
∆t

6

∫ tn+1

tn−1

‖(uh)tttt(·, τ)‖L2(Ω)dτ.
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�

Using the definition of Rn and the above two lemma, we get

‖Rn‖L2(Ω)

≤ C
( ∫ tn

0

‖ηtt(·, τ)‖L2(Ω) + ‖ηt‖L∞([0,T ];L2(Ω)) +∆t2
∫ tn

0

‖(uh)tttt(·, τ)‖L2(Ω) +∆t2‖(uh)ttt‖C([0,T ];L2(Ω))

)
.

Hence we obtain

∆t

N∑

n=0

‖Rn‖L2(Ω)

≤ 2T max
0≤n≤N

‖Rn‖L2(Ω)

≤ C(

∫ T

0

‖ηtt(·, τ)‖L2(Ω) + ‖ηt‖L∞([0,T ];L2(Ω)) +∆t2
∫ T

0

‖(uh)tttt(·, τ)‖L2(Ω) +∆t2‖(uh)ttt‖C([0,T ];L2(Ω))).

Combining the estimates of η proved in Section 3 and (32), we obtain the error estimate for the fully
discrete scheme (5).

6 Conclusions

In this paper, we present a multiscale simulation method based on Generalized Multiscale Finite Element
Method for solving the wave equation in heterogeneous media. For the construction of multiscale basis
functions, we divide the snapshot space into two spaces. The first snapshot space represents the degrees of
the freedom associated with boundary nodes and consists of a-harmonic functions. The second snapshot
space represents the interior degrees of the freedom and consists of all zero Dirichlet vectors. For each
snapshot space, we introduce local spectral problems motivated by the analysis presented in the paper.
We use these local spectral problems to identify important modes in each of the snapshot spaces. The
local spectral problems are designed to achieve a high accuracy and motivated by the global coupling
formulation. The use of multiple snapshot spaces and multiple spectral problems is one of the novelties
of this work. Using the dominant modes from local spectral problems, multiscale basis functions are con-
structed to represent the solution space locally within each coarse block. These multiscale basis functions
are coupled via the symmetric interior penalty discontinuous Galerkin method which provides a block
diagonal mass matrix, and, consequently, results in fast computations in an explicit time discretization.
Numerical examples are presented. In particular, we discuss how the modes from our snapshot spaces
can affect the accuracy of the method. Our numerical results show that one can obtain an accurate
approximation of the solution with GMsFEM using less than 3% of the total local degrees of freedom.
We also test oversampling strategies following [15]. Analysis of the method is presented.

7 Appendix

In this Appendix, we will prove Lemma 1. Let v ∈ V 1
H . By assumption, u ∈ H2(Ω), thus aDG(u, v) is

well-defined and we have

∑

K∈T H

(
∂2u

∂t2
, v)L2(K) + aDG(u, v) =

∑

K∈T H

(f, v)L2(K), ∀ v ∈ H1(T H).

Moreover, the following standard finite element error estimate holds

|u− uh|H1(Ω) ≤ Ch|u|H2(Ω).
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By the definition of the consistency error, we have

Ruh
(v) = (

∂2u

∂t2
− ∂2uh

∂t2
, v) + a(u, v)− aDG(uh, v), ∀ v ∈ H1(T H). (33)

Next, we define vc ∈ Vh in the following way. For each vertex in the triangulation, the value of vc is
defined as the average value of v at this vertex. Then by direct calculations, we have

∑

K∈T H

|v − vc|2H1(K) ≤ C
1

h

∑

e∈EH

‖[v]‖2L2(e)

and ∑

K∈T H

‖v − vc‖2L2(K) ≤ Ch
∑

e∈EH

‖[v]‖2L2(e).

Clearly, we have [v − vc]e = [v]e for all e ∈ EH since vc ∈ C0(Ω). Therefore we get

‖v − vc‖2H1(T H) ≤ C
1

h

∑

e∈EH

‖[v]‖2L2(e).

By (33) and (2) as well as the fact that aDG(uh, vc) = a(uh, vc), we have

Ruh
(v) =

∑

K∈T H

(
∂2(u− uh)

∂t2
, v − vc)L2(K) + aDG(u− uh, v − vc).

Next, we will estimate the two terms on the right hand side. For the first term, we have

∑

K∈T H

(
∂(u− uh)

∂t2
, v − vc)L2(K) ≤ ‖∂

2(u− uh)

∂t2
‖L2(Ω)

(
∑

K∈T H

‖v − vc‖2L2(K)

) 1
2

≤ Ch ‖∂
2(u− uh)

∂t2
‖L2(Ω)

(
1

h

∑

e∈EH

‖[v]‖2L2(e)

) 1
2

.

For the second term, by the definition of aDG and the Cauchy-Schwarz inequality, we have

aDG(u− uh, v − vc)

=
∑

K∈T H

∫

K

a∇(u− uh) · ∇(v − vc)−
∑

e∈EH

∫

e

{a∇(u− uh) · n}[v]

≤
∑

K∈T H

a1|u− uh|H1(K) |v − vc|H1(K) +

(
∑

K∈T H

∫

∂K

(a∇(u− uh) · n)2
) 1

2
(
∑

e∈EH

∫

e

[v]2

) 1
2

.

To estimate the flux term above, we let IK be the standard finite element interpolant. Then we have

∑

K∈T H

∫

∂K

(a∇(u − uh) · n)2

≤ 2

(
∑

K∈T H

∫

∂K

(a∇(u − IK(u)) · n)2
)

+ 2

(
∑

K∈T H

∫

∂K

(a∇(IK (u)− uh) · n)2
)

≤ Ca1

(
h|u|2H2(K) +

1

h
|IK(u)− uh|2H1(K)

)

≤ Ca1

(
h|u|2H2(K) +

1

h
|IK(u)− u|2H1(K) +

1

h
|u− uh|2H1(K)

)

≤ Ca1h|u|2H2(K).

24



Next we will estimate the term
∑

K∈T H a1|u− uh|H1(K) |v − vc|H1(K). We have

∑

K∈T H

a1|u− uh|H1(K) · |v − vc|H1(K)

≤ Ca1(
∑

K∈T H

|u − uh|2H1(K))
1
2 (
∑

K∈T H

|v − vc|2H1(K))
1
2

≤ Ca1(
1

h

∑

K∈T H

|u− uh|2H1(K))
1
2 (
∑

e∈EH

‖[v]‖2L2(e))
1
2

≤ Ca1h|u|H2(
1

h

∑

e∈EH

‖[v]‖2L2(e))
1
2 .

Combining the above estimates, we get

|Ruh
(v)| ≤ C

a0
h
(
‖(u− uh)tt‖L2(K) + a1|u|H2(Ω)

)
(
1

h

∑

e∈EH

‖a[v]‖2L2(e)

) 1
2

.

Finally, we assume that the second time derivatives of u and uh are smooth functions. Then we have

(uttt, v) +

∫

Ω

a∇ut · ∇v =

∫

Ω

ftv.

Letting v = utt, we have
d

dt
(‖utt‖2L2(Ω) +

∫

Ω

a|∇ut|2) =
∫

Ω

ftutt

which leads to

‖utt‖L∞([0,T ];L2(Ω)) + ‖ut‖L∞([0,T ];a) ≤ C(‖ft‖L1([0,T ];L2(Ω)) + ‖utt(·, 0)‖L2(Ω) + |ut(·, 0)|a).

Similarly, for the finite element solution uh, we have

‖(uh)tt‖L∞([0,T ];L2(Ω)) + ‖(uh)t‖L∞([0,T ];a)

≤ C(‖ft‖L1([0,T ];L2(Ω)) + ‖(uh)tt(·, 0)‖L2(Ω) + |(uh)t(·, 0)|a).

Consequently, we get

|Ruh
(v)| ≤ Ch(‖ft‖L1([0,T ];L2(Ω)) + ‖utt(·, 0)‖L2(Ω) + a1|u|H2(Ω))‖v‖H1(T H ).

Finally, the constant C(u, f) in the lemma can be chosen as

C(u, f) ≈ ‖ft‖L1([0,T ];L2(Ω)) + ‖utt(·, 0)‖L2(Ω) + a1|u|H2(Ω). (34)
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