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S U M M A R Y
We present a robust and scalable solver for time-harmonic Maxwell’s equations for problems
with large conductivity contrasts, wide range of frequencies, stretched grids and locally refined
meshes. The solver is part of the fully distributed adaptive 3-D electromagnetic modelling
scheme which employs the finite element method and unstructured non-conforming hexahedral
meshes for spatial discretization using the open-source software deal.II. We use the complex-
valued electric field formulation and split it into two real-valued equations for which we utilize
an optimal block-diagonal pre-conditioner. Application of this pre-conditioner requires the
solution of two smaller real-valued symmetric problems. We solve them by using either a direct
solver or the conjugate gradient method pre-conditioned with the recently introduced auxiliary
space technique. The auxiliary space pre-conditioner reformulates the original problem in
form of several simpler ones, which are then solved using highly efficient algebraic multigrid
methods. In this paper, we consider the magnetotelluric case and verify our numerical scheme
by using COMMEMI 3-D models. Afterwards, we run a series of numerical experiments and
demonstrate that the solver converges in a small number of iterations for a wide frequency
range and variable problem sizes. The number of iterations is independent of the problem
size, but exhibits a mild dependency on frequency. To test the stability of the method on
locally refined meshes, we have implemented a residual-based a posteriori error estimator and
compared it with uniform mesh refinement for problems up to 200 million unknowns. We test
the scalability of the most time consuming parts of our code and show that they fulfill the
strong scaling assumption as long as each MPI process possesses enough degrees of freedom
to alleviate communication overburden. Finally, we refer back to a direct solver-based pre-
conditioner and analyse its complexity in time. The results show that for multiple right-hand
sides the direct solver-based pre-conditioner can still be faster for problems of medium size.
On the other hand, it also shows non-linear growth in memory, whereas the auxiliary space
method increases only linearly.

Key words: Numerical solutions; Electrical properties; Electromagnetic theory;
Magnetotellurics.

1 I N T RO D U C T I O N

The necessity to perform calculations of electromagnetic (EM)
fields in 3-D settings arises frequently in geo-EM methods. For
simulations of realistic surveys, including large numbers of sources
and receivers in 3-D volumes of complex geometry, and for invert-
ing realistic 3-D data sets, highly efficient modelling algorithms are
required. The behaviour of the EM fields is governed by Maxwell’s
equations. For a comprehensive 3-D model of domains with a com-
plex distribution of electrical properties and sources, we need to
adopt advanced spatial discretization techniques in order to calcu-

late an approximation of the EM field within the domain subject
to prescribed boundary conditions. In this work, we use the finite
element method (FEM) for this task. Our choice is motivated by the
fact that FEM for Maxwell’s equations provides a well-established
theory (Hiptmair 2002; Jin 2002; Monk 2003) which enables ex-
tensive error estimation analysis (e.g. Beck et al. 2000; Bürg 2012,
and references therein) and enough flexibility to develop efficient
adaptive schemes in 3-D (e.g. Bürg 2013; Ren et al. 2013). To
large extent the success of FEM in an applied sense is supported
by the existence of well designed and thoroughly tested and main-
tained open-source libraries (Kirk et al. 2006; Bangerth et al. 2007;
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Robust and scalable 3-D EM modelling 111

Logg & Wells 2010) and meshing tools. They simplify development
of the specific application codes and their applicability to realistic
problems.

There is a large number of papers published which use a vari-
ety of finite element formulations aimed at geo-EM modelling in
3-D (see review paper by Börner (2010) and more recent works
by Schwarzbach et al. 2011; Farquharson & Miensopust 2011;
Puzyrev et al. 2013; Ren et al. 2013). Usually, finite element dis-
cretizations of Maxwell’s equations result in large, but sparse, sys-
tems of linear equations. The solution of these systems constitutes
the most time-consuming part of the modelling algorithm. Hence,
there is a huge demand for robust and scalable methods to solve
these problems.

The classical formulation of time-harmonic Maxwell’s equations
involves the operator ∇ × which inherits a large and non-trivial null-
space (Zaglmayr 2006; Schwarzbach 2009). This makes the solution
of problems involving low frequencies difficult and the common
remedy is an explicit application of divergence correction schemes
(Smith 1996; Sasaki & Meju 2009; Farquharson & Miensopust
2011). Although divergence correction suppresses some spurious
effects in the solution, the original problem remains ill-conditioned.
Many realistic models contain air layers which have a much lower
conductivity than any subsurface materials resulting in conductivity
contrasts of 108 S m−1 or even larger. Generic iterative methods
experience difficulties for this type of problems (Ernst & Gander
2011; Um et al. 2013) and converge slowly. Furthermore, non-
uniform and locally refined meshes are often required to adequately
discretize large 3-D modelling domains. Again, this may result in
efficiency losses (Mulder 2006; Farquharson & Miensopust 2011)
due to the negative impact on the condition number of the system
matrix. In order to ensure accuracy and efficacy for a wide range of
practical problems, the robustness of the applied method is crucial.

Modern high-performance platforms with distributed architec-
tures allow solving ever larger complex problems. However, to
utilize the computational power of these platforms, one needs to
address a number of challenges regarding the efficiency of algo-
rithms and methods in a distributed environment (Gropp 2005).
For instance, distributed direct solvers (Schenk & Gärtner 2004;
Li 2005; Amestoy et al. 2006; Maurer & Wieners 2011) are very
robust and their performance is virtually independent of model pa-
rameters. Furthermore, they allow a user to obtain solutions for
multiple right-hand sides at low cost, since only a single expen-
sive factorization of the system matrix is required; followed by
relatively inexpensive forward and backward substitutions (Operto
et al. 2007; Streich 2009). Unfortunately, direct solvers lack scal-
ability due to non-linear growth of time and memory complexities
and low computation-to-communication ratios (Gould et al. 2007;
Pardo et al. 2012) which, in practice, limits the size of problems they
can be applied to. In contrast, multilevel methods such as domain
decomposition and multigrid are considered scalable (Smith et al.
2004). Furthermore, these methods preserve their efficiency when
run on the largest supercomputers available today (Adams 2012;
Baker et al. 2012; Brown et al. 2013). Classic multilevel meth-
ods fail when applied to Maxwell’s equations because of a large
null-space of the curl operator (Zaglmayr 2006). Although, specific
geometric multigrid schemes, which address this issue explicitly,
have been devised (Hiptmair 1998; Arnold et al. 2000; Mulder
2006; Haber & Heldmann 2007; Nechaev et al. 2008). Neverthe-
less, the difficulty with geometric multigrid methods is that their
scalable implementation for unstructured grids with highly discon-
tinuous coefficients and stretched meshes can be very challenging
and technically involved.

The main goal of this work is to find a robust and scalable solver
for large-scale 3-D geo-EM forward modelling problems which
takes into account all of the considerations above. In this contri-
bution, we concentrate on 3-D EM modelling in frequency domain
for the magnetotelluric method (MT). We make a corresponding
plane-wave source assumption and neglect displacement currents
as they are irrelevant in the frequency range under consideration
(Berdichevskii & Dmitriev 2008). Nevertheless, the conclusions
drawn and methods presented are valid for controlled-source EM
methods as well.

Section 2 starts with the problem formulation. We briefly de-
scribe its discretization using the FEM in Section 2.2 and intro-
duce an a posteriori error estimator in Section 2.3. We split the
complex-valued equations, which have been derived in frequency
domain, into two coupled real-valued equations and employ an ef-
ficient block-diagonal pre-conditioner for the resulting problem in
Section 3. In Section 3.1, we show how a direct solver can be
used efficiently on smaller blocks of the pre-conditioner to accel-
erate the solution process of the original system for problems of
moderate size. For larger problems, we adopt the auxiliary space
pre-conditioner (Hiptmair & Xu 2007; Kolev & Vassilevski 2009)
which reformulates the original problem as a combination of sim-
pler ones and solves them using highly efficient methods. Details
are given in Section 3.2. The rationale for real-valued formulation is
given in Section 3.3. Section 4 reports results for a series of numeri-
cal experiments aimed at analysing the robustness and scalability of
the methods at hand by using benchmark COMMEMI 3-D models.

2 F O R M U L AT I O N O F T H E P RO B L E M

2.1 Governing equations

We consider the time-harmonic electric field formulation of
Maxwell’s equations with time-dependence expressed by the factor
eiωt :

∇ × (μ−1∇ × E) + iωσE = 0 in �

∇ · (σE) = 0 in �, (1)

where � ⊆ R
3 is some bounded Lipschitz domain, ω is an angular

frequency, μ is the magnetic permeability of free space, E : � →
C

3 is some complex-valued electric field, and σ : � → R+ denotes
the electric conductivity. In order to guarantee the uniqueness of
the solution (e.g. Monk 2003), we impose the Dirichlet boundary
conditions

n × E = n × E0 on �,

where n is an outward-pointing normal vector on � and E0 is a
known exterior field. For simplicity, we concentrate on the isotropic
case, although the implemented scheme can easily be adapted to
support anisotropic media. Once eq. (1) is solved, the magnetic
field is calculated by virtue of Faraday’s law

H = − 1

iωμ
∇ × E. (2)

By taking the divergence of the first equation of (1) and using
the fact that ∇ · (∇ × F) = 0 for all sufficiently smooth functions
F : � → C

3 and σ �= 0, we observe that the second equation follows
directly from the first one. Thus, it suffices to consider the boundary
value problem

∇ × (μ−1∇ × E) + iωσE = 0 in �

n × E = n × E0 on �. (3)
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112 A. V. Grayver and M. Bürg

By using the secondary field formulation (Newman & Alumbaugh
1995), this can be written as

∇ × (μ−1∇ × Es) + iωσEs = −iω(σ − σ 0)E0 in �

n × Es = 0 on �, (4)

where σ 0 is some background model conductivity. The back-
ground model is represented by a horizontally layered medium and
E0 = E0(ω, σ 0, z) is an incident electric field which can be calcu-
lated analytically. Then, the total electric and magnetic fields are
calculated as

E = E0 + Es

and

H = H0 − 1

iωμ
∇ × Es .

Inserting Es : = Es
R + iEs

I into (4) and splitting the result into a
system of two real-valued equations yields

∇ × (
μ−1∇ × Es

R

) − ωσEs
I = ω(σ − σ 0)E0

I

∇ × (
μ−1∇ × Es

I

) + ωσEs
R = −ω(σ − σ 0)E0

R

n × Es
R = 0 on �

n × Es
I = 0 on �. (5)

Analogously, we can separate complex-valued eq. (2) into two
real-valued equations

Hs
R = − 1

ωμ
∇ × Es

I + H0
R (6)

and

Hs
I = 1

ωμ
∇ × Es

R + H0
I . (7)

In what follows, we will work with eqs (5)–(7). We defer the
discussion of the motivation behind this split to Section 3.3.

2.2 Spatial discretization using finite elements

First, we define a space of 3-D vector functions whose curl is in L2

by

H(curl, �) = {u ∈ (L2(�))3 | ∇ × u ∈ (L2(�))3}.
By H0(curl, �) we denote the functions u ∈ H(curl,�) which

additionally satisfy homogeneous Dirichlet boundary conditions,
that is, n × u = 0 on �.

Next, we multiply system (5) by test functions
ϕ,ψ ∈ H0(curl, �) and use integration by parts to obtain
the weak formulation for finding Es

R, Es
I ∈ H0(curl, �) such that∫

�

μ−1∇ × Es
R · ∇ × ϕ − ω

∫
�

σEs
I · ϕ = ω

∫
�

(σ − σ 0)E0
I · ϕ

∫
�

μ−1∇ × Es
I · ∇ × ψ + ω

∫
�

σEs
R · ψ = −ω

∫
�

(σ − σ 0)E0
R · ψ

(8)

for all ϕ,ψ ∈ H0(curl, �). By defining the inner product

〈ψ, ϕ〉L2(�) :=
∫

�

ψ · ϕ,

we can write (8) in the more compact form〈
μ−1∇ × Es

R, ∇ × ϕ
〉 − ω

〈
σEs

I , ϕ
〉 = ω

〈
(σ − σ 0)E0

I , ϕ
〉

〈
μ−1∇ × Es

I ,∇ × ψ
〉 + ω

〈
σEs

R, ψ
〉 = −ω

〈
(σ − σ 0)E0

R, ψ
〉
. (9)

To discretize this problem, we split the continuous domain
� into a set K of non-overlapping hexahedral, possibly non-
parallelogrammic, cells. For electric fields, one usually wants to
permit discontinuities of the normal components, but have con-
tinuous tangential components. These continuity requirements are
satisfied by all functions from the space H0(curl,�). For the dis-
cretization of this function space, we choose Nédélec elements of
order zero (Bossavit 1998; Monk 2003; Šolı́n et al. 2004). The 12
shape functions—one for every edge of a hexahedron—of this finite
element are continuous across cell boundaries in its tangential com-
ponents, but discontinuous in its normal component. Since we use
real-valued formulation (5), there are two degrees of freedom (DoF)
per edge, resulting in a total of 24 DoFs per cell. For details on the
definitions of basis functions and mappings between reference and
real cells, the reader is referred to Brenner & Scott (1994), Šolı́n
et al. (2004), Nam et al. (2007) and Demkowicz et al. (2008).

Replacing H0(curl,�) in (9) by its finite-dimensional approxi-
mation space V(K) yields the discrete formulation to find Es

R, Es
I ∈

V(K) such that〈
μ−1∇ × Es

R, ∇ × ϕ
〉 − ω

〈
σEs

I , ϕ
〉 = ω

〈
(σ − σ 0)E0

I , ϕ
〉

〈
μ−1∇ × Es

I ,∇ × ψ
〉 + ω

〈
σEs

R, ψ
〉 = −ω

〈
(σ − σ 0)E0

R, ψ
〉

(10)

for all φ,ψ ∈ V(K). Then, the solutions Es
R, Es

I of (10) can be
written as

Es
R :=

n∑
i=1

αiϕi and Es
I :=

n∑
i=1

βiψi ,

where {ϕi, ψ j}1 ≤ i, j ≤ n is a basis of V(K). Inserting this into discrete
formulation (10) yields

n∑
i=1

αi 〈μ−1∇ × ϕi , ∇ × ϕ j 〉 − ω

n∑
i=1

βi 〈σψi , ϕ j 〉

= 〈
ω(σ − σ 0)E0

I , ϕ j

〉
n∑

i=1

βi 〈μ−1∇ × ψi ,∇ × ψ j 〉 + ω

n∑
i=1

αi 〈σϕi , ψ j 〉

= −〈
ω(σ − σ 0)E0

R, ψ j

〉
(11)

which can be written in matrix-vector notation as(
C −M

M C

)(
Ēs

R

Ēs
I

)
=

(
fR

fI

)
, (12)

where Ēs
R = (α1, . . . , αn)T , Ēs

I = (β1, . . . , βn)T are blocks of the
solution vector of this linear system of equations. Here, the sparse,
symmetric, positive semi-definite matrices C ∈ R

n×n and M ∈ R
n×n

are given by

[C]i j = 〈μ−1∇ × ϕi , ∇ × ϕ j 〉
and

[M]i j = ω〈σψi , ϕ j 〉,
respectively, and N := 2n stands for the total number of degrees of
freedom with n being the number of edges of the mesh.
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Robust and scalable 3-D EM modelling 113

From the numerical point of view, it is beneficial to work with
symmetric matrices. Multiplying the second row in eq. (12) by mi-
nus one, results in a symmetric indefinite system of linear equations(

C −M

−M −C

)
︸ ︷︷ ︸

A

(
Ēs

R

Ēs
I

)
=

(
fR

−fI

)
. (13)

In MT, we are highly interested in derived quantities such as
the impedance tensor. To be able to calculate this tensor, system
(13) must be solved two times for orthogonal source polarizations.
Since we use the secondary field formulation and homogeneous
Dirichlet boundary conditions, changing the polarization affects
only the right-hand side of eq. (5). Hence, a costly recalculation of
the system matrix entries in eq. (13) is avoided. Denoting horizontal
components of the electric and magnetic fields for the two source
polarizations by Ex1, Ey1, Hx1, Hy1 and Ex2, Ey2, Hx2, Hy2, we can
write the impedance tensor Z as (Berdichevskii & Dmitriev 2008)(

Hx1 Hx2

Hy1 Hy2

)
=

(
Zxx Zxy

Z yx Z yy

)(
Ex1 Ex2

Ey1 Ey2

)
, (14)

from which individual components can be derived (Mackie & Mad-
den 1993). Finally, apparent resistivity and phase for an impedance
tensor component can be written as

ρi j
a = 1

ωμ
|Zi j |2 (15)

and

φi j = arctan

[
Im(Zi j )

Re(Zi j )

]
, (16)

respectively.

2.3 A posteriori error estimator

Locally refined meshes can affect the condition number of the sys-
tem matrix. To facilitate a proper testing of the presented methods
on a series of locally refined meshes, we implemented a residual-
based a posteriori error estimator (Beck et al. 2000; Chen et al.
2007; Bürg 2012) to estimate the accuracy of the computed nu-
merical solution of (11) in comparison to the (unknown) analytical
solution of (5). To identify those cells of K which need to be refined,
the error estimator can be split into a sum of local contributions

η2 :=
∑
K∈K

η2
K , (17)

where

η2
K := η2

R,K + η2
J,K (18)

for all K ∈ K. Here, the residual-based term ηR,K is defined as:

η2
R,K := h2

K

(∥∥∇ × (
μ−1∇ × Es

)
+ iω

(
σEs + (σ − σ0) E0

) ∥∥2

L2(K )

+ ∥∥∇ · (
σEs + (σ − σ0) E0

) ∥∥2

L2(K )

)
, (19)

and the jump-based term ηJ, K is given by

η2
J,K := 1

2

∑
e∈E(K )

he

(∥∥[
ne × (

μ−1∇ × Es
)]∥∥2

L2(e)

+ ∥∥[
ne · (

σEs + (σ − σ0) E0
)]∥∥2

L2(e)

)
, (20)

where hK := diam(K ) is the diameter of hexahedra K, e is an interior
face of K, that is, e ∩ � = ∅, and [ · ] denotes the jump of the quantity
across element boundaries. The residual-based term vanishes if both
original eq. (4) and its divergence are exactly fulfilled. Note that the
divergence of (4) represents the conservation law. The jump-based
term vanishes if the tangential components of the magnetic field
and the normal component of the current density are continuous.
The continuity of these quantities is not guaranteed by the weak
formulation (9) or the finite element solution of (11) itself, yet they
approach zero when the finite element solution converges towards
the analytical solution of (1). Thus, they turn out to be meaningful
error indicators.

Since the error indicator ηK can be calculated for every cell
K ∈ K and represents an estimation of the error of the finite ele-
ment solution on this cell, it can be used for local adaptive mesh
refinement. To this end, we use the fixed fraction strategy (Dörfler
1996) and select the smallest subset M ⊆ K of cells, such that∑
K∈M

η2
K ≥ θ2η2

for a predefined 0 < θ ≤ 1. The selected cells are then refined
through bisection in all three dimensions. The procedure can be
repeated until η is sufficiently small. Note that the choice θ = 1
corresponds to a global mesh refinement.

2.4 Hanging nodes

In contrast to tetrahedral meshes, it is extremely difficult to obtain
a conforming hexahedral mesh (i.e. all cells share only a whole
edge or face) during local refinement. To mitigate this problem, we
permit non-conforming meshes with 1-irregular hanging nodes as
shown in Fig. 1. To explain the concept of 1-irregular hanging nodes
in a bit more detail, let us first consider the 2-D situation depicted in
Fig. 2(a). As described in Section 2.2, each edge possesses one DoF
and, thus, the edge hosting DoF x2 coincides in part with the edges
hosting DoFs x0 and x1, respectively. Since we want to approximate
functions from the space H0(curl, �), the tangential component of
the finite element solution of (11) has to be continuous across this
edge. In this situation, this is not immediately the case, because
the edge, on which DoF x2 is located, is longer than the edges
associated with DoFs x0 and x1. To resolve this discrepancy, one
constrains DoFs x0 and x1 to be

x0 = x2

2
and x1 = x2

2
. (21)

Now, let us consider the 3-D situation shown in Fig. 2(b). Here,
we have in total twelve constrained DoFs: eight are located at the
edges of the face at which the cells meet (indicated with red lines in
Fig. 2b) and the other four are located on the edges which are inside
of the face (indicated with blue lines in Fig. 2b). The eight DoFs on
the outer edges are treated in exactly the same way as described in
the 2-D case. The other four DoFs located in the interior of the face
are set to the average values of the degrees of freedom associated
with the two outer edges of the face which point into the same
direction as the interior edge.

Enforcing these constraints is done in several steps. First, the
entries of the rows and columns corresponding to the constrained
DoFs are distributed to the corresponding unconstrained rows and
columns. Similarly, the corresponding elements of the right-hand
side vector are distributed to the unconstrained entries of this vector.
After distribution, the constrained rows and columns of the system
matrix and the corresponding entries of the right-hand side vector
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114 A. V. Grayver and M. Bürg

Figure 1. (a) Conforming regular hexahedral mesh. (b) Locally refined mesh with black dots indicating hanging nodes. Accordingly, edges coloured in red are
associated with hanging nodes.

Figure 2. 1-irregular hanging nodes in 2-D (a) and 3-D (b).

are set to zero. To avoid a singular system matrix, however, entries
on the main diagonal, which correspond to the constrained DoFs, are
set to a positive value with magnitude similar to the other entries
on the diagonal. This eliminates coupling between unconstrained
and constrained DoFs and, thus, the elements of the solution vector
corresponding to the constrained DoFs are zero, and have to be
calculated by using the constraints (e.g. from eq. 21) once system
(13) is solved. After this procedure, the finite element solution
of the eq. (11) satisfies the continuity requirements of the space
H0(curl,�) again. For more details about the concept of hanging
nodes, we refer to Bangerth et al. (2007) and Bangerth & Kayser-
Herold (2009).

3 L I N E A R S O LV E R S

In this section, we discuss the solution of the resulting system of
linear eqs (13). A straightforward approach would be to use LU
decomposition which is computationally very expensive and not
scalable both in terms of time and memory (Operto et al. 2007;
Brossier et al. 2010). Since we aim to solve large problems, we
need to circumvent these drawbacks.

Therefore, we apply an iterative Krylov subspace technique,
namely the flexible generalized minimal residual (FGMRES)
method (Saad 2003). This method also works for indefinite matrices
such as the one in eq. (13). For iterative solvers, the pre-conditioner
is an extremely important component and has dramatic impact on its
convergence rate. A good pre-conditioner has to be spectrally equiv-
alent to the matrix it is applied to, that is, for some pre-conditioner
P, the condition number of the product P−1A should have a con-

stant upper bound independent of the size of A. At the same time,
construction and application of a pre-conditioner have to be cheaper
than a direct factorization of the system matrix.

Here, we use a real, symmetric, and positive definite block-
diagonal pre-conditioner

PA :=
(

B 0

0 B

)
, (22)

where B = C + M. Chen et al. (2010) proved that, as long as matri-
ces C and M are symmetric positive semi-definite and both conduc-
tivity and frequency are larger than zero, the matrix PA is spectrally
equivalent to system matrix A from eq. (13) and the condition num-
ber of P−1

A A has an upper bound of
√

2, independent of matrix size,
frequency and conductivity contrasts. Therefore, by using this pre-
conditioner, FGMRES should converge to a solution of (13) in a
small number of iterations Niter � N .

Because of its block-diagonal structure, a product of the inverse
P−1

A with a vector entails the solution of two linear systems

Bx = b. (23)

Since FGMRES requires one matrix-vector product per iteration,
Niter FGMRES iterations will incur the solution of 2Niter problems
(23). In the next two sections, we will discuss efficient methods to
solve systems like (23).

3.1 Direct solver-based block pre-conditioner

To solve the linear system of eqs (23), we calculate the LDLT

decomposition of the symmetric matrix B, where L denotes some
lower-triangular matrix and D is a diagonal matrix (Golub & van
Loan 1996). Since pre-conditioner (22) is constructed only once,
we also have to compute only one single decomposition. All other
matrix–vector products will merely require inexpensive backward
and forward substitutions. As long as the PA-pre-conditioned FGM-
RES needs only a few iterations to converge, the time spent in back-
ward and forward substitutions can be neglected and the overall cost
of the solver is approximately equivalent to the time and memory
required by the LDLT factorization.

As a result, instead of applying an expensive LU factorization
directly to the matrix in eq. (12), we use the FGMRES method
pre-conditioned with the matrix PA. This approach needs only one
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Robust and scalable 3-D EM modelling 115

single and much cheaper LDLT decomposition of the matrix B
which is half the size of A. This results in a significant reduction of
computational time and memory. Furthermore, there is also no need
to recompute the factorization for subsequent right-hand side vec-
tors; making this approach particularly suitable for inverse problems
of medium sizes, where the necessity to get solutions for multiple
right-hand sides exists (Egbert 2012; Grayver et al. 2013).

3.2 Auxiliary space block pre-conditioner

Even though the direct solver-based block pre-conditioner presented
in the previous section is more efficient than applying a direct solver
to A or to its complex analogue (see Section 3.3), its scalability is
still quite poor. For larger problems with N > 106, we have to resort
to a scalable and robust method to solve the block linear system of
equations. Matrix B contains a discretization of the bilinear form
involving the operator ∇ × and, therefore, all the difficulties dis-
cussed in Section 1 regarding the solution of the linear system of
eqs (23) remain. Hiptmair & Xu (2007) address this issue and de-
velop an efficient auxiliary space pre-conditioner for this type of
problems.

For the sake of completeness, we give here a brief description
of their pre-conditioner in simplified settings. A detailed derivation
can be found in Hiptmair & Xu (2007), Kolev & Vassilevski (2009).
In essence, auxiliary space pre-conditioning employs the fact that
any vector u that belongs to the space V(K) (including our solution
vector x) possesses a stable decomposition

u = �curlz + ∇ p + v, (24)

where z ∈ Q(K)3, p ∈ Q(K), and v ∈ V(K). Here, the finite ele-
ment space Q(K) is a discrete version of the space

H1
0(�) = {q ∈ L2(�) | ∇q ∈ L2(�)3 and q = 0 on �},

containing all scalar functions with square-integrable gradient and
homogeneous Dirichlet boundary values. We assume that the basis
functions for the space Q(K) are given by nodal Lagrange ele-
ments and dim (Q(K)) = m, where m denotes the number of mesh
vertices or nodes. The H0(curl)-conforming interpolation operator
�curl : H0(curl, �) → V(K) is obtained by integrating tangential
field components along the edges of the mesh

�curlz =
∑

l∈E(K)

(∫
l
z · tl ds

)
φl ,

where E(K) is the set of all interior edges of K and φl ∈ V(K) is the
Nédélec basis function associated with edge l.

Identity (24) is the discrete Helmholtz decomposition represent-
ing the vector u as the sum of divergence- and curl-free fields as
well as some residual v. This residual v is added to account for the
discretization error and make (24) hold for finite element spaces
V(K) and Q(K) defined on mesh K (Bürg 2013; Hiptmair & Xu
2007).

Decomposition (24) suggests that an efficient pre-conditioner for
B can be constructed via the application of multilevel Schwarz meth-
ods (Zhang 1992; Smith et al. 2004) and auxiliary space theory (Xu
1996). Suppose there exists a small number k of auxiliary spaces
{Wk(K)} equipped with mapping operators �k : Wk(K) → V(K)
and �T

k : V(K) → Wk(K) and auxiliary functions uk ∈ Wk(K)
such that

u =
∑

k

�kuk, ∀u ∈ V(K).

Then, the optimal pre-conditioner for system (23) can be written
as

P−1
B =

∑
k

�kB−1
k �T

k , (25)

where Bk = �T
k B�k is a set of variationally defined operators for

all auxiliary spaces. By employing eqs (24) and (25), we introduce
the following auxiliary space pre-conditioner for matrix B:

P−1
B = RD−1RT + GL−1GT + S−1, (26)

where D = RT BR and L = GT BG. Matrix R ∈ R
n×3m represents

the interpolation operator from the vector nodal space Q(K)3 to
the Nédélec edge space V(K) and matrix G ∈ R

n×m represents a
discrete gradient operator that maps the gradient of the nodal space
Q(K) into V(K):

R : Q(K)3 → V(K)

G : ∇Q(K) → V(K).

Further, S is some symmetric positive definite matrix acting as the
smoothing operator. Note, eq. (26) is equivalent to eq. (25) with
mappings being defined as �1 = R, �2 = G, and �3 = I.

However, pre-conditioner (26) is not practically very useful yet,
because it involves the computation of three inversions. The key
step that makes it practically appealing is that these inverses can be
replaced with spectrally equivalent analogues without deteriorating
the key properties of P−1

B . Discrete operators D and L represent
second-order elliptic problems (Kolev & Vassilevski 2009) and,
hence, algebraic multigrid methods can be used to calculate the
products of D−1 and L−1 with a coefficient vector in an optimal way
(Briggs et al. 2000; Falgout 2006). The matrix S in eq. (26) denotes a
smoother for B and is associated with term v in decomposition (24),
which originates from the discretization error and consists of local
oscillatory components. Neglecting this term results in significant
deterioration of the performance (Hiptmair & Xu 2007) and, thus,
it has to be taken into account. On the other hand, it is well-known
that the Jacobi and Gauss-Seidel iterative schemes can eliminate
such components very efficiently (Baker et al. 2011). Therefore,
reasonable choices for the matrix S are S = diag(B), corresponding
to the Jacobi iteration, and

S = L−1
B + L−T

B − L−1
B BL−T

B ,

where LB denotes the lower triangular part of B, corresponding
to the Gauss–Seidel iteration. Then, a practical application of the
inverse S−1 of S consists only of performing a few Jacobi or Gauss–
Seidel iterations.

Summarizing, we solve problem (23) by using the CG method
with pre-conditioner (26). Therefore, we never have to compute ma-
trix P−1

B explicitly, but rather calculate its product with a vector. As
can be seen, this reduces the application of P−1

B to a solution of three
linear systems. Since these systems are a part of the pre-conditioner,
they are solved only approximately. In this case, the matrices L−1

and D−1 are replaced with a single V-cycle of algebraic multigrid,
and the product S−1u is obtained by applying a few Gauss–Seidel
iterations with the matrix B to vector u.

3.3 Why not using the complex formulation?

We have derived discrete system (12) by using two coupled real-
valued eqs (5) and employing the FEM. Eq. (12) is the real-valued
formulation of the complex system

KĒs = f, (27)
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where K = C + iM is a complex symmetric non-Hermitian matrix
of size n × n. System (27) can be derived from eq. (4). Although
the two systems are equivalent in theory, some implications arise
if one aims at finding efficient numerical methods to solve them
(Day & Heroux 2001; Benzi & Bertaccini 2008). In this section,
we give a rationale behind our choice to work with real-valued
formulations rather than its complex analogue and consider both
computational and technical reasons for the two pre-conditioners
presented in Sections 3.1 and 3.2.

In case of using a direct solver, the LDLH decomposition can be
applied directly to the matrix K from eq. (27). This would eliminate
the necessity to use the FGMRES method in combination with pre-
conditioner (22) which requires a single factorization of matrix B
from eq. (23) and the solution of 2Niter systems using backward
and forward substitutions with Niter being the number of FGMRES
iterations. Thanks to the high efficiency of the block-diagonal pre-
conditioner (22), only a few iterations are required to converge to an
accurate solution. Therefore, factorization of the complex matrix K
can be more expensive than factorization of the real matrix B and
2Niter additional forward and backward substitutions. This is due
to the fact that complex number arithmetic is more expensive than
real number arithmetic, both in terms of floating-point operations
and memory access. In comparison with the direct solver MUMPS,
which we use in this work, the application of FGMRES with block-
diagonal pre-conditioner is—on average—two times faster than the
direct factorization of the complex matrix. The other advantage
of this approach comes from the fact that the factorization of B
requires twice less memory than the factorization of K.

For the auxiliary space pre-conditioner, we are not aware of any
documented evidence that this method is readily transferable to
the complex case and whether its efficiency would be preserved.
Such analysis goes beyond the scope of this paper and the follow-
ing is speculation. Assuming one can derive it for the complex
case, this would again eliminate the necessity to use block-diagonal
pre-conditioner (22). The performance of the auxiliary space pre-
conditioner depends largely on the solvers required for the second-
order elliptic auxiliary problems (see eq. 26). Whereas scalable and
highly optimized algebraic multigrid codes exist for real-valued
problems (Henson & Yang 2002; Gee et al. 2006), the extension of
these methods to the complex case is still an active area of research
(MacLachlan & Oosterlee 2008). An alternative is to use geomet-
ric multigrid, but the scalable and robust implementation of such a
method for non-conforming unstructured meshes poses a challeng-
ing task and would require a substantial amount of work, whereas the
algebraic methods used in this work do not require any information
about the mesh (Falgout 2006). Taking into account these techni-
calities, the implementation of the auxiliary space pre-conditioner
for complex formulation (27) is not straightforward. Furthermore,
considering that the complex arithmetics is more expensive than the
real, the overall performance of this pre-conditioner for the complex
formulation is difficult to predict.

4 N U M E R I C A L E X P E R I M E N T S

A competitive method needs to be able to handle high conductivity
contrasts such as the one between air and land, or steel (e.g. pipelines
or borehole casing) and normal rocks. To test the robustness of the
method, we assign a small nonzero conductivity of 10−9 S m−1 to
the air layer for all subsequent models. In all cases, FGMRES is

stopped as soon as the norm of the relative residual drops below a
pre-defined tolerance, that is,

||AE − f||
||f|| < tol,

where tol = 10−8.
In addition, we need to set a stopping tolerance when solving the

linear systems of eqs (23). Recall, matrix P−1
A is only an approxi-

mation to A−1 and, thus, solving (23) to a very small tolerance is
not necessary. On the other hand, if the solution is too rough, more
outer FGMRES iterations will be performed. For the direct solver-
based pre-conditioner discussed in Section 3.1, we readily obtain
very small relative residuals, often close to machine precision, for
the linear systems of eqs (23). Even though we do not need this
level of accuracy, there is often no way to control this when using
generic direct solvers. For the approach presented in Section 3.2,
we use the CG method with auxiliary space pre-conditioner and
can control the stopping conditions. We have found that a relative
residual of 10−3 ensures fast convergence of the FGMRES method
and a relatively quick application of P−1

A .
We have implemented the discrete finite element formulation

presented in Section 2.2 using the open-source finite element li-
brary deal.II (Bangerth et al. 2007). The implementation is fully
distributed, i.e. all structures and linear algebra objects are almost
uniformly subdivided among a predefined number of MPI processes
(Bangerth et al. 2011). For efficient mesh partitioning, deal.II makes
use of p4est (Burstedde et al. 2011). To store vectors and matrices,
we utilize PETSc (Balay et al. 2013) which also provides a uni-
fied interface to several distributed direct solvers. For this work,
we use MUMPS (Amestoy et al. 2006) to construct the direct
solver-based block pre-conditioner presented in Section 3.1. For
auxiliary space pre-conditioning as presented in Section 3.2, we
have implemented an interface to hypre’s implementation (Kolev &
Vassilevski 2009) and adapted it for our non-conforming hexahedral
meshes. This implementation is based on highly scalable smoothers
(Baker et al. 2011) and algebraic multigrid methods (Henson &
Yang 2002).

All numerical tests were run on a distributed platform consisting
of 32 interconnected nodes, each equipped with two eight-core
AMD Opteron 2.2 GHz processors. Since the platform was installed
in 2010, the run-times reported here are likely higher than we would
obtain with more recent hardware.

4.1 Verification of the numerical scheme

We verify correctness of the developed method by using the
COMMEMI 3D-1 and 3D-2 models (Fig. 3) and compare our results
with those presented by Ren et al. (2013).

Figs 4 and 5 compare numerical solutions for the COMMEMI
3D-1 model along the dashed line depicted in Fig. 3(a) for fre-
quencies of 0.1 and 10 Hz, respectively. We have used a locally
refined mesh with 1.1 million degrees of freedom for this test. An
excellent agreement between the numerical solutions is evident. For
the majority of data points, the two solutions differ by less than 1
per cent. Fig. 6 depicts numerical solutions for the larger scale
COMMEMI 3D-2 model extracted along the line y = 40 km
(Fig. 3b). Again, both solutions show very good agreement. Fig. 7
shows the mesh which was used to calculate the numerical solutions
for the COMMEMI 3D-2 model. For this problem, we refined the
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Robust and scalable 3-D EM modelling 117

Figure 3. The COMMEMI 3D-1 (a) and 3D-2 (b) models (Zhdanov et al. 1997). The dotted lines indicate profiles along which apparent resistivity and phases
are calculated.

mesh locally around the receiver points and ran several refinement
cycles using the a posteriori error estimator presented in Section 2.3.
The resulting mesh has 1.8 million degrees of freedom.

4.2 Robustness

In this section, we study the robustness of the solver. Particularly, we
analyse how the auxiliary space block pre-conditioner presented in
Section 3.2 performs with respect to frequency, size of the problem
and number of MPI processes. We choose again the COMMEMI
3D-1 model for this experiment. In each subsequent test, we refine
the model in one spatial dimension. This approximately doubles
the number of DoFs. The problems are then run using a variable
number of MPI processes such that there are about 200 000 DoFs
per process. As the results for the two source polarizations are nearly
identical, we present only one of them.

Table 1 reports the number of outer FGMRES iterations required
to solve the original problem (13) and the average number of in-
ner CG iterations spent in the solution of system (23) for a wide
range of frequencies and variable problem sizes. First of all, we
see that the number of FGMRES iterations is practically constant
with respect to the problem size and always fulfills the condition
Niter � NDoFs. This confirms that the condition number of the P−1

A A
is independent from the size of system matrix. The number of inner
CG iterations grows slowly with the size of the problem, but re-
mains very small. This increase occurs because the auxiliary space
pre-conditioner was optimized to deliver minimal run times, some-

times at the cost of slower convergence. It is possible to reduce
N̄ CG

iter and keep the number of CG iterations constant by adjusting
parameters of the auxiliary space pre-conditioner, but this results in
considerably larger computation times. Consequently, we prefer a
faster solver over optimal convergence.

Table 1 indicates that the number of FGMRES iterations slightly
increases with frequency. Since the condition number of P−1

A A
is bounded, it stops growing for frequencies higher than 10 Hz.
Although not shown here, we tested the solver for frequencies up to
104 Hz and the number of iterations always stays below 20. Hence,
changing the frequency over seven orders of magnitude results in a
two-fold increase of FGMRES iterations. Thus, the solver proves to
be robust and efficient. The slight increase for higher frequencies
is partly compensated in terms of runtime by the fact that the inner
CG solver requires less iterations to converge.

4.3 Adaptive mesh refinement

The ratio of volumes between the largest and smallest cells grows
rapidly during adaptive mesh refinement. This can influence the
condition number of the system matrix (Shewchuk 2002) and de-
teriorate convergence of the iterative solver. To investigate the in-
fluence of the adaptive mesh refinement on the solver, we apply
the residual-based a posteriori error estimator from Section 2.3 on
the COMMEMI 3D-1 model for a frequency of 0.1 Hz. We choose
θ = 0.4 (see Section 2.3 for a definition), that is, at every refine-
ment step we extract and bisect a minimal subset of cells which
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XY-Mode YX-Mode

(2013)

a

This study

Figure 4. Apparent resistivities (ρa) and phases calculated for the COMMEMI 3D-1 model at a frequency of 0.1 Hz. The blue circles show the results of the
new method, red triangles indicate the numerical solution of Ren et al. (2013).

account for about 0.42 × 100 = 16 per cent of the total error. As
before, we measure the number of FGMRES iterations and aver-
age the number of inner CG iterations at every refinement cycle.
Table 2 lists the number of iterations for 14 refinement cycles as
well as the corresponding problem sizes. The number of FGMRES
iterations stays constant which indicates the anticipated robust be-
haviour of the solver for locally refined meshes. For the inner CG
solver, the number of iterations slightly increases for the last few re-
finement cycles. At that stage, the volume ratio between the largest
and smallest hexahedra is larger than 1014 making the problem even
more ill-conditioned. This explains the increase in iterations.

Fig. 8 shows the normalized estimated error for both uniform and
adaptive refinement. During the first adaptive refinement steps the
estimated error decreases much faster than for uniform refinement.
This is due to the adaptive refinement strategy which first refines
all the cells inside the single anomalous object of the COMMEMI
3D-1 model where the error is the largest. After the estimated error
has decreased sufficiently the error reduction follows a more regu-
lar behaviour. For this particular model, adaptive local refinement
and residual-based a posteriori error estimation requires 27-times
fewer cells to achieve the same error as the uniform refinement
strategy. Figs 9(a) and (b) show the normalized error indicators for
the initial mesh and Figs 9(c) and (d) show the same quantity after
twelve adaptive refinement steps. As anticipated, the largest errors
are found near the regions of secondary sources or, equivalently,
regions where σ �= σ 0. After refinement, the error in the entire
modelling domain is substantially reduced and exhibits a more uni-
form character.

4.4 Scalability

Next, we investigate scalability of our numerical scheme. Two types
of tests are usually performed to assess scalability: (i) a model of
fixed size is run on an increasing number of CPUs. If the run time
decreases proportionally to the number of processes, the algorithm
is said to be strongly scalable; (ii) both the size of the problem and
the number of processes are increased in a way that the amount
of work per process stays approximately constant. If also the run
time stays (approximately) constant, the algorithm is called weakly
scalable. Achieving good scalability requires not only the use of
inherently scalable algorithms, but very often the implementation
of algorithms has to be carefully tailored to a particular platform
(Gropp 2005).

For geo-EM methods, the larger interest lies in achieving strong
scalability which will considerably reduce run times by utilizing
more resources. Fig. 10 shows results for the COMMEMI 3D-1
problem for a frequency of 0.1 Hz discretized with approximately
3.2 millions DoFs. For this experiment, we set the tolerance for
the inner CG solver to 10−2, because this resulted in minimal run
times. The FGMRES solver required the same number of iterations
as shown in Table 1. In addition to the solution time of system (13),
we measured the time spent on system matrix and right-hand side
vector assembly as well as the time required to compute the error
estimator from Section 2.3. Commonly, these three components
of the code constitute about 95 per cent of the total runtime. As
anticipated, the solver represents the most expensive part followed
by the error estimation and assembly routines. While assembly and
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Figure 5. Apparent resistivities (ρa) and phases calculated for the COMMEMI 3D-1 model at a frequency of 10 Hz. The blue circles show the results of the
new method, red triangles indicate the numerical solution of Ren et al. (2013).

error estimation scale optimally, the solver exhibits a slightly less
efficient behaviour.

By increasing the number of processes, we subdivide our
global problem into more local parts. This naturally increases the
communication-to-computation ratio. We observe that once the lo-
cal problem size drops below 105 DoFs (dashed vertical line in
Fig. 10), the communication overhead becomes significant and scal-
ability deteriorates. Consequently, we have to assign >105 DoFs
per MPI process to preserve efficiency of the numerical scheme.
Although the exact value of this threshold depends on the com-
putational platform and the specific application, similar conclu-
sions were inferred in other studies (Kolev & Vassilevski 2009;
Kronbichler et al. 2012; Brown et al. 2013).

Note, we have shown run times for one source polarization. To
calculate impedance tensor (14), we have to solve a second problem
for the orthogonal polarization. Accordingly, the run times for the
solver and the error estimator shown in Fig. 10 roughly double. In
practice, however, we reuse many data and optimize the work-flow
such that the solution for the second polarization comes at a smaller
cost.

4.5 Comparison with other generic pre-conditioners

The solver presented in Section 3.2 consists of two nested loops.
First, an outer FGMRES loop pre-conditioned with matrix (22).
Second, an inner loop which involves the solution of two systems
of type (23) by the CG solver with auxiliary space pre-conditioner
(26). For brevity, we call this method FGMRES-PCG(AS) in this
section. When considering the amount of work per iteration alone,

the FGMRES-PCG(AS) method seems unfavourable compared
to different generic pre-conditioners, such as incomplete LU de-
composition (ILU), successive over relaxation (SOR) or diagonal
Jacobi scaling (Saad 2003). In contrast to FGMRES-PCG(AS),
however, the number of iterations required by a Krylov method pre-
conditioned with one of these generic techniques depends strongly
on the frequency, conductivity contrasts and problem size (Haber &
Ascher 2001; Ernst & Gander 2011; Um et al. 2013). Furthermore,
widely used ILU(k) pre-conditioners (where k means the level of fill-
in as defined in Benzi (2002)) have limited scalability and efficient
parallel implementations are difficult to develop without deteriorat-
ing the convergence rate of the employed Krylov subspace method
(Benzi 2002).

We compare the performance of FGMRES-PCG(AS) with the
BiCGStab method pre-conditioned with ILU(2) and symmetric
SOR. Most of the 3D MT modelling codes work with com-
plex formulation (27) whose system matrix is symmetric non-
Hermitian positive definite. In contrast, the matrix in our ap-
proach is indefinite and most of the generic pre-conditioners
are either not applicable or much more expensive in this case.
Therefore, the BiCGStab method is applied to complex eq. (27),
whereas FGMRES-PCG(AS) is applied to its real equivalent
in eq. (13). Table 3 shows the number of iterations and the
computational time for a few combinations of solvers and pre-
conditioners, and different problem sizes. The COMMEMI 3D-1
model with a frequency of 10 Hz were used for this test. Simi-
lar to the previous tests, the solvers were run until the relative
residual dropped below 10−8 or the number of iterations exceeded
5000. Clearly, a single iteration of FGMRES-PCG(AS) is more
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Figure 6. Apparent resistivities (ρa) and phases calculated for the COMMEMI 3D-2 model at a frequency of 0.001 Hz. The blue circles are solution obtained
using the presented method and the red triangles are the numerical solution from Ren et al. (2013).

expensive than BiCGStab with either ILU or SOR pre-conditioning.
Nevertheless, since FGMRES-PCG(AS) requires a nearly constant
number of iterations independent of the problem size, it outperforms
generic pre-conditioners already for problems of medium size.

Presently, most of the widely used 3-D MT modelling codes are
based on finite-difference (FD) techniques and use generic pre-
conditioners with divergence correction to solve arising systems
of linear equations (e.g. Kelbert et al. 2014). Tests show that the
generic pre-conditioners such as ILU usually exhibit better conver-
gence and performance for system matrices which originate from
FD methods when compared to FE methods. This is likely due to
greater sparsity. Therefore, for problems of medium size, which do
not necessitate the usage of unstructured meshes or adaptivity, FD
methods and generic pre-conditioners are likely to be faster than
FGMRES-PCG(AS). However, considering problems with 107–108

DoFs and the necessity to use distributed platforms, the generic
pre-conditioners are not competitive due to poor scalability. In con-
trast, the scalability and performance of FGMRES-PCG(AS) are
primarily restricted by the performance of the algebraic multigrid
solvers (AMG) which are known to be scalable. Therefore, further
progress in AMG will also enhance performance of the auxiliary
space pre-conditioner.

4.6 Direct or iterative?

As discussed in Section 3.1, we can use MUMPS’ LDLT decom-
position instead of the CG method with the auxiliary space pre-
conditioner to solve the problems (23). Direct solvers are known
to be very robust, but the auxiliary space pre-conditioner presented

in Section 3.2 proved to be robust as well. Moreover, in contrast
to a direct solver, the auxiliary space pre-conditioner is scalable.
For this reason, the only argument in favour of direct solver-based
pre-conditioner (22) is its ability to solve for multiple right-hand
sides (RHS) quickly. In this section, we present a detailed analysis
of this scenario.

The total time required by the FGMRES solver with di-
rect solver-based pre-conditioner (22) is T 0

direct = Tf + 2NiterTtri +
Tfgmres, where Tf is the time needed to factorize matrix B, Ttri the
time for triangular solves or, equivalently, forward and backward
substitutions, Tgmres the time for internal FGMRES calculations and
Niter the number of FGMRES iterations. For subsequent right-hand
side vectors, we reuse the already existing factorization and the ex-
pression becomes T i

direct = 2NiterTtri + Tfgmres for i ∈ {1, . . . , NRHS}.
Since Ttri � Tf, this reduction in time is significant. For the ap-
proach presented in Section 3.2, the solution time is given by
Tasp = 2NiterTCG + Tfgmres, where TCG is the time required to solve
a single system (23) using the CG method with the auxiliary space
pre-conditioner. This means, if Ttri < TCG, then there is a minimal
number of right hand sides N∗ such that the direct solver-based pre-
conditioner outperforms the iterative one. A necessary condition for
this is N∗Tasp > Tf . However, we know that Tf grows super-linearly
(Pardo et al. 2012) whereas Tasp theoretically exhibits linear growth.
Accordingly, N∗ will increase with the size of the problem.

Fig. 11 shows the solution time for two different pre-conditioning
strategies for the COMMEMI 3D-1 model for a frequency of 0.1 Hz
and a comprehensive number of discretizations. It is evident that
for a single RHS the auxiliary space pre-conditioner becomes faster
for problems with more than about 400 000 unknowns. However,
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Figure 7. (a) Section through the centre of the COMMEMI 3D-2 model showing the locally refined mesh which we have used to compute the numerical
solution shown in Fig. 6. (b) Enlarged view of the central part. The white dots indicate receivers.

Table 1. Numerical results for COMMEMI 3D-1 model and variable frequencies. Niter and N̄ CG
iter

denote the number of outer FGMRES and the average number of inner CG iterations, respectively.

# MPI processes # DoFs Frequency (Hz)

0.001 0.1 10 1000

Niter N̄ CG
iter Niter N̄ CG

iter Niter N̄ CG
iter Niter N̄ CG

iter

1 206 978 7 7 16 7 18 4 18 3
2 408 628 7 9 16 7 20 6 18 4
4 809 884 7 9 16 7 19 6 18 3
8 1 605 124 7 9 16 7 20 6 18 4
16 3 189 224 7 13 16 10 20 8 20 6
32 6 349 304 7 11 16 10 20 8 20 6
64 12 640 520 7 14 16 10 20 8 20 5

128 25 197 520 9 13 16 13 20 11 20 7
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Table 2. Numerical results for COMMEMI 3D-1
model and 14 adaptive refinement steps. Niter and
N̄CG denote the numbers of outer FGMRES itera-
tions and the average number of inner CG iterations
for the block pre-conditioner, respectively.

Refinement step # DoFs Niter N̄ CG
iter

0 53 618 14 6
3 60 350 16 6
7 180 894 16 7
9 524 144 16 11
11 1 500 220 16 12
14 7 451 676 16 12

Figure 8. Normalized estimated errors for problems of variable size ob-
tained by using uniform and adaptive mesh refinement for the COMMEMI
3D-1 model for a frequency of 0.1 Hz.

for multiple RHS vectors the situation is not that obvious. The
green line indicates that for subsequent RHS vectors, where the
existing factorization can be reused for the diagonal blocks in eq.
(22), the total solution time is smaller than for the auxiliary space
pre-conditioner. We calculated a log -linear fit for these curves and
derived an estimate for the time complexity based on the slope of the

Figure 10. Results of the strong scaling experiment for the COMMEMI
3D-1 model with 3.2 millions DoFs. The vertical dashed line indicates the
threshold of 105 DoFs per MPI process.

curve (values are reported in the legend of Fig. 11). As anticipated,
the direct solver-based pre-conditioner exhibits quadratic growth
(slope = 2.04). The green curve, indicating the time for forward
and backward substitutions, grows at a rate of 1.45—much higher
than linear. Finally, the auxiliary space pre-conditioner, shown by
the blue curve, grows with slope 1.2. While this slope is larger than
the optimal linear growth, it is considerably better than the other
two.

We can determine N∗ for a given problem size using these esti-
mated quantities. The results in Fig. 12 show that even for relatively
large problems, the direct solver can be faster if one needs to solve a
problem for multiple RHS vectors. However, due to its lack of scala-
bility and much better scaling of the auxiliary space pre-conditioner,
this curve will shift upwards when more MPI processes are used.
These considerations become particularly relevant in the context of
inverse problems (Grayver et al. 2013).

So far, we have not considered the amount of memory used by the
two pre-conditioning techniques. Fig. 13 closes this gap and shows

Figure 9. Normalized error indicator for the initial coarse grid of the COMMEMI 3D-1 model (a) with and (b) without grid lines. Plots (c) and (d) show the
same quantity after 12 adaptive refinement steps. Shown is the section through the centre of the model.
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Table 3. Iteration count and computational time for COMMEMI 3D-1 model and frequency of
10 Hz. The left column lists the number of complex DoFs which should be multiplied by two
to get the respective real problem size for FGMRES-PCG(AS). The remaining three columns
show the results for BiCGStab with two generic pre-conditioners and FGMRES-PCG(AS). All
tests were run on a single AMD Opteron 6134 CPU core.

Number of complex DoFs BiCGStab-SOR BiCGStab-ILU(2) FGMRES-PCG(AS)

Niter Time (s) Niter Time (s) Niter Time (s)

26 809 201 8 700 51 16 17
103 489 319 58 1322 601 18 82
204 314 639 240 2474 2695 18 174
802 562 1216 2400 4517 25 314 18 1039

1 594 612 2039 8911 >5000 – 18 2571

Figure 11. Solution time for the two pre-conditioner strategies—direct
solver MUMPS (red) and CG method with auxiliary space pre-conditioning
(blue)—for the block-diagonal systems in eq. (22) and various problem
sizes. The green line shows the time needed to get the solution for subse-
quent right-hand side (RHS) vectors when direct solver is employed and the
existing factorization is reused. All problems were run on a single CPU.

Figure 12. Number of RHS vectors for which the direct solver pre-
conditioner outperforms the iterative auxiliary space pre-conditioner versus
the problem size.

the total memory consumption for both approaches and its predicted
slopes. Clearly, the memory complexity grows non-linearly with
respect to the number of DoFs for the direct solver, whereas it
exhibits linear growth for the auxiliary space pre-conditioner.

5 C O N C LU S I O N S

We have presented a robust and scalable numerical scheme to solve
large-scale 3D geo-EM problems in frequency domain. We use the

Figure 13. Total memory consumption of the numerical scheme using the
two pre-conditioning techniques and their approximate slopes.

FEM to discretize the resulting weak formulation. The most chal-
lenging part of this scheme is the solution of a large system of linear
equations. We reformulated the original complex-valued problem
as two coupled real-valued equations and employed the FGMRES
method with a very efficient block-diagonal pre-conditioner for the
resulting system. This combination proved to be robust with re-
spect to large conductivity contrasts, a wide frequency range and
variable problem sizes with more than 108 degrees of freedom.
The efficiency of the solver was confirmed for spatially stretched
and locally refined meshes. We demonstrated this by introducing
a residual-based a posteriori error estimator and an adaptive mesh
refinement algorithm to create problem-adapted discretizations. In
all cases, the solver required only a small number of iterations to
converge. For models and settings considered, the performance of
the solver did not deteriorate for low frequencies, which eliminates
the necessity for divergence correction techniques.

A single application of the pre-conditioner entails the solution
of two smaller real-valued symmetric systems of equations. Since
these systems involve the operator ∇ ×, they are difficult to solve
efficiently with generic iterative methods. Alternatively, they can
be tackled by using either a direct solver or an iterative CG solver
in combination with the recently developed auxiliary space pre-
conditioner. The latter provides a scalable and robust approach to
reformulate Maxwell’s equations into a series of simpler problems
which are solved using state of the art algebraic multigrid methods.
Despite large amount of work per iteration required by this method,
its robustness and scalability make it more suitable for large-scale
problems than generic pre-conditioners such as ILU or SOR. On
the other hand, the direct solver-based pre-conditioner is capable
of delivering solutions for multiple right-hand side vectors at low
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cost, since the factorization can be reused. We have presented a
time analysis and an estimation for the number of right hand sides
necessary to outperform the CG solver with the auxiliary space pre-
conditioner. We showed that the direct solver-based pre-conditioner
exhibits non-linear memory complexity, whereas the auxiliary space
pre-conditioner scales linearly with respect to the number of degrees
of freedom.

To utilize the performance offered by modern computational plat-
forms, our code has been implemented in a fully distributed fashion.
More importantly, the most expensive components of the code, such
as solvers, matrix and vector assembly and error estimation, exhibit
strong scalability as long as each MPI process possesses enough de-
grees of freedom to alleviate communication overburden. We have
found this threshold to be approximately 105 DoFs. For further
efficiency gain, we have also parallelized the code over frequencies.
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Zdunek, A., 2008. Computing with hp-Adaptive Finite Elements, Vol. 2,
Chapman & Hall/CRC.

Dörfler, W., 1996. A convergent adaptive algorithm for Poisson’s equation,
SIAM J. Numer. Anal., 33, 1106–1124.

Egbert, G.D., 2012. Hybrid conjugate gradient-Occam algorithms for inver-
sion of multifrequency and multitransmitter EM data, Geophys. J. Int.,
190(1), 255–266.

Ernst, O.G. & Gander, M.J., 2011. Why it is difficult to solve Helmholtz
problems with classical iterative methods, Numer. Anal. Multiscale Probl.,
83, 325–361.

Falgout, R.D., 2006. An introduction to algebraic multigrid, Comput. Sci.
Eng., 8(6), 24–33.

Farquharson, C.G. & Miensopust, M.P., 2011. Three-dimensional finite-
element modelling of magnetotelluric data with a divergence correction,
J. appl. Geophys., 75(4), 699–710.

Gee, M., Siefert, C., Hu, J., Tuminaro, R. & Sala, M., 2006. ML 5.0 smoothed
aggregation user’s guide, Tech. Rep. SAND2006-2649, Sandia National
Laboratories.

Golub, G.H. & van Loan, C.F., 1996. Matrix Computations, 3rd edn, Johns
Hopkins Univ. Press.

Gould, N.I.M., Scott, J.A. & Hu, Y., 2007. A numerical evaluation
of sparse direct solvers for the solution of large sparse symmet-
ric linear systems of equations, ACM Trans. Math. Software, 33(2),
doi:10.1145/1236463.1236465.

Grayver, A.V., Streich, R. & Ritter, O., 2013. Three-dimensional parallel dis-
tributed inversion of CSEM data using a direct forward solver, Geophys.
J. Int., 193(3), 1432–1446.

Gropp, W., 2005. Issues in accurate and reliable use of parallel computing in
numerical programs, in Accuracy and Reliability in Scientific Computing,
pp. 253–263, ed. Einarsson, B., Cambridge Univ. Press.

Haber, E. & Ascher, U.M., 2001. Fast finite volume simulation of 3D elec-
tromagnetic problems with highly discontinuous coefficients, SIAM J.
Scient. Comput., 22(6), 1943–1961.

 at B
ibliothek des W

issenschaftsparks A
lbert E

instein on O
ctober 27, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://arxiv.org/abs/1207.6720
http://gji.oxfordjournals.org/


Robust and scalable 3-D EM modelling 125

Haber, E. & Heldmann, S., 2007. An octree multigrid method for quasi-static
Maxwell’s equations with highly discontinuous coefficients, J. Comput.
Phys., 223(2), 783–796.

Henson, V.E. & Yang, U.M., 2002. BoomerAMG: a parallel algebraic
multigrid solver and preconditioner, Appl. Numer. Math., 41(1), 155–
177.

Hiptmair, R., 1998. Multigrid method for Maxwell’s equations, SIAM J.
Numer. Anal., 36, 204–225.

Hiptmair, R., 2002. Finite elements in computational electromagnetism,
Acta Numer., 11, 237–339.

Hiptmair, R. & Xu, J., 2007. Nodal auxiliary space preconditioning in H
(curl) and H (div) spaces, SIAM J. Numer. Anal., 45(6), 2483–2509.

Jin, J., 2002. The Finite Element Method in Electromagnetics, Wiley.
Kelbert, A., Meqbel, N., Egbert, G.D. & Tandon, K., 2014. ModEM: a mod-

ular system for inversion of electromagnetic geophysical data, Comput.
Geosci., 66, 40–53

Kirk, B.S., Peterson, J.W., Stogner, R.H. & Carey, G.F., 2006. libmesh: a
C++ library for parallel adaptive mesh refinement/coarsening simulations,
Eng. Comput., 22(3–4), 237–254.

Kolev, T.V. & Vassilevski, P., 2009. Parallel auxiliary space AMG for H(curl)
problems, J. Comput. Math., 27(5), 604–623.

Kronbichler, M., Heister, T. & Bangerth, W., 2012. High accuracy mantle
convection simulation through modern numerical methods, Geophys. J.
Int., 191(1), 12–29.

Li, X.S., 2005. An overview of SuperLU: algorithms, implementation, and
user interface, ACM Trans. Math. Software, 31(3), 302–325.

Logg, A. & Wells, G.N., 2010. Dolfin: automated finite element computing,
ACM Trans. Math. Software, 37(2), 20:1–20:28.

Mackie, R.L. & Madden, T.R., 1993. Three-dimensional magnetotelluric
inversion using conjugate gradients, Geophys. J. Int., 115(1), 215–
229.

MacLachlan, S.P. & Oosterlee, C.W., 2008. Algebraic multigrid solvers
for complex-valued matrices, SIAM J. Scient. Comput., 30(3), 1548–
1571.

Maurer, D. & Wieners, C., 2011. Parallel block decomposition method for
distributed finite element matrices, Parallel Comput., 37, 742–758.

Monk, P., 2003. Finite Element Methods for Maxwell’s Equations, Oxford
Univ. Press

Mulder, W., 2006. A multigrid solver for 3D electromagnetic diffusion,
Geophys. Prospect., 54(5), 633–649.

Nam, M.J., Kim, H.J., Song, Y., Lee, T.J., Son, J.-S. & Suh, J.H., 2007.
3D magnetotelluric modelling including surface topography, Geophys.
Prospect., 55(2), 277–287.

Nechaev, O.V., Shurina, E.P. & Botchev, M.A., 2008. Multilevel iterative
solvers for the edge finite element solution of the 3D Maxwell equation,
Comput. Math. Applicat., 55(10), 2346–2362.

Newman, G.A. & Alumbaugh, D.L., 1995. Frequency-domain modelling
of airborne electromagnetic responses using staggered finite differences,
Geophys. Prospect., 43, 1021–1041.

Operto, S., Virieux, J., Amestoy, P., L’Excellent, J.-Y., Giraud, L. & Ali,
H.B.H., 2007. 3D finite-difference frequency-domain modeling of visco-
acoustic wave propagation using a massively parallel direct solver: a
feasibility study, Geophysics, 72(5), SM195–SM211.

Pardo, D., Paszynski, M., Collier, N., Alvarez, J., Dalcin, L. & Calo, V.,
2012. A survey on direct solvers for Galerkin methods, SeMA J., 1(57),
107–134.

Puzyrev, V., Koldan, J., de la Puente, J., Houzeaux, G., Vázquez, M. &
Cela, J.M., 2013. A parallel finite-element method for three-dimensional
controlled-source electromagnetic forward modelling, Geophys. J. Int.,
193(2), 678–693.

Ren, Z., Kalscheuer, T., Greenhalgh, S. & Maurer, H., 2013. A goal-oriented
adaptive finite-element approach for plane wave 3-D electromagnetic
modelling, Geophys. J. Int., 194(2), 700–718.

Saad, Y., 2003. Iterative Methods for Sparse Linear Systems, 2nd edn,
Society for Industrial and Applied Mathematics.

Sasaki, Y. & Meju, M.A., 2009. Useful characteristics of shallow and deep
marine CSEM responses inferred from 3D finite-difference modeling,
Geophysics, 74(5), F67–F76.
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