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With the discovery of AdS/CFT [1] and generalizations thereof like AdS/CMT [2–5],

Kerr/CFT [6–8] and the applications of holographic duality to QCD [9], the calculation

of finite-temperature correlation functions in conformal field theory has become increas-

ingly important.

A lot of these holographic dualities contain black holes and thus describe dual field

theories at finite temperature. For practical applications it is often convenient to work

in momentum space. For example, even before the era of AdS/CFT it was noticed by

Maldacena and Strominger [10] that the semiclassical emission rates of scalar fields in a

Kerr/Newmann black hole agree with the result obtained from a 2D effective conformal

field theory in momentum space. The generalization to photons and fermions was later

worked out by Gubser [11].

In many cases the theory of interest is strongly coupled, so the conformal field theory

calculation is the only reliable method to compute correlation functions. This is the point

of view we take in this short note.

We are interested in finite temperature three-point functions for primary fields in

2D CFT in momentum space. First, we recall the calculation of the two-point function

(see [1] and references therein). At zero temperature, the coordinate representation of this

correlator for two primary fields φhi,h̄i
with conformal weights (hi, h̄i), i = 1, 2, has the

familiar form on the complex plane (after normalization)

〈φh1,h̄1
(z, z̄)φh2,h̄2

(0, 0)〉 =
δh1,h2

δh̄1,h̄2

z2h1 z̄2̄h1

. (0.1)

We compactify this result on cylinders with radii TL and TR via the mapping

z = e2πTLw , z̄ = e2πTRw̄, (0.2)

where TL, TR, are the left and right moving temperatures. The imaginary part of w = x+iτ

is the compactified time direction such that τ ∼ τ + 1/TL. This mapping gives the finite-

temperature two-point function in coordinate space

〈φh1,h̄1
(ω, ω̄)φh2,h̄2

(0, 0)〉 =

(

πTL

sinhπTLw

)2h1
(

πTR

sinhπTRw̄

)2h̄1

, (0.3)

where we used h1 = h2 and h̄1 = h̄2; otherwise the correlator vanishes.

To compute the propagators we Wick rotate τ → it to obtain the light-cone coordinates

x± = x± t. We obtain the Lorentzian two-point function

〈φh1,h̄1
(x+, x−)φh2,h̄2

(0, 0)〉 =

(

πTL

sinhπTLx−

)2h1
(

πTR

sinhπTRx+

)2h̄1

. (0.4)

Fourier transforming this expression gives the propagator in momentum space. We

compute the retarded/advanced propagators, which reduce to the Euclidean Matsubara

propagator when restricted to the discrete Matsubara frequencies ω = ±2πTk, where

k ∈ Z [12]. To avoid singularities on the real axis the ±iǫ regularization prescription is

implemented. This process leads to the advanced or retarded propagators depending on

the sign of iǫ.
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For each sector we obtain [11, 13]

G±
∆(ω) =

∫ ∞

−∞

dxe−iωx

(

πT

sinh(πTx± iǫ)

)2∆

= (−1)∓∆ (2πT )2∆−1

Γ(2∆)
e∓ω/2TΓ

(

∆+
iω

2πT

)

Γ

(

∆−
iω

2πT

)

. (0.5)

One can obtain eq. (0.5) by means of the following Mellin-Barnes type integral [14]

1

2πi

∫ +i∞

−i∞
e±iπsξsΓ(∆ + s)Γ(∆− s) ds = Γ(2∆)e±iπ∆ξ∆(1− ξ ± iǫ)−2∆, (0.6)

where the integrand is defined on the principal branch of the complex logarithm.

After setting ξ = e−2πTx, s = −iω/2πT , and doing some manipulations, one obtains

1

2π

∫ ∞

−∞

dωeiωx(2πT )2∆−1 1

Γ(2∆)
e±ω/2TΓ

(

∆−
iω

2πT

)

Γ

(

∆+
iω

2πT

)

= e±iπ∆

(

πT

sinh(πTx± iǫ)

)2∆

, (0.7)

which is the inverse of the Fourier transform of eq. (0.5).

Next we calculate the momentum space finite temperature three-point function. Con-

formal symmetry fixes the form of the three-point function up to an overall constant. At

finite temperature, the holomorphic part is

〈φh1
(x+1 )φh2

(x+2 )φh3
(0)〉 =

(πT )l+m+n

sinhm(πTx+1 ) sinh
l(πTx+2 ) sinh

n(πTx+12)
. (0.8)

Here m = h3 + h1 − h2, l = h2 + h3 − h1, n = h1 + h2 − h3.

The holomorphic part of the momentum space three-point function follows by the

Fourier transformation

Gm,n,l(ω1, ω2) =

∫ ∞

−∞

∫ ∞

−∞

dx1dx2
(πT )l+m+n e−iω1x1−iω2x2

sinhm(πTx1) sinh
l(πTx2) sinh

n(πTx12)
. (0.9)

Formally, the integral in eq. (0.9) is divergent so we work using the iǫ prescription,

Gm,n,l(ω1, ω2) =

∫ ∞

−∞

∫ ∞

−∞

dx1dx2
(πT )l+m+n e−iω1x1−iω2x2

sinhm(πTx1 + iǫ) sinhl(πTx2 + iǫ) sinhn(πTx12 − iǫ)
.

(0.10)

The signs of the iǫ terms are chosen such that the integral is convergent.

By introducing the variable u = x12, we can disentangle the arguments of the hyper-

bolic sines in the integrand as

Gm,n,l(ω1, ω2) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

dudx1dx2 δ(u− x1 + x2)

×
(πT )l+m+n e−iω1x1−iω2x2

sinhm(πTx1 + iǫ) sinhl(πTx2 + iǫ) sinhn(πTu− iǫ)
.

(0.11)
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Using the resolution of the identity,

δ(x) =
1

2π

∫ ∞

−∞

dωe−iωx, (0.12)

one can rewrite eq. (0.11) as an integral of a product of Fourier-transformed two-point

correlators

Gm,n,l(ω1, ω2) =

∫ ∞

−∞

dω

2π
G+

m/2(ω1 − ω)G−
n/2(ω)G

+
l/2(ω2 + ω), (0.13)

where, G±
∆(ω) is the Fourier transform of the two-point correlator with conformal weight

∆ as given in eq. (0.5). It is easy to see that the above expression agrees with the one for

the extremal three-point correlation function computed in [15], when either m = 0, n = 0,

or l = 0. It also reduces to the advanced or retarded propagator by setting one of the

conformal weights to zero and the remaining two equal to each other. For example, if one

chooses h3 = 0 and h1 = h2 then

G0,2h1,0(ω1, ω2) = δ(ω1 + ω2)G
−
h1
(ω1). (0.14)

We proceed by substituting the expression for G±
∆ into eq. (0.13),

Gm,n,l(ω1, ω2) = (−1)(−m+n−l)/2 (2πT )
m+n+l−3

Γ(m)Γ(n)Γ(l)
e(ω1+ω2)/2T

×

∫ ∞

−∞

dω

2π

(

e−ω/2TΓ

(

m

2
+ i

ω1

2πT
− i

ω

2πT

)

× Γ

(

m

2
− i

ω1

2πT
+ i

ω

2πT

)

Γ

(

n

2
+ i

ω

2πT

)

Γ

(

n

2
− i

ω

2πT

)

× Γ

(

l

2
+ i

ω2

2πT
+ i

ω

2πT

)

Γ

(

l

2
− i

ω2

2πT
− i

ω

2πT

))

.

(0.15)

With the simple change of variables ω = i2πTs we recognize the above integral as the

defining integral of the Meijer-G function on the first path [16, 17]

Gm,n,l(ω1, ω2) = (−1)(m−n+l)/2 (2πT )
m+n+l−2

Γ(m)Γ(n)Γ(l)
e−(ω1+ω2)/2T

×G3,3
3,3

(

1− m
2 − i ω1

2πT , 1−
n
2 , 1−

l
2 + i ω2

2πT
m
2 − i ω1

2πT ,
n
2 ,

l
2 + i ω2

2πT

, e−iπ

)

.

(0.16)

One easily checks that the convergence conditions for this function are satisfied because

p+ q < 2(r + s), | arg z| < (r + s− (p+ q)/2)π for Gp,q
r,s with argument z, and the poles of

the Gamma functions are on the right locations [17].

For general values of m,n and l this function has to be evaluated numerically. For

integer values of these parameters the function can be evaluated analytically. For example,
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with m = 1, n = 3 and l = 2 we get from eq. (0.16)

G1,3,2(ω1, ω2)

=
π2

6
(

e−
ω2

T + 1
)(

1− e−
ω1

T

)

(

π2T 2 + ω2
2

) (

9π2T 2 + ω2
2

)

+
π2

6
(

e
−ω1−ω2

T + 1
)(

1− e
ω1

T

)

(

π2T 2 + (ω1 + ω2)
2
) (

9π2T 2 + 3ω2
1 + ω2

2 − 2ω1ω2

)

.

(0.17)

We see that the finite-temperature three-point function has a similar frequency depen-

dence as the greybody factors found in the absorption cross-section in [18]. It is also easy

to check that the zero temperature limit of eq. (0.17) precisely gives the Fourier transform

of the correlation function on the plane,

lim
T→0

G1,3,2(ω1, ω2) =

∫ ∞

−∞

dx1dx2e
−iω1x1−iω2x2

1

(x1 + iǫ)1
1

(x2 + iǫ)2
1

(x1 − x2 − iǫ)3
. (0.18)

The result in eq. (0.16) holds for any (even strongly coupled) field theory with a

2D CFT holographic dual. It would be interesting to see if this result agrees with the

bulk calculation of three-point functions in the near-NHEK geometry, as proposed by the

Kerr/CFT correspondence [6, 7], beyond the extremal case considered in [15]. Work in this

direction is in progress.
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