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1

Vladimir Koltchinskii
2

and Joel Zinn
3

University of Connecticut, University of New Mexico and Texas A& M University

ABSTRACT. Let fn denote a kernel density estimator of a continuous density f in d dimensions, bounded

and positive. Let Ψ(t) be a positive continuous function such that ‖Ψfβ‖∞<∞ for some 0<β<1/2. Under natural

smoothness conditions, necessary and sufficient conditions for the sequence

√
nhdn

2d log h−1
n

∥∥Ψ(t)(fn(t)−Efn(t))
∥∥
∞

to be stochastically bounded and to converge a.s. to a constant are obtained. Also, the case of larger values of

β is studied where a similar sequence with a different norming converges a.s. either to 0 or to +∞, depending

on convergence or divergence of a certain integral involving the tail probabilities of Ψ(X). The results apply as

well to some discontinuous not strictly positive densities.

This version: August, 2001

Runninghead: Kernel density estimators

1. Introduction. Almost forty years ago, Parzen (1962) studied basic properties of
kernel density estimators following their introduction by Rosenblatt (1956). Since then
the kernel density estimator has become a classical object looked at by both statisticians
and probabilists. For statisticians, it has been a canonical example of nonparametric curve
estimator, which brought many important ideas from approximation theory and harmonic
analysis into nonparametric statistics. Probabilists used the study of this estimator to
test the strength of the methods from weak and strong convergence, empirical processes
and probability in Banach spaces. In this paper, we consider a couple of problems about
asymptotic behavior of kernel density estimators uniformly over all of Rd that do not seem
to have been considered before, particularly in the 80’s, when the basic results on uniform
a.s. convergence were obtained.

The kernel density estimator fn of f corresponding to a sample of size n, a kernel K
and a bandwidth h > 0 is

fn(t) =
1
nhd

n∑
i=1

K

(
Xi − t
h

)
, (1.1)

where Xi are i.i.d. with density f . To ensure its consistency, h is chosen to be a function
hn of n such that hn → 0 and nhn → ∞ as n → ∞. This is a biased estimator, but we
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will not deal with the bias; we will only be interested in the sup norm of the deviation of
fn from its mean.

Our starting point is the following well known result due to Stute (1984):

lim
n→∞

√
nhdn

2 log h−dn

∥∥∥∥fn − Efn√
f

∥∥∥∥
J

= ‖K‖2 a.s. (1.2)

where J is a compact parallellepiped with sides parallel to the axes, ‖ · ‖J means ‘sup
over J ’, f is a uniformly continuous density which is bounded away from 0 on J , and K
is continuous and satisfies some additional assumptions (see, e.g., condition (K) below).
Much later it was shown that

lim
n→∞

√
nhdn

2 log h−dn

∥∥fn − Efn∥∥∞ = ‖K‖2‖f‖1/2∞ a.s. (1.3)

where K satisfies condition (K) and f is uniformly continuous (Giné and Guillou (2000)
for any d, and Deheuvels (2000) for d = 1; a weaker result of this type was obtained much
earlier by Silverman (1978)). In both results the bandsequence {hn} satisfies Stute’s (1982)
conditions. In fact, these results can be slightly extended as follows: if Ψ is uniformly
continuous and bounded on J̄ , where J is either a bounded parallellepiped of Rd with
sides parallel to the axes, or J = Rd, then

lim
n→∞

√
nhdn

2 log h−dn

∥∥Ψ(t)(fn(t)− Efn(t))
∥∥
J

= ‖K‖2‖Ψf1/2‖J a.s., (1.4)

a result formulated in Deheuvels (2000) for d = 1 and which follows for any d from
Einmahl and Mason (2000) and Giné and Guillou (2000b) (with simple modifications in
their proofs). Note that (1.4) contains (1.2) and (1.3).

The first question on which we wish to shed some light is whether one can interpolate
between the two results (1.2) and (1.3) by replacing J by Rd and f−1/2 by f−β for some
0 < β ≤ 1/2 in (1.2). A more general formulation of the same problem is whether
unbounded functions Ψ are allowed in (1.4) when J = Rd.

Notice that, in case f > 0 over all of Rd and lim inf |x|→∞ f(x) = 0, (1.4) implies that
only powers of β not exceeding 1/2 can lead to finite a.s. limits for the sequence{√

nhdn
2d log h−1

n

∥∥∥fn − Efn
fβ

∥∥∥
∞

}∞
n=1

. (1.5)

This is the case of classical norming, and in this case we find necessary and sufficient
conditions (on the density f and on the bandsequence hn) for (1.5) to be stochastically
bounded (Theorem 2.1); in fact, Theorem 2.1 gives necessary and sufficient conditions for{√

nhdn
2d log h−1

n

∥∥∥Ψ(t)(fn(t)− Efn(t)
∥∥∥
∞

}∞
n=1

(1.5′)
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to be stochastically bounded, assuming ‖Ψfβ‖∞ < ∞ for some β ∈ (0, 1/2). This result
further clarifies the role of the sequence of maximum terms max1≤i≤n Ψ(Xi)/

√
nhdn| log hn|

in the asymptotic behavior of (1.5’) in probability or in law. We also obtain a neccessary
and sufficient condition for (1.5’) to converge a.s. to the constant ‖K‖2‖Ψf1/2‖∞ and show
that if this condition is violated, then the sequence (1.5’) is a.s. unbounded (Theorem 2.6).

A second question is that of determining the right norming constants in the sequences
(1.5) or (1.5’) for larger values of β in order to obtain convergence. In this case, we also
give necessary and sufficient conditions for stochastic boundedness (Theorem 3.1) and for
a.s. convergence of the sequences (Theorem 3.4). The almost sure limit is shown to be
either 0 or +∞, depending on convergence or divergence of a certain integral describing
the tail behavior of Ψ(X). The situation in this case is somewhat similar to what is well
known about weighted empirical processes, see Einmahl and Mason (1985, 1988).

We consider a slightly more general situation where f needs not be strictly positive,
however, we still require that, if Bf = {f > 0}, then f be bounded away from zero
on Bf ∩ {|t| ≤ a} for all a > 0. Even this case requires unusual but somewhat natural
smoothness conditions on f . More general situations seem to require a strengthening of the
smoothness conditions, and we refrain here from considering them (see however Example
2.12).

Assumptions and notations. We introduce here some notations and conditions
that are used throughout the paper.

For x = (x1, . . . , xd) ∈ Rd, we set |x| := max1≤i≤d |xi|. We assume that the kernel K
satisfies the following condition:
(K) K ≥ 0, K 6≡ 0, is a bounded measurable function with support contained in [−1/2, 1/2]d

which belongs to the linear span (the set of finite linear combinations) of functions
k ≥ 0 satisfying the following property: the subgraph of k, {(s, u) : k(s) ≥ u}, can be
represented as a finite number of Boolean operations among sets of the form

{(s, u) : p(s, u) ≥ ϕ(u)},

where p is a polynomial on Rd ×R and ϕ is an arbitrary real function.
Conditions of a similar type were used, e.g., in Koltchinskii and Sakhanenko (2000).
In particular, the above property is satisfied if the subgraph of k is a semialgebraic

set in Rd×R (see Dudley (1999), p. 165). If K(x) = φ(p(x)), p being a polynomial and φ
a real function of bounded variation, then K satisfies (K) (see Nolan and Pollard (1987)).

Condition (K) is mainly imposed because if K satisfies it, then the class of functions

F =

{
K

(
· − t
h

)
: t ∈ Rd, h > 0

}

has covering numbers

N(F , L2(P ), ‖K‖L2(P )ε) ≤
(
A

ε

)v
, 0 < ε < 1,
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for some A and v finite and positive and for all probability measures P. Indeed, for a fixed
polynomial p, the family of sets{

{(s, u) : p((s− t)/h, u) ≥ ϕ(u)} : t ∈ Rd, h > 0
}

is contained in the family of positivity sets of a finite dimensional space of functions, and
then the entropy bound follows by theorems 4.2.1 and 4.2.4 in Dudley (1999). The entropy
bound will be crucial in the proofs below. Since the map (x, t, h) 7→ (x − t)/h is jointly
measurable and K is measurable, the class F is image admissible Suslin (Dudley (1999),
p. 186), and this implies that the measurability of the empirical process indexed by F (or
even by {Ψ(t)K((· − t)/h)} with Ψ continuous) is as good as if the class were countable,
that is, we can ignore measurability of the sup of the empirical process over g ∈ F (cf.:
Dudley, loc. cit., Corollary 5.3.5 and Theorem 5.3.6, or Pollard (1984), pages 195-197).
We set κ := ‖K‖∞ (which is strictly positive).

The following assumptions on the density f will be used repeatedly:
(D.a) f is a bounded density on Rd continuous on its positivity set Bf := {t ∈ Rd : f(t) >

0}, which is assumed to be open, and lima→∞ sup|t|>a f(t) = 0.
(D.b) For all δ > 0 there exist c ∈ (0,∞) and h0 > 0 such that, for all |y| ≤ h0 and all

x ∈ Bf , x+ y ∈ Bf ,
1
c
fδ(x) ≤ f(x+ y)

f(x)
≤ cf−δ(x).

(D.c) For all r > 0,

lim
h→0

sup
x,y:f(x)≥hr,
x+y∈Bf ,|y|≤h

∣∣∣f(x+ y)
f(x)

− 1
∣∣∣ = 0.

In particular, if log f is uniformly continuous on Rd, then conditions (D.a)–(D.c) are
satisfied (this is true, for instance, for the symmetric exponential density or for uniformly
continuous non vanishing densities with power tails). The above conditions are satisfied
as well by normal and double exponential densities even though their logarithms are not
uniformly continuous. Note also that (D.b) implies infx∈Bf ,|x|<a f(x) > 0 for all a < ∞
such that Bf ∩ {|x| < a} 6= ∅, in particular, a continuous density with bounded support
does not satisfy (D.b). Similarly, a density that has an isolated zero where it is continuous
does not satisfy condition (D.b) either. In fact, Example 2.12 below shows that for such a
density the stochastic boundedness of the sequence (1.5) depends on the local behavior of
the density at its zero points, and not only on the tails of the random variable f−β(X), as
is the case under condition (D.b) (see Theorem 2.1). On the other hand, the exponential
density does satisfy (D.a)− (D.c).

Conditions (D.b) and (D.c) on f are not found in Stute’s result (1982, 1984) or in
Einmahl and Mason (2000) because they consider bounded intervals with f bounded away
from zero on them, and they are not found either in Giné and Guillou (2000) since there
is no division by a power of f in their result. These conditions seem natural for the results
that will follow and we will indicate below that conditions of this type are indeed needed:
see Example 2.11.
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We assume that the weight function Ψ satisfies the following conditions that resemble
the above conditions on the density:

(W.a) Ψ : Bf 7→ R+ is a positive continuous function on Bf .
(W.b) For all δ > 0 there exist c ∈ (0,∞) and h0 > 0 such that, for all |y| ≤ h0 and all

x ∈ Bf , x+ y ∈ Bf ,
1
c

Ψ−δ(x) ≤ Ψ(x+ y)
Ψ(x)

≤ cΨδ(x).

(W.c) For all r > 0,

lim
h→0

sup
x,y:Ψ(x)≤h−r,
x+y∈Bf ,|y|≤h

∣∣∣Ψ(x+ y)
Ψ(x)

− 1
∣∣∣ = 0.

In particular, by (W.b), Ψ is bounded on bounded subsets of Bf , but Ψ may be
unbounded if Bf is unbounded.

We also need the following conditions that establish a relationship between f and Ψ:
(WD.a)β ‖fβ‖Ψ,∞ := supt∈Bf |Ψ(t)fβ(t)| <∞, where β is a positive number.

(WD.b) For all r > 0,

lim
h→0

sup
x,y:Ψ(x)≤h−r
x,x+τ∈Bf ,|y|≤h

∣∣∣f(x+ y)
f(x)

− 1
∣∣∣ = 0.

Note that (WD.a)β and (WD.b) imply (D.c): if ‖Ψfβ‖Bf ≤ c and f(t) ≥ hr then
Ψ(t) ≤ ch−rβ .

Also, if Ψ ≡ f−β (which is our main example), then (WD.a)β is satisfied and the set
of conditions (D.a)–(D.c) is equivalent to (W.a)–(W.c) and (WD.b).

Regarding the window sizes, the assumptions are:
(H1) ht, t ≥ 1, is monotonically decreasing to 0 and thdt is a strictly increasing function

diverging to infinity as t→∞, and
(H2) hdt is regularly varying at infinity with exponent −α for some α ∈ (0, 1); in particular

there exist 0 < η0 ≤ η1 < 1 such that

lim sup
t→∞

tη0hdt = 0 and lim inf
t→∞

tη1hdt =∞.

Condition (H2) is quite restrictive compared to the bandsequence assumptions in Stute
(1982): besides the extra regularity, we do not allow ht to get too close to the extremes
1/t or 1/ log t, and in particular, | log ht| is comparable to log t, t > 1. If we set

λt =
√
thdt | log ht|

then, under (H1)− (H2), the function λt is strictly increasing and is regularly varying with
exponent larger than 0. This property of λt is used throughout Section 2.
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Our results rely on the by now classical theorem of Stute (1984) about the a.s. behavior
of the uniform deviation of the kernel density estimator over compact intervals, suitably
modified. The version of his theorem we need is a reformulation along the lines of Deheuvels
(2000) of Proposition 3.1 in Giné and Guillou (2000), which in turn is adapted from
Einmahl and Mason (2000).

Proposition 1.1. Let f be a density on Rd, continuous on an open set containing Da :=
{t : |t| ≤ a, f(t) ≥ a−1}, for some 0 < a < ∞. Let Ψ be a strictly positive function,
continuous on an open set containing Da. Then

lim
n→∞

√
nhdn

2| log hdn|

∥∥∥Ψ(t)(fn − Efn)(t)
∥∥∥
Da

= ‖K‖2‖Ψf1/2‖Da (1.6)

We omit the proof as it coincides with the proof of the above mentioned propositon,
except for obvious changes.

Proposition 1.1 applies to f satisfying (D.a) and (D.b) and Ψ satisfying (W.a) and
(W.b).

Without further mentioning, all the results we state in this paper beyond this point
assume conditions (K), (H1), (H2), (D.a)− (D.c), (W.a)− (W.c), (WD.b) and (WD.a)β
for some β. The number β is to be specified at each instance. We will refer to these
assumptions as the ‘usual hypotheses’.

Finally, we introduce the following notation, that will be used throughout: for any
function g defined on Bf , we set

‖g‖Ψ,∞ := sup
t∈Bf

|g(t)Ψ(t)|. (1.7)

2. The classical norming case.

The following theorem describes the stochastic boundedness behavior of the sequence
(2.1). It shows in particular that no interpolation between (1.2) and (1.3) works for all
strictly positive, bounded, continuous densities, and that when it works, it does not work
for all the range of possible bandsequences. In what follows, X is a random variable with
density f .

Theorem 2.1. Assume the usual hypotheses, with condition (WD.a)β holding for some
β ∈ (0, 1/2), and, moreover, that either Bf = Rd or K(0) = ‖K‖∞. Then the sequence{√

nhdn
| log hn|

∥∥∥fn − Efn∥∥∥
Ψ,∞

}∞
n=1

(2.1)

is stochastically bounded if and only if

lim sup
t→∞

tPr
{

Ψ(X) > (thdt | log ht|)1/2

}
<∞. (2.2)
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Moreover, under condition (2.2), the sequence{√
nhdn

2| log hdn|

∥∥∥fn − Efn∥∥∥
Ψ,∞
−
(

max
1≤i≤n

‖K‖∞Ψ(Xi)√
2nhdn| log hdn|

)∨(
‖K‖2‖f1/2‖Ψ,∞

)}∞
n=1
(2.3)

converges to zero in probability.

Proof. We will use the notation λt = (thdt | log ht|)1/2. As mentioned above, conditions
(H1) and (H2) imply that λt is regularly varying with strictly positive exponent. Note
that, by regular variation, condition (2.2) is equivalent to

lim sup
t→∞

tPr
{

Ψ(X) > cλt

}
<∞ (2.4)

for any 0 < c < ∞. By Montgomery-Smith’s (1993) maximal inequality (see e.g. de la
Peña and Giné (1999)), the stochastic boundedness of the sequence (2.1) implies that of
the sequence {

max
1≤i≤n

∥∥K((Xi − t)/hn
)
− EK

(
(X − t)/hn

)∥∥
Ψ,∞

λn

}
.

Then, since, for all t, letting u = (u1, . . . , ud),

EK((X − t)/hn) = hdn

∫ 1/2

−1/2

· · ·
∫ 1/2

−1/2

K(u)f(hnu+ t)du1 · · · dud ≤ hdn‖K‖1‖f‖∞ → 0,

taking t = X1 − τhn, . . . , Xn − τhn for τ ∈ Rd satisfying K(τ) > 0, we obtain that the
sequence {

max
1≤i≤n

Ψ(Xi − τhn)I(Xi − τhn ∈ Bf )
λn

}
is stochastically bounded. We take τ = 0 if K(0) 6= 0. Now, if K(0) 6= 0 then, Xi− τhn =
Xi ∈ Bf a.s., and if Bf = Rd, then obviously Xi − τhn ∈ Bf , so that, in either case,
Pr{X − τhn ∈ Bf} = 1. Thus, the sequence{

max
1≤i≤n

Ψ(Xi − τhn)
λn

}
is stochastically bounded. In particular, if τ = 0,{

max
1≤i≤n

Ψ(Xi)
λn

}
is stochastically bounded, proving condition (2.4) in this case (as, if ξi are independent,
Pr{max |ξi| > c} ≥

∑
Pr{|ξi| > c}/(1 +

∑
Pr{|ξi| > c}). If τ 6= 0 but Bf = Rd, given

ε > 0, let M be such that

sup
n

Pr
{

max
1≤i≤n

Ψ(Xi − τhn)
λn

> M

}
< ε.
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If Ψ(Xi − τhn) ≤ Mλn, then by regular variation there exists r > 0 such that Ψ(Xi −
τhn) ≤ h−rn (at least for all n large enough), and we can apply condition (W.c) to conclude
that there exists c > 1 such that for all n large enough (independent of Xi), Ψ(Xi) ≤
cΨ(Xi − τhn). Then, for these values of n we obtain

Pr
{

max
1≤i≤n

Ψ(Xi)
λn

> cM

}
< ε.

Therefore, in this case, the sequence
{

max1≤i≤n Ψ(Xi)/λn
}

is also stochastically bounded,
proving (2.4).

For the converse we note first that Proposition 1.1 takes care of the sup over Da for
any a > 0.

Next, we observe that the centering in (2.1) can be ignored for a certain range of t′s.
Let εn → 0 and 0 < δ < 1− β. Choose r > 0 such that

h
r(1−β−δ)
n

(nhdn)−1λn
→ 0.

Then there exist c < +∞ and n0 <∞ such that, by (D.b) and (D.c), for any t ∈ Bf and
n ≥ n0,

nΨ(t)EK((X − t)/hn)
λn

≤ cκnhdn
λn

Ψ(t) sup
|u|≤1/2,
t+hnu∈Bf

f(t+ hnu)

≤ cκnhdn
λn

Ψ(t)f(t)I(f(t) > hrn) +
cκnhdn
λn

Ψ(t)f1−δ(t)I(f(t) ≤ hrn).

Since, by condition (WD.a)β , Ψ(t) ≤ cf−β(t), the last summand tends to 0 uniformly
in t (as β < 1 − δ). The sup of the first summand over all t such that Ψ(t)f(t) ≤
ε1−β
n

(
(nhdn)−1| log hn|

)1/2 tends to 0 as well. Thus, we can ignore the centering Efn(t) for
all t ∈ Bf such that

Ψ(t)f(t) ≤ ε1−β
n

(
| log hn|
nhdn

)1/2

(2.5)

for any sequence εn → 0. We take εn = 1/ log n.
In the rest of the proof, we consider the sup of |Ψ(t)(fn−Efn)(t)| over several regions.
First, we consider the regions

An :=
{
t ∈ Bf : Ψ(t) > cβnλn

}
(2.6)

for the sequence cn = (λn logn/λn)1/β which tends to infinity because λt is regularly varying
with positive exponent. Actually, if η > 0 is the exponent of regular variation of λt, the
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representation formula for regularly varying functions (e.g., Feller (1971), p. 282) gives
that for every 0 < ε < η and c > 1 there exists n0 <∞ such that

1
c

(log n)η−ε ≤ λn logn

λn
≤ c(log n)η+ε (2.7)

for all n ≥ n0. Then, since β < 1/2 < 1 − β, for a suitable δ > 0 and all n large enough
we have

cnλ
1/β
n ≥ nη/β−δ ≥ nη/(1−β)+δ ≥ 1

εn

(
λn

| log hn|

)1/(1−β)

=
1
εn

(
nhdn
| log hn|

)1/(2(1−β))

.

This yields for all t ∈ An

Ψ(t) ≥ 1

εβn

(
nhdn
| log hn|

)β/(2(1−β))

and, using condition (WD.a)β (which without loss of generality can be written as ‖fβ‖Ψ,∞ ≤
1), we get

f(t) ≤ εn
(
| log hn|
nhdn

)1/2(1−β)

.

This implies (2.5) for all t ∈ An, since Ψ(t)f(t) ≤ ‖fβ‖Ψ,∞f1−β(t) ≤ f1−β(t) (again due
to (WD.a)β). Therefore,

sup
t∈An

nΨ(t)EK((X − t)/hn)
λn

→ 0,

showing that we can ignore the centering Efn on the region An. For any point a =
(a1, . . . , ad) ∈ Rd and positive number ρ we set

J(a; ρ) := [a1 − ρ/2, a1 + ρ/2]× · · · × [ad − ρ/2, ad + ρ/2] ∩Bf .

Then, discarding the centering,

sup
t∈An

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
≤ sup
t∈An

κ

λn
Ψ(t)

n∑
i=1

I(Xi ∈ J(t;hn)).

Now we divide An into two parts:

An,1 :=
{
t ∈ Bf : Ψ(t) > h−rn

}
and An,2 :=

{
t : cβnλn < Ψ(t) ≤ h−rn

}
,

where r is such that h−r(1−δ)n ≥ cβnλn for some δ > 0 and all n. It follows from condition
(W.b) that t ∈ An,1 and s ∈ J(t;hn) imply that there are c and n0 such that

Ψ(s)
Ψ(t)

≥ cΨ−δ(t)
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for all n ≥ n0, so that Ψ(s) ≥ cΨ1−δ(t) > ch
−r(1−δ)
n . Hence for the same values of n and

some C <∞ we have

Pr
{

sup
t∈An,1

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
> ε

}
≤ nPr{Ψ(X) ≥ h−r(1−δ)n } ≤ C

log n
→ 0.

It follows from condition (W.c) that t ∈ An,2 and s ∈ J(t;hn) imply that there are c and
n0 such that Ψ(s) ≥ cβnλn/c, for all n ≥ n0. Hence, for these values of n we have

Pr
{

sup
t∈An,2

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
> ε

}
≤ nPr{Ψ(X) ≥ cβnλn/c} ≤

C

log n
→ 0

for some C <∞ by (2.4). The last two limits imply that

lim
n→∞

sup
t∈An

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
= 0 in pr. (2.8)

Now we consider the regions

Bn :=

{
t ∈ Bf : f(t)Ψ(t) ≤ ε1−β

n

(
| log hn|
nhdn

)1/2

, Ψ(t) ≤ cβn(nhdn| log hn|)1/2

}
(2.9)

and notice that in these regions we can also ignore the centering (by (2.6)). Our goal is to
show that {

sup
t∈Bn

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn

}∞
n=1

is stochastically bounded under condition (2.2) and that, moreover, if either Bf = Rd or
K(0) = κ, then also

sup
t∈Bn

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
= κ max

1≤i≤n

Ψ(Xi)
λn

+ op(1). (2.10)

As above,

sup
t∈Bn

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
≤ sup
t∈Bn

κΨ(t)
λn

n∑
i=1

I(Xi ∈ J(t;hn)),

and we set

Zn := sup
t∈Bn

Ψ(t)
λn

n∑
i=1

I(Xi ∈ J(t;hn)).

For j = 1, . . . , n, set
Bn,j := Bn

⋂
J(Xj ;hn).

10



If t /∈ ∪nj=1Bn,j then Zn = 0. Hence, we have

Zn = max
1≤j≤n

sup
t∈Bn,j

Ψ(t)
λn

n∑
i=1

I(Xi ∈ J(t;hn)).

By conditions (W.c) and (WD.b), t ∈ Bn,j implies that

Ψ(t) ≤ cΨ(Xj)

and also

Ψ(Xj) ≤ ccβnλn, f(Xj)Ψ(Xj) ≤ cε1−β
n

(
| log hn|
nhdn

)1/2

for any c > 1, provided that n is large enough.
Set

Ij = In,j := I

(
Ψ(Xj) ≤ ccβnλn, f(Xj)Ψ(Xj) ≤ cε1−β

n

(
| log hn|
nhdn

)1/2
)
.

Then

Zn ≤ max
1≤j≤n

cΨ(Xj)Ij
∑n
i=1 I

(
|Xi −Xj | ≤ hn

)
λn

≤ max
1≤j≤n

cΨ(Xj)
λn

+ max
1≤j≤n

cΨ(Xj)Ij
∑

1≤i≤n,i 6=j I
(
|Xi −Xj | ≤ hn

)
λn

. (2.11)

By condition (2.2), the first term in the above bound is the general term of a stochastically
bounded sequence. We now show that the second term tends to zero in probability. To
handle this term, let Pj denote conditional expectation given Xj and set

pj := Pj{|X −Xj | ≤ hn}.

It follows from condition (D.a) that

2dc−1hdnf(Xj) ≤ pj ≤ 2dchdnf(Xj)

(provided that Ij = 1). A standard bound on binomial probabilities (e.g., Giné and Zinn
(1984), p. 958) shows that

Pj

{
IjΨ(Xj)

∑
1≤i≤n,i 6=j I

(
|Xi −Xj | ≤ hn

)
λn

≥ ε
}
≤
(

(n− 1)epjΨ(Xj)
λnε

)(ελn/Ψ(Xj))∨1

.

Using the bound on pj this probability can be further bounded by(2decnhdnf(Xj)Ψ(Xj)
λnε

)(ελn/Ψ(Xj))∨1

.

11



We can and do assume that Ij = 1 (otherwise the conditional probability in question is 0).
Then

f(Xj)Ψ(Xj) ≤ cε1−β
n

(
| log hn|
nhdn

)1/2

and we have

2decnhdnf(Xj)Ψ(Xj)
λnε

≤ C1nh
d
nε

1−β
n (| log hn|/nhdn)1/2

(nhdn| log hn|)1/2ε
=
C1ε

1−β
n

ε

for some C1 <∞ (and all n large enough). Note also that

2decnhdnf(Xj)Ψ(Xj)
λnε

=
C

ε

(
nhdn
| log hn|

)1/2

f(Xj)Ψ(Xj),

where C is a finite positive cosntant. For large n, C1ε
1−β
n

ε ≤ e−1/ε, which yields

Pj

{
IjΨ(Xj)

∑
1≤i≤n,i 6=j I

(
|Xi −Xj | ≤ hn

)
λn

≥ ε
}

≤
(

exp
{
−λn/Ψ(Xj)

})∧(C
ε

(
nhdn
| log hn|

)1/2

f(Xj)Ψ(Xj)
)
.

Let

I1
j := I

(
Ψ(Xj) ≤

λn
(3 logn)

, f(Xj)Ψ(Xj) ≤ cε1−β
n

(
| log hn|
nhdn

)1/2)
and let I2

j := Ij − I1
j . Then we have

Pr
{

max
1≤j≤n

IjΨ(Xj)
∑

1≤i≤n,i 6=j I
(
|Xi −Xj | ≤ hn

)
λn

≥ ε
}

≤
n∑
j=1

EIjPj

{
IjΨ(Xj)

∑
1≤i≤n,i 6=j I

(
|Xi −Xj | ≤ hn

)
λn

≥ ε
}

≤
n∑
j=1

EI1
j exp

{
−λn/Ψ(Xj)

}
+

n∑
j=1

EI2
j

C

ε

(
nhdn
| log hn|

)1/2

f(Xj)Ψ(Xj)

=: (I) + (II).

Then, using the definition of I1
j and I2

j , we get

(I) ≤ n exp
{
−3 logn

λn
λn

}
= n−2

and

(II) ≤ nC
ε

(
nhdn
| log hn|

)1/2 (3 log n)(1−β)/β

(nhdn| log hn|)(1−β)/(2β)
Pr
{

Ψ(X) ≥
(

λn
3 logn

)}
.

12



Now, since λt is regularly varying with a strictly positive exponent, the representation
theorem for regularly varying functions gives that λn/(3 log n) ≥ cλn/(log n)γ for some
γ > 0, c > 0 and all n large enough (see (2.7) above). Hence, by (2.4), there exists C > 0
such that, for these values of n,

(II) ≤ C

ε

(log n)(1−β)/β+γ

| log hn|1/2+(1−β)/(2β)

1
(nhdn)(1−β)/(2β)−1/2

.

By (H1) and (H2) this is at most of the order of logarithmic factors times n(1−η1)[1/2−(1−β)/(2β)],
a negative power of n because 0 < β < 1/2. Thus, (II) also tends to zero. Since both (I)
and (II) tend to 0, we have

Pr
{

max
1≤j≤n

IjΨ(Xj)
∑

1≤i≤n,i 6=j I
(
|Xi −Xj | ≤ hn

)
λn

≥ ε
}
→ 0 as n→∞.

This implies (see bound (2.11)) that

sup
t∈Bn

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
≤ κZn ≤ cκ max

1≤i≤n

Ψ(Xi)
λn

+ op(1),

for any c > 1. The stochastic boundedness of{
sup
t∈Bn

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn

}
follows immediately from this inequality and condition (2.2).

To bound the supremum from below, choose τ such that K(τ) > κ − δ (for a small
δ) with the understanding that if K(0) = κ then we choose τ = 0, so that either τ = 0 or
Bf = Rd. Then

sup
t∈Bn

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
≥ (κ− δ) max

1≤i≤n

Ψ(Xi − τhn)IBn(Xi − τhn)
λn

.

To establish (2.10), it is enough to show that

max
1≤i≤n

Ψ(Xi − τhn)IBn(Xi − τhn)
λn

= max
1≤i≤n

Ψ(Xi)
λn

+ op(1). (2.13)

First of all, condition (W.c) implies that for any c > 1 and for large enough n

c−1 <
Ψ(Xi − τhn)

Ψ(Xi)
< c

(assuming that Xi − τhn ∈ Bn). Since c can be taken arbitrarily close to 1, this reduces
the proof of (2.13) to showing that

max
1≤i≤n

Ψ(Xi)IBn(Xi − τhn)
λn

= max
1≤i≤n

Ψ(Xi)
λn

+ op(1),
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and therefore it suffices to prove that

max
1≤i≤n

Ψ(Xi)IBcn(Xi − τhn)
λn

→ 0 in pr. (2.13′)

Bcn naturally decomposes into the union of three regions and we look separately at each
of them. If Bf = Rd then IBc

f
(Xi − τhn) = 0 and if τ = 0 then this indicator is 0 a.s., so

that, in either case,

max
1≤i≤n

Ψ(Xi)IBc
f
(Xi − τhn)

λn
→ 0 a.s.

Next, we consider

Pr
{

max
1≤i≤n

Ψ(Xi)I
(
Ψ(Xi − τhn) ≥ cβnλn

)
λn

> ε

}
≤ nPr

{
Ψ(X − τhn) ≥ cβnλn

}
≤ nPr

{
cβnλn ≤ Ψ(X − τhn) ≤ h−rn

}
+ nPr

{
Ψ(X − τhn) ≥ h−rn

}
.

Using condition (W.c), we get (for any c > 1)

nPr
{
cβnλn ≤ Ψ(X − τhn) ≤ h−rn

}
≤ nPr

{
Ψ(X) ≥ c−1cβnλn

}
→ 0.

Similarly, using condition (W.b) (recall that X − τhn ∈ BΨ with probability one),

nPr
{

Ψ(X − τhn) ≥ h−rn
}
≤ nPr

{
Ψ(X) ≥ c−1h−r/(1+δ)

n

}
for some c > 0 and δ > 0. Assuming that r is large enough (so that h−r/(1+δ)

n ≥ cβnλn), we
then conclude that

nPr
{

Ψ(X − τhn) ≥ h−rn
}
→ 0,

and, hence,

Pr
{

max
1≤i≤n

Ψ(Xi)I
(
Ψ(Xi − τhn) ≥ cβnλn

)
λn

> ε

}
→ 0.

Before considering the last piece of Bcn we note that, since fβ(t)Ψ(t) ≤ 1 for all t, if
moreover f(u)Ψ(u) > L, then f1−β(u) > L and consequently Ψ(u) ≤ f−β(u) < L−β/(1−β),
an observation that we will use several times below. This observation and condition (W.c)
give

max
1≤i≤n

Ψ(Xi)I
(
f(Xi − τhn)Ψ(Xi − τhn) > ε1−β

n (| log hn|/(nhdn))1/2
)

λn

≤ max
1≤i≤n

Ψ(Xi)I
(
Ψ(Xi − τhn) < cε−βn (nhdn/| log hn|)β/(2(1−β))

)
λn

≤ cε−βn
(

nhdn
| log hn|

)β/(2(1−β)) 1
(nhdn| log hn|)1/2

=
c

εβn| log hn|1/2+β/(2(1−β))(nhdn)1/2−β/(2(1−β))
.
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Now, since β < 1/2 < 1−β and nhdn ≥ n1−η1 (by (H2)), whereas εn = 1/ log n and | log hn|
is comparable to log n, it follows that the above bound is dominated by a negative power
of n so that, in particular, it tends to zero. This and the previous two limits conclude the
proof of (2.13’) and hence of (2.10).

Finally, we consider the sup over the remaining set of t’s. For a large, fixed, just as
above, set

Cn = Cn,a :=
{
t ∈ Dc

a ∩Bf : f(t)Ψ(t) ≥ ε1−β
n (| log hn|/nhdn)1/2

}
, (2.14)

where εn is as defined in the previous paragraph. In this range the centering cannot be
ignored. We will apply an estimate for the expected supremum of the empirical process over
bounded Vapnik-Červonenkis type classes of functions (Giné and Guillou, 2001, inequality
(2.1); Talagrand, 1994, for classes of sets; see also Einmahl and Mason (2000) for a similar
inequality): if a class of functions F is measurable (in particular, if it is image admissible
Suslin) and satisfies

N(F , L2(Q), ε‖F‖∞) ≤
(
A

ε

)v
, 0 < ε < 1, (2.15)

for some v ≥ 1, A ≥ 3
√
e finite and all finite probability measures Q, where F is a

measurable envelope for the class F , then

E‖n(Pn − P )‖F ≤ C
(√

v
√
nσ

√
log

AU

σ
+ vU log

AU

σ

)
, (2.16)

where σ and U are any numbers satisfying 0 < σ < U and

σ2 ≥ sup
g∈F

VarP (g), U ≥ sup
g∈F
‖g‖∞, (2.17)

and C is a universal constant. (In Giné and Guillou (2001) condition (2.15) has ‖F‖L2(Q)

instead of ‖F‖∞, but it can be easily checked that their proof works as well under condition
(2.15).) As mentioned immediately below the statement of condition (K), there exist A
and v finite such that

N
(
{K((· − t)/hn : t ∈ R}, L2(Q), ε

)
≤

(
Aκ

ε

)v
, 0 < ε < 1,

for all hn > 0 and all probability measures Q on R. Now, the class of functions

Fn :=
{

Ψ(t)K((· − t)/hn) : t ∈ Cn
}

is contained in
Gn :=

{
uK((· − t)/hn) : t ∈ R, 0 < u ≤ Un},
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where

Un :=
κ

εβn

(
nhdn
| log hn|

)β/(2(1−β))

(2.18)

(recall that, as observed above, under condition (WD.a)β , fΨ ≥ α implies Ψ ≤ α−β/(1−β)).
Therefore, since the L2(Q) distance between uK((·−t)/hn) and vK((·−s)/hn) is dominated
by κ|u−v|+Un‖K((·−t)/hn)−K((·−s)/hn)‖L2(Q), it follows by taking optimal coverings
of [0, Un] with respect to the Euclidean distance, and of Fn with respect to the L2(Q)
distance, that the entropy bound

N
(
Fn, L2(Q), εUn

)
≤

(
2Aκ
ε

)v+1

, 0 < ε < 1, (2.19)

holds for all probability measures Q and all n large enough. The class Fn is also image
admissible Suslin since the map (x, t) 7→ Ψ(t)K((x− t)/hn) is measurable. So, inequality
(2.16) applies to it. We can take U = Un as defined in (2.18). Next we estimate σ2

n. It
follows from a previous observation and from regular variation that, on Cn, we have both,
f ≥ hrn and Ψ ≤ hrn for some r and all n large enough. Then, (D.c) and (W.c) give that
there exist c, C, n0 <∞ independent of a such that for all n ≥ n0 and all t ∈ Cn = Cn,a,

Ψ2(t)EK2((X − t)/hn) ≤ cE
(
K2((X − t)/hn)Ψ2(X)

)
= chdn

∫
|u|≤1/2

t+hnu∈Bf

K2(u)Ψ2(t+ hnu)f(t+ hnu)du

≤ chdn‖K‖22‖fΨ2‖Dca∩Bf
≤ Chdn

(
‖fΨ2‖Dca∩Bf ∨ n

−1
)
.

So, we can take
σ2
n = Chdn

(
‖fΨ2‖Dca∩Bf ∨ n

−1
)
.

The constant A = An must be taken to be (2Aκ)∨ (3
√
e) where A is the constant in (2.15)

for the class consisting of translations and dilations of K. In particular, since by (H2)
| log hn| is comparable to logn, we have

log
AnUn
σn

≤ c| log hn|

for some constant c <∞ independent of n. So, inequality (2.16) applied to Fn gives

E sup
t∈Cn

∣∣∣∣Ψ(t)
∑n
i=1

(
K((Xi − t)/hn)− EK((X − t)/hn)

)
λn

∣∣∣∣
≤ C

λn

[
λn(‖f1/2Ψ‖Dca∩Bf ∨ n

−1/2) +
1

εβn

(
nhdn
| log hn|

)β/(2(1−β))

| log hn|
]
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for a constant C independent of n, for all sufficiently large n. We should note that the
numerical constants in the above inequalities are not only independent of n, but they are
independent of a as well. Since β < 1/2 and therefore β/(1− β) < 1, and since, by (D.a)
and (WD.a)β ,

‖f1/2Ψ‖Dca∩Bf ≤ ‖f
1/2−β‖Dca∩Bf = ‖f‖1/2−βDca∩Bf

→ 0 as a→∞,

we obtain

lim
a→∞

lim sup
n→∞

E sup
t∈Cn,a

∣∣∣∣Ψ(t)
∑n
i=1

(
K(Xi − t)/hn)− EK(nα(X − t)/hn)

)
λn

∣∣∣∣
≤ lim
a→∞

C‖f1/2Ψ‖Dca∩Bf = 0. (2.20)

Now, the theorem follows from (1.6), (2.8), (2.10) and (2.20). tu

Now we make two comments on the assumptions.

Remark 2.2. The assumption ‘Bf = Rd or K(0) = ‖K‖∞’ has been imposed because in
general we may not have X − τhn ∈ Bf with small enough probability as nPr{X − τhn 6∈
Bf} could well be of the order of nhn → ∞. Now, this condition has been used in full
only in the proof of (2.3). Proving that tightness of the sequence (2.1) implies condition
(2.2) has only required Bf = Rd or K(0) > 0, whereas proving that condition (2.2) implies
tightness of the sequence (2.1) does not require any hypothesis of this type.

The above proof justifies, a posteriori, having taken β < 1/2:

Corollary 2.3. Assume (K), (H1), (H2), (D.a)− (D.c) and Bf = Rd. Then the sequence{√
nhdn

2 log h−dn

∥∥∥∥fn − Efn√
f

∥∥∥∥
∞

}∞
n=1

(which coincides with (2.1) for Ψ = f−1/2) is not stochastically bounded.

Proof. By the first part of the above proof, if (2.1) with Ψ = f−1/2 is tight, then there is
C > 0 such that

nPr
{

1
f(X)

> λ2
n

}
≤ C.

Since f takes all the values between 0 and ‖f‖∞, for n large enough there is xn in Rd such
that f(xn) = 1/(2λ2

n). Then, by condition (D.c), there is a subset D containing xn and
of positive Lebesgue measure, say h0 > 0, where 1/f(x) ≥ λ2

n and f(x) ≥ 1/(4λ2
n), and

therefore

nPr
{

1
f(X)

> λ2
n

}
≥ nPr

{
X ∈ D

}
≥ nh0

4λ2
n

→∞,

contradiction. tu

Theorem 2.1 has the following obvious corollary regarding convergence in distribution:
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Corollary 2.4. Under the assumptions in Theorem 2.1, the sequence (2.1) converges in
distribution if and only if the sequence of maxima,{

max
1≤i≤n

Ψ(Xi)
λn

}
,

converges in distribution. Then, if Z is a random variable with distribution the limit of
this last sequence, we have√

nhdn
2 log h−dn

∥∥fn − Efn∥∥Ψ,∞ →d (‖K‖∞Z) ∨ (‖K‖2‖f1/2‖Ψ,∞).

Next we consider the a.s. counterpart to Theorem 2.1. The following proposition will
help. It is perhaps relevant to recall first the following well known fact, whose proof we
omit as it is similar to a classical result of Feller (e.g. Lemma 3.2.4, Corollary 3.2.3 and
Theorem 3.2.5 in Stout 1970):

Lemma 2.5. Let Vi be i.i.d. real random variables and let {c(n)} be a regularly varying
nondecreasing sequence tending to infinity. Then,

either lim sup
n→∞

max
1≤i≤n

|Vi|
c(n)

=∞ a.s. or lim
n→∞

max
1≤i≤n

|Vi|
c(n)

= 0 a.s.

And this happens according as to whether∑
n

Pr{|Vn| > Cc(n)} =∞ or
∑
n

Pr{|Vn| > Cc(n)} <∞

for some (or, equivalently, all) C > 0.

Proposition 2.6. Assume that conditions (D.a), (W.a) − (W.c) and (WD.a)β , (WD.b)
hold for some β > 0 and that moreover, either Bf = Rd or K(0) > 0. Let c(n)↗∞ be a
regularly varying function of n. Assume

lim sup
n

∥∥∥∥
∑n
i=1

(
K((Xi − t)/hn)− EK((X − t)/hn)

)
c(n)

∥∥∥∥
Ψ,∞

<∞ a.s. (2.21)

Then, ∑
n

Pr
{

Ψ(X)
c(n)

> C

}
<∞. (2.22)

for all 0 < C <∞ or, what is the same by Lemma 2.4,

lim
n→∞

max
1≤i≤n

Ψ(Xi)
c(n)

= 0 a.s.
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Proof. The proof is standard, but we give it here for completeness. Let {X ′i} be an
independent copy of {Xi}. We can symmetrize in (2.21) and still have the lim sup finite.
By continuity of Ψ on Bf , there is n(ω) <∞ a.s. such that, for all n ≥ n(ω)∥∥∥∥K((X(ω)− t)/hn)−K((X ′(ω)− t)/hn)

c(n)

∥∥∥∥
Ψ,∞
≤ κ(Ψ(X) + Ψ(X ′) + 1)

c(n)
.

This tends to zero and therefore the limsup in (2.21) is a.s. constant by the zero-one law.
Hence, we have

Pr

{
sup
n≥k

∥∥∥∥
∑n
i=1 Ψ(t)

(
K((Xi − t)/hn)−K((X ′i − t)/hn)

)
c(n)

∥∥∥∥
Bf

> c

}
→ 0 as k →∞

for some c <∞. Set

Hn(X,X ′) :=
Ψ(t)

(
K((X − t)/hn)−K((X ′ − t)/hn)

)
c(n)

,

and, for k ∈ N,

Zi,k = (Hk(Xi, X
′
i),Hk+1(Xi, X

′
i) . . . , Hk+r(Xi, X

′
i), . . .)

if i ≤ k, and

Zi,k = (0, r). . ., 0,Hk+r(Xk+r, X
′
k+r),Hk+r+1(Xk+r, X

′
k+r) . . .)

for i = k + r, r = 1, . . .. Then, the above sup over n ≥ k is simply∣∣∣∣∣∣∣∣∣ ∞∑
i=1

Zi,k

∣∣∣∣∣∣∣∣∣
where |||(x1(t), . . . , xn(t), . . .)||| = supn ‖xn(t)‖Bf . The random vectors Zi,k are indepen-
dent and symmetric, and we can apply Lévy’s inequality to get that

Pr
{

sup
i∈N
|||Zi,k||| > 2c

}
→ 0

as k →∞. By independence, this implies that

∞∑
i=1

Pr
{
|||Zi,k||| > 2c

}
→ 0

as k →∞. Let τ = 0 if K(0) > 0 and otherwise let |τ | < 1 be such that K(τ) > 0. Then,

‖Hm(X,X ′)‖Bf ≥
c̃Ψ(X − hmτ)

c(n)
I(|X −X ′| > hn)
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for some c̃ > 0, and we get that

|||Zi,k||| = sup
m≥i∨k

Hm(Xi, X
′
i) ≥

c̃Ψ(Xi)
c(i ∨ k)

I(|Xi −X ′i| > hi∨k)

when τ = 0 and

|||Zi,k||| = sup
m≥i∨k

Hm(Xi, X
′
i) ≥

c̃ inf |h|≤|hi∨k|Ψ(Xi − h)
c(i ∨ k)

I(|Xi −X ′i| > hi∨k)

when Bf = Rd. The case τ = 0 is easier to handle, so we will complete the proof only
for the second case. In this case, since Pr′{|X − X ′| > hi} ≥ 1 − ‖f‖∞hdi , the previous
inequality yields

∞∑
i=1

Pr
{
|||Zi,k||| > 2c

}
≥
∑
i≥k

(1− ‖f‖∞hdi ) Pr
{
c̃ inf |h|≤|hi|Ψ(X − h)

c(i)
> 2c

}
.

Then, by (W.b), there are 0 < δ < 1 and ĉ > 0 such that

∞∑
n=1

Pr
{

Ψ(X) > ĉc1/(1+δ)(n)
}
<∞.

But by regular variation, there exists r > 0 such that h−rn > ĉc1/(1+δ), and therefore

∞∑
n=1

Pr
{

Ψ(X) > h−rn

}
<∞.

Now, by (W.c), for n large enough, there exists C <∞ such that

Pr
{

Ψ(X) > Cc(n)
}
≤ Pr

{
c̃ inf |h|≤|hn|Ψ(X − h)

c(n)
> 2c

}
+ Pr

{
Ψ(X) > h−rn

}
.

Therefore,
∞∑
n=1

Pr
{

Ψ(X) > Cc(n)
}
<∞.

tu
We are now prepared to give an integral test for a.s. convergence of the sequence

(2.1). Notice the difference with the tightness criterion, which is due to the fact that, by
Lemma 2.5, we have

either lim
n→∞

max
1≤i≤n

Ψ(Xi)
λn

= 0 a.s. or lim sup
n→∞

max
1≤i≤n

Ψ(Xi)
λn

=∞. (2.23)

20



Theorem 2.7. Assume the usual hypotheses, with condition (WD.a)β holding for some
β ∈ (0, 1/2), and, moreover, that either Bf = Rd or K(0) = ‖K‖∞. Set λ(t) =√
thdt | log ht|, as before. Then, either

lim
n→∞

√
nhdn

2| log hdn|
∥∥fn − Efn∥∥Ψ,∞ = ‖K‖2‖f1/2‖Ψ,∞ a.s. (2.24)

or

lim sup
n→∞

√
nhdn

2| log hdn|
∥∥fn − Efn∥∥Ψ,∞ =∞ a.s., (2.25)

according as to whether∫ ∞
1

Pr
{

Ψ(X) > λt
}
dt <∞ or

∫ ∞
1

Pr
{

Ψ(X) > λt
}
dt =∞. (2.26)

Proof. By Proposition 2.6, since λn is regularly varying, if the integral in (2.26) is infinite
then (2.25) holds. So, we must prove that∫ ∞

1

Pr
{

Ψ(X) > cλt
}
dt <∞ (2.27)

for all c > 0 implies (2.24). We proceed very much as in the proof of Theorem 2.1, with
the addition of the usual blocking and replacing, in the estimation of the sup over Cn, the
moment bound by an exponential inequality. By (2.4), we only have to consider the sup
of our statistics over An, Bn and Cn, the three sets defined as in the proof of Theorem
2.1, but with cn = 1 (and εn = 1/ log n as before), and we can ignore the centerings on An
and Bn. By monotonicity of hn and λn we have:

max
2k≤n≤2k+1

sup
t∈An

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
≤ κ sup

t∈A2k

Ψ(t)
∑2k+1

i=1 I(Xi ∈ J(t;h2k))
λ2k

.

Hence, we have, as before,

Pr
{

max
2k≤n≤2k+1

sup
t∈An

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
> ε

}
≤ ε−12k+1 Pr

{
Ψ(X) ≥ λ1/β

2k
/c

}
for all k large enough and some c > 0. But, by (2.27), this is the general term of a
convergent series, thus proving that

lim
n→∞

sup
t∈An

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
= 0 a.s. (2.28)

Regarding Bn (with cn = 1 and εn ↘ 0), we first note that, by regular variation,

2k+1⋃
n=2k

Bn ⊆ B̃2k :=

{
t : f(t)Ψ(t) ≤ c′ε1−β

2k

(
| log h2k |

2khd
2k

)1/2

, Ψ(t) ≤ c′cβ
2k

(2khd2k | log h2k |)1/2

}
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for some c′ > 1. Then, as in (2.11),

max
2k≤n≤2k+1

sup
t∈Bn

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
≤ sup
t∈B̃2k

Ψ(t)
∑2k+1

i=1 I(Xi ∈ J(t;h2k))
λ2k

≤ max
1≤j≤2k+1

cΨ(Xj)
λ2k

+ max
1≤j≤2k+1

cΨ(Xj)Ij
∑

1≤i≤n,i 6=j I
(
|Xi −Xj | ≤ h2k

)
λ2k

,

where Ij is defined as before but with n = 2k+1, and c may be different from the constant
in (2.11). Now, the maximum term tends to zero a.s. by (2.7) and Lemma 2.5, and the
remainder term satisfies

Pr
{

max
1≤j≤2k+1

cΨ(Xj)Ij
∑

1≤i≤n,i 6=j I
(
|Xi −Xj | ≤ h2k

)
λ2k

> ε

}
≤ C

ε2αk

for some α > 0 and all k large enough, as in the proof of Theorem 2.1. Therefore,

lim
n→∞

sup
t∈Bn

Ψ(t)
∑n
i=1K((Xi − t)/hn)

λn
= 0 a.s. (2.29)

In order to control the sup of our statistics over Cn = Cn,a (as defined in (2.14)), we
will use Talagrand’s exponential inequality (Talagrand (1994, 1996) in conjunction with
the bound on the expected value of the sup of an empirical process given in (2.16). In
a ready to use form for the problem at hand, it is as follows (Giné and Guillou (2001),
equation (2.12)): under assumption (2.15) above, and with the notation of (2.17) above,
assuming further that

0 < σ < U/2, and
√
nσ ≥ U

√
log

U

σ
,

there exist constants C and L such that for all s > C,

Pr
{∥∥∥ n∑

i=1

(
f(ξi)− Ef(ξ1)

)∥∥∥
F
> sσ

√
n

√
log

U

σ

}
≤ L exp

{
−D(s)

L
log

U

σ

}
, (2.30)

where D(s) := s log(1 + s/4L) → ∞ as s → ∞. We apply this inequality to the class Fn
defined on the last part of the proof of Theorem 2.1, with U = Un and σ = σn as defined
there, so that log Un

σn
� log n. Since, for a fixed and n large enough, σn → 0, Un →∞ and

√
nσn/(Un

√
log Un

σn
) → ∞, the above applies to give that there exists C < ∞ such that

for all a > 0 and for all n large enough (depending on a),

Pr
{

sup
t∈Cn,a

∣∣∣Ψ(t)
∑n
i=1

(
K(Xi − t)/hn)− EK(X − t)/hn)

)
λn

∣∣∣ > C‖f1/2Ψ‖Dca∩Bf
}

≤ L exp{−2 logn}. (2.31)
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Hence,

lim sup
n→∞

sup
t∈Cn,a

∣∣∣Ψ(t)
∑n
i=1

(
K(Xi − t)/hn)− EK(X − t)/hn)

)
λn

∣∣∣ ≤ C‖f1/2Ψ‖Dca∩Bf a.s.

(2.32)
Combining (1.6), (2.28), (2.29) and (2.32), and letting a → ∞, we obtain the limit

(2.24). tu
We conclude this section with a few examples. We take Ψ(t) = f−β(t). Other choices

of Ψ are of course possible.

Example 2.8. Suppose f : R 7→ (0,M ] is continuous and

f(x) = c1e
−c2|x|r

for all |x| large enough, for some r > 0 and for some constants c1 and c2. Then, f satisfies
(D.a)–(D.c). Take

hn = n−α, 0 < α < 1.

For simplicity assume c1 = c2 = 1. It is easy to see that

Pr{|X| > u} � u1−re−u
r

.

Hence,

Pr
{

1
f(X)

> t(1−α)/(2β)(log t)1/(2β)

}
� 1
t(1−α)/(2β)(log t)1/(2β)−(1−r)/r .

Then, the above theorems imply the following. For r ≥ 1, which includes the symmetric
exponential and the normal densities, the conclusion is that the sequence (2.1) with Ψ(t) =
f−β(t) is tight (stochastically bounded) if and only if

2β ≤ 1− α

and that, if this is the case, then√
n1−α

2α log n

∥∥∥fn − Efn
fβ

∥∥∥
∞
→ ‖K‖2‖f‖1/2−β∞ a.s. (2.33)

The same is true for exponential densities if we replace in (2.33) the sup over R by the
sup over R+. For 0 < r < 1, if 2β < 1 − α then the limit (2.33) holds; if 2β = 1 − α
different behaviors arise, namely: if (1 − r)/r > 1/(2β) then the sequence (2.1) is not
stochastically bounded; if (1 − r)/r = 1/(2β), the sequence converges in distribution to
the limit in distribution of the random variables(

max
1≤i≤n

‖K‖∞√
2αn2β log n fβ(Xi)

)∨(
‖K‖2‖f‖1/2−β∞

)
,
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which is unbounded and can be easily computed (see the next example); if (1 − r)/r −
1/(2β) < 0 we have convergence in probability in (2.33), but convergence a.s. holds only
if (1− r)/r − 1/(2β) < −1.

Example 2.9. Suppose now the real density f is strictly positive, continuous and

f(x) =
c

|x|r

for all |x| large enough, for some r > 1 and for some constant c. These densities also satisfy
(D.a)–(D.c). Take hn = n−α, α ∈ (0, 1) as above. Then, (2.1) (again, with Ψ(t) = f−β(t))
is tight if and only if

β ≤ r − 1
r

1− α
2

.

and, if this is the case, then (2.33) holds true.

Example 2.10. Let now f(x) = 1
2e
−|x| be the symmetric exponential density on R. Then,

Pr
{

max
1≤i≤n

1
f(Xi)

> u

}
=
{

1− (1− 2/u)n if u ≥ 2
1 otherwise,

so that
max

1≤i≤n

1
nβfβ(Xi)

→d Z
β

where Z has distribution

Pr{Z ≤ t} =
{
e−2/t if t > 0
0 otherwise.

Hence, if we take β ∈ (0, 1/2) and

hn =
1

n1−2β log n
,

Theorem 2.1 gives that√
nhn

2| log hn|

∥∥∥fn − Efn
fβ

∥∥∥
∞
→d max

(
‖K‖∞√
2(1− 2β)

Zβ ,
‖K‖2
21/2−β

)
.

The next two examples shows that the above results are not true in general without
conditions of the type of (D.b), (D.c) (and (W.b), (W.c)). The first addresses smoothness
and the second, the existence of zeros of f on the closure of Bf .

Example 2.11. It is easy to see that the double exponential density still satisfies condi-
tions (D.a)–(D.c) and, hence, theorems 2.1 and 2.7, but the density

f(t) := ce−e
et

, t ≥ 0,
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does not. Specifically, condition (D.b) fails for this density and we show below that for all
β ∈ (0, 1) and for hn = n−α,√

nhn
2| log hn|

sup
t≥0

∣∣∣fn(t)− Efn(t)
fβ(t)

∣∣∣→∞ a.s. (2.34)

Indeed, if K is continuous and strictly positive at the point t = −1/4, then

Efn(t)
fβ(t)

= c exp{βee
t

} 1
hn
EK

(
(X − t)
hn

)
= c exp{βee

t

}
∫ 1/2

−1/2

K(u)f(hnu+ t)du

≥ c1 exp
{
βee

t

− ee
t−4−1n−α

}
= c1 exp

{
ee
t[
β − ee

t(e−4−1n−α−1)
]}
.

Let tn := log n. Then, for large n,√
nhn

2| log hn|
Efn(tn)
fβ(tn)

≥ c1 exp
{
en
[
β − en(e−4−1n−α−1)

]}
≥ c1 exp{βen/2}.

On the other hand,

Pr{fn(tn) 6= 0} ≤ Pr{ max
1≤i≤n

Xi ≥ tn − n−α/2} ≤ Cn exp{−e
√
n},

which implies that √
nhn

2| log hn|
fn(tn)
fβ(tn)

→ 0 a.s.,

and therefore (2.34) holds.

Example 2.12. This example shows that if the density f has a zero in R, then the
asymptotic behavior of √

nhn
| log hn|

∥∥∥∥fn − Efnfβ

∥∥∥∥
Bf

depends on the local behavior of f at the zero point and is not any longer controlled only
by condition (2.2). Note that in this case condition (D.b) fails. For simplicity, assume
that hn = n−α (with α < 1) and K = I[−1/2,1/2]. Let f be a density continuous on a
neighborhood of 0 and such that f(0) = 0 and, moreover, for some s > 0

f(t) � |t|s as t→ 0.

In particular, we assume that f is s times continuously differentiable at 0 (for an even
integer number s) and f (j)(0) = 0 for j < s, f (s)(0) > 0. It is easy to see that

Pr{|X| ≤ t} � ts+1 as t→ 0. (2.35)
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We will show that if s > 1
α − 1, then, for all C > 0,

Pr

{√
nhn

2| log hn|

∥∥∥∥fn − Efnfβ

∥∥∥∥
Bf

> C

}
→ 1. (2.36)

The proof is almost the same as in the previous example. Let tn → 0 be chosen in such a
way that f(tn) = e−n. Note that tn = o(hn). Then, using (2.35), we get√

nhn
2| log hn|

Efn(tn)
fβ(tn)

�

√
n1−α

log n
eβnnαEK(nα(X − tn))

�

√
n1+α

log n
eβn Pr{tn − n−α/2 ≤ X ≤ tn + n−α/2}

�

√
n1+α

log n
eβnn−(s+1)α →∞.

On the other hand, also using (2.35), if s > 1
α − 1, then

Pr{fn(tn) 6= 0} ≤ Pr{∃i, 1 ≤ i ≤ n : Xi ∈ (tn − hn/2, tn + hn/2)}
≤ nPr{X ∈ (tn − hn/2, tn + hn/2)}
� nhs+1

n = n1−α(s+1) → 0.

This immediately implies (2.36). Let now f(t) = c|t|s for |t| ≤ a and f(t) = 0 otherwise.
Then, it is easy to check that condition (2.2) holds if and only if β ≤ 1−α

2 (1 + 1
s ). Thus,

for large enough s this condition does not imply the stochastic boundedness of (2.1).

3. Large normings.

By Proposition 1.1, the central part of the process Ψ(t)(fn(t) − Efn(t)), that is, its
sup over Da, for all a > 0, has an influence on the asymptotic size in probability of the
sequence (2.1) and completely determines its a.s. limit. But if we normalize by a sequence
larger than

√
nhdn| log hn|, this central part of the sup vanishes for all a > 0, and only the

extremes of the range of t’s should have an influence on the limit. This is what we examine
in this section. As in the previous section, we will only consider regularly varying window
sizes and normings. As is to be expected, the only possible limit a.s. in this situation is
zero, and the sum is asymptotically equivalent, in probability, to the maximum term. This
is roughly the content of the following two theorems.

Theorem 3.1. Assume the usual hypotheses, with condition (WD.a)β holding for some
β ∈ (0, 1], and, moreover, that either Bf = Rd or K(0) = ‖K‖∞. Let dt be a strictly
increasing regularly varying function such that dt/λt →∞ and dt ≥ Ctβ for some C > 0.
Then, the sequence{∥∥∥∥

∑n
i=1

(
K((Xi − t)/hn)− EK((X − t)/hn)

)
dn

∥∥∥∥
Ψ,∞

}
(3.1)
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is stochastically bounded if and only if

lim sup
t→∞

tPr
{

Ψ(X) > dt

}
<∞. (3.2)

Moreover, if condition (3.2) holds, then

∥∥∥∥
∑n
i=1

(
K((Xi − t)/hn)− EK((X − t)/hn)

)
dn

∥∥∥∥
Ψ,∞
− max

1≤i≤n

‖K‖∞Ψ(Xi)
dn

→ 0 in pr. (3.3)

Proof. The proof is similar to that of Theorem 2.1. First we consider β < 1. Necessity
of condition (3.2) follows exactly in the same way. Here we indicate the few changes that
should be made to the proof of Theorem 2.1 in order to prove that (3.2) implies (3.1) and
(3.3). First, and this is by far the main difference with Theorem 2.1, the sup of∣∣∣∣Ψ(t)

∑n
i=1

(
K((Xi − t)/hn)− EK((X − t)/hn)

)
dn

∣∣∣∣ (3.4)

over Da, tends to zero a.s. for all a < ∞ by Proposition 1.1. Regarding the centering,
consider the bound

nΨ(t)EK((X − t)/hn)
dnfβ(t)

≤ cκnhdn
dn

Ψ(t)f(t)I(f(t) > hrn) +
cκnhdn
dn

Ψ(t)f1−δ(t)I(f(t) ≤ hrn),

where t ∈ Bf , 1 − β > δ and r is such that nhd+r(1−β−δ)
n /dn → 0, which is obtained as

in the proof of Theorem 2.1. If the exponent of regular variation of nhdn is strictly smaller
than that of dn, then, since Ψfη is bounded for all η ≥ β, the sup over t ∈ Bf of this
bound tends to zero and therefore we can simply ignore the centerings in (3.1) and (3.3).
Otherwise, the second summand tends to zero uniformly in t ∈ Bf and the first tends to
zero uniformly on all t ∈ Bf such that

f(t)Ψ(t) ≤ ε1−β
n

dn
nhdn

,

for any εn → 0. So we can ignore the centerings for these values of t. As before, we take
εn = 1/ log n.

Continuing in analogy with the proof of Theorem 2.1, we now define

An = {t ∈ Bf : Ψ(t) > cβndn}

with cn = (dn logn/dn)1/β → ∞, and we get, as in (2.8) but now using the properties of
dn, that

lim
n→∞

sup
t∈An

∑n
i=1 Ψ(t)K((Xi − t)/hn)

dn
= 0 in pr.
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(for 0 < β < 1).
Next we set

Bn :=

{
t ∈ Bf : f(t)Ψ(t) ≤ ε1−β

n

dn
nhdn

, Ψ(t) ≤ cβndn

}

in analogy with (2.9). Then, proceeding as in the proof of (2.10) with the only formal
change of replacing λn by dn and

√
nhdn/| log hn| by nhdn/dn, we arrive at analogous con-

clusions, namely that the sequence

sup
t∈Bn

Ψ(t)
∑n
i=1K((Xi − t)/hn)

dn

is stochastically bounded and that in fact it can be represented as

max
1≤i≤n

κΨ(Xi)
dn

+ op(1).

(This requires using the properties of dn and hn but, given that proof, the details are
straightforward.)

Finally, we consider

Cn = Bf \ (An ∪Bn) =
{
t ∈ Bf : f(t)Ψ(t) ≥ ε1−β

n dn/(nhdn)
}
.

Using as before that Ψf ≥ L implies, by (WD.a)β , that Ψ ≤ L−β/(1−β), we can take

Un = κε−βn

(
nhdn
dn

)β/(1−β)

.

We will consider two cases.
If the exponent of regular variation of nhdn is strictly smaller than that of dn then

ε1−β
n dn/(nhdn) → ∞ and therefore, since, by (WD.a)β , ‖fΨ‖∞ ≤ ‖f‖1−β∞ < ∞, Cn is

eventually the empty set.
Assume now that the exponent of regular variation of dn does not exceed that of nhdn.

Then ε1−β
n dn/(nhdn) is eventually dominated by n−δ for any δ > 0, so that we eventually

have f(t) ≥ hrn and Ψ(t) ≤ h−rn for some r > 0 and all t ∈ Cn. So, we can apply (D.c) and
(W.c), which, together with (WD.a)β , immediately imply that we can take σn as follows:

σ2
n =

Cκhdn‖f‖1−2β
∞ if β ≤ 1/2

Cκhdnε
−(2β−1)
n (nhdn/dn)(2β−1)/(1−β) if β > 1/2.

Since Un is either slowly varying or tends to infinity and σn tends to zero as a negative
power of n for β ≤ 1/2, we get, in this case, that, eventually,

0 < σn < Un/2 and log
Un
σn
� log n.
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The same conclusion holds for β > 1/2 since hd/2n decreases as a negative power of n and the
exponent of nhdn/dn in the expression for σn is smaller than its exponent in the expression
for Un. It is also easy to see, using λn/dn → 0 in the case β < 1/2 and dn > Cnβ when
β = 1/2 or β > 1/2, that, eventually,

√
nσn ≥ Un

√
log(Un/σn) � Un

√
log n.

Then, inequality (2.16) gives that

E

(
sup
t∈Cn

∣∣∣∣Ψ(t)
∑n
i=1

(
K((Xi − t)/hn)− EK((X − t)/hn)

)
dn

∣∣∣∣) ≤ C
√
n log n σn
dn

for some C < ∞ independent of n, as long as n is large enough. For β ≤ 1/2 this bound
is, up to a multiplicative constant, of the order of

λn
dn
→ 0

and for β > 1/2 it is of the order

ε−(2β−1)/2
n

√
log n(nβ/dn)1/(2(1−β))hdβ/(2(1−β))

n → 0

since dn ≥ Cnβ for some C > 0, and hn → 0 at least as a negative power of n. This
completes the proof of the theorem for β < 1.

For β = 1, since dn ≥ Cn and ‖Ψf‖Ψ,∞ ≤ 1, we can ignore the centering for all t.
Then we decompose Bf into An defined as above and Bn := {t ∈ Bf : Ψ(t) ≤ cβndn}. The
proof of (2.8) and (2.10) with λn replaced by dn follows as in the proof of Theorem 2.1,
even with some simplification as Bn is now a simpler set. tu

We have assumed dn ≥ Cnβ and β ≤ 1 in the above theorem. Next we show that
these two assumptions are optimal.

Remark 3.2. Take Ψ = f−β . For the sequence (3.1) to be stochastically bounded it is
necessary, by the first part of Theorem 2.1, that the sequence {max1≤i≤n(dnfβ(Xi))−1}
be stochastically bounded, hence, by regular variation of dt, that

supnPr
{

1
f(X)

≥ d1/β
n

}
<∞.

But if Bf = Rd then condition (D.c) implies, as in the proof of Corollary 2.2, that

nPr
{

1
f(X)

≥ d1/β
n

}
≥ c n

d
1/β
n

for all n and some c > 0 independent of n. Hence, if Ψ(t) is of the order of f−β(t), then
we must have dn ≥ Cnβ in Theorem 3.1.
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Remark 3.3. Suppose we take β > 1 in Theorem 3.1, and, again, let us take Ψ = f−β .
Then, we still have that (3.2) is necessary for stochastic boundedness of the sequence (3.1).
But then (3.2) implies that

lim
n→∞

sup
t∈An

∑n
i=1K((Xi − t)/hn)

dnfβ(t)
= 0 in pr.

as before. On the other hand, if Bf = Rd, then the set An contains t’s with f(t) arbitrarily
small, and therefore, by (D.b), for some 0 < δ < 1− β,

sup
t∈An

nEK((X − t)/hn)
dnfβ(t)

>∼ sup
t∈An

nhn
dnfβ−1−δ(t)

=∞

Hence, the sequence (3.1) is not stochastically bounded, contradiction. So, Theorem 3.1
is not true for β > 1.

The next theorem describes the almost sure behavior of ‖fn − Efn‖Ψ,∞ for large
normings.

Theorem 3.4. Assume the usual hypotheses, with condition (WD.a)β holding for some
β ∈ (0, 1], and, moreover, that either Bf = Rd or K(0) = ‖K‖∞. Let dt be a strictly
increasing regularly varying function satisfying that limt→∞ dt/λt = ∞ and dt ≥ Ctβ for
some C > 0. Then, either

lim
n→∞

∥∥∥∥
∑n
i=1

(
K((Xi − t)/hn)− EK((X − t)/hn)

)
dn

∥∥∥∥
Ψ,∞

= 0 a.s. (3.5)

or

lim sup
n→∞

∥∥∥∥
∑n
i=1

(
K((Xi − t)/hn)− EK((X − t)/hn)

)
dn

∥∥∥∥
Ψ,∞

=∞ (3.6)

according as to whether∫ ∞
1

Pr
{

Ψ(X) > dt
}
dt <∞ or

∫ ∞
1

Pr
{

Ψ(X) > dt
}
dt =∞. (3.7)

Proof. Necessity and the part of sufficiency dealing with the sets An and Bn follow by
a straightforward combination of the proofs of theorems 2.6 and 3.1. The only difference
with previous proofs is in the estimation of the supremum of the processes over the sets

Cn =
{
t ∈ Bf : f(t)Ψ(t) ≥ ε1−β

n dn/(nhdn)
}
.

Here, as in the corresponding part of the proof of Theorem 2.6, we use Talagrand’s in-
equality. However, dn is large and it may fall out of the ’Gaussian range’ of the inequality.
With the notation put forward above, and with the assumptions

0 < σn < Un/2, and
√
nσn > Un

√
log

Un
σn
,
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shown to hold for all n large enough in the previous proof, Talagrand’s inequality in the
version from Giné and Guillou (2000, Proposition 2.2), gives

Pr

{
sup
t∈Cn

∣∣∣∣Ψ(t)
n∑
i=1

(
K
(Xi − t

hn

)
− EK

(X − t
hn

))∣∣∣∣ > εdn

}

≤ L exp

[
− 1
L

εdn
Un

log
(

1 +
εdnUn
Lnσ2

n

)]
:= (I), (3.8)

for some L that depends only on A and v (from inequality (2.15)), and for all n large
enough, as long as

εdn
√
nσn

√
log Un

σn

> C

for a certain constant C <∞. This last condition is eventually satisfied by all ε > 0 since
log(Un/σn) � log n and dn/(

√
n log nσn) → ∞, as can be easily seen directly from the

definitions and properties of these quantities.
Now, by the hypotheses on hn and dn,and since εn = 1/ log n, there exists δ > 0 such

that
εdn
Un

= ε · εβn
(
dn
nβ

)1/(1−β)

h−dβ/(1−β)
n ≥ Cε · εβnh−dβ/(1−β)

n ≥ nδ. (3.9)

If 1/2 ≤ β ≤ 1, then

log
(

1 +
εdnUn
Lnσ2

n

)
� log

(
1 +

ε

Lεβn

)
>∼ log log n.

If β < 1/2,

log
(

1 +
εdnUn
Lnσ2

n

)
� log

(
1 +

ε

Lεβn

( dn
nhdn

)(1−2β)/(1−β)
)
,

which is of the order of log n if the exponent of regular variation of dn is strictly larger
than that of nhdn, and satisfies

lim
n→∞

nδ log
(

1 +
ε

Lεβn

( dn
nhdn

)(1−2β)/(1−β)
)

=∞

for all δ > 0 if the exponents of dn and nhdn coincide (this can be readily seen using the
properties of regular variation and that log(1 + τ) ' τ for τ small). Combining the last
three estimates with the bound (3.9) we get that, for the cases considered,

(I) ≤ exp(−nδ) (3.10)

for some δ > 0. Finally, if β < 1/2 and the exponent of variation of dn is smaller than the
exponent of nhdn, then

log
(

1 +
εdnUn
Lnσ2

n

)
' εdnUn

Lnσ2
n
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and we have, for constants L independent of n (as long as n is large enough) and that vary
on each occurrence,

(I) ≤ L exp
(
− 1
L

ε2d2
n

nσ2
n

)
= L exp

(
− 1
L

ε2d2
n

nhdn

)
= L exp

(
− 1
L
ε2
(dn
λn

)2

| log hn|
)
≤ L exp(−M log n) (3.11)

where M can be made as large as we wish, as long as we take n large enough. (Here we
have used dn/λn → ∞ and | log hn| � log n.) This covers all the cases, and we obtain,
combining (3.8), (3.10) and (3.11), that

∑
n

Pr

{
sup
t∈Cn

∣∣∣∣Ψ(t)
n∑
i=1

(
K
(Xi − t

hn

)
− EK

(X − t
hn

))∣∣∣∣ > εdn

}
<∞

for all ε > 0, proving that

lim
n→∞

sup
t∈Cn

∣∣∣∣Ψ(t)
n∑
i=1

(
K
(Xi − t

hn

)
− EK

(X − t
hn

))∣∣∣∣ = 0 a.s.

This finishes the proof of the theorem. tu
The results in this section obviously apply to the densities in Examples 2.8-2.11. For

instance, Let f be the symmetric exponential density on R considered in Examples 2.8
and 2.10, and let hn = n−α, 0 < α < 1. Then, Theorem 3.1 shows that

n1−α−β
∥∥∥∥fn − Efnfβ

∥∥∥∥
∞
→d ‖K‖∞Zβ ,

where Z is the random variable defined in Example 2.10, if and only if

1− α
2

< β < 1;

and Theorem 3.4 shows that, for c(t) strictly increasing and regularly varying,

n1−α

cβ(n)

∥∥∥∥fn − Efnfβ

∥∥∥∥
∞
→ 0 a.s.

if and only if ∫ ∞ dt

c(t)
<∞.

A similar statement holds true for normal densities.
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Remark 3.5. Suppose that K is a uniformly bounded class of kernels supported by a
fixed bounded set and such that the class

F :=

{
K

(
· − t
h

)
: t ∈ Rd, h > 0, K ∈ K

}

is measurable and has covering numbers

N(F , L2(P ), ‖K‖L2(P )ε) ≤
(
A

ε

)v
, 0 < ε < 1,

for some A and v finite and positive and for all probability measures P (in particular, K
may be a subset of the linear span of a finite set of functions k as defined in condition
(K)). Suppose we wish to consider

sup
K∈K

∥∥∥∥fn − Efncn

∥∥∥∥
Ψ,∞

,

where cn is dn or λn, as defined above. Then uniform boundedness and uniformity of the
support allow us to deal with the sup over An and Bn, and the entropy bound, with the
sup over Cn, just as in the previous theorems. The sup over the central part Da is handled
in Mason (2001). So, it is straightforward to prove a uniform in K ∈ K version of our
results. It is also possible to prove a functional law of the logarithm in our setting by
following Mason (2001).
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