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Let fn denote a kernel density estimator of a continuous density
f in d dimensions, bounded and positive. Let Ψ(t) be a positive con-
tinuous function such that ‖Ψfβ‖∞ <∞ for some 0< β < 1/2. Under
natural smoothness conditions, necessary and sufficient conditions for

the sequence

√

nhd
n

2| loghd
n|
‖Ψ(t)(fn(t)−Efn(t))‖∞ to be stochastically

bounded and to converge a.s. to a constant are obtained. Also, the
case of larger values of β is studied where a similar sequence with
a different norming converges a.s. either to 0 or to +∞, depending
on convergence or divergence of a certain integral involving the tail
probabilities of Ψ(X). The results apply as well to some discontinuous
not strictly positive densities.

1. Introduction. Over forty years ago, Parzen (1962) studied basic prop-
erties of kernel density estimators following their introduction by Rosenblatt
(1956). Since then the kernel density estimator has become a classical object
looked at by both statisticians and probabilists. For statisticians, it has been
a canonical example of nonparametric curve estimators, which brought many
important ideas from approximation theory and harmonic analysis into non-
parametric statistics. Probabilists used the study of this estimator to test
the strength of the methods from weak and strong convergence, empirical
processes and probability in Banach spaces. In this paper, we consider a
couple of problems about asymptotic behavior of kernel density estimators
uniformly over all of Rd that do not seem to have been considered before,
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2 E. GINÉ, V. KOLTCHINSKII AND J. ZINN

particularly in the 1980s, when the basic results on uniform a.s. convergence
were obtained.

The kernel density estimator fn of f corresponding to a sample of size n,
a kernel K and a bandwidth h > 0 is

fn(t) =
1

nhd

n
∑

i=1

K

(

Xi − t

h

)

,(1.1)

where Xi are i.i.d. with density f . To ensure its consistency, h is chosen
to be a function hn of n such that hn → 0 and nhn →∞ as n→∞. This
is a biased estimator, but we will not deal with the bias; we will only be
interested in the sup norm of the deviation of fn from its mean.

Our starting point is the following well-known result due to Stute (1984):

lim
n→∞

√

nhdn
2| loghdn|

∥

∥

∥

∥

fn −Efn√
f

∥

∥

∥

∥

J
= ‖K‖2 a.s.,(1.2)

where J is a compact parallellepiped with sides parallel to the axes, ‖ · ‖J
means “sup over J ,” f is a uniformly continuous density which is bounded
away from 0 on J , and K is continuous and satisfies some additional as-
sumptions [see, e.g., condition (K)]. Much later it was shown that

lim
n→∞

√

nhdn
2| loghdn|

‖fn −Efn‖∞ = ‖K‖2‖f‖1/2∞ a.s.,(1.3)

where K satisfies condition (K) and f is uniformly continuous [Giné and
Guillou (2002) for any d, and Deheuvels (2000) for d= 1; a weaker result of
this type was obtained much earlier by Silverman (1978)]. In both results the
bandsequence {hn} satisfies Stute’s (1982) conditions. In fact, these results
can be slightly extended as follows: if Ψ is uniformly continuous and bounded
on J̄ , where J is either a bounded parallellepiped of Rd with sides parallel
to the axes, or J =R

d, then

lim
n→∞

√

nhdn
2| loghdn|

‖Ψ(t)(fn(t)−Efn(t))‖J = ‖K‖2‖Ψf1/2‖J a.s.,(1.4)

a result formulated in Deheuvels (2000) for d= 1 and which follows for any d
from Einmahl and Mason (2000) and Giné and Guillou (2002) (with simple
modifications in their proofs). Note that (1.4) contains (1.2) and (1.3).

The first question on which we wish to shed some light is whether one
can interpolate between the two results (1.2) and (1.3) by replacing J by R

d

and f−1/2 by f−β for some 0< β ≤ 1/2 in (1.2). A more general formulation
of the same problem is whether unbounded functions Ψ are allowed in (1.4)
when J =R

d.
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Notice that, in case f > 0 over all of Rd and lim inf |x|→∞ f(x) = 0, (1.4)
implies that only powers of β not exceeding 1/2 can lead to finite a.s. limits
for the sequence

{

√

nhdn
2| loghdn|

∥

∥

∥

∥

fn −Efn
fβ

∥

∥

∥

∥

∞

}∞

n=1

.(1.5)

This is the case of classical norming, and in this case we find necessary
and sufficient conditions (on the density f and on the bandsequence hn) for
(1.5) to be stochastically bounded (Theorem 2.1); in fact, Theorem 2.1 gives
necessary and sufficient conditions for

{

√

nhdn
2| loghdn|

‖Ψ(t)(fn(t)−Efn(t))‖∞

}∞

n=1

(1.5′)

to be stochastically bounded, assuming ‖Ψfβ‖∞ <∞ for some β ∈ (0,1/2).
This result further clarifies the role of the sequence of maximum terms

max1≤i≤nΨ(Xi)/
√
nhdn| loghn| in the asymptotic behavior of (1.5′) in prob-

ability or in law. We also obtain a necessary and sufficient condition for
(1.5′) to converge a.s. to the constant ‖K‖2‖Ψf1/2‖∞ and show that if this
condition is violated, then the sequence (1.5′) is a.s. unbounded (Theorem
2.6).

A second question is that of determining the right norming constants
in the sequences (1.5) or (1.5′) for larger values of β in order to obtain
convergence. In this case, we also give necessary and sufficient conditions
for stochastic boundedness (Theorem 3.1) and for a.s. convergence of the
sequences (Theorem 3.4). The almost sure limit is shown to be either 0 or
+∞, depending on convergence or divergence of a certain integral describing
the tail behavior of Ψ(X). The situation in this case is somewhat similar
to what is well known about weighted empirical processes; see Einmahl and
Mason (1985a, b, 1988).

We consider a slightly more general situation where f need not be strictly
positive, however, we still require that, if Bf = {f > 0}, then f be bounded
away from zero on Bf ∩{|t| ≤ a} for all a > 0. Even this case requires unusual
but somewhat natural smoothness conditions on f . More general situations
seem to require a strengthening of the smoothness conditions, and we refrain
here from considering them (see, however, Example 2.12).

Assumptions and notation. We introduce here some notation and con-
ditions that are used throughout the paper.

For x= (x1, . . . , xd) ∈R
d, we set |x| := max1≤i≤d |xi|. We assume that the

kernel K satisfies the following condition:
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(K) K ≥ 0, K 6≡ 0, is a bounded measurable function with support contained
in [−1/2,1/2]d which belongs to the linear span (the set of finite linear
combinations) of functions k ≥ 0 satisfying the following property: the
subgraph of k, {(s,u) :k(s)≥ u}, can be represented as a finite number
of Boolean operations among sets of the form

{(s,u) :p(s,u)≥ ϕ(u)},
where p is a polynomial on R

d ×R and ϕ is an arbitrary real function.

Conditions of a similar type were used, for example, in Koltchinskii and
Sakhanenko (2000).

In particular, the above property is satisfied if the subgraph of k is a
semialgebraic set inR

d×R [see Dudley (1999), page 165]. IfK(x) = φ(p(x)),
p being a polynomial and φ a real function of bounded variation, then K
satisfies (K) [see Nolan and Pollard (1987)].

Condition (K) is mainly imposed because if K satisfies it, then the class
of functions

F =

{

K

( · − t

h

)

: t ∈R
d, h > 0

}

has covering numbers

N(F ,L2(P ),‖K‖L2(P )ε)≤
(

A

ε

)v

, 0< ε< 1,

for some A and v finite and positive and for all probability measures P.
Indeed, for a fixed polynomial p, the family of sets

{{(s,u) :p((s− t)/h,u)≥ ϕ(u)} : t ∈R
d, h > 0}

is contained in the family of positivity sets of a finite-dimensional space
of functions, and then the entropy bound follows by Theorems 4.2.1 and
4.2.4 in Dudley (1999). The entropy bound will be crucial in the proofs
below. Since the map (x, t, h) 7→ (x − t)/h is jointly measurable and K is
measurable, the class F is image admissible Suslin [Dudley (1999), page 186],
and this implies that the measurability of the empirical process indexed by
F [or even by {Ψ(t)K((· − t)/h)} with Ψ continuous] is as good as if the
class were countable; that is, we can ignore measurability of the sup of the
empirical process over g ∈F [cf. Dudley (1999), Corollary 5.3.5 and Theorem
5.3.6, or Pollard (1984), pages 195–197]. We set κ := ‖K‖∞ (which is strictly
positive).

The following assumptions on the density f will be used repeatedly:

(D.a) f is a bounded density on R
d continuous on its positivity set Bf :=

{t ∈R
d :f(t)> 0}, which is assumed to be open, and lima→∞ sup|t|>a f(t) =

0.
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(D.b) For all δ > 0, there exist c ∈ (0,∞) and h0 > 0 such that, for all
|y| ≤ h0 and all x ∈Bf , x+ y ∈Bf ,

1

c
f δ(x)≤ f(x+ y)

f(x)
≤ cf−δ(x).

(D.c) For all r > 0,

lim
h→0

sup
x,y : f(x)≥hr

x+y∈Bf ,|y|≤h

∣

∣

∣

∣

f(x+ y)

f(x)
− 1

∣

∣

∣

∣

= 0.

In particular, if log f is uniformly continuous onR
d, then conditions (D.a)–(D.c)

are satisfied (this is true, e.g., for the symmetric exponential density or for
uniformly continuous nonvanishing densities with power tails). The above
conditions are satisfied as well by normal and double exponential densities
even though their logarithms are not uniformly continuous. Note also that
(D.b) implies infx∈Bf ,|x|<a f(x)> 0 for all a <∞ such that Bf ∩{|x|< a} 6=
∅, in particular, a continuous density with bounded support does not satisfy
(D.b). Similarly, a density that has an isolated zero where it is continuous
does not satisfy condition (D.b) either. In fact, Example 2.12 shows that,
for such a density, the stochastic boundedness of the sequence (1.5) depends
on the local behavior of the density at its zero points, and not only on the
tails of the random variable f−β(X), as is the case under condition (D.b)
(see Theorem 2.1). On the other hand, the exponential density does satisfy
(D.a)–(D.c).

Conditions (D.b) and (D.c) on f are not found in Stute’s result (1982,
1984) or in Einmahl and Mason (2000) because they consider bounded in-
tervals with f bounded away from zero on them, and they are not found
either in Giné and Guillou (2002) since there is no division by a power of f
in their result. These conditions seem natural for the results that will follow
and we will indicate below that conditions of this type are indeed needed;
see Example 2.11.

We assume that the weight function Ψ satisfies the following conditions
that resemble the above conditions on the density:

(W.a) Ψ :Bf 7→R+ is a positive continuous function on Bf .
(W.b) For all δ > 0, there exist c ∈ (0,∞) and h0 > 0 such that, for all

|y| ≤ h0 and all x ∈Bf , x+ y ∈Bf ,

1

c
Ψ−δ(x)≤ Ψ(x+ y)

Ψ(x)
≤ cΨδ(x).

(W.c) For all r > 0,

lim
h→0

sup
x,y : Ψ(x)≤h−r

x+y∈Bf ,|y|≤h

∣

∣

∣

∣

Ψ(x+ y)

Ψ(x)
− 1

∣

∣

∣

∣

= 0.



6 E. GINÉ, V. KOLTCHINSKII AND J. ZINN

In particular, by (W.b), Ψ is bounded on bounded subsets of Bf , but Ψ
may be unbounded if Bf is unbounded.

We also need the following conditions that establish a relationship between
f and Ψ:

(WD.a)β ‖fβ‖Ψ,∞ := supt∈Bf
|Ψ(t)fβ(t)| <∞, where β is a positive num-

ber.
(WD.b) For all r > 0,

lim
h→0

sup
x,y : Ψ(x)≤h−r

x,x+τ∈Bf ,|y|≤h

∣

∣

∣

∣

f(x+ y)

f(x)
− 1

∣

∣

∣

∣

= 0.

Note that (WD.a)β and (WD.b) imply (D.c): if ‖Ψfβ‖Bf
≤ c and f(t)≥

hr, then Ψ(t)≤ ch−rβ .
Also, if Ψ ≡ f−β (which is our main example), then (WD.a)β is satis-

fied and the set of conditions (D.a)–(D.c) is equivalent to (W.a)–(W.c) and
(WD.b).

Regarding the window sizes, the assumptions are:

(H1) ht, t≥ 1, is monotonically decreasing to 0 and thdt is a strictly increas-
ing function diverging to infinity as t→∞, and

(H2) hdt is regularly varying at infinity with exponent −α for some α ∈ (0,1);
in particular, there exist 0< η0 ≤ η1 < 1 such that

lim sup
t→∞

tη0hdt = 0 and lim inf
t→∞

tη1hdt =∞.

Condition (H2) is quite restrictive compared to the bandsequence assump-
tions in Stute (1982): besides the extra regularity, we do not allow ht to get
too close to the extremes 1/t or 1/ log t, and in particular, | loght| is com-
parable to log t, t > 1. If we set

λt =
√

thdt | loght|,

then, under (H1) and (H2), the function λt is strictly increasing and is
regularly varying with exponent larger than 0. This property of λt is used
throughout Section 2.

Our results rely on the by now classical theorem of Stute (1984) about
the a.s. behavior of the uniform deviation of the kernel density estimator
over compact intervals, suitably modified. The version of his theorem we
need is a reformulation along the lines of Deheuvels (2000) of Proposition
3.1 in Giné and Guillou (2002), which in turn is adapted from Einmahl and
Mason (2000).
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Proposition 1.1. Let f be a density on R
d, continuous on an open

set containing Da := {t : |t| ≤ a, f(t)≥ a−1}, for some 0< a <∞. Let Ψ be

a strictly positive function, continuous on an open set containing Da. Then

lim
n→∞

√

nhdn
2| loghdn|

‖Ψ(t)(fn −Efn)(t)‖Da = ‖K‖2‖Ψf1/2‖Da a.s.(1.6)

We omit the proof as it coincides with the proof of the abovementioned
proposition, except for obvious changes.

Proposition 1.1 applies to f satisfying (D.a) and (D.b) and Ψ satisfying
(W.a) and (W.b).

Without further mentioning, all the results we state in this paper beyond

this point assume conditions (K), (H1), (H2), (D.a)–(D.c), (W.a)–(W.c),
(WD.b) and (WD.a)β for some β. The number β is to be specified at each

instance. We will refer to these assumptions as the “usual hypotheses.”
Finally, we introduce the following notation, which will be used through-

out: for any function g defined on Bf , we set

‖g‖Ψ,∞ := sup
t∈Bf

|g(t)Ψ(t)|.(1.7)

2. The classical norming case. The following theorem describes the stochas-
tic boundedness behavior of the sequence (2.1). It shows in particular that no
interpolation between (1.2) and (1.3) works for all strictly positive, bounded,
continuous densities, and that when it works, it does not work for all the
range of possible bandsequences. In what follows, X is a random variable
with density f .

Theorem 2.1. Assume the usual hypotheses, with condition (WD.a)β
holding for some β ∈ (0,1/2), and, moreover, that either Bf =R

d or K(0) =
‖K‖∞. Then the sequence

{

√

nhdn
| loghn|

‖fn −Efn‖Ψ,∞

}∞

n=1

(2.1)

is stochastically bounded if and only if

lim sup
t→∞

tPr{Ψ(X)> (thdt | loght|)1/2}<∞.(2.2)

Moreover, under condition (2.2), the sequence
{

√

nhdn
2| loghdn|

‖fn −Efn‖Ψ,∞

−
(

max
1≤i≤n

‖K‖∞Ψ(Xi)
√

2nhdn| loghdn|

)

∨ (‖K‖2‖f1/2‖Ψ,∞)

}∞

n=1

(2.3)

converges to zero in probability.



8 E. GINÉ, V. KOLTCHINSKII AND J. ZINN

Proof. We will use the notation λt = (thdt | loght|)1/2. As mentioned
above, conditions (H1) and (H2) imply that λt is regularly varying with
strictly positive exponent. Note that, by regular variation, condition (2.2) is
equivalent to

lim sup
t→∞

tPr{Ψ(X)> cλt}<∞(2.4)

for any 0< c<∞. By Montgomery-Smith’s (1993) maximal inequality [see,
e.g., de la Peña and Giné (1999), page 6] the stochastic boundedness of the
sequence (2.1) implies that of the sequence

{

max
1≤i≤n

‖K((Xi − t)/hn)−EK((X − t)/hn)‖Ψ,∞
λn

}

.

Then, since, for all t, letting u= (u1, . . . , ud),

EK((X − t)/hn) = hdn

∫ 1/2

−1/2
· · ·
∫ 1/2

−1/2
K(u)f(hnu+ t)du1 · · · dud

≤ hdn‖K‖1‖f‖∞ → 0,

taking t=X1− τhn, . . . ,Xn− τhn for τ ∈R
d satisfying K(τ)> 0, we obtain

that the sequence
{

max
1≤i≤n

Ψ(Xi − τhn)I(Xi − τhn ∈Bf )

λn

}

is stochastically bounded. We take τ = 0 if K(0) 6= 0. Now, if K(0) 6= 0, then
Xi − τhn =Xi ∈Bf a.s., and if Bf =R

d, then obviously Xi − τhn ∈Bf , so
that, in either case, Pr{X − τhn ∈Bf}= 1. Thus, the sequence

{

max
1≤i≤n

Ψ(Xi − τhn)

λn

}

is stochastically bounded. In particular, if τ = 0,
{

max
1≤i≤n

Ψ(Xi)

λn

}

is stochastically bounded, proving condition (2.4) in this case (as, if ξi are
independent, Pr{max |ξi|> c} ≥∑Pr{|ξi|> c}/(1+∑Pr{|ξi|> c}). If τ 6= 0
but Bf =R

d, given ε > 0, let M be such that

sup
n

Pr

{

max
1≤i≤n

Ψ(Xi − τhn)

λn
>M

}

< ε.

If Ψ(Xi − τhn) ≤ Mλn, then by regular variation there exists r > 0 such
that Ψ(Xi − τhn)≤ h−r

n (at least for all n large enough), and we can apply
condition (W.c) to conclude that there exists c > 1 such that, for all n large
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enough (independent of Xi), Ψ(Xi)≤ cΨ(Xi − τhn). Then, for these values
of n, we obtain

Pr

{

max
1≤i≤n

Ψ(Xi)

λn
> cM

}

< ε.

Therefore, in this case, the sequence {max1≤i≤nΨ(Xi)/λn} is also stochas-
tically bounded, proving (2.4).

For the converse we note first that Proposition 1.1 takes care of the sup
over Da for any a > 0.

Next, we observe that the centering in (2.1) can be ignored for a certain
range of t’s. Let εn → 0 and 0< δ < 1− β. Choose r > 0 such that

h
r(1−β−δ)
n

(nhdn)
−1λn

→ 0.

Then there exist c <+∞ and n0 <∞ such that, by (D.b) and (D.c), for any
t ∈Bf and n≥ n0,

nΨ(t)EK((X − t)/hn)

λn

≤ cκnhdn
λn

Ψ(t) sup
|u|≤1/2

t+hnu∈Bf

f(t+ hnu)

≤ cκnhdn
λn

Ψ(t)f(t)I(f(t)> hrn) +
cκnhdn
λn

Ψ(t)f1−δ(t)I(f(t)≤ hrn).

Since, by condition (WD.a)β , Ψ(t)≤ cf−β(t), the last summand tends to 0
uniformly in t (as β < 1− δ). The sup of the first summand over all t such
that Ψ(t)f(t) ≤ ε1−β

n ((nhdn)
−1| loghn|)1/2 tends to 0 as well. Thus, we can

ignore the centering Efn(t) for all t ∈Bf such that

Ψ(t)f(t)≤ ε1−β
n

( | loghn|
nhdn

)1/2

(2.5)

for any sequence εn → 0. We take εn = 1/ logn.
In the rest of the proof, we consider the sup of |Ψ(t)(fn −Efn)(t)| over

several regions.
First, we consider the regions

An := {t ∈Bf :Ψ(t)> cβnλn}(2.6)

for the sequence cn = (λn logn/λn)
1/β which tends to infinity because λt is

regularly varying with positive exponent. Actually, if η > 0 is the exponent
of regular variation of λt, the representation formula for regularly varying
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functions [e.g., Feller (1971), page 282] gives that, for every 0< ε < η and
c > 1, there exists n0 <∞ such that

1

c
(logn)η−ε ≤ λn logn

λn
≤ c(logn)η+ε(2.7)

for all n ≥ n0. Then, since β < 1/2 < 1 − β, for a suitable δ > 0 and all n
large enough, we have

cnλ
1/β
n ≥ nη/β−δ ≥ nη/(1−β)+δ

≥ 1

εn

(

λn

| loghn|

)1/(1−β)

=
1

εn

(

nhdn
| loghn|

)1/(2(1−β))

.

This yields, for all t ∈An,

Ψ(t)≥ 1

εβn

(

nhdn
| loghn|

)β/(2(1−β))

and, using condition (WD.a)β (which without loss of generality can be writ-
ten as ‖fβ‖Ψ,∞ ≤ 1), we get

f(t)≤ εn

( | loghn|
nhdn

)1/2(1−β)

.

This implies (2.5) for all t ∈An, since Ψ(t)f(t)≤ ‖fβ‖Ψ,∞f1−β(t)≤ f1−β(t)
[again due to (WD.a)β ]. Therefore,

sup
t∈An

nΨ(t)EK((X − t)/hn)

λn
→ 0,

showing that we can ignore the centering Efn on the region An. For any
point a= (a1, . . . , ad) ∈R

d and positive number ρ, we set

J(a;ρ) := [a1 − ρ/2, a1 + ρ/2]× · · · × [ad − ρ/2, ad + ρ/2] ∩Bf .

Then, discarding the centering,

sup
t∈An

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
≤ sup

t∈An

κ

λn
Ψ(t)

n
∑

i=1

I(Xi ∈ J(t;hn)).

Now we divide An into two parts:

An,1 := {t ∈Bf :Ψ(t)> h−r
n } and An,2 := {t ∈Bf : c

β
nλn <Ψ(t)≤ h−r

n },

where r is such that h
−r(1−δ)
n ≥ cβnλn for some δ > 0 and all n. It follows

from condition (W.b) that t ∈An,1 and s ∈ J(t;hn) imply that there are c
and n0 such that

Ψ(s)

Ψ(t)
≥ cΨ−δ(t)
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for all n ≥ n0, so that Ψ(s) ≥ cΨ1−δ(t) > ch
−r(1−δ)
n . Hence, for the same

values of n and some C <∞, we have

Pr

{

sup
t∈An,1

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
> ε

}

≤ nPr{Ψ(X)≥ h−r(1−δ)
n }

≤ C

logn
→ 0.

It follows from condition (W.c) that t ∈ An,2 and s ∈ J(t;hn) ∩ Bf imply
that there are c and n0 such that Ψ(s)≥ cβnλn/c, for all n≥ n0. Hence, for
these values of n we have

Pr

{

sup
t∈An,2

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
> ε

}

≤ nPr

{

Ψ(X)≥ cβnλn

c

}

≤ C

logn
→ 0

for some C <∞ by (2.4). The last two limits imply that

lim
n→∞

sup
t∈An

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
= 0 in pr.(2.8)

Now we consider the regions

Bn :=

{

t ∈Bf :f(t)Ψ(t)≤ ε1−β
n

( | loghn|
nhdn

)1/2

,

Ψ(t)≤ cβn(nh
d
n| loghn|)1/2

}(2.9)

and notice that in these regions we can also ignore the centering [by (2.5)].
Our goal is to show that

{

sup
t∈Bn

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn

}∞

n=1

is stochastically bounded under condition (2.2) and that, moreover, if either
Bf =R

d or K(0) = κ, then also

sup
t∈Bn

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
= κ max

1≤i≤n

Ψ(Xi)

λn
+ op(1).(2.10)

As above,

sup
t∈Bn

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
≤ sup

t∈Bn

κΨ(t)

λn

n
∑

i=1

I(Xi ∈ J(t;hn)),

and we set

Zn := sup
t∈Bn

Ψ(t)

λn

n
∑

i=1

I(Xi ∈ J(t;hn)).
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For j = 1, . . . , n, set

Bn,j :=Bn ∩ J(Xj ;hn).

If t /∈⋃n
j=1Bn,j , then Zn = 0. Hence, we have

Zn = max
1≤j≤n

sup
t∈Bn,j

Ψ(t)

λn

n
∑

i=1

I(Xi ∈ J(t;hn)).

By conditions (W.c) and (WD.b), t ∈Bn,j implies that

Ψ(t)≤ cΨ(Xj)

and also

Ψ(Xj)≤ ccβnλn, f(Xj)Ψ(Xj)≤ cε1−β
n

( | loghn|
nhdn

)1/2

for any c > 1, provided that n is large enough.
Set

Ij = In,j := I

(

Ψ(Xj)≤ ccβnλn, f(Xj)Ψ(Xj)≤ cε1−β
n

( | loghn|
nhdn

)1/2)

.

Then

Zn ≤ max
1≤j≤n

cΨ(Xj)Ij
∑n

i=1 I(|Xi −Xj| ≤ hn)

λn

≤ max
1≤j≤n

cΨ(Xj)

λn
+ max

1≤j≤n

cΨ(Xj)Ij
∑

1≤i≤n,i 6=j I(|Xi −Xj| ≤ hn)

λn
.

(2.11)

By condition (2.2), the first term in the above bound is the general term
of a stochastically bounded sequence. We now show that the second term
tends to zero in probability. To handle this term, let Pj denote conditional
expectation given Xj and set

pj := Pj{|X −Xj | ≤ hn}.

It follows from condition (D.a) that

2dc−1hdnf(Xj)≤ pj ≤ 2dchdnf(Xj)

(provided that Ij = 1). A standard bound on binomial probabilities [e.g.,
Giné and Zinn (1984), page 958] shows that

Pj

{

IjΨ(Xj)
∑

1≤i≤n,i 6=j I(|Xi −Xj | ≤ hn)

λn
≥ ε

}

≤
(

(n− 1)epjΨ(Xj)

λnε

)(ελn/Ψ(Xj))∨1
.
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Using the bound on pj , this probability can be further bounded by

(

2decnhdnf(Xj)Ψ(Xj)

λnε

)(ελn/Ψ(Xj))∨1
.

We can and do assume that Ij = 1 (otherwise the conditional probability in
question is 0). Then

f(Xj)Ψ(Xj)≤ cε1−β
n

( | loghn|
nhdn

)1/2

,

and we have

2decnhdnf(Xj)Ψ(Xj)

λnε
≤ C1nh

d
nε

1−β
n (| loghn|/nhdn)1/2

(nhdn| loghn|)1/2ε
=

C1ε
1−β
n

ε

for some C1 <∞ (and all n large enough). Note also that

2decnhdnf(Xj)Ψ(Xj)

λnε
=

C

ε

(

nhdn
| loghn|

)1/2

f(Xj)Ψ(Xj),

where C is a finite positive cosntant. For large n, C1ε
1−β
n

ε ≤ e−1/ε, which
yields

Pj

{

IjΨ(Xj)
∑

1≤i≤n,i 6=j I(|Xi −Xj | ≤ hn)

λn
≥ ε

}

≤
(

exp

{

− λn

Ψ(Xj)

})

∧
(

C

ε

(

nhdn
| loghn|

)1/2

f(Xj)Ψ(Xj)

)

.

Let

I1j := I

(

Ψ(Xj)≤
λn

(3 logn)
, f(Xj)Ψ(Xj)≤ cε1−β

n

( | loghn|
nhdn

)1/2)

and let I2j := Ij − I1j . Then we have

Pr

{

max
1≤j≤n

IjΨ(Xj)
∑

1≤i≤n,i 6=j I(|Xi −Xj | ≤ hn)

λn
≥ ε

}

≤
n
∑

j=1

EIjPj

{

IjΨ(Xj)
∑

1≤i≤n,i 6=j I(|Xi −Xj | ≤ hn)

λn
≥ ε

}

≤
n
∑

j=1

EI1j exp

{

− λn

Ψ(Xj)

}

+
n
∑

j=1

EI2j
C

ε

(

nhdn
| loghn|

)1/2

f(Xj)Ψ(Xj)

=: (I) + (II ).
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Then, using the definition of I1j and I2j , we get

(I)≤ n exp

{

−3 logn

λn
λn

}

= n−2

and

(II )≤ n
C

ε

(

nhdn
| loghn|

)1/2 (3 logn)(1−β)/β

(nhdn| loghn|)(1−β)/(2β)
Pr

{

Ψ(X)≥
(

λn

3 logn

)}

.

Now, since λt is regularly varying with a strictly positive exponent, the rep-
resentation theorem for regularly varying functions gives that λn/(3 logn)≥
cλn/(logn)γ for some γ > 0, c > 0 and all n large enough [see (2.7)]. Hence,
by (2.4), there exists C > 0 such that, for these values of n,

(II )≤ C

ε

(logn)(1−β)/β+γ

| loghn|1/2+(1−β)/(2β)

1

(nhdn)
(1−β)/(2β)−1/2

.

By (H1) and (H2), this is at most of the order of logarithmic factors times
n(1−η1)[1/2−(1−β)/(2β)], a negative power of n because 0 < β < 1/2. Thus,
(II ) also tends to zero. Since both (I) and (II ) tend to 0, we have

Pr

{

max
1≤j≤n

IjΨ(Xj)
∑

1≤i≤n,i 6=j I(|Xi −Xj | ≤ hn)

λn
≥ ε

}

→ 0 as n→∞.

This implies [see bound (2.11)] that

sup
t∈Bn

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
≤ κZn ≤ cκ max

1≤i≤n

Ψ(Xi)

λn
+ op(1),(2.12)

for any c > 1. The stochastic boundedness of
{

sup
t∈Bn

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn

}

follows immediately from this inequality and condition (2.2).
To bound the supremum from below, choose τ such that K(τ)>κ−δ (for

a small δ) with the understanding that if K(0) = κ, then we choose τ = 0,
so that either τ = 0 or Bf =R

d. Then

sup
t∈Bn

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
≥ (κ− δ) max

1≤i≤n

Ψ(Xi − τhn)IBn(Xi − τhn)

λn
.

Hence, in view of this and the two-sided bound for κZn immediately above,
to establish (2.10), it is enough to show that

max
1≤i≤n

Ψ(Xi − τhn)IBn(Xi − τhn)

λn
= max

1≤i≤n

Ψ(Xi)

λn
+ op(1).(2.13)
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Since condition (W.c) implies that, for any c > 1 and for large enough n,

c−1 <
Ψ(Xi − τhn)

Ψ(Xi)
< c

(assuming that Xi − τhn ∈ Bn), taking c arbitrarily close to 1 reduces the
proof of (2.13) to showing that

max
1≤i≤n

Ψ(Xi)IBn(Xi − τhn)

λn
= max

1≤i≤n

Ψ(Xi)

λn
+ op(1),

or, put in another way, (2.13) will be proved if we show that

max
1≤i≤n

Ψ(Xi)IBc
n
(Xi − τhn)

λn
→ 0 in pr.(2.13′)

Bc
n naturally decomposes into the union of three regions and we look sep-

arately at each of them. If Bf =R
d, then IBc

f
(Xi − τhn) = 0, and if τ = 0,

then this indicator is 0 a.s., so that, in either case,

max
1≤i≤n

Ψ(Xi)IBc
f
(Xi − τhn)

λn
→ 0 a.s.

Next, we consider

Pr

{

max
1≤i≤n

Ψ(Xi)I(Ψ(Xi − τhn)≥ cβnλn)

λn
> ε

}

≤ nPr{Ψ(X − τhn)≥ cβnλn}
≤ nPr{cβnλn ≤Ψ(X − τhn)≤ h−r

n }+ nPr{Ψ(X − τhn)≥ h−r
n }.

Using condition (W.c), we get (for any c > 1)

nPr{cβnλn ≤Ψ(X − τhn)≤ h−r
n } ≤ nPr{Ψ(X)≥ c−1cβnλn}→ 0.

Similarly, using condition (W.b) (recall that X − τhn ∈BΨ with probability
1),

nPr{Ψ(X − τhn)≥ h−r
n } ≤ nPr{Ψ(X)≥ c−1h−r/(1+δ)

n }

for some c > 0 and δ > 0. Assuming that r is large enough (so that h
−r/(1+δ)
n ≥

cβnλn), we then conclude that

nPr{Ψ(X − τhn)≥ h−r
n }→ 0

and, hence,

Pr

{

max
1≤i≤n

Ψ(Xi)I(Ψ(Xi − τhn)≥ cβnλn)

λn
> ε

}

→ 0.
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Before considering the last piece of Bc
n, we note that, since fβ(t)Ψ(t) ≤ 1

for all t, if moreover f(u)Ψ(u) > L, then f1−β(u) > L and consequently
Ψ(u) ≤ f−β(u) < L−β/(1−β), an observation that we will use several times
below. This observation and condition (W.c) give

max
1≤i≤n

Ψ(Xi)I(f(Xi − τhn)Ψ(Xi − τhn)> ε1−β
n (| loghn|/(nhdn))1/2)

λn

≤ max
1≤i≤n

Ψ(Xi)I(Ψ(Xi − τhn)< cε−β
n (nhdn/| loghn|)β/(2(1−β)))

λn

≤ cε−β
n

(

nhdn
| loghn|

)β/(2(1−β)) 1

(nhdn| loghn|)1/2

=
c

εβn| loghn|1/2+β/(2(1−β))(nhdn)
1/2−β/(2(1−β))

.

Now, since β < 1/2< 1−β and nhdn ≥ n1−η1 [by (H2)], whereas εn = 1/ logn
and | loghn| is comparable to logn, it follows that the above bound is dom-
inated by a negative power of n so that, in particular, it tends to zero. This
and the previous two limits conclude the proof of (2.13′) and hence of (2.10).

Finally, we consider the sup over the remaining set of t’s. For a large,
fixed, just as above, set

Cn =Cn,a := {t ∈Dc
a ∩Bf :f(t)Ψ(t)≥ ε1−β

n (| loghn|/nhdn)1/2},(2.14)

where εn is as defined in the previous paragraph. In this range the centering
cannot be ignored. We will apply an estimate for the expected supremum
of the empirical process over bounded Vapnik–Červonenkis type classes of
functions [Giné and Guillou (2001), inequality (2.1) and Talagrand (1994),
for classes of sets; see also Einmahl and Mason (2000) for a similar inequal-
ity]: if a class of functions F is measurable (in particular, if it is image
admissible Suslin) and satisfies

N(F ,L2(Q), ε‖F‖∞)≤
(

A

ε

)v

, 0< ε< 1,(2.15)

for some v ≥ 1, A≥ 3
√
e finite and all finite probability measures Q, where

F is a measurable envelope for the class F , then

E‖n(Pn −P )‖F ≤C

(

√
v
√
nσ

√

log
AU

σ
+ vU log

AU

σ

)

,(2.16)

where σ and U are any numbers satisfying 0<σ <U and

σ2 ≥ sup
g∈F

VarP (g), U ≥ sup
g∈F

‖g‖∞,(2.17)
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and C is a universal constant. [In Giné and Guillou (2001), condition (2.15)
has ‖F‖L2(Q) instead of ‖F‖∞, but it can be easily checked that their proof
works as well under condition (2.15).] As mentioned immediately below the
statement of condition (K), there exist A and v finite such that

N({K((· − t)/hn) : t ∈R},L2(Q), ε)≤
(

Aκ

ε

)v

, 0< ε < 1,

for all hn > 0 and all probability measures Q on R. Now, the class of func-
tions

Fn := {Ψ(t)K((· − t)/hn) : t ∈Cn}
is contained in

Gn := {uK((· − t)/hn) : t ∈R,0< u≤Un},
where

Un :=
κ

εβn

(

nhdn
| loghn|

)β/(2(1−β))

(2.18)

[recall that, as observed above, under condition (WD.a)β , fΨ ≥ α implies

Ψ≤ α−β/(1−β)]. Therefore, since the L2(Q) distance between uK((·− t)/hn)
and vK((· − s)/hn) is dominated by κ|u− v|+ Un‖K((· − t)/hn)−K((· −
s)/hn)‖L2(Q), it follows by taking optimal coverings of [0,Un] with respect
to the Euclidean distance, and of Fn with respect to the L2(Q) distance,
that the entropy bound

N(Fn,L2(Q), εUn)≤
(

2Aκ

ε

)v+1

, 0< ε< 1,(2.19)

holds for all probability measures Q and all n large enough. The class Fn

is also image admissible Suslin since the map (x, t) 7→Ψ(t)K((x− t)/hn) is
measurable. So, inequality (2.16) applies to it. We can take U = Un as defined
in (2.18). Next we estimate σ2

n. It follows from a previous observation and
from regular variation that, on Cn, we have both f ≥ hrn and Ψ ≤ hrn for
some r and all n large enough. Then, (D.c) and (W.c) give that there exist
c,C,n0 <∞ independent of a such that, for all n≥ n0 and all t ∈Cn =Cn,a,

Ψ2(t)EK2((X − t)/hn)≤ cE(K2((X − t)/hn)Ψ
2(X))

= chdn

∫

|u|≤1/2
t+hnu∈Bf

K2(u)Ψ2(t+ hnu)f(t+ hnu)du

≤ chdn‖K‖22‖fΨ2‖Dc
a∩Bf

≤ Chdn(‖fΨ2‖Dc
a∩Bf

∨ n−1).
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So, we can take

σ2
n =Chdn(‖fΨ2‖Dc

a∩Bf
∨ n−1).

The constant A= An must be taken to be (2Aκ) ∨ (3
√
e ), where A is the

constant in (2.15) for the class consisting of translations and dilations of K.
In particular, since by (H2) | loghn| is comparable to logn, we have

log
AnUn

σn
≤ c| loghn|

for some constant c <∞ independent of n. So, inequality (2.16) applied to
Fn gives

E sup
t∈Cn

∣

∣

∣

∣

Ψ(t)
∑n

i=1(K((Xi − t)/hn)−EK((X − t)/hn))

λn

∣

∣

∣

∣

≤ C

λn

[

λn(‖f1/2Ψ‖Dc
a∩Bf

∨ n−1/2) +
1

εβn

(

nhdn
| loghn|

)β/(2(1−β))

| loghn|
]

for a constant C independent of n, for all sufficiently large n. We should
note that the numerical constants in the above inequalities are not only
independent of n, but they are independent of a as well. Since β < 1/2 and
therefore β/(1− β)< 1, and since, by (D.a) and (WD.a)β ,

‖f1/2Ψ‖Dc
a∩Bf

≤ ‖f1/2−β‖Dc
a∩Bf

= ‖f‖1/2−β
Dc

a∩Bf
→ 0 as a→∞,

we obtain

lim
a→∞

lim sup
n→∞

E sup
t∈Cn,a

∣

∣

∣

∣

Ψ(t)
∑n

i=1(K((Xi − t)/hn)−EK((X − t)/hn))

λn

∣

∣

∣

∣

≤ lim
a→∞

C‖f1/2Ψ‖Dc
a∩Bf

= 0.
(2.20)

Now, the theorem follows from (1.6), (2.8), (2.10) and (2.20). �

Now we make two comments on the assumptions.

Remark 2.2. The assumption “Bf = R
d or K(0) = ‖K‖∞” has been

imposed because in general we may not have X − τhn ∈ Bf with small
enough probability, as nPr{X − τhn /∈ Bf} could well be of the order of
nhn → ∞. Now, this condition has been used in full only in the proof of
(2.3). Proving that tightness of the sequence (2.1) implies condition (2.2)
has only required Bf = R

d or K(0) > 0, whereas proving that condition
(2.2) implies tightness of the sequence (2.1) does not require any hypothesis
of this type.

The above proof justifies, a posteriori, having taken β < 1/2:
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Corollary 2.3. Assume (K), (H1), (H2), (D.a)–(D.c) and Bf =R
d.

Then the sequence

{

√

nhdn
2| loghdn|

∥

∥

∥

∥

fn −Efn√
f

∥

∥

∥

∥

∞

}∞

n=1

[which coincides with (2.1) for Ψ= f−1/2] is not stochastically bounded.

Proof. By the first part of the previous proof, if (2.1) with Ψ = f−1/2

is tight, then there is C > 0 such that

nPr

{

1

f(X)
> λ2

n

}

≤C.

Since f takes all the values between 0 and ‖f‖∞, for n large enough there
is xn in R

d such that f(xn) = 1/(2λ2
n). Then, by condition (D.c), there is a

subset Dn containing xn and of Lebesgue measure larger than λ
−2/r
n , where

1/f(x)≥ λ2
n and f(x)≥ 1/(4λ2

n), and therefore, if we take r ≥ η1/d with η1
as in condition (H2),

nPr

{

1

f(X)
>λ2

n

}

≥ nPr{X ∈Dn} ≥
n

4λ
2(1+d/r)
n

→∞,

contradiction. �

Theorem 2.1 has the following obvious corollary regarding convergence in
distribution:

Corollary 2.4. Under the assumptions in Theorem 2.1, the sequence

(2.1) converges in distribution if and only if the sequence of maxima,

{

max
1≤i≤n

Ψ(Xi)

λn

}

,

converges in distribution. Then, if Z is a random variable with distribution

the limit of this last sequence, we have

√

nhdn
2 logh−d

n

‖fn −Efn‖Ψ,∞
d→ (‖K‖∞Z)∨ (‖K‖2‖f1/2‖Ψ,∞).

Next we consider the a.s. counterpart to Theorem 2.1. The following
proposition will help. It is perhaps relevant to recall first a well-known fact,
whose proof we omit as it is similar to a classical result of Feller [e.g., Lemma
3.2.4, Corollary 3.2.3 and Theorem 3.2.5 in Stout (1974)].
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Lemma 2.5. Let Vi be i.i.d. real random variables and let {c(n)} be

a nondecreasing sequence, regularly varying with strictly positive exponent.

Then,

either lim sup
n→∞

max
1≤i≤n

|Vi|
c(n)

=∞ a.s. or lim
n→∞

max
1≤i≤n

|Vi|
c(n)

= 0 a.s.

And this happens according to whether
∑

n

Pr{|Vn|>Cc(n)}=∞ or
∑

n

Pr{|Vn|>Cc(n)}<∞

for some (or, equivalently, all ) C > 0.

Proposition 2.6. Assume that conditions (D.a), (W.a)–(W.c) and (WD.a)β ,
(WD.b) hold for some β > 0 and that, moreover, either Bf =R

d or K(0)>
0. Let c(n)ր∞ be a regularly varying function of n. Assume

lim sup
n

∥

∥

∥

∥

∑n
i=1(K((Xi − t)/hn)−EK((X − t)/hn))

c(n)

∥

∥

∥

∥

Ψ,∞
<∞ a.s.(2.21)

Then,

∑

n

Pr

{

Ψ(X)

c(n)
>C

}

<∞(2.22)

for all 0<C <∞ or, what turns out to be the same by Lemma 2.5,

lim
n→∞

max
1≤i≤n

Ψ(Xi)

c(n)
= 0 a.s.(2.22′)

Proof. The proof is standard, but we give it here for completeness.
First we note that if (2.21) holds and c(n)ր∞ is regularly varying, then
c(n) has necessarily positive exponent, which by Lemma 2.5 gives the equiv-
alence between (2.22) and (2.22′). This follows because, by (2.21), there is
t with Ψ(t) 6= 0 and f(t) 6= 0 such that the sequence

∑n
i=1Ψ(t)(K(Xi−t

hn
)−

EK(X−t
hn

))/c(n), n ∈N, is tight, which, by boundedness and finite support
of K, implies that the sequence of its second moments is uniformly bounded,
thus, that the sequence nhdn/c

2(n) is bounded; hence, since by (H2) nhdn is
regularly varying with strictly positive exponent and c(n) is regularly vary-
ing, it follows that the exponent of c(n) is strictly positive as well.

Let {X ′
i} be an independent copy of {Xi}. We can symmetrize in (2.21)

and still have the lim sup finite. By continuity of Ψ on Bf , there is n(ω)<∞
a.s. such that, for all n≥ n(ω),
∥

∥

∥

∥

K((X(ω)− t)/hn)−K((X ′(ω)− t)/hn)

c(n)

∥

∥

∥

∥

Ψ,∞
≤ κ(Ψ(X) +Ψ(X ′) + 1)

c(n)
.
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This tends to zero and therefore the lim sup in (2.21) is a.s. constant by the
zero–one law. Hence, we have

Pr

{

sup
n≥k

∥

∥

∥

∥

∑n
i=1Ψ(t)(K((Xi − t)/hn)−K((X ′

i − t)/hn))

c(n)

∥

∥

∥

∥

Bf

> c

}

→ 0

as k→∞
for some c <∞. Set

Hn(X,X ′) :=
Ψ(t)(K((X − t)/hn)−K((X ′ − t)/hn))

c(n)
,

and, for k ∈N,

Zi,k = (Hk(Xi,X
′
i),Hk+1(Xi,X

′
i), . . . ,Hk+r(Xi,X

′
i), . . . )

if i≤ k, and

Zi,k = (0, r). . . ,0,Hk+r(Xk+r,X
′
k+r),Hk+r+1(Xk+r,X

′
k+r) . . . )

for i= k+ r, r = 1, . . . . Then, the above sup over n≥ k is simply
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

i=1

Zi,k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where |||(x1(t), . . . , xn(t), . . .)|||= supn ‖xn(t)‖Bf
. The random vectors Zi,k are

independent and symmetric, and we can apply Lévy’s inequality to get that

Pr

{

sup
i∈N

|||Zi,k|||> 2c

}

→ 0

as k→∞. By independence, this implies that

∞
∑

i=1

Pr{|||Zi,k|||> 2c}→ 0

as k → ∞. Let τ = 0 if K(0) > 0 and otherwise let |τ | < 1 be such that
K(τ)> 0. Then,

‖Hm(X,X ′)‖Bf
≥ c̃Ψ(X − hmτ)

c(n)
I(|X −X ′|> hn)

for some c̃ > 0, and we get that

|||Zi,k|||= sup
m≥i∨k

Hm(Xi,X
′
i)≥

c̃Ψ(Xi)

c(i ∨ k)
I(|Xi −X ′

i|> hi∨k)

when τ = 0 and

|||Zi,k|||= sup
m≥i∨k

Hm(Xi,X
′
i)≥

c̃ inf |h|≤|hi∨k|Ψ(Xi − h)

c(i ∨ k)
I(|Xi −X ′

i|> hi∨k)
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when Bf = R
d. The case τ = 0 is easier to handle, so we will complete

the proof only for the second case. In this case, since Pr′{|X −X ′|> hi} ≥
1− ‖f‖∞hdi , the previous inequality yields

∞
∑

i=1

Pr{|||Zi,k |||> 2c} ≥
∑

i≥k

(1−‖f‖∞hdi )Pr

{

c̃ inf |h|≤|hi|Ψ(X − h)

c(i)
> 2c

}

.

Then by (W.b) there are 0< δ < 1 and ĉ > 0 such that
∞
∑

n=1

Pr{Ψ(X)> ĉc1/(1+δ)(n)}<∞.

But by regular variation, there exists r > 0 such that h−r
n > ĉc1/(1+δ)(n), and

therefore
∞
∑

n=1

Pr{Ψ(X)> h−r
n }<∞.

Now by (W.c), for n large enough, there exists C <∞ such that

Pr{Ψ(X)>Cc(n)} ≤ Pr

{

c̃ inf |h|≤|hn|Ψ(X − h)

c(n)
> 2c

}

+Pr{Ψ(X)>h−r
n }.

Therefore,
∞
∑

n=1

Pr{Ψ(X)>Cc(n)}<∞.
�

We are now prepared to give an integral test for a.s. convergence of the
sequence (2.1). Notice the difference with the tightness criterion, which is
due to the fact that, by Lemma 2.5, we have

either lim
n→∞

max
1≤i≤n

Ψ(Xi)

λn
= 0 a.s. or lim sup

n→∞
max
1≤i≤n

Ψ(Xi)

λn
=∞.(2.23)

Theorem 2.7. Assume the usual hypotheses, with condition (WD.a)β
holding for some β ∈ (0,1/2), and, moreover, that either Bf =R

d or K(0) =

‖K‖∞. Set λ(t) =
√
thdt | loght|, as before. Then, either

lim
n→∞

√

nhdn
2| loghdn|

‖fn −Efn‖Ψ,∞ = ‖K‖2‖f1/2‖Ψ,∞ a.s.(2.24)

or

lim sup
n→∞

√

nhdn
2| loghdn|

‖fn −Efn‖Ψ,∞ =∞ a.s.,(2.25)

according to whether
∫ ∞

1
Pr{Ψ(X)>λt}dt <∞ or

∫ ∞

1
Pr{Ψ(X)> λt}dt=∞.(2.26)
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Proof. By Proposition 2.6, since λn is regularly varying, if the integral
in (2.26) is infinite, then (2.25) holds. So, we must prove that

∫ ∞

1
Pr{Ψ(X)> cλt}dt <∞(2.27)

for all c > 0 implies (2.24). We proceed as in the proof of Theorem 2.1, with
the addition of the usual blocking and replacing, in the estimation of the sup
over Cn, the moment bound by an exponential inequality. By (2.4), we only
have to consider the sup of our statistics over An, Bn and Cn, the three sets
defined as in the proof of Theorem 2.1, but with cn = 1 (and εn = 1/ logn as
before), and we can ignore the centerings on An and Bn. By monotonicity
of hn and λn, we have

max
2k≤n≤2k+1

sup
t∈An

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn

≤ κ sup
t∈A

2k

Ψ(t)
∑2k+1

i=1 I(Xi ∈ J(t;h2k))

λ2k
.

Hence, we have, as before,

Pr

{

max
2k≤n≤2k+1

sup
t∈An

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
> ε

}

≤ ε−12k+1Pr

{

Ψ(X)≥
λ
1/β
2k

c

}

for all k large enough and some c > 0. But, by (2.27), this is the general
term of a convergent series, thus proving that

lim
n→∞

sup
t∈An

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
= 0 a.s.(2.28)

Regarding Bn (with cn = 1 and εn ց 0), we first note that, by regular
variation,

2k+1
⋃

n=2k

Bn ⊆ B̃2k :=

{

t :f(t)Ψ(t)≤ c′ε1−β
2k

( | logh2k |
2khd

2k

)1/2

,

Ψ(t)≤ c′cβ
2k
(2khd2k | logh2k |)1/2

}

for some c′ > 1. Then, as in (2.11),

max
2k≤n≤2k+1

sup
t∈Bn

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
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≤ sup
t∈B̃

2k

Ψ(t)
∑2k+1

i=1 I(Xi ∈ J(t;h2k))

λ2k

≤ max
1≤j≤2k+1

cΨ(Xj)

λ2k
+ max

1≤j≤2k+1

cΨ(Xj)Ij
∑

1≤i≤n,i 6=j I(|Xi −Xj | ≤ h2k)

λ2k
,

where Ij is defined as before but with n= 2k+1, and c may be different from
the constant in (2.11). Now, the maximum term tends to zero a.s. by (2.7)
and Lemma 2.5, and the remainder term satisfies

Pr

{

max
1≤j≤2k+1

cΨ(Xj)Ij
∑

1≤i≤n,i 6=j I(|Xi −Xj| ≤ h2k)

λ2k
> ε

}

≤ C

ε2αk

for some α > 0 and all k large enough, as in the proof of Theorem 2.1.
Therefore,

lim
n→∞

sup
t∈Bn

Ψ(t)
∑n

i=1K((Xi − t)/hn)

λn
= 0 a.s.(2.29)

In order to control the sup of our statistics over Cn = Cn,a [as defined
in (2.14)], we will use Talagrand’s exponential inequality [Talagrand (1994,
1996)] in conjunction with the bound on the expected value of the sup of
an empirical process given in (2.16). In a ready to use form for the problem
at hand, it is as follows [Giné and Guillou (2001), equation (2.12)]: under
assumption (2.15) above, and with the notation of (2.17) above, assuming
further that

0< σ <U/2 and
√
nσ ≥ U

√

log
U

σ
,

there exist constants C and L such that, for all s > C,

Pr

{
∥

∥

∥

∥

∥

n
∑

i=1

(f(ξi)−Ef(ξ1))

∥

∥

∥

∥

∥

F
> sσ

√
n

√

log
U

σ

}

≤ L exp

{

−D(s)

L
log

U

σ

}

,(2.30)

where

D(s) := s log(1 + s/4L)→∞ as s→∞.

We apply this inequality to the class Fn defined on the last part of the
proof of Theorem 2.1, with U = Un and σ = σn as defined there, so that
log Un

σn
≍ logn. Since, for a fixed and n large enough, σn → 0, Un →∞ and

√
nσn/(Un

√

log Un

σn
)→∞, the above applies to give that there exists C <∞
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such that, for all a > 0 and for all n large enough (depending on a),

Pr

{

sup
t∈Cn,a

∣

∣

∣

∣

Ψ(t)
∑n

i=1(K((Xi − t)/hn)−EK((X − t)/hn))

λn

∣

∣

∣

∣

>C‖f1/2Ψ‖Dc
a∩Bf

}

≤ L exp{−2 logn}.

(2.31)

Hence,

lim sup
n→∞

sup
t∈Cn,a

∣

∣

∣

∣

Ψ(t)
∑n

i=1(K((Xi − t)/hn)−EK((X − t)/hn))

λn

∣

∣

∣

∣

≤C‖f1/2Ψ‖Dc
a∩Bf

a.s.

(2.32)

Combining (1.6), (2.28), (2.29) and (2.32), and letting a→∞, we obtain
the limit (2.24). �

We conclude this section with a few examples. We take Ψ(t) = f−β(t).
Other choices of Ψ are of course possible.

Example 2.8. Suppose f :R 7→ (0,M ] is continuous and

f(x) = c1e
−c2|x|r

for all |x| large enough, for some r > 0 and for some constants c1 and c2.
Then, f satisfies (D.a)–(D.c). Take

hn = n−α, 0< α< 1.

For simplicity assume c1 = c2 = 1. It is easy to see that

Pr{|X|> u} ≍ u1−re−ur

.

Hence,

Pr

{

1

f(X)
> t(1−α)/(2β)(log t)1/(2β)

}

≍ 1

t(1−α)/(2β)(log t)1/(2β)−(1−r)/r
.

Then the above theorems imply the following. For r≥ 1, which includes the
symmetric exponential and the normal densities, the conclusion is that the
sequence (2.1) with Ψ(t) = f−β(t) is tight (stochastically bounded) if and
only if

2β ≤ 1−α

and that, if this is the case, then
√

n1−α

2α logn

∥

∥

∥

∥

fn −Efn
fβ

∥

∥

∥

∥

∞
→‖K‖2‖f‖1/2−β

∞ a.s.(2.33)
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The same is true for exponential densities if we replace in (2.33) the sup over
R by the sup over R

+. For 0 < r < 1, if 2β < 1− α, then the limit (2.33)
holds. If 2β = 1−α, different behaviors arise; namely, if (1− r)/r > 1/(2β),
then the sequence (2.1) is not stochastically bounded; if (1− r)/r = 1/(2β),
the sequence converges in distribution to the limit in distribution of the
random variables

(

max
1≤i≤n

‖K‖∞√
2αn2β lognfβ(Xi)

)

∨ (‖K‖2‖f‖1/2−β
∞ ),

which is unbounded and can be easily computed (see the next example);
if (1− r)/r − 1/(2β) < 0, we have convergence in probability in (2.33), but
convergence a.s. holds only if (1− r)/r− 1/(2β)<−1.

Example 2.9. Suppose now the real density f is strictly positive, con-
tinuous and

f(x) =
c

|x|r

for all |x| large enough, for some r > 1 and for some constant c. These
densities also satisfy (D.a)–(D.c). Take hn = n−α, α ∈ (0,1) as above. Then,
(2.1) [again, with Ψ(t) = f−β(t)] is tight if and only if

β ≤ r− 1

r

1−α

2
,

and, if this is the case, then (2.33) holds true.

Example 2.10. Let now f(x) = 1
2e

−|x| be the symmetric exponential
density on R. Then,

Pr

{

max
1≤i≤n

1

f(Xi)
>u

}

=







1−
(

1− 2

u

)n

, if u≥ 2,

1, otherwise,

so that

max
1≤i≤n

1

nβfβ(Xi)
d→ Zβ,

where Z has distribution

Pr{Z ≤ t}=
{

e−2/t, if t > 0,
0, otherwise.

Hence, if we take β ∈ (0,1/2) and

hn =
1

n1−2β logn
,
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Theorem 2.1 gives that
√

nhn
2| loghn|

∥

∥

∥

∥

fn −Efn
fβ

∥

∥

∥

∥

∞

d→ max

( ‖K‖∞
√

2(1− 2β)
Zβ,

‖K‖2
21/2−β

)

.

The next two examples show that the above results are not true in general
without conditions of the type of (D.b), (D.c) [and (W.b), (W.c)]. The first
addresses smoothness and the second the existence of zeros of f on the
closure of Bf .

Example 2.11. It is easy to see that the double exponential density
still satisfies conditions (D.a)–(D.c) and, hence, Theorems 2.1 and 2.7, but
the density

f(t) := ce−ee
t

, t≥ 0,

does not. Specifically, condition (D.b) fails for this density and we show
below that, for all β ∈ (0,1) and for hn = n−α,

√

nhn
2| loghn|

sup
t≥0

∣

∣

∣

∣

fn(t)−Efn(t)

fβ(t)

∣

∣

∣

∣

→∞ a.s.(2.34)

Indeed, if K is continuous and strictly positive at the point t=−1/4, then

Efn(t)

fβ(t)
= c exp{βeet} 1

hn
EK

(

X − t

hn

)

= c exp{βeet}
∫ 1/2

−1/2
K(u)f(hnu+ t)du

≥ c1 exp{βee
t − ee

t−4−1n−α

}

= c1 exp{ee
t

[β − ee
t(e−4−1n−α−1)]}.

Let tn := logn. Then, for large n,
√

nhn
2| loghn|

Efn(tn)

fβ(tn)
≥ c1 exp{en[β − en(e

−4−1n−α−1)]} ≥ c1 exp

{

β
en

2

}

.

On the other hand,

Pr{fn(tn) 6= 0} ≤ Pr

{

max
1≤i≤n

Xi ≥ tn −
n−α

2

}

≤Cn exp{−e
√
n },

which implies that
√

nhn
2| loghn|

fn(tn)

fβ(tn)
→ 0 a.s.,

and therefore (2.34) holds.
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Example 2.12. This example shows that if the density f has a zero in
R, then the asymptotic behavior of

√

nhn
| loghn|

∥

∥

∥

∥

fn −Efn
fβ

∥

∥

∥

∥

Bf

depends on the local behavior of f at the zero point and is no longer con-
trolled only by condition (2.2). Note that in this case condition (D.b) fails.
For simplicity, assume that hn = n−α (with α < 1) and K = I[−1/2,1/2]. Let
f be a density continuous on a neighborhood of 0 and such that f(0) = 0
and, moreover, for some s > 0,

f(t)≍ |t|s as t→ 0.

In particular, we assume that f is s times continuously differentiable at 0
(for an even integer number s) and f (j)(0) = 0 for j < s, f (s)(0) > 0. It is
easy to see that

Pr{|X| ≤ t} ≍ ts+1 as t→ 0.(2.35)

We will show that if s > 1
α − 1, then, for all C > 0,

Pr

{
√

nhn
2| loghn|

∥

∥

∥

∥

fn −Efn
fβ

∥

∥

∥

∥

Bf

>C

}

→ 1.(2.36)

The proof is almost the same as in the previous example. Let tn → 0 be
chosen in such a way that f(tn) = e−n. Note that tn = o(hn). Then, using
(2.35), we get

√

nhn
2| loghn|

Efn(tn)

fβ(tn)
≍
√

n1−α

logn
eβnnαEK(nα(X − tn))

≍
√

n1+α

logn
eβnPr

{

tn −
n−α

2
≤X ≤ tn +

n−α

2

}

≍
√

n1+α

logn
eβnn−(s+1)α →∞.

On the other hand, also using (2.35), if s > 1
α − 1, then

Pr{fn(tn) 6= 0} ≤ Pr{∃ i,1≤ i≤ n :Xi ∈ (tn − hn/2, tn + hn/2)}
≤ nPr{X ∈ (tn − hn/2, tn + hn/2)}
≍ nhs+1

n = n1−α(s+1) → 0.

This immediately implies (2.36). Now let f(t) = c|t|s for |t| ≤ a and f(t) = 0
otherwise. Then it is easy to check that condition (2.2) holds if and only if
β ≤ 1−α

2 (1+ 1
s ). Thus, for large enough s, this condition does not imply the

stochastic boundedness of (2.1).
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3. Large normings. By Proposition 1.1, the central part of the process
Ψ(t)(fn(t)−Efn(t)), that is, its sup over Da, for all a > 0, has an influence
on the asymptotic size in probability of the sequence (2.1) and completely
determines its a.s. limit. But if we normalize by a sequence larger than√
nhdn| loghn|, this central part of the sup vanishes for all a > 0, and only

the extremes of the range of t’s should have an influence on the limit. This
is what we examine in this section. As in the previous section, we will only
consider regularly varying window sizes and normings. As is to be expected,
the only possible limit a.s. in this situation is zero, and the sum is asymp-
totically equivalent, in probability, to the maximum term. This is roughly
the content of the following two theorems.

Theorem 3.1. Assume the usual hypotheses, with condition (WD.a)β
holding for some β ∈ (0,1], and, moreover, that either Bf =R

d or K(0) =
‖K‖∞. Let dt be a strictly increasing regularly varying function such that

dt/λt →∞ and dt ≥Ctβ for some C > 0. Then, the sequence
{∥

∥

∥

∥

∑n
i=1(K((Xi − t)/hn)−EK((X − t)/hn))

dn

∥

∥

∥

∥

Ψ,∞

}

(3.1)

is stochastically bounded if and only if

lim sup
t→∞

tPr{Ψ(X)> dt}<∞.(3.2)

Moreover, if condition (3.2) holds, then
∥

∥

∥

∥

∑n
i=1(K((Xi − t)/hn)−EK((X − t)/hn))

dn

∥

∥

∥

∥

Ψ,∞

− max
1≤i≤n

‖K‖∞Ψ(Xi)

dn
→ 0 in pr.

(3.3)

Proof. The proof is similar to that of Theorem 2.1. First we consider
β < 1. Necessity of condition (3.2) follows exactly in the same way. Here we
indicate the few changes that should be made to the proof of Theorem 2.1
in order to prove that (3.2) implies (3.1) and (3.3). First, and this is by far
the main difference with Theorem 2.1, the sup of

∣

∣

∣

∣

Ψ(t)
∑n

i=1(K((Xi − t)/hn)−EK((X − t)/hn))

dn

∣

∣

∣

∣

(3.4)

over Da, tends to zero a.s. for all a <∞ by Proposition 1.1. Regarding the
centering, consider the bound

nΨ(t)EK((X − t)/hn)

dnfβ(t)

≤ cκnhdn
dn

Ψ(t)f(t)I(f(t)> hrn) +
cκnhdn
dn

Ψ(t)f1−δ(t)I(f(t)≤ hrn),
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where t ∈ Bf , 1− β > δ and r is such that nh
d+r(1−β−δ)
n /dn → 0, which is

obtained as in the proof of Theorem 2.1. If the exponent of regular variation
of nhdn is strictly smaller than that of dn, then, since Ψfη is bounded for
all η ≥ β, the sup over t ∈Bf of this bound tends to zero and therefore we
can simply ignore the centerings in (3.1) and (3.3). Otherwise, the second
summand tends to zero uniformly in t ∈ Bf and the first tends to zero
uniformly on all t ∈Bf such that

f(t)Ψ(t)≤ ε1−β
n

dn
nhdn

,

for any εn → 0. So we can ignore the centerings for these values of t. As
before, we take εn = 1/ logn.

Continuing in analogy with the proof of Theorem 2.1, we now define

An = {t ∈Bf :Ψ(t)> cβndn}
with cn = (dn logn/dn)

1/β →∞, and we get, as in (2.8) but now using the
properties of dn, that

lim
n→∞

sup
t∈An

∑n
i=1Ψ(t)K((Xi − t)/hn)

dn
= 0 in pr.

(for 0< β < 1).
Next we set

Bn :=

{

t ∈Bf :f(t)Ψ(t)≤ ε1−β
n

dn
nhdn

,Ψ(t)≤ cβndn

}

in analogy with (2.9). Then, proceeding as in the proof of (2.10) with the

only formal change of replacing λn by dn and
√
nhdn/| loghn| by nhdn/dn, we

arrive at analogous conclusions, namely that the sequence

sup
t∈Bn

Ψ(t)
∑n

i=1K((Xi − t)/hn)

dn

is stochastically bounded and that in fact it can be represented as

max
1≤i≤n

κΨ(Xi)

dn
+ op(1).

(This requires using the properties of dn and hn but, given that proof, the
details are straightforward.)

Finally, we consider

Cn =Bf \ (An ∪Bn) = {t ∈Bf :f(t)Ψ(t)≥ ε1−β
n dn/(nh

d
n)}.

Using as before that Ψf ≥ L implies, by (WD.a)β , that Ψ≤ L−β/(1−β), we
can take

Un = κε−β
n

(

nhdn
dn

)β/(1−β)

.
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We will consider two cases.
If the exponent of regular variation of nhdn is strictly smaller than that

of dn, then ε1−β
n dn/(nh

d
n)→∞ and therefore, since, by (WD.a)β , ‖fΨ‖∞ ≤

‖f‖1−β
∞ <∞, Cn is eventually the empty set.
Assume now that the exponent of regular variation of dn does not exceed

that of nhdn. Then ε1−β
n dn/(nh

d
n) is eventually dominated by n−δ for any

δ > 0, so that we eventually have f(t)≥ hrn and Ψ(t)≤ h−r
n for some r > 0

and all t ∈ Cn. So, we can apply (D.c) and (W.c), which, together with
(WD.a)β , immediately imply that we can take σn as follows:

σ2
n =

{

Cκhdn‖f‖1−2β
∞ , if β ≤ 1/2,

Cκhdnε
−(2β−1)
n (nhdn/dn)

(2β−1)/(1−β), if β > 1/2.

Since Un is either slowly varying or tends to infinity and σn tends to zero
as a negative power of n for β ≤ 1/2, we get, in this case, that, eventually,

0< σn <Un/2 and log
Un

σn
≍ logn.

The same conclusion holds for β > 1/2 since h
d/2
n decreases as a negative

power of n and the exponent of nhdn/dn in the expression for σn is smaller
than its exponent in the expression for Un. It is also easy to see, using
λn/dn → 0 in the case β < 1/2 and dn > Cnβ when β = 1/2 or β > 1/2,
that, eventually,

√
nσn ≥ Un

√
log(Un/σn)≍ Un

√
logn.

Then inequality (2.16) gives that

E

(

sup
t∈Cn

∣

∣

∣

∣

Ψ(t)
∑n

i=1(K((Xi − t)/hn)−EK((X − t)/hn))

dn

∣

∣

∣

∣

)

≤ C
√
n logn σn
dn

for some C <∞ independent of n, as long as n is large enough. For β ≤ 1/2,
this bound is, up to a multiplicative constant, of the order of

λn

dn
→ 0,

and for β > 1/2, it is of the order of

ε−(2β−1)/2
n

√
logn(nβ/dn)

1/(2(1−β))hdβ/(2(1−β))
n → 0,

since dn ≥Cnβ for some C > 0, and hn → 0 at least as a negative power of
n. This completes the proof of the theorem for β < 1.

For β = 1, since dn ≥ Cn and ‖Ψf‖Ψ,∞ ≤ 1, we can ignore the centering
for all t. Then we decompose Bf into An defined as above and Bn := {t ∈
Bf :Ψ(t) ≤ cβndn}. The proof of (2.8) and (2.10) with λn replaced by dn
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follows as in the proof of Theorem 2.1, even with some simplification as Bn

is now a simpler set. �

We have assumed dn ≥ Cnβ and β ≤ 1 in the above theorem. Next we
show that these two assumptions are optimal.

Remark 3.2. Take Ψ= f−β. For the sequence (3.1) to be stochastically
bounded, it is necessary, by the first part of Theorem 2.1, that the sequence
{max1≤i≤n(dnf

β(Xi))
−1} be stochastically bounded, hence, by regular vari-

ation of dt, that

supnPr

{

1

f(X)
≥ d1/βn

}

<∞.

But if Bf =R
d, then condition (D.c) implies, as in the proof of Corollary

2.2, that

nPr

{

1

f(X)
≥ d1/βn

}

≥ c
n

d
1/β
n

for all n and some c > 0 independent of n. Hence, if Ψ(t) is of the order of
f−β(t), then we must have dn ≥Cnβ in Theorem 3.1.

Remark 3.3. Suppose we take β > 1 in Theorem 3.1, and, again, let
us take Ψ = f−β. Then, we still have that (3.2) is necessary for stochastic
boundedness of the sequence (3.1). But then (3.2) implies that

lim
n→∞

sup
t∈An

∑n
i=1K((Xi − t)/hn)

dnfβ(t)
= 0 in pr.

as before. On the other hand, if Bf =R
d, then the set An contains t’s with

f(t) arbitrarily small, and therefore, by (D.b), for some 0< δ < β − 1,

sup
t∈An

nEK((X − t)/hn)

dnfβ(t)
& sup

t∈An

nhn
dnfβ−1−δ(t)

=∞.

Hence, the sequence (3.1) is not stochastically bounded, which is a contra-
diction. So, Theorem 3.1 is not true for β > 1.

The next theorem describes the almost sure behavior of ‖fn − Efn‖Ψ,∞
for large normings.

Theorem 3.4. Assume the usual hypotheses, with condition (WD.a)β
holding for some β ∈ (0,1], and, moreover, that either Bf =R

d or K(0) =
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‖K‖∞. Let dt be a strictly increasing regularly varying function satisfying

that limt→∞ dt/λt =∞ and dt ≥Ctβ for some C > 0. Then, either

lim
n→∞

∥

∥

∥

∥

∑n
i=1(K((Xi − t)/hn)−EK((X − t)/hn))

dn

∥

∥

∥

∥

Ψ,∞
= 0 a.s.(3.5)

or

lim sup
n→∞

∥

∥

∥

∥

∑n
i=1(K((Xi − t)/hn)−EK((X − t)/hn))

dn

∥

∥

∥

∥

Ψ,∞
=∞,(3.6)

according to whether
∫ ∞

1
Pr{Ψ(X)> dt}dt <∞ or

∫ ∞

1
Pr{Ψ(X)> dt}dt=∞.(3.7)

Proof. Necessity and the part of sufficiency dealing with the sets An

and Bn follow by a straightforward combination of the proofs of Theorems
2.7 and 3.1. The only difference with previous proofs is in the estimation of
the supremum of the processes over the sets

Cn = {t ∈Bf :f(t)Ψ(t)≥ ε1−β
n dn/(nh

d
n)}.

Here, as in the corresponding part of the proof of Theorem 2.6, we use Tala-
grand’s inequality. However, dn is large and it may fall out of the “Gaussian
range” of the inequality. With the notation put forward above, and with the
assumptions

0<σn <Un/2 and
√
nσn >Un

√

log
Un

σn

shown to hold for all n large enough in the previous proof, Talagrand’s
inequality in the version from Giné and Guillou [(2001), Proposition 2.2]
gives

Pr

{

sup
t∈Cn

∣

∣

∣

∣

∣

Ψ(t)
n
∑

i=1

(

K

(

Xi − t

hn

)

−EK

(

X − t

hn

))

∣

∣

∣

∣

∣

> εdn

}

≤L exp

[

− 1

L

εdn
Un

log

(

1 +
εdnUn

Lnσ2
n

)]

:= (I),

(3.8)

for some L that depends only on A and v [from (2.15)], and for all n large
enough, as long as

εdn√
nσn

√

logUn/σn
>C

for a certain constant C <∞. This last condition is eventually satisfied by
all ε > 0 since log(Un/σn)≍ logn and dn/(

√
n lognσn)→∞, as can be easily

seen directly from the definitions and properties of these quantities.



34 E. GINÉ, V. KOLTCHINSKII AND J. ZINN

Now, by the hypotheses on hn and dn, and since εn = 1/ logn, there exists
δ > 0 such that

εdn
Un

= ε · εβn
(

dn
nβ

)1/(1−β)

h−dβ/(1−β)
n ≥Cε · εβnh−dβ/(1−β)

n ≥ nδ.(3.9)

If 1/2≤ β ≤ 1, then

log

(

1 +
εdnUn

Lnσ2
n

)

≍ log

(

1 +
ε

Lεβn

)

& log logn.

If β < 1/2,

log

(

1 +
εdnUn

Lnσ2
n

)

≍ log

(

1 +
ε

Lεβn

(

dn
nhdn

)(1−2β)/(1−β))

,

which is of the order of logn if the exponent of regular variation of dn is
strictly larger than that of nhdn, and satisfies

lim
n→∞nδ log

(

1 +
ε

Lεβn

(

dn
nhdn

)(1−2β)/(1−β))

=∞

for all δ > 0 if the exponents of dn and nhdn coincide. (This can be readily
seen using the properties of regular variation and that log(1 + τ) ≃ τ for
τ small.) Combining the last three estimates with the bound (3.9), we get
that, for the cases considered,

(I)≤ exp(−nδ)(3.10)

for some δ > 0. Finally, if β < 1/2 and the exponent of variation of dn is
smaller than the exponent of nhdn, then

log

(

1 +
εdnUn

Lnσ2
n

)

≃ εdnUn

Lnσ2
n

,

and we have, for constants L independent of n (as long as n is large enough)
and that vary on each occurrence,

(I)≤ L exp

(

− 1

L

ε2d2n
nσ2

n

)

= L exp

(

− 1

L

ε2d2n
nhdn

)

= L exp

(

− 1

L
ε2
(

dn
λn

)2

| loghn|
)

≤ L exp(−M logn),

(3.11)

where M can be made as large as we wish, as long as we take n large
enough. (Here we have used dn/λn →∞ and | loghn| ≍ logn.) This covers
all the cases, and we obtain, combining (3.8), (3.10) and (3.11), that

∑

n

Pr

{

sup
t∈Cn

∣

∣

∣

∣

∣

Ψ(t)
n
∑

i=1

(

K

(

Xi − t

hn

)

−EK

(

X − t

hn

))

∣

∣

∣

∣

∣

> εdn

}

<∞
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for all ε > 0, proving that

lim
n→∞ sup

t∈Cn

∣

∣

∣

∣

∣

Ψ(t)
n
∑

i=1

(

K

(

Xi − t

hn

)

−EK

(

X − t

hn

))

∣

∣

∣

∣

∣

= 0 a.s.

This completes the proof of the theorem. �

The results in this section obviously apply to the densities in Exam-
ples 2.8–2.11. For instance, let f be the symmetric exponential density on
R considered in Examples 2.8 and 2.10, and let hn = n−α, 0<α< 1. Then,
Theorem 3.1 shows that

n1−α−β

∥

∥

∥

∥

fn −Efn
fβ

∥

∥

∥

∥

∞

d→ ‖K‖∞Zβ,

where Z is the random variable defined in Example 2.10, if and only if

1−α

2
< β < 1;

and Theorem 3.4 shows that, for c(t) strictly increasing and regularly vary-
ing,

n1−α

cβ(n)

∥

∥

∥

∥

fn −Efn
fβ

∥

∥

∥

∥

∞
→ 0 a.s.

if and only if
∫ ∞ dt

c(t)
<∞.

A similar statement holds true for normal densities.

Remark 3.5. Suppose that K is a uniformly bounded class of kernels
supported by a fixed bounded set and such that the class

F :=

{

K

( · − t

h

)

: t ∈R
d, h > 0, K ∈K

}

is measurable and has covering numbers

N(F ,L2(P ),‖K‖L2(P )ε)≤
(

A

ε

)v

, 0< ε< 1,

for some A and v finite and positive and for all probability measures P . [In
particular, K may be a subset of the linear span of a finite set of functions
k as defined in condition (K)]. Suppose we wish to consider

sup
K∈K

∥

∥

∥

∥

fn −Efn
cn

∥

∥

∥

∥

Ψ,∞
,
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where cn is dn or λn, as defined above. Then uniform boundedness and
uniformity of the support allow us to deal with the sup over An and Bn, and
the entropy bound, with the sup over Cn, just as in the previous theorems.
The sup over the central part Da is handled in Mason (2004). So, it is
straightforward to prove a uniform in K ∈ K version of our results. It is
also possible to prove a functional law of the logarithm in our setting by
following Mason (2004).

Acknowledgments. We thank David M. Mason for several comments on
previous drafts and for useful conversations on the subject of this article.
Lyudmila Sakhanenko read the manuscript and pointed out several typos.
This research has been carried out, aside from our institutions of origin,
at the Department of Mathematics of the University of Connecticut (V.
Koltchinskii and J. Zinn), at the Department of Statistics of the University
of Washington, Seattle (V. Koltchinskii), and at the Institut Henri Poincaré,
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