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ABSTRACT. Let f,, denote a kernel density estimator of a continuous density f in d dimensions, bounded

and positive. Let ¥(t) be a positive continuous function such that || ¥ f7|| oo <oo for some 0<3<1/2. Under natural
nh,’dl
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to be stochastically bounded and to converge a.s. to a constant are obtained. Also, the case of larger values of

smoothness conditions, necessary and sufficient conditions for the sequence

0 is studied where a similar sequence with a different norming converges a.s. either to 0 or to 400, depending
on convergence or divergence of a certain integral involving the tail probabilities of ¥ (X). The results apply as

well to some discontinuous not strictly positive densities.
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1. Introduction. Almost forty years ago, Parzen (1962) studied basic properties of
kernel density estimators following their introduction by Rosenblatt (1956). Since then
the kernel density estimator has become a classical object looked at by both statisticians
and probabilists. For statisticians, it has been a canonical example of nonparametric curve
estimator, which brought many important ideas from approximation theory and harmonic
analysis into nonparametric statistics. Probabilists used the study of this estimator to
test the strength of the methods from weak and strong convergence, empirical processes
and probability in Banach spaces. In this paper, we consider a couple of problems about
asymptotic behavior of kernel density estimators uniformly over all of R? that do not seem
to have been considered before, particularly in the 80’s, when the basic results on uniform
a.s. convergence were obtained.

The kernel density estimator f,, of f corresponding to a sample of size n, a kernel K
and a bandwidth A > 0 is

fult) = %;d%) (L)

where X; are i.i.d. with density f. To ensure its consistency, h is chosen to be a function
h, of n such that h,, — 0 and nh,, — oo as n — oo. This is a biased estimator, but we
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will not deal with the bias; we will only be interested in the sup norm of the deviation of
fn from its mean.

Our starting point is the following well known result due to Stute (1984):

hd —F
lim | —— In = Elnll K| as. (1.2)
n—oo \[ 21log hy Vil
where J is a compact parallellepiped with sides parallel to the axes, || - ||; means ‘sup

over J’, f is a uniformly continuous density which is bounded away from 0 on J, and K
is continuous and satisfies some additional assumptions (see, e.g., condition (K) below).
Much later it was shown that

hd
lim /=2 || fo = Eful| = IK ]2l /112 as. (13)

n—oo \[ 2]logh

where K satisfies condition (K) and f is uniformly continuous (Giné and Guillou (2000)
for any d, and Deheuvels (2000) for d = 1; a weaker result of this type was obtained much
earlier by Silverman (1978)). In both results the bandsequence {h,, } satisfies Stute’s (1982)
conditions. In fact, these results can be slightly extended as follows: if W is uniformly
continuous and bounded on J, where J is either a bounded parallellepiped of R? with
sides parallel to the axes, or J = R?, then

lim — Efa( K |2 @ f2) 5 as., 1.4
a result formulated in Deheuvels (2000) for d = 1 and which follows for any d from

Einmahl and Mason (2000) and Giné and Guillou (2000b) (with simple modifications in
their proofs). Note that (1.4) contains (1.2) and (1.3).

The first question on which we wish to shed some light is whether one can interpolate
between the two results (1.2) and (1.3) by replacing J by R% and f~/2 by f~# for some
0 < B < 1/2in (1.2). A more general formulation of the same problem is whether
unbounded functions ¥ are allowed in (1.4) when J = RY.

Notice that, in case f > 0 over all of R% and lim inf |, oo f(z) = 0, (1.4) implies that
only powers of 3 not exceeding 1/2 can lead to finite a.s. limits for the sequence

nhd = (15)
2dlog hyt oo n:l' ‘

This is the case of classical norming, and in this case we find necessary and sufficient
conditions (on the density f and on the bandsequence h,) for (1.5) to be stochastically
bounded (Theorem 2.1); in fact, Theorem 2.1 gives necessary and sufficient conditions for

(o oo e} i)
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to be stochastically bounded, assuming ||V f#|| < oo for some 8 € (0,1/2). This result
further clarifies the role of the sequence of maximum terms maxi<;<, ¥(X;)/v/nhd|logh,|
in the asymptotic behavior of (1.5’) in probability or in law. We also obtain a neccessary
and sufficient condition for (1.5’) to converge a.s. to the constant || K||2||¥ f'/?||s and show
that if this condition is violated, then the sequence (1.5%) is a.s. unbounded (Theorem 2.6).

A second question is that of determining the right norming constants in the sequences
(1.5) or (1.5%) for larger values of § in order to obtain convergence. In this case, we also
give necessary and sufficient conditions for stochastic boundedness (Theorem 3.1) and for
a.s. convergence of the sequences (Theorem 3.4). The almost sure limit is shown to be
either 0 or 400, depending on convergence or divergence of a certain integral describing
the tail behavior of ¥(X). The situation in this case is somewhat similar to what is well
known about weighted empirical processes, see Einmahl and Mason (1985, 1988).

We consider a slightly more general situation where f needs not be strictly positive,
however, we still require that, if By = {f > 0}, then f be bounded away from zero
on By N{|t| < a} for all @ > 0. Even this case requires unusual but somewhat natural
smoothness conditions on f. More general situations seem to require a strengthening of the
smoothness conditions, and we refrain here from considering them (see however Example
2.12).

Assumptions and notations. We introduce here some notations and conditions
that are used throughout the paper.

For z = (11,...,74) € R, we set |z| := maxj<;<q|z;|. We assume that the kernel K
satisfies the following condition:

(K) K >0, K # 0, is a bounded measurable function with support contained in [—1/2,1/2]¢
which belongs to the linear span (the set of finite linear combinations) of functions
k > 0 satisfying the following property: the subgraph of k, {(s,u) : k(s) > u}, can be
represented as a finite number of Boolean operations among sets of the form

{(s,u) 1 p(s,u) = p(u)},

where p is a polynomial on R% x R and ¢ is an arbitrary real function.
Conditions of a similar type were used, e.g., in Koltchinskii and Sakhanenko (2000).

In particular, the above property is satisfied if the subgraph of k£ is a semialgebraic
set in R? x R (see Dudley (1999), p. 165). If K(x) = ¢(p(x)), p being a polynomial and ¢
a real function of bounded variation, then K satisfies (K) (see Nolan and Pollard (1987)).

Condition (K) is mainly imposed because if K satisfies it, then the class of functions

f:{K(%):teRd, h>0}

has covering numbers
A v
N(f7L2(P)7HKHL2(P)€) < ; 70<6< 17
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for some A and v finite and positive and for all probability measures P. Indeed, for a fixed
polynomial p, the family of sets

{{(s:0): p((s = )/hw) > p(w)} - t € R% B> 0}

is contained in the family of positivity sets of a finite dimensional space of functions, and
then the entropy bound follows by theorems 4.2.1 and 4.2.4 in Dudley (1999). The entropy
bound will be crucial in the proofs below. Since the map (x,t,h) — (z —t)/h is jointly
measurable and K is measurable, the class F is image admissible Suslin (Dudley (1999),
p. 186), and this implies that the measurability of the empirical process indexed by F (or
even by {U(¢)K((- —t)/h)} with ¥ continuous) is as good as if the class were countable,
that is, we can ignore measurability of the sup of the empirical process over g € F (cf.:
Dudley, loc. cit., Corollary 5.3.5 and Theorem 5.3.6, or Pollard (1984), pages 195-197).
We set k1= || K||oo (Which is strictly positive).

The following assumptions on the density f will be used repeatedly:

(D.a) fis a bounded density on R? continuous on its positivity set By := {t € R®: f(t) >
0}, which is assumed to be open, and lim,—,cc SUpps, f(t) = 0.

(D.b) For all § > 0 there exist ¢ € (0,00) and hg > 0 such that, for all |y| < hy and all
x € By, x+y € By,

1 s f(z+y) -5
Ef (m)SwﬁCf ()
(D.c) For all r > 0,
. fle+y) | _
I SO e s

z+y€By,lyl<h

In particular, if log f is uniformly continuous on R9, then conditions (D.a)—(D.c) are
satisfied (this is true, for instance, for the symmetric exponential density or for uniformly
continuous non vanishing densities with power tails). The above conditions are satisfied
as well by normal and double exponential densities even though their logarithms are not
uniformly continuous. Note also that (D.b) implies inf,cp; |¢|<q f(z) > 0 for all @ < oo
such that By N {|z| < a} # 0, in particular, a continuous density with bounded support
does not satisfy (D.b). Similarly, a density that has an isolated zero where it is continuous
does not satisfy condition (D.b) either. In fact, Example 2.12 below shows that for such a
density the stochastic boundedness of the sequence (1.5) depends on the local behavior of
the density at its zero points, and not only on the tails of the random variable f~%(X), as
is the case under condition (D.b) (see Theorem 2.1). On the other hand, the exponential
density does satisfy (D.a) — (D.c).

Conditions (D.b) and (D.c) on f are not found in Stute’s result (1982, 1984) or in
Einmahl and Mason (2000) because they consider bounded intervals with f bounded away
from zero on them, and they are not found either in Giné and Guillou (2000) since there
is no division by a power of f in their result. These conditions seem natural for the results
that will follow and we will indicate below that conditions of this type are indeed needed:
see Example 2.11.



We assume that the weight function ¥ satisfies the following conditions that resemble
the above conditions on the density:

(W.a) ¥: By — Ry is a positive continuous function on By-.

(W.b) For all § > 0 there exist ¢ € (0,00) and hy > 0 such that, for all |y| < hy and all
xer,x—i—yer,

U(x +y)

() < c¥(x).

1
“U(y) <
- (r) <

(W.c) For all r > 0,
Y
lim sup M — 1| =0.
h=0 , yw<n—r, | U(T)
z+y€Byg,|y[<h

In particular, by (W.b), ¥ is bounded on bounded subsets of By, but ¥ may be
unbounded if By is unbounded.

We also need the following conditions that establish a relationship between f and U:
(WD.a)s |fP|lw.c0 := SUPye, |W(t)fB(t)| < oo, where 3 is a positive number.
(WD.b) For all r > 0,
lim sup M

h—0 z,y:V(z)<h—" f(x)
:c,x+T€Bf,|y\§h

-1/ =0.

Note that (WD.a)s and (WD.b) imply (D.c): if |[Uf°| 5, < c and f(t) > h" then
U(t) < ch™"P,
Also, if ¥ = f=P (which is our main example), then (W D.a)g is satisfied and the set
of conditions (D.a)—(D.c) is equivalent to (W.a)—(W.c) and (W D.b).
Regarding the window sizes, the assumptions are:
(Hy) hg, t > 1, is monotonically decreasing to 0 and th¢ is a strictly increasing function
diverging to infinity as t — oo, and
(Hs) h{ is regularly varying at infinity with exponent —a for some « € (0,1); in particular
there exist 0 <79 <7 < 1 such that

limsupt™h? =0 and liminft™h{ = co.
t—00 t—oo

Condition (Hs) is quite restrictive compared to the bandsequence assumptions in Stute
(1982): besides the extra regularity, we do not allow h; to get too close to the extremes
1/t or 1/logt, and in particular, |log h¢| is comparable to logt, ¢ > 1. If we set

>\t = \/thg|10ght|

then, under (Hy)— (Hz), the function )\, is strictly increasing and is regularly varying with
exponent larger than 0. This property of A; is used throughout Section 2.
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Our results rely on the by now classical theorem of Stute (1984) about the a.s. behavior
of the uniform deviation of the kernel density estimator over compact intervals, suitably
modified. The version of his theorem we need is a reformulation along the lines of Deheuvels
(2000) of Proposition 3.1 in Giné and Guillou (2000), which in turn is adapted from
Einmahl and Mason (2000).

Proposition 1.1. Let f be a density on R?, continuous on an open set containing D, :=
{t :|t] < a,f(t) > at}, for some 0 < a < oco. Let ¥ be a strictly positive function,
continuous on an open set containing D,. Then

nhd
im () ———1— — — / _
Jm [ o~ B0 = 111l (16)

We omit the proof as it coincides with the proof of the above mentioned propositon,
except for obvious changes.

Proposition 1.1 applies to f satisfying (D.a) and (D.b) and VU satisfying (W.a) and
(W.b).

Without further mentioning, all the results we state in this paper beyond this point
assume conditions (K), (H1), (Hz), (D.a) — (D.c), (W.a) — (W.c), (WD.b) and (WD.a)g
for some (3. The number 3 is to be specified at each instance. We will refer to these
assumptions as the ‘usual hypotheses’.

Finally, we introduce the following notation, that will be used throughout: for any
function g defined on By, we set

l9llw,00 == sup lg(t)W(t)]. (1.7)

2. The classical norming case.

The following theorem describes the stochastic boundedness behavior of the sequence
(2.1). It shows in particular that no interpolation between (1.2) and (1.3) works for all
strictly positive, bounded, continuous densities, and that when it works, it does not work
for all the range of possible bandsequences. In what follows, X is a random variable with
density f.

Theorem 2.1. Assume the usual hypotheses, with condition (W D.a)g holding for some
B € (0,1/2), and, moreover, that either By = R or K(0) = ||K||s. Then the sequence

| nhd ~
n - —Ef, 2.1
{ | log hy | !/ !/ \Il,oo} » (2.1)
is stochastically bounded if and only if
limsuptPr{\I’(X) > (th?|log ht|)1/2} < 0. (2.2)
t—o0
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Moreover, under condition (2.2), the sequence

nh; | K |oe ¥(X) 1
. nmn _ [e'e) 7 K /2 .
{ 2|log h%’ ‘ U,00 <1I£?§Xn 2nhg|loghg| \/ 1K 2] f ||\I'

converges to zero in probability.

oo

fn - Efn

n=1

(2.3)

Proof. We will use the notation \; = (th{|logh:|)*/?. As mentioned above, conditions
(Hy) and (Hj3) imply that A; is regularly varying with strictly positive exponent. Note
that, by regular variation, condition (2.2) is equivalent to

limsuptPr{\I/(X) > c)\t} < 00 (2.4)

t—o00

for any 0 < ¢ < co. By Montgomery-Smith’s (1993) maximal inequality (see e.g. de la
Pena and Giné (1999)), the stochastic boundedness of the sequence (2.1) implies that of

the sequence
{ B ((Xi = 1)/hn) —EK((X—ﬂ/hn)H\p,oo}

11;1%}% )\n
Then, since, for all ¢, letting v = (uy,...,uq),
1/2 1/2
EK((X —t)/hn) = hi, K (u) f(hnu + t)duy - - dug < Dy [|K|1[| fllee — 0,
~1/2 —-1/2

taking t = X; — Thy,..., X, — Thy, for 7 € R% satisfying K(7) > 0, we obtain that the

sequence
U(X, — (X, —
{ i (X; 7'hn)(>\Z ThnGBf)}

1<i<n "

is stochastically bounded. We take 7 = 0 if K(0) # 0. Now, if K(0) # 0 then, X; — 7h,, =
X; € By as., and if By = R?, then obviously X; — 7h, € By, so that, in either case,
Pr{X — 7h,, € By} = 1. Thus, the sequence

{ U(X; —Thy) }
max ——
1<i<n An

is stochastically bounded. In particular, if 7 =0,

max
1<i<n  Ap

is stochastically bounded, proving condition (2.4) in this case (as, if §; are independent,
Pr{max|&| > ¢} > S Pr{|&| > ¢}/(1 + D Pr{|&] > ¢}). If 7 # 0 but By = R4, given
€ > 0, let M be such that

U(X; —Thy,
supPr{ max g >M} <e.

1<i<n An
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If W(X; — thy,) < MM\,, then by regular variation there exists » > 0 such that ¥(X; —
Thy) < h,," (at least for all n large enough), and we can apply condition (W.c) to conclude
that there exists ¢ > 1 such that for all n large enough (independent of X;), ¥(X;) <
¢V (X; — Thy). Then, for these values of n we obtain

(X,
Pr{max M>C]\4}<a€.

1<i<n n

Therefore, in this case, the sequence {maxlgign U(X;)/ /\n} is also stochastically bounded,
proving (2.4).

For the converse we note first that Proposition 1.1 takes care of the sup over D, for
any a > 0.

Next, we observe that the centering in (2.1) can be ignored for a certain range of t's.

Let e, — 0and 0 < § <1 — . Choose r > 0 such that
hZ(l—ﬁ—é)
(nh) = An

— 0.

Then there exist ¢ < +00 and ng < oo such that, by (D.b) and (D.c), for any t € By and
n > no,

nV()EK (X —t)/hn) < C"{nhg\p(t) sup  f(t+ hpu)

» T e
d d
< Py 1) 10 I(1(1) > ) + Lm0 () < ).

Since, by condition (W D.a)s, ¥(t) < cf~7(t), the last summand tends to 0 uniformly
int (as f < 1—206). The sup of the first summand over all ¢ such that ¥ (¢)f(t) <

ex 7P ((nht)=* log hn\)1/2 tends to 0 as well. Thus, we can ignore the centering E f,,(t) for
all t € By such that

log h,, 1/2
M) (2.5)

d
nh

W@ﬂﬂé%ﬁ<

for any sequence ¢, — 0. We take ¢,, = 1/logn.
In the rest of the proof, we consider the sup of |¥(t)(f, — Ef,)(t)| over several regions.

First, we consider the regions
A, = {t € By: ¥(t) > cfl)\n} (2.6)

for the sequence ¢,, = (Ap10gn/ )\n)l/ # which tends to infinity because ), is regularly varying
with positive exponent. Actually, if n > 0 is the exponent of regular variation of \;, the
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representation formula for regularly varying functions (e.g., Feller (1971), p. 282) gives
that for every 0 < ¢ < n and ¢ > 1 there exists ng < oo such that

1 )\TL ogn
_(logn)7* < ZEEER < c(logn) e (2.7)

for all n > ng. Then, since § < 1/2 < 1 — 3, for a suitable 6 > 0 and all n large enough
we have

En

1/(1-8)
e A8 > /=6 > pn/(1=B)+s 5 ( An ) 1 (

e, | log hu, | _;

nh 1/(2(1-5))
| log hn')

This yields for all t € A,,

) N\ P/1-B)
U(t) > ( nh, )

N g | log Iy |

and, using condition (W D.a) s (which without loss of generality can be written as || f°||¢ oo <

1), we get
| log fun| 1/2(1-p)
t) <enp .

This implies (2.5) for all t € A,,, since ¥ (t)f(t) < || f°|
to (WD.a)g). Therefore,

v.oof P (t) < F178(t) (again due

o MEOEK(X = 0)/h)
teA, >\n

showing that we can ignore the centering Ef,, on the region A,. For any point a
(a1,...,aq) € R% and positive number p we set

J(a;p) :=lax — p/2,a1 + p/2] x -+ X [ag — p/2,aa + p/2] N By.
Then, discarding the centering,

up YOS K (X = )/ha) _ :

K
sup — V(¢ 1(X; € J(t;hy)).
sup " sup 3 (); ( (t; hn))

Now we divide A,, into two parts:

Ap = {t € By :U(t) > h;r} and A, 2 := {t PN, < U(t) < h;r},

where r is such that h,, r(

1-9) > ch\n for some 6 > 0 and all n. It follows from condition
(W.b) that t € A, 1 and s € J(t; hy,) imply that there are ¢ and ng such that

U(s) _
0 > cU0(1)
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for all n > ng, so that W(s) > cW1=9(¢) > chn" ™ Hence for the same values of n and
some C' < oo we have

T)S ! K(X; —t)/hy,
Pr{ sup ()2 K(( )/hn) > 5} <nPr{¥(X)>h;"179} < ¢ o
t€An 1 An logn

It follows from condition (W.c) that ¢ € A, 2 and s € J(t; h,,) imply that there are ¢ and
no such that W(s) > c?\, /c, for all n > ng. Hence, for these values of n we have

St K(X; —t)/hy,
Pr{ sup ()2 KU )/hn) >ep <nPr{¥(X) >\, /c} < —0
tE€A, - An logn
for some C' < oo by (2.4). The last two limits imply that
K h
lim sup V() 3 im K(Xi = 1)/hn) =0 in pr. (2.8)
N e Ay, An

Now we consider the regions

1/2
) ,m(t)gcg<nhg|1oghn|)l/2} (2.9)

and notice that in these regions we can also ignore the centering (by (2.6)). Our goal is to

show that
{ U(t) > KX —)/hn) }°°

sup

is stochastically bounded under condition (2.2) and that, moreover, if either B; = R? or
K (0) = &, then also

W(t) 3 iy K(Xi —t)/hn) v(Xi)

= 1). 2.1
hoivi M Fmax — = Torll) (2.10)
As above,
V() >, K((Xi —t)/hn) -
su L (X; € J(t; hy)),
teBpn >\n o teB, 2:: ))
and we set
U(t) ¢
Z, = su 1(X; € J(t;hy,)).
o m UCEICL

For j=1,...,n, set

B =B, J(X

10



If t ¢ U7_; By j then Z, = 0. Hence, we have

Y $ 1% € I ).

i=1

Zy, = max sup
1<j<ni¢eB, ; An

By conditions (W.c) and (W D.b), t € B, ; implies that
() < eV(X;)

and also

n

nhd

n

| log hu | 12
(X)) < cclhn FOX)U(X;) < ﬁ( Z )

for any ¢ > 1, provided that n is large enough.
Set

nhd

3 1-3 | log hn| vz
Ij = In,j =1 \II(X]) S CCn)\n, f(X])\I/(XJ) S ce, .
Then

U (X)L 300 I(|Xi — Xj| < hy)

Z, < max

~1<j<n An
(X, V(XN csen i TIXs = X5] < I
< max e ( J) + max ( J) JZISS AF] (’ 9| ) (2.11)
1<j<n An 1<j<n An

By condition (2.2), the first term in the above bound is the general term of a stochastically
bounded sequence. We now show that the second term tends to zero in probability. To
handle this term, let P; denote conditional expectation given X; and set

pj = Pi{|X — X[ < hn}.
It follows from condition (D.a) that
297 hl f(X;) < pj < 2%ch] (X))

(provided that I; = 1). A standard bound on binomial probabilities (e.g., Giné and Zinn
(1984), p. 958) shows that

. {Ij\lj(Xj)Zl<i<n,z’75j I(1Xi — X;] < hy) N } ((n - 1)epj\p(xj))<“"/q’<xf>>“
J >ep < )

' A, Moe

Using the bound on p; this probability can be further bounded by

<2decnhfl1f(Xj)\If(Xj) ) (A /W(X;))V1
An€ '
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We can and do assume that I; = 1 (otherwise the conditional probability in question is 0).
Then

—o (Lol "
P < et (180

and we have

2%ecnhl f(X;)V(X;) < Cinhlel=A(|log hy,|/nhi)V2  Ciel=?
A€ - (nhd|log h,|)1/2e €

for some C; < 0o (and all n large enough). Note also that

2lecnhl f(X;)0(X;) O nhd \'?
ecn n];\igj) (X5) :_(|IZan|) (X)) ¥ (X)),

1-3
where C' is a finite positive cosntant. For large n, Cl% < e~/ which yields

P»{ I;0(X;) Zlgign,i;éj I(’Xi - Xj| < h }
j
nh

An

< (eo{-nm/re ) A(E (e ‘)1/2f<xj)xp<xj>).

1/2
Ij1 = I(‘MXJ) < (31/(\)7;”)7 f(X;)¥U(X;) < CE;B<|IOgh”|> )

and let IJ2 =1 - I}. Then we have

Liv(X, (X — X5 < hg
PI‘{ J ( 3)2132371,1;&; (| ]|— )28}

Let

max
1<j<n An

SZEIJPJ{ J ( J)Zlﬁzﬁmgﬁg (| ]| >~ ) 26}
j=1

An

giEl}exp{ An /(X } Z (nhd )1/2f(Xj)\I’(Xj>

j=1 =1 i

=: (I)+ ({1).

Then, using the definition of I ]1 and [ ]2, we get

1
(I) < nexp{—?);\)ﬁ/\n} =n 2

and

C/ nhi \'?*  (3logn)1-A/8 An
I < Pr<U(X) > .
un<n <|1ogh |> (| Tog ) P/CP) { ( >—(310gn)}
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Now, since \; is regularly varying with a strictly positive exponent, the representation
theorem for regularly varying functions gives that A,/(3logn) > cA,/ogn) for some
~v >0, ¢ > 0 and all n large enough (see (2.7) above). Hence, by (2.4), there exists C' > 0
such that, for these values of n,

C (logn)(l_ﬁ)/ﬁ+7 1
< |1og hin | L/2HA-B)/@B) (nhd)(1-A)/2B)-1/2"

(1) <

By (H,) and (H>) this is at most of the order of logarithmic factors times n(1=7)[1/2=(1=5)/(28)]
a negative power of n because 0 < # < 1/2. Thus, (I1) also tends to zero. Since both (I)
and (I/I) tend to 0, we have

IL.U(X, T XG = X < hy,
Pr{ max — ( J) Zlglﬁm# (| ]| ) > 5} — 0 as n — oo.
1<j<n An

This implies (see bound (2.11)) that

sup () > KX —)/ha) < kZ., < ck max
teB, An R

for any ¢ > 1. The stochastic boundedness of

{ W) 3oy K((Xs — t)/hn)}

sup
teB, )\n

follows immediately from this inequality and condition (2.2).

To bound the supremum from below, choose 7 such that K(7) > k — ¢ (for a small
) with the understanding that if K(0) = k then we choose 7 = 0, so that either 7 =0 or
By = R?. Then

wp POSI K= 0/h) (oW = T, (X = 7ha),

teB, An 1<i<n A\

To establish (2.10), it is enough to show that
U(X; — Thy)IB, (Xi — Thy) V(X;)

max = Imhax
1<i<n An 1<i<n A,

+0p(1). (2.13)

First of all, condition (W.c) implies that for any ¢ > 1 and for large enough n

U(X; —Thy,
ot X Tha)

v(X;)

(assuming that X; — 7h,, € B,,). Since ¢ can be taken arbitrarily close to 1, this reduces
the proof of (2.13) to showing that

max = max
1<i<n An 1<i<n Ay

+ OP(1)7

13



and therefore it suffices to prove that

U(X;)Ipe(X; —Thy,
max (Xi) 15 ") — 0 in pr. (2.13)
1<i<n An

B¢ naturally decomposes into the union of three regions and we look separately at each
of them. If By = R? then IB; (X; — 7hy) = 0 and if 7 = 0 then this indicator is 0 a.s., so

that, in either case,
\I’(XZ)IBC (Xz - Thn)
max ! — 0 a.s.
1<i<n An

Next, we consider

(XN (V(X; —7h,) > BN,
Pr{max (X I(%( Thu) 2 ¢ )>€}§nPr{\II(X—Thn)ch)\n}

1<i<n An

Using condition (W.c), we get (for any ¢ > 1)
nPr{cg)\n <U(X —Thy,) < h;T} < nPr{\If(X) > c_lcg)\n} — 0.
Similarly, using condition (W.b) (recall that X — Th,, € By with probability one),

nPr{\IJ(X — Thy) > h;f} < npr{\p(x) > C—lh;r/(1+6)}

for some ¢ > 0 and 0 > 0. Assuming that r is large enough (so that "/ (1+9) > cBA,), we
then conclude that

nPr{\I/(X —Thy) > h;T} — 0,

and, hence,

(XN (V(X; — Th,) > B\,
Pr{max ( )(( 7hn) Z >>€}—>O.

1<i<n An

Before considering the last piece of B¢ we note that, since f(t)¥(t) < 1 for all ¢, if
moreover f(u)¥(u) > L, then f1=#(u) > L and consequently ¥(u) < f~#(u) < L=/(=F)
an observation that we will use several times below. This observation and condition (W.c)
give

U(X)I(f(X; — Thn)U(X; — Thy) > el 7P (|log hy|/(nhe))1/?)

max

1<i<n >\n
(X)) (W(X; — Thy) < ce; P (nhd /| log b, |)P/ 2O=5))
< max
1<i<n )\n
o mhd \PCO-P) )
< ce
" \|log hy| (nhd[log hn|)1/2

Cc
e3]log hy,|1/2+8/ (=P (nhd ) 1/2-B/(2(1-5)

14



Now, since 3 < 1/2 < 1— @3 and nhd > n'=™ (by (H,)), whereas €, = 1/logn and |log h,]|
is comparable to logn, it follows that the above bound is dominated by a negative power

of n so that, in particular, it tends to zero. This and the previous two limits conclude the
proof of (2.13’) and hence of (2.10).

Finally, we consider the sup over the remaining set of ¢’'s. For a large, fixed, just as
above, set

Cp=Chro={t€DSNBy: f(t)U(t) >ep P (|loghn|/nhi)1 /2], (2.14)

where ¢,, is as defined in the previous paragraph. In this range the centering cannot be
ignored. We will apply an estimate for the expected supremum of the empirical process over
bounded Vapnik-Cervonenkis type classes of functions (Giné and Guillou, 2001, inequality
(2.1); Talagrand, 1994, for classes of sets; see also Einmahl and Mason (2000) for a similar
inequality): if a class of functions F is measurable (in particular, if it is image admissible
Suslin) and satisfies

N(F, Lo(Q). ]| Fll) < (4) 0<e<t, (2.15)

for some v > 1, A > 3y/e finite and all finite probability measures @), where F is a
measurable envelope for the class F, then

E|n(P, — P)||r < C(\/ﬂ\/ﬁawlog AU + vU log A—U>, (2.16)
o o

where o and U are any numbers satisfying 0 < ¢ < U and

o? > sup Varp(g), U > sup ||goo, (2.17)
geF geF

and C is a universal constant. (In Giné and Guillou (2001) condition (2.15) has || F||,(q)
instead of || F'|| o, but it can be easily checked that their proof works as well under condition

(2.15).) As mentioned immediately below the statement of condition (K), there exist A
and v finite such that

£

A v
N{K((- —t)/hn : t € R}, L2(Q), ) < (—/{> , 0<e<l,
for all h,, > 0 and all probability measures Q on R. Now, the class of functions

Fp = {\If(t)K((~ —t)/hn) it € cn}

is contained in

Gn = {uK((- —t)/hn) : t € R,0 <u < U,},

15



where

o li( nhfl )/3/(2(1—@)

= — | —7 2.18
Eg |10g hn| ( )

(recall that, as observed above, under condition (W D.a)s, f¥ > a implies ¥ < o~#/(1=8)),
Therefore, since the Ly(Q) distance between uK ((-—t)/hy,) and vK((-—s)/hy,) is dominated
by k|u—v|+Uyn||K((-—t)/hn) = K((-—5)/hn)||L,(q), it follows by taking optimal coverings
of [0,U,] with respect to the Euclidean distance, and of F,, with respect to the Lo(Q)
distance, that the entropy bound

v+1
24
N(Fn,L2(Q),eU,) < (%) , 0<e<, (2.19)

holds for all probability measures () and all n large enough. The class F,, is also image
admissible Suslin since the map (x,t) — Y (¢)K((z — t)/hy,) is measurable. So, inequality
(2.16) applies to it. We can take U = U, as defined in (2.18). Next we estimate o2. It
follows from a previous observation and from regular variation that, on C,,, we have both,
f > h], and ¥ < Al for some r and all n large enough. Then, (D.c) and (W.c) give that

there exist ¢, C,ny < oo independent of a such that for all n > ng and all t € C,, = C,, 4,

V()EK*((X — t)/ha) < cE(K*((X — t)/ha)¥*(X))

_ pd
= ch,,

) K2(u)V2(t + hpu) f(t + hpu)du
t-i-‘z!,;ule/éf

< chi | K501 £ Y% pens,
< ChL (1 £ Y% penp, V).

So, we can take
0'721 = Ch;il(Hf\IjQHngBf V n_l).

The constant A = A,, must be taken to be (24k) V (3/e) where A is the constant in (2.15)
for the class consisting of translations and dilations of K. In particular, since by (Hs)
|log hy,| is comparable to logn, we have

A’I’L n
log Un o c|log hu|
g

n

for some constant ¢ < oo independent of n. So, inequality (2.16) applied to F,, gives

W(t) Sy (K (X = 1)/hn) = EK((X = 1) /hy)) '
FE sup
teC,, )\n
C 1 nhd B/(2(1-8))
< )\n 1/2\11 . Vi —-1/2 i n 1 hn
< o P12 Wl gem, v 2 2 (e oz,
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for a constant C' independent of n, for all sufficiently large n. We should note that the
numerical constants in the above inequalities are not only independent of n, but they are
independent of a as well. Since § < 1/2 and therefore 3/(1 — 3) < 1, and since, by (D.a)
and (WD.a)g,

_ 1/2—
1F/2 0 pers, < 1> Pllogns, = If1Bnhs, — 0 as a— oo,

we obtain

lim limsup £ sup
a—0 500 teCh a

() YL, (K (X = 0)/h) = EK(n®(X = )/hy) ’
An

< lim C||fY?¥|/pens, = 0. (2.20)
Now, the theorem follows from (1.6), (2.8), (2.10) and (2.20). O
Now we make two comments on the assumptions.

Remark 2.2. The assumption ‘By = R% or K(0) = ||K||«’ has been imposed because in
general we may not have X — 7h,, € By with small enough probability as n Pr{X — 7h,, ¢
By} could well be of the order of nh, — oco. Now, this condition has been used in full
only in the proof of (2.3). Proving that tightness of the sequence (2.1) implies condition
(2.2) has only required By = R? or K(0) > 0, whereas proving that condition (2.2) implies
tightness of the sequence (2.1) does not require any hypothesis of this type.

The above proof justifies, a posteriori, having taken § < 1/2:
Corollary 2.3. Assume (K), (H1), (Hz2), (D.a) — (D.c) and By = R%. Then the sequence
fn _ Efn

{ nhd }oo
2 log h7—ld \/7 oo/ n=1

(which coincides with (2.1) for U = f~1/2) is not stochastically bounded.

Proof. By the first part of the above proof, if (2.1) with ¥ = f~1/2 is tight, then there is
C > 0 such that
1
nPr{ — > )\i} <C.
{f (X)
Since f takes all the values between 0 and || f||oo, for n large enough there is z,, in R¢ such
that f(z,) = 1/(2A2). Then, by condition (D.c), there is a subset D containing x,, and
of positive Lebesgue measure, say hg > 0, where 1/f(z) > A2 and f(x) > 1/(4)\2), and

therefore
’I”Lho

1 2
nPr{m > )\n} ZnPr{X GD} > @ — 00,

contradiction. O

Theorem 2.1 has the following obvious corollary regarding convergence in distribution:

17



Corollary 2.4. Under the assumptions in Theorem 2.1, the sequence (2.1) converges in
distribution if and only if the sequence of maxima,

()

1<i<n  Ap,

converges in distribution. Then, if Z is a random variable with distribution the limit of
this last sequence, we have

nhd
g o = Efally o —a IK12) V (1K 2]/ ]l w00).

Next we consider the a.s. counterpart to Theorem 2.1. The following proposition will
help. It is perhaps relevant to recall first the following well known fact, whose proof we
omit as it is similar to a classical result of Feller (e.g. Lemma 3.2.4, Corollary 3.2.3 and
Theorem 3.2.5 in Stout 1970):

Lemma 2.5. Let V; be i.i.d. real random variables and let {c(n)} be a regularly varying
nondecreasing sequence tending to infinity. Then,

Vi Vi
either limsup max M =00 a.s. or lim max Vil

=0 as.
n—oo 1<i<n c(n) n—oo 1<i<n ¢(n)

And this happens according as to whether

ZPr{]Vn] > Ce(n)} =00 or ZPr{\Vn\ > Ce(n)} < oo

for some (or, equivalently, all) C' > 0.

Proposition 2.6. Assume that conditions (D.a), (W.a) — (W.c) and (W D.a)g, (W D.b)
hold for some (3 > 0 and that moreover, either By = R? or K(0) > 0. Let c¢(n) / oo be a
regularly varying function of n. Assume

I (K = 0)/h) = EE(X = 1)/h))
hmnsup H ) o <00 a.s. (2.21)
Then,
zn:Pr{ \I;Ef)) > C} < o0. (2.22)

for all 0 < C < oo or, what is the same by Lemma 2.4,

U(X;
lim max ( )

=0 a.s.
n—oo1<i<n c(n

18



Proof. The proof is standard, but we give it here for completeness. Let {X/} be an
independent copy of {X;}. We can symmetrize in (2.21) and still have the lim sup finite.
By continuity of ¥ on By, there is n(w) < oo a.s. such that, for all n > n(w)

< K(U(X)+ P (X)+1)

Voo c(n) '

H K(X(w) —t)/hn) = K(X"(w) — t)/hn)
c(n)

This tends to zero and therefore the limsup in (2.21) is a.s. constant by the zero-one law.
Hence, we have

Sy W) (K (X = 8)/ha) = K((X] = 1)/hn))
c(n)

Pr< sup >cp—0ask —
’I’LZk‘ Bf

for some ¢ < oco. Set

V() (K(X = t)/ha) = K((X' = t)/h))

H,(X,X'):= ) ,

and, for £ € N,
Zik = (Hip(Xs, X])y Hep1 (X, X7) ooy Hpr (X, X))
if i <k, and

Z’i,k = (07 'r')'a 07 Hk+T(Xk+T7 X]/{;+r)7 Hk+T+1(X]€+T‘7 X]/C—I—T‘) . )

fori=k+r,r=1,.... Then, the above sup over n > k is simply
P
i=1
where [[|(z1(t),...,2n(t),...)||| = sup, ||z, (t)||B,. The random vectors Z;; are indepen-

dent and symmetric, and we can apply Lévy’s inequality to get that
Pr{sup 11 Zixll| > 2c} =0
ieN

as k — oo. By independence, this implies that
> Pr{ll|Zislll > 2¢} — 0
i=1
as k — oo. Let 7 =0 if K(0) > 0 and otherwise let |7| < 1 be such that K(7) > 0. Then,

FU(X — hyt)
c(n)

19
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for some ¢ > 0, and we get that
v (X;)
= H,, XZ,X/ > I XZ—X/ > h;
|| Sup ( Z) - C(’L\/ ) <| z| \/IC)

112k

m>iVk

when 7 = 0 and
sinf L Y(X;—h
cinfip <in . W )I(|Xi — X!| > hiv)

Ziwll = H,.(X;, X)) >
IZiklll = sup Hon(Xi, X)) 2 pa

m>iVk
when By = R%. The case 7 = 0 is easier to handle, so we will complete the proof only
i

for the second case. In this case, since Pr'{|X — X’/| > h;} > 1 — || f|lsoh¢, the previous

cinf A W(X —h
cIntjni<in| ( ) - 26}_
c(1)

inequality yields
S pr{lizuall > 26} = S0 - Il Pr
i=1 i>k
Then, by (W.b), there are 0 < § < 1 and ¢ > 0 such that
> Pr{\II(X) > ac1/<1+5>(n)} < 0.
n=1

But by regular variation, there exists » > 0 such that h,;" > éct/(149) and therefore

iPr{\IJ(X) >t} < oo

Now, by (W.c), for n large enough, there exists C' < oo such that
¢inf U(X —h
c¢inf i <in, | ¥( ) o 2(:} +Pr{\y<X) - h;r}.

Pr{\IJ(X) > Cc(n)} < Pr{ c(n)
Therefore, o
T;Pr{\lf(X) > C’c(n)} < 0.

0
We are now prepared to give an integral test for a.s. convergence of the sequence
(2.1). Notice the difference with the tightness criterion, which is due to the fact that, by

X)) _

(X, .
i) =0 a.s. or limsup max
n—oo 1<i<n Ay

Lemma 2.5, we have

either lim max
n—oo 1<i<n )\n
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Theorem 2.7. Assume the usual hypotheses, with condition (W D.a)g holding for some
B € (0,1/2), and, moreover, that either By = R% or K(0) = ||K| . Set A(t) =

Vthi|log hy|, as before. Then, either

: nh 1/2
nyggb §Ti;_7;§_‘}jﬁ/_'lgjﬁw|@ “3‘_ HZ(H |Lf / quoo a.s. (2'24)
or
h?jo%p 2“ an Ean\ono =00 a.s., (2.25)
according as to whether
/ Pr{¥(X) > A\ }dt < oo or / Pr{¥(X) > \ }dt = oc. (2.26)
1 1

Proof. By Proposition 2.6, since A, is regularly varying, if the integral in (2.26) is infinite
then (2.25) holds. So, we must prove that

/OO Pr{¥(X) > cA }dt < 0o (2.27)

for all ¢ > 0 implies (2.24). We proceed very much as in the proof of Theorem 2.1, with
the addition of the usual blocking and replacing, in the estimation of the sup over C,,, the
moment bound by an exponential inequality. By (2.4), we only have to consider the sup
of our statistics over A,, B, and C,, the three sets defined as in the proof of Theorem
2.1, but with ¢,, = 1 (and €, = 1/logn as before), and we can ignore the centerings on A,,
and B,,. By monotonicity of h,, and \,, we have:

max sup YOS KX = 0/hn) _ W0 ST 1 € Tt har)

2P<n<2ktt teq, An teE A,k Agk

Hence, we have, as before,

pef s “E?:lf"“xi‘”/”n)>g}gg—1gk+lpr{\p< )2 7}

2k <n<2k+1 yecq >\n

for all k large enough and some ¢ > 0. But, by (2.27), this is the general term of a
convergent series, thus proving that

o sup PO S K((X = )/ha)

n—0tc A, >\n

=0 as. (2.28)

Regarding B,, (with ¢, = 1 and &, \, 0), we first note that, by regular variation,

ok+1 1/2

- log h
| Ba € By := {t: FOW(t) < el ﬂ(%) ) <ce (2khgkllogh2k|)1/2}
n=2%k 2*
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for some ¢’ > 1. Then, as in (2.11),

2k:+1

)t OK(X; — . 2" ; ;
max  sup (t) >imy K(Xi —1)/hn) < sup V() S0, (X, € J(t; har))
2k <n<2k+l e g An e Aok
< max VX)) + max V(X ZlSiSn,i?ﬁj I<|X’i - Xl < h2k> ,
1<j<2k+1 )\Qk 1<j<2k+1 )\2k

where I; is defined as before but with n = 2k+1 and ¢ may be different from the constant
in (2.11). Now, the maximum term tends to zero a.s. by (2.7) and Lemma 2.5, and the
remainder term satisfies

W (X)I; T X — X < h
Pr max ( J) J Zlgzgn,z#j (’ Jl 2k) Seb < C
1<j<2k+1 Aok g2ak

for some a > 0 and all k large enough, as in the proof of Theorem 2.1. Therefore,

lm sup 20 2im K((Xi = 1)/hn)

n—o0tep, An

=0 a.s. (2.29)

In order to control the sup of our statistics over C,, = C,, o (as defined in (2.14)), we
will use Talagrand’s exponential inequality (Talagrand (1994, 1996) in conjunction with
the bound on the expected value of the sup of an empirical process given in (2.16). In
a ready to use form for the problem at hand, it is as follows (Giné and Guillou (2001),
equation (2.12)): under assumption (2.15) above, and with the notation of (2.17) above,

assuming further that
U
0<o<U/2, and v/no >Uj/log—,
o

there exist constants C' and L such that for all s > C,

P{H g(f(&) —B(E)||, > sovnylog %} < Lexp{—D ) 1o g} (2.30)

where D(s) := slog(1 + s/4L) — oo as s — 0o. We apply this inequality to the class F,
defined on the last part of the proof of Theorem 2.1, with U = U,, and ¢ = 0, as defined
there, so that log % = logn. Since, for a fixed and n large enough, o, — 0, U,, — oo and
Vnoy,/(Uny/log Y2) — oo, the above applies to give that there exists C' < oo such that
for all @ > 0 and for all n large enough (depending on a),

pef up | LT ) - EECCC /1)

sup
teCh a An

> Cll g,
< Lexp{—2logn}. (2.31)
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Hence,

. U(t) 3o, (K(Xi —t)/ha) — EK(X —t)/hn
limsup sup

n—oo t€Ch q )\n

) < U ¥lIbgns, as.

(2.32)

Combining (1.6), (2.28), (2.29) and (2.32), and letting a — oo, we obtain the limit
(2.24). O

We conclude this section with a few examples. We take U(t) = f~%(t). Other choices
of U are of course possible.

Example 2.8. Suppose f: R+ (0, M] is continuous and
Fla) = cremealel

for all |z| large enough, for some r > 0 and for some constants ¢; and co. Then, f satisfies
(D.a)—(D.c). Take
h,=n"% 0<a<l.

For simplicity assume ¢; = co = 1. It is easy to see that
Pr{|X| > u} < u!""e ",

Hence,

1 1
L 0-a)/e8) 1/20) |
Pr{ o) ! (log ) } = {0=a)/3P) (log £)1/ @A) -7

Then, the above theorems imply the following. For r > 1, which includes the symmetric
exponential and the normal densities, the conclusion is that the sequence (2.1) with ¥(¢) =
fP(t) is tight (stochastically bounded) if and only if

26<1l -«
and that, if this is the case, then
nl—a fn _ Efn o
K [P7F as. 2.33
2aclogn ‘ 18 - K [211.f1155 a.s (2.33)

The same is true for exponential densities if we replace in (2.33) the sup over R by the
sup over RT. For 0 < r < 1, if 28 < 1 — « then the limit (2.33) holds; if 26 = 1 — «
different behaviors arise, namely: if (1 —r)/r > 1/(283) then the sequence (2.1) is not
stochastically bounded; if (1 — r)/r = 1/(2/3), the sequence converges in distribution to
the limit in distribution of the random variables

(A= Yy (i),
1<i<n \/2an2Plogn f8(X;)
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which is unbounded and can be easily computed (see the next example); if (1 — r)/r —
1/(28) < 0 we have convergence in probability in (2.33), but convergence a.s. holds only

if (1—r)/r—1/(28) < —1.
Example 2.9. Suppose now the real density f is strictly positive, continuous and

c
flz) = —

||
for all |z| large enough, for some r > 1 and for some constant c. These densities also satisfy
(D.a)~(D.c). Take h,, = n~%, a € (0,1) as above. Then, (2.1) (again, with ¥(t) = f~°(t))
is tight if and only if

r—11—«
<
ES r 2

and, if this is the case, then (2.33) holds true.

Example 2.10. Let now f(x) = %@—\ml be the symmetric exponential density on R. Then,
1 1—(1—=2/u)" ifu>2
P = =
r{fg?gxn f(Xy) - u} { 1 otherwise,
so that .
max ———— —q Z°

1<i<n nf fB(X;)

where Z has distribution

0 otherwise.

Hence, if we take 8 € (0,1/2) and

1
i = nl=28logn’
Theorem 2.1 gives that
OOt Y G L. NP L
2| log hy | fo e 2(1—28) 228 )

The next two examples shows that the above results are not true in general without
conditions of the type of (D.b), (D.c) (and (W.b), (W.c)). The first addresses smoothness
and the second, the existence of zeros of f on the closure of By.

Example 2.11. It is easy to see that the double exponential density still satisfies condi-
tions (D.a)—(D.c) and, hence, theorems 2.1 and 2.7, but the density

fit):==ce ® |, t>0,



does not. Specifically, condition (D.b) fails for this density and we show below that for all
B € (0,1) and for h,, =n~?,

fo(t) — Efn(t)
fo(t)

nh,

sup ‘ — 00 a.s. (2.34)

2|log hy| +>0

Indeed, if K is continuous and strictly positive at the point t = —1/4, then

1/2

= cexp{ﬁeet}h—lnEK((Xh; t)) = cexp{ﬁeet} e K(u)f(hpu+t)du

Efu(t)
fo(t)

_ 71,“7(1 _ 71,’1704
> exp{ﬁeet et } = exp{eet [ﬁ _ el _1)} }

Let t,, :=logn. Then, for large n,

hn E n(tn n n 67471nia_ "
m fé(z(fn : >y exp{6 [ — e 1)}} = c1 exp{fe”/2).

On the other hand,

Pr{fn(tn) # 0} < Pr{ max X; > t, —n~*/2} < Cnexp{—eV"},

nhn fn(tn)
1/ 3Tog Iy FA (L) — 0 a.s.,

Example 2.12. This example shows that if the density f has a zero in R, then the
asymptotic behavior of

which implies that

and therefore (2.34) holds.

fn — Efn
fﬁ

depends on the local behavior of f at the zero point and is not any longer controlled only
by condition (2.2). Note that in this case condition (D.b) fails. For simplicity, assume
that h, = n=% (with a < 1) and K = [|_1/2,1/2)- Let f be a density continuous on a
neighborhood of 0 and such that f(0) = 0 and, moreover, for some s > 0

nh,,

yloghn‘ Bf

f(t) < |t|° ast — 0.

In particular, we assume that f is s times continuously differentiable at 0 (for an even
integer number s) and £ (0) = 0 for j < s, £(*)(0) > 0. It is easy to see that

Pr{|X| <t} <t ast—0. (2.35)
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We will show that if s > = — 1, then, for all C' > 0,

P nh,, fn—FEfn
2| log h, | P

The proof is almost the same as in the previous example. Let t,, — 0 be chosen in such a
way that f(t,) = e~ ". Note that t, . Then, using (2.35), we get

En n)
f P EK (n®(X —ty))
2]logh\ logn
= A Pr{t, —n"*/2< X <t, /9
\/1ogn r{ / +n"%/2}

n1+o¢

>Cp— 1. (2.36)
By

ﬁnn—(s+1)a

~
—~

(& — OQ.

logn
On the other hand, also using (2.35), if s > é — 1, then

Pr{f.(t,) #0} <Pr{3i,1 <i<n:X; € (t, — hn/2,t, + hp/2)}
<nPr{X € (t, — hn/2,t, + hp/2)}
= nhstt = pl-aGH g,

This immediately implies (2.36). Let now f(t) = c|t|® for |t| < a and f( ) =0 otherwise.
Then, it is easy to check that condition (2.2) holds if and only if 3 < 5*(1 + ) Thus,
for large enough s this condition does not imply the stochastic boundedness of (2.1).

3. Large normings.

By Proposition 1.1, the central part of the process W(t)(f,(t) — Efn(t)), that is, its
sup over D,, for all a > 0, has an influence on the asymptotic size in probability of the
sequence (2.1) and completely determines its a.s. limit. But if we normalize by a sequence
larger than \/nhd|log h,,|, this central part of the sup vanishes for all a > 0, and only the
extremes of the range of ¢’s should have an influence on the limit. This is what we examine
in this section. As in the previous section, we will only consider regularly varying window
sizes and normings. As is to be expected, the only possible limit a.s. in this situation is
zero, and the sum is asymptotically equivalent, in probability, to the maximum term. This
is roughly the content of the following two theorems.

Theorem 3.1. Assume the usual hypotheses, with condition (W D.a)g holding for some
B € (0,1], and, moreover, that either By = R? or K(0) = ||K||o. Let d; be a strictly
increasing regularly varying function such that d;/\; — oo and d; > Ct® for some C > 0.
Then, the sequence

{H Sy (K (X = 0)/ha) = BR((X = 1)/h2))
dn

W} (3.1)
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is stochastically bounded if and only if
limsuptPr{\If(X) > dt} < 0. (3.2)
t—o00

Moreover, if condition (3.2) holds, then

— max 5]l (X3) — 0 in pr. (3.3)
1<i<n dy,

H S (KX = 8)/hn) = BE((X = 8)/hn))
dn

U, 00

Proof. The proof is similar to that of Theorem 2.1. First we consider § < 1. Necessity
of condition (3.2) follows exactly in the same way. Here we indicate the few changes that
should be made to the proof of Theorem 2.1 in order to prove that (3.2) implies (3.1) and
(3.3). First, and this is by far the main difference with Theorem 2.1, the sup of

W(t) 3oy (K (X — 1) /hn) — EK((X —1)/h))
dn

(3.4)

over D,, tends to zero a.s. for all a < co by Proposition 1.1. Regarding the centering,
consider the bound

nV()EK(X —t)/hy) < cknhd cknhd

4. (1) < = BRI > B) + = RO I < b,

where t € By, 1 — 3 > 0 and r is such that nhZ+T(1_B_5)/dn — 0, which is obtained as
in the proof of Theorem 2.1. If the exponent of regular variation of nh¢ is strictly smaller
than that of d,,, then, since ¥ f" is bounded for all n > 3, the sup over ¢ € By of this
bound tends to zero and therefore we can simply ignore the centerings in (3.1) and (3.3).
Otherwise, the second summand tends to zero uniformly in ¢t € By and the first tends to
zero uniformly on all ¢ € By such that

for any €,, — 0. So we can ignore the centerings for these values of t. As before, we take
en = 1/logn.

Continuing in analogy with the proof of Theorem 2.1, we now define
A, ={te€ By: U(t)>cld,}
with ¢,, = (dnlogn/dn)l/ﬁ — 00, and we get, as in (2.8) but now using the properties of

d,, that
oy Zhet VOK (X = 0)/h)

n—00 4c A dn

=0 in pr.
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(for 0 < B < 1).

Next we set

d
nh¢

B, = {t € By: f(H)U(t) < g};ﬁd—”, W(t) < cﬁdn}

in analogy with (2.9). Then, proceeding as in the proof of (2.10) with the only formal

change of replacing A\, by d,, and \/nhd /|log h,| by nhd /d,,, we arrive at analogous con-
clusions, namely that the sequence

() >, K(Xs = t)/ha)
sup ¥
teB, n

is stochastically bounded and that in fact it can be represented as

max
1<i<n  d,

+ 0p(1).

(This requires using the properties of d,, and h,, but, given that proof, the details are
straightforward.)

Finally, we consider
G = By \ (A, UB,) = {t € By : f(OW(1) > &\ d,/(nhl) ).
Using as before that W f > L implies, by (W D.a)g, that ¥ < L=8/(1=8) we can take

nhd B/(1-B)
Uy = ke’ —2 :

e ( - )
We will consider two cases.

If the exponent of regular variation of nh¢ is strictly smaller than that of d,, then
et =8d, /(nhd) — oo and therefore, since, by (WD.a)g, |f¥]le < [|fIL7 < 00, Cy is
eventually the empty set.

Assume now that the exponent of regular variation of d,, does not exceed that of nh?.
Then ¢17Pd,, /(nh?) is eventually dominated by n~° for any § > 0, so that we eventually
have f(t) > hl and W(¢t) < h_ " for some r > 0 and all t € C,,. So, we can apply (D.c) and
(W.c), which, together with (W D.a)g, immediately imply that we can take o, as follows:

Crhg|| fll52° if B<1/2
Crhden, ®P~D (nhd /d,)2-D/0=B) if 3> 1/2.

Since U, is either slowly varying or tends to infinity and o,, tends to zero as a negative
power of n for 5 < 1/2, we get, in this case, that, eventually,

Un
0<o,<U,/2 and log— =< logn.
o

n
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The same conclusion holds for § > 1/2 since hz/ % decreases as a negative power of n and the
exponent of nh? /d,, in the expression for o, is smaller than its exponent in the expression
for U,,. It is also easy to see, using A, /d, — 0 in the case 8 < 1/2 and d,, > Cn” when
B =1/2or > 1/2, that, eventually,

Vno, > Upn/log(U, /o,) < Uyy/logn.

Then, inequality (2.16) gives that

mnzngW&—wmw—EK«X—wmmn)<gﬁ@§@&
dy, - dn,

E ( sup

teC,

for some C' < oo independent of n, as long as n is large enough. For 5 < 1/2 this bound
is, up to a multiplicative constant, of the order of

Ao

dn

and for # > 1/2 it is of the order
e~ C=1/2, floam (nf /d, )1/ 1-B)) pd8/2(1-8)) _

since d,, > Cn? for some C > 0, and h, — 0 at least as a negative power of n. This
completes the proof of the theorem for 3 < 1.

For § = 1, since d,, > Cn and ||V f|ly o < 1, we can ignore the centering for all ¢.
Then we decompose By into A,, defined as above and B,, := {t € By : ¥(t) < c?d,}. The
proof of (2.8) and (2.10) with A, replaced by d,, follows as in the proof of Theorem 2.1,
even with some simplification as B,, is now a simpler set. O

We have assumed d,, > Cn? and B < 1 in the above theorem. Next we show that
these two assumptions are optimal.

Remark 3.2. Take U = f~=%. For the sequence (3.1) to be stochastically bounded it is
necessary, by the first part of Theorem 2.1, that the sequence {max<;<y(dnf?(X;))"1}
be stochastically bounded, hence, by regular variation of d;, that

1
SupnPr{— > d,l/ﬂ} < 00.
f(X)

But if By = R? then condition (D.c) implies, as in the proof of Corollary 2.2, that

1 n
Pr{—— >d/f\ >c
”r{ﬂx>—¢’}—cﬁm

for all n and some ¢ > 0 independent of n. Hence, if ¥(¢) is of the order of f~7(¢), then
we must have d,, > Cn” in Theorem 3.1.
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Remark 3.3. Suppose we take 3 > 1 in Theorem 3.1, and, again, let us take ¥ = 5.
Then, we still have that (3.2) is necessary for stochastic boundedness of the sequence (3.1).
But then (3.2) implies that

. S K(X; —t)/hy)
A sup == D

as before. On the other hand, if By = R4, then the set A,, contains t’s with f(¢) arbitrarily
small, and therefore, by (D.b), for some 0 < § < 1 — 3,

EK(X —t)/hy, o,
sup " (( )/hn) > sup n—lé
teA, dn fP(1) ted, dn fP7170(1)
Hence, the sequence (3.1) is not stochastically bounded, contradiction. So, Theorem 3.1
is not true for g > 1.

=0 in pr.

=0

The next theorem describes the almost sure behavior of || f, — Ef,| v, for large
normings.

Theorem 3.4. Assume the usual hypotheses, with condition (W D.a)g holding for some
B € (0,1], and, moreover, that either By = R? or K(0) = ||K||o. Let d; be a strictly
increasing regularly varying function satisfying that lim; .., d;/\; = oo and d; > CtP for
some C' > 0. Then, either

I (KX = 0)/h) = EE((X = 1)/hn))
nh_)rréo H i . =0 as. (3.5)
IZm (KX = 0)/h) = EE((X = )/hn))
hfl—?olip ’ i . =00 (3.6)
according as to whether
/OO Pr{¥(X) > d;}dt < oo or /Oo Pr{¥(X) > d; }dt = . (3.7)

Proof. Necessity and the part of sufficiency dealing with the sets A,, and B,, follow by
a straightforward combination of the proofs of theorems 2.6 and 3.1. The only difference
with previous proofs is in the estimation of the supremum of the processes over the sets

Cn = {t € By : f()T(t) > g};ﬁdn/(nh;ﬁ)}.

Here, as in the corresponding part of the proof of Theorem 2.6, we use Talagrand’s in-
equality. However, d,, is large and it may fall out of the ’Gaussian range’ of the inequality.
With the notation put forward above, and with the assumptions

0<o,<U,/2, and \/ﬁan>UM/log%,
On
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shown to hold for all n large enough in the previous proof, Talagrand’s inequality in the
version from Giné and Guillou (2000, Proposition 2.2), gives

Pr{tseua (1) i<K(X;1; t) — EK(Xh; t))‘ > sdn}
1 &d, ed, U,
_EU—TLIOg(1 * Lno?2 )

for some L that depends only on A and v (from inequality (2.15)), and for all n large
enough, as long as

< Lexp

= (1), (3.8)

ed,
Vno,/log &=

for a certain constant C' < co. This last condition is eventually satisfied by all € > 0 since
log(Uy,/o,) < logn and d,,/(v/nlogno,) — oo, as can be easily seen directly from the
definitions and properties of these quantities.

> C

Now, by the hypotheses on h,, and d,,,and since ¢,, = 1/logn, there exists § > 0 such
that

y 4\ 1/(-8)
W e (FZ) Bod8/0-0) > O . Pp=d0/0-0) > yd. (3.9)

If1/2 < B < 1, then

sdnUn)

€
log(l + Lno? = log(l + —ﬁ) 2 loglogn.

Lep,

If p<1/2,

dnUn dy \(1-28)/(1—
1og(1+ 2 U > xlog(l—k%(_)(l 26)/(1 m),

Lno? nhd

which is of the order of logn if the exponent of regular variation of d,, is strictly larger
than that of nhe, and satisfies

s e ( dn \(1-28)/(1-B)

for all 4 > 0 if the exponents of d,, and nhe coincide (this can be readily seen using the
properties of regular variation and that log(1 + 7) ~ 7 for 7 small). Combining the last
three estimates with the bound (3.9) we get that, for the cases considered,

(I) < exp(—n?) (3.10)

for some 0 > 0. Finally, if 5 < 1/2 and the exponent of variation of d,, is smaller than the

exponent of nhl, then

ed, U, ed, U,
log| 1+ o~

Lno?

- 2
= Lnoz
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and we have, for constants L independent of n (as long as n is large enough) and that vary
on each occurrence,

1 272 1 272
(I) < Lexp(——8 d") =LeXp<——8 d”)
n

L no? L nhd
1, /d, N2
= Lexp (—562<i—) | log hn]> < Lexp(—M logn) (3.11)

where M can be made as large as we wish, as long as we take n large enough. (Here we
have used d,,/\,, — oo and |logh,| < logn.) This covers all the cases, and we obtain,
combining (3.8), (3.10) and (3.11), that

Z Pr{ sup

teCyp

n

m(t)Z(K(X;L;t) —EK(Xh;t»‘ > 5dn} <

=1

for all € > 0, proving that

lim sup
n—=XteC,

This finishes the proof of the theorem. O

The results in this section obviously apply to the densities in Examples 2.8-2.11. For
instance, Let f be the symmetric exponential density on R considered in Examples 2.8
and 2.10, and let h,, =n"%, 0 < a < 1. Then, Theorem 3.1 shows that

fn B Efn
fP

nl—a—ﬁ‘ i 1K o Z?,

oo

where Z is the random variable defined in Example 2.10, if and only if

1l -«
— < B <1
5 B

and Theorem 3.4 shows that, for ¢(¢) strictly increasing and regularly varying,

nlfa

cf(n)

fn B Efn
fP

— 0 a.s.
o0

/“%@Q

A similar statement holds true for normal densities.

if and only if
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Remark 3.5. Suppose that K is a uniformly bounded class of kernels supported by a
fixed bounded set and such that the class

F::{K(%):teRd, h >0, KGIC}

is measurable and has covering numbers
A v
N(f7L2(P)»HK||L2(P)5) < ; 70<5< 17

for some A and v finite and positive and for all probability measures P (in particular, K
may be a subset of the linear span of a finite set of functions k£ as defined in condition
(K)). Suppose we wish to consider

fn - Efn

Cn

sup
KeK

)
W, 00

where ¢, is d,, or \,, as defined above. Then uniform boundedness and uniformity of the
support allow us to deal with the sup over A,, and B,,, and the entropy bound, with the
sup over C,,, just as in the previous theorems. The sup over the central part D, is handled
in Mason (2001). So, it is straightforward to prove a uniform in K € K version of our
results. It is also possible to prove a functional law of the logarithm in our setting by
following Mason (2001).
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