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A note on Talagrand’s positivity principle.

Dmitry Panchenko∗

Abstract

Talagrand’s positivity principle, Section 6.6 in [8], states that one can slightly per-
turb a Hamiltonian in the Sherrington-Kirkpatrick model in such a way that the overlap
of two configurations under the perturbed Gibbs’ measure will become typically non-
negative. In this note we observe that abstracting from the setting of the SK model only
improves the result and does not require any modifications in Talagrand’s argument. In
this version, for example, positivity principle immediately applies to the setting in [9].
Also, abstracting from the SK model improves the conditions in the Ghirlanda-Guerra
identities and as a consequence results in a perturbation of smaller order necessary to
ensure positivity of the overlap.
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1 Introduction.

Let us consider a unit sphere S = {z ∈ R
N : |z| = 1} on euclidean space R

N and let ν be a
probability measure on S. Given a measurable function g : S → R let us define a probability
measure νg on S by a change of density

dνg
dν

=
eg(z)

∫

eg(z)dν(z)
.

We assume that the denominator on the right hand side is integrable. Let us make a specific
choice of g(z) given by

g(z) = v
∑

p≥1

2−pxp gp(z) for gp(z) =
∑

1≤i1,...,ip≤N

gi1,...,ipzi1 · · · zip , (1.1)

where v ≥ 0, xp are i.i.d. random variables uniform on [0, 1] and gi1,...,ip are i.i.d. standard
Gaussian for all i1, . . . , ip and all p ≥ 1.
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Given a function f on Sn let us denote by 〈f〉 its average with respect to measure ν⊗n
g .

Let us denote by Eg the expectation with respect to Gaussian random variables and by Ex

the expectation with respect to uniform random variables in the definition of g(z) in (1.1).
The following is the main result of this note.

Theorem 1 (Talagrand’s positivity principle) For any ε > 0 there exists large enough v ≥ 1
in (1.1) such that

Eν⊗2
g

{

z1 · z2 ≤ −ε
}

≤ ε. (1.2)

The choice of v does not depend on N and ν.

This means that one can define a random perturbation νg of an arbitrary measure ν
such that the scalar product z1 · z2 of two vectors drawn independently from distribution
νg will be typically nonnegative. This result was proved in Section 6.6 [8] in the setting of
the Sherrington-Kirkpatrick model where ν was a random Gibbs’ measure and in which case
the expectation on the left hand side of (1.2) was also in the randomness of ν. The main
ingredient of the proof was the Ghirlanda-Guerra identities that are typically given in the
setting of the SK model as well.

The main contribution of this note is an observation that abstracting ourselves from the
setting of the SK model results in some qualitative improvements of the positivity principle
of Theorem 1. First of all, we notice that Talagrand’s proof in [8] requires no modifications in
order to prove a positivity principle that holds uniformly over ν rather than on average over
a random Gibbs’ measure in the SK model. This observation, for example, implies the result
in [9] without any additional work as will be shown in Example below. Another important
qualitative improvement is the fact that the choice of v in (1.2) is independent of N. In [8],
one needed v ≫ N1/4 - a condition that appears in the proof of Ghirlanda-Guerra identities
due to the fact that one controls random Gibbs’ measure from the very beginning. We will
show below that the supremum of g(z) on the sphere is of order v

√
N which means that one

can perturb any measure on S by a change of density of order exp v
√
N and force the scalar

product z1 · z2 to be essentially nonnegative.

Example (Positivity in Guerra’s replica symmetry breaking bound, [9]). The main re-
sult in [9] states that Guerra’s replica symmetry breaking bound [3] applies to odd p-spin
interactions as well. The proof utilizes the Aizenman-Sims-Starr version of Guerra’s inter-
polation [1] and a positivity principle that requires a concentration inequality for the free
energy along the interpolation. We observe that this positivity principle follows directly from
Theorem 1. Let A be a countable set and let (wα) be a probability function on A such that
wα ≥ 0,

∑

α∈A wα = 1. Let H(z, α) be a function on Ω = Σ×A for some finite subset Σ of
S. Let us consider a probability measure on Ω given by

µ{(z, α)} ∼ wα exp
(

H(z, α) + g(z)
)

where g(z) is defined in (1.1). Then its marginal on Σ is equal to νg if we define ν by
ν{z} ∼

∑

wα expH(z, α). Therefore,

µ⊗2
{

z1 · z2 ≤ −ε
}

= ν⊗2
g

{

z1 · z2 ≤ −ε
}

.
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By Theorem 1, for large enough v > 0,

Eµ⊗2
{

z1 · z2 ≤ −ε
}

≤ ε

and this inequality holds uniformly over all choices of H and w. Therefore, we can average
over arbitrary random distribution of H and w. In particular, in [9], (wα) was a random
Derrida-Ruelle process on A = N

k and H was Guerra’s interpolating Hamiltonian in the
form of Aizenman-Sims-Starr.

General remarks. (i) As we will see below, Talagrand’s proof of positivity principle uses
very deep information about a joint distribution of z1 ·z2 for 2 ≤ l ≤ n under measure Egν

⊗n
g

for a typical realization of (xp). However, it is not clear whether this deep information is really
necessary to prove positivity and if some simpler argument would not suffice. For example,
if we consider only a first order Gaussian term in (1.1) and define g′(z) = v

∑

i≤N gizi then

measure νg′ under a change of density proportional to eg
′(z) would favor a random direction

g = (g1, . . . , gN) and it is conceivable that for large enough v independent of ν and N
two independent vectors z1 and z2 from this measure would typically ”point in the same
direction”, i.e.

Eν⊗2
g′ {z1 · z2 ≤ −ε} = E

∫

I(z1 · z2 ≤ −ε)ev(g·z1+g·z2)dν(z1)dν(z2)
(∫

evg·zdν(z)
)2 ≤ ε.

In fact, even a weaker result with v = o(
√
N) would be sufficient for applications as in [9].

(ii) Theorem 1 implies the following non-random version of positivity principle.

Corollary 1 For any ε > 0 there exists v > 0 large enough such that the following holds.
For any distribution Q on the set of measures on the sphere S there exists a (non-random)
function g(z) such that for some absolute constant L,

sup
z∈S

|g(z)| ≤ Lv
√
N and

∫

ν⊗2
g {z1 · z2 ≤ −ε}dQ(ν) ≤ ε.

It would be of interest to prove this result directly and not as a corollary of Theorem
1. Then, by Hahn-Banach theorem, one can find a distribution P on the set of functions
{supz∈S |g(z)| ≤ Lv

√
N} such that for all probability measures ν on S,

∫

ν⊗2
g {z1 · z2 ≤ −ε}dP (g) ≤ ε.

This would give another proof of Theorem 1 with non constructive description of P.

Sketch of the proof of positivity principle. The main ingredient in Talagrand’s proof is
the extended Ghirlanda-Guerra identities (Section 6.4 in [8]) that state that if we sample

(z1, . . . , zn+1) from a measure Egν
⊗(n+1)
g (which is a mixture of product measures of νg over

the randomness of Gaussian r.v.s) then for a typical realization of (xp) the scalar product
z1 · zn+1 with probability 1/n is independent of z1 · zl, 2 ≤ l ≤ n, and with probabilities 1/n
it is equal to one of them. More precisely, the following holds.
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Theorem 2 (Ghirlanda-Guerra identities) For any measurable function f on Sn such that
|f | ≤ 1 and for any continuous function ψ on [−1, 1] we have

Ex

∣

∣

∣
Eg〈fψ(z1 · zn+1)〉 − 1

n
Eg〈f〉Eg〈ψ(z1 · z2)〉 −

1

n

∑

2≤l≤n

Eg〈fψ(z1 · zl)〉
∣

∣

∣
≤ δ(ψ, n, v) (1.3)

where δ(ψ, n, v) → 0 as v → ∞ and δ does not depend on N and ν.

The main idea of Talagrand’s proof can be shortly described as follows. Suppose that we
sample z1, . . . , zn independently from any measure on S. Then the event that all z1 · zl ≤ −ε
simultaneously is very unlikely and its probability is or order 1/(nε). The bound on this
probability is uniform over all measures and therefore can be averaged over some distribution
on measures and holds, for example, for Egν

⊗n
g . On the other hand, by Ghirlanda-Guerra

identities under measure Egν
⊗n
g the events {z1 · zl ≤ −ε} are strongly correlated due to

the fact that with some prescribed probabilities z1 · zl can be equal. As a consequence, the
simultaneous occurrence of these events will have probability of order a/n1−a where a is the
probability of one of them. But since this quantity is bounded by 1/(nε), taking n large
enough shows that a should be small enough.

2 Proofs.

The proof of Theorem 2 follows exactly the same argument as the proof of Ghirlanda-Guerra
identities in [2] or in [8]. Since we consider a fixed measure ν, we do not need to control a
fluctuations of a random Hamiltonian and, as a result, we get a better condition on v. The
main part of the proof is the following lemma.

Lemma 1 For any p ≥ 1 there exists a constant Lp that depends on p only such that

E
〈
∣

∣gp(z)− Eg

〈

gp(z)
〉
∣

∣

〉

≤ Lp

√
v. (2.1)

Proof. Let us fix (xp)p≥1 in the definition of g(z) and until the end of the proof let E denote
the expectation in Gaussian random variables only. Define

θ = log

∫

eg(z)dν(z), ψ = Eθ.

Given p ≥ 1, let us think of θ and ψ as functions of x = xp only and define vp = v2−p. Then
θ′(x) = vp

〈

gp(z)
〉

and

ψ′(x) = vpE
〈

gp(z)
〉

= v2px
(

1− E〈(z1 · z2)p〉
)

≤ v2px. (2.2)

Since
ψ′′(x) = v2pE

(〈

gp(z)
2
〉

−
〈

gp(z)
〉2)

= v2pE
〈(

gp(z)− 〈gp(z)〉
)2〉

.
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we have

v2p

∫ 1

0

E
〈(

gp(z)− 〈gp(z)〉
)2〉

dx = ψ′(1)− ψ′(0) ≤ v2p

and by Cauchy inequality
∫ 1

0

E
〈
∣

∣gp(z)− 〈gp(z)〉
∣

∣

〉

dx ≤ 1. (2.3)

To prove (2.1) is remains to approximate 〈gp(z)〉 by E〈gp(z)〉 and to achieve that we will use
a simple consequence of convexity of θ and ψ given in the inequality (2.5) below. Since

Eg(z)2 = v2
∑

p≥1

2−2px2p ≤ 2v2

if all |xp| ≤ 2, we can apply a well-known Gaussian concentration inequality, for completeness
given in Lemma 3 in Appendix A, to get

E|θ(x)− ψ(x)| ≤ 4v and E|θ(x± y)− ψ(x± y)| ≤ 4v.

Below we will choose |y| ≤ 1 so that |x ± y| ≤ 2. (Remark. At the same step in the setting
of the SK model one also needs to control a random Hamiltonian which produces another
term of order

√
N and this results in unnecessary condition on v in the positivity principle.)

Inequality (2.5) then implies that

E|θ′(x)− ψ′(x)| ≤ ψ′(x+ y)− ψ′(x− y) +
12v

y
.

Since
∫ 1

0

(ψ′(x+ y)− ψ′(x− y))dx = ψ(1 + y)− ψ(1− y)− ψ(y) + ψ(−y) ≤ 6v2py

using (2.2) and |y| ≤ 1 we get
∫ 1

0

E|θ′(x)− ψ′(x)|dx ≤ 6v2py +
12v

y
≤ Lpv

3/2

if we take y = v−1/2 ≤ 1. Using explicit expressions for θ′ and ψ′ we finally get
∫ 1

0

E|〈gp(z)〉 − E〈gp(z)〉|dx ≤ Lp

√
v. (2.4)

Together with (2.3) this gives
∫ 1

0

E
〈

|gp(z)− E〈gp(z)〉|
〉

dx ≤ Lp

√
v.

We now recall that E was expectation Eg with respect to Gaussian random variables only.
Also, integral over x = xp ∈ [0, 1] is nothing but expectation with respect to xp. Therefore,
averaging over all remaining xp finishes the proof.

The following inequality was used in the previous proof and it quantifies the fact that
if two convex functions are close to each other then their derivatives are also close.
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Lemma 2 If θ(x) and ψ(x) are convex differentiable functions then

|θ′(x)− ψ′(x)| ≤ ψ′(x+ y)− ψ′(x− y) (2.5)

+
1

y

(

|ψ(x+ y)− θ(x+ y)|+ |ψ(x− y)− θ(x− y)|+ |ψ(x)− θ(x)|
)

.

Proof. By convexity, for any y > 0

θ(x)− θ(x− y)

y
≤ θ′(x) ≤ θ(x+ y)− θ(x)

y

and
ψ(x)− ψ(x− y)

y
≤ ψ′(x) ≤ ψ(x+ y)− ψ(x)

y
.

If we define

U =
1

y

(

|ψ(x+ y)− θ(x+ y)|+ |ψ(x− y)− θ(x− y)|+ |ψ(x)− θ(x)|
)

then the above inequalities imply

θ′(x) ≤ θ(x+ y)− θ(x)

y
≤ ψ(x+ y)− ψ(x)

y
+ U

=
ψ(x)− ψ(x− y)

y
+
ψ(x+ y) + ψ(x− y)− 2ψ(x)

y
+ U

≤ ψ′(x) + ψ′(x+ y)− ψ′(x− y) + U.

Similarly,
θ′(x) ≥ ψ′(x)− (ψ′(x+ y)− ψ′(x− y))− U.

Combining two inequalities finishes the proof.

Proof of Theorem 2. Since |f | ≤ 1 we can write
∣

∣

∣
Eg

〈

fgp(z)
〉

− Eg〈f〉E〈gp(z)〉
∣

∣

∣
≤ Eg

〈
∣

∣gp(z)− Eg〈gp(z)〉
∣

∣

〉

.

By Gaussian integration by parts, the left hand side is equal to nv2−pxpφp where

φp =
∣

∣

∣
Eg

〈

f(z1 · zn+1)p
〉

− 1

n
Eg

〈

f〉Eg〈(z1 · z2)p
〉

− 1

n

∑

2≤l≤n

Eg

〈

f(z1 · zl)p
〉

∣

∣

∣
.

Lemma 1 then implies nv2−p
Exxpφp ≤ Lp

√
v and, thus,

Exxpφp ≤ Lv−1/2

for some constant L that depends only on n and p. Since φp ≤ 2, for any x0 ∈ (0, 1),

Exφp ≤ 2x0 +
1

x0
Exxpφp ≤ 2x0 +

Lv−1/2

x0
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and minimizing over x0 we get Exφp(xp) ≤ Lv−1/4. Since any continuous function ψ on [−1, 1]
can be approximated by polynomials this, obviously, implies the result.

Proof of Theorem 1. Step 1. First we use Ghirlanda-Guerra identities to give a lower
bound on probability that all z1 · zl ≤ −ε for 2 ≤ l ≤ n. In order to use Theorem 2 it will be
convenient to denote by δ any quantity that depends on (xp) and such that Ex|δ| does not
depend on ν and N and Ex|δ| → 0 as v → ∞. Then (1.3) can be written as

Eg〈fψ(z1 · zn+1)〉 − 1

n
Eg〈f〉Eg〈ψ(z1 · z2)〉 −

1

n

∑

2≤l≤n

Eg〈fψ(z1 · zl)〉 = δ.

Even though a function ψ is assumed to be continuous, let us use this result formally for
ψ(x) = I(x ≤ −ε). The argument can be easily modified by using continuous approximations
of the indicator function ψ. Let

fn =
∏

2≤l≤n

ψ(z1 · zl) = I(z1 · zl ≤ −ε for 2 ≤ l ≤ n)

and let
a = Eg〈ψ(z1 · z2)〉 = Egν

⊗2
g {z1 · z2 ≤ −ε}.

Then by Ghirlanda-Guerra identities

Eg〈fn+1〉 = Eg〈fnψ(z1 · zn+1)〉 = 1

n
Eg〈fn〉Eg〈ψ(z1 · z2)〉+

1

n

∑

2≤l≤n

Eg〈fnψ(z1 · zl)〉+ δ

and since fnψ(z
1 · zl) = fn we get

Eg〈fn+1〉 =
n− 1 + a

n
Eg〈fn〉+ δ.

By induction,

Eg〈fn〉 = a
∏

2≤l≤n−1

l − 1 + a

l
+ δ ≥ a

Ln1−a
+ δ (2.6)

where the last inequality follows from a simple estimate for l ≥ 2

l − 1 + a

l
= 1− 1− a

l
≥ exp

(

−1− a

l
− 1

l2

)

.

Step 2. On the other hand, we will show that 〈fn〉 is of order 1/(nε) and to emphasize the
fact that this is true for any measure we now simply write G instead of νg. If z

1, . . . , zn are
i.i.d. from distribution G then

〈fn〉 =
〈

G
{

z2 : z1 · z2 ≤ −ε
}n−1

〉

≤ G(U) + γn−1 (2.7)

where, given 0 < γ < 1, we defined a set

U =
{

z1 ∈ S : G{z2 : z1 · z2 ≤ −ε} ≥ γ
}

.
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We would like to show that if γ is close to 1 then G(U) is small. This follows from the fact
that the average of z1 · z2 is nonnegative with respect to any product measure,

〈z1 · z2〉 =
∑

i≤N

〈

z1i z
2
i

〉

=
∑

i≤N

〈zi〉2 ≥ 0.

Since z1 · z2 ≤ 1,

0 ≤ 〈z1 · z2〉 ≤ −εG⊗2{z1 · z2 ≤ −ε}+G⊗2{z1 · z2 > −ε} = −ε+ (1 + ε)G⊗2{z1 · z2 > −ε}

and
ε ≤ (1 + ε)G⊗2{z1 · z2 > −ε}. (2.8)

Let us define a conditional distribution GU(C) = G(UC)/G(U). If z1 ∈ U then by definition
G{z2 : z1 · z2 > −ε} ≤ 1− γ and

GU{z2 : z1 · z2 > −ε} ≤ 1− γ

G(U)
.

Since GU is concentrated on U,

G⊗2
U {z1 · z2 > −ε} ≤ 1− γ

G(U)
.

Using (2.8) for GU instead of G we get

ε ≤ (1 + ε)G⊗2
U {z1 · z2 > −ε} ≤ 2(1− γ)

G(U)

and, therefore, G(U) ≤ 2(1− γ)/ε. Then, (2.7) implies that

〈fn〉 ≤
2(1− γ)

ε
+ γn−1 ≤ 2(1− γ)

ε
+ e−(n−1)(1−γ)

and we can minimize this bound over 0 < γ < 1 to get

〈fn〉 ≤
L

nε
log

nε

L
.

Step 3. Together with (2.6) this implies

a

Ln1−a
≤ L

nε
log

nε

L
+ δ.

By definition of δ this implies that

Exan
a ≤ L

ε
log nε+ Ex|δ|

where Ex|δ| → 0 as v → ∞. For any a0 > 0 we can write

Exa ≤ a0 + ExaI(a ≥ a0) ≤ a0 +
1

na0
Exan

a ≤ a0 +
1

na0

(L

ε
log nε+ Ex|δ|

)

.
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The right hand side goes to zero if we let v → ∞, n→ ∞, a0 → 0 which means that Exa→ 0
as v → ∞ and this finishes the proof.

Proof of Corollary 1. Since (1.2) is uniform in ν, by Chebyshev’s inequality

P

(

∫

ν⊗2
g {z1 · z2 ≤ −ε}dQ(ν) ≥ 4ε

)

≤ 1

4
. (2.9)

Next, we will show that for some absolute constant L,

P

(

sup
z∈S

|g(z)| ≥ Lv
√
N
)

≤ 1

4
. (2.10)

Indeed, conditionally on (xp) the process g(z) is Gaussian with covariance

Egg(z
1)g(z2) = v2ξ(z1 · z2) where ξ(s) =

∑

p≥1

2−2px2ps
p.

Since the first two derivatives of ξ(s) are bounded uniformly over (xp) ∈ [0, 1]∞,

Eg(g(z
1)− g(z2))2 = v2

(

ξ(z1 · z1) + ξ(z2 · z2)− 2ξ(z1 · z2)
)

≤ Lv2|z1 − z2|2 = Lv2E(η(z1)− η(z2))2

where η is the canonical Gaussian process η(z) =
∑

gizi. By a consequence of Slepian’s
inequality (see Corollary 3.14 in [4])

Eg sup
z∈S

g(z) ≤ Lv E sup
z∈S

η(z) ≤ Lv
√
N

and, by symmetry, Eg supz∈S |g(z)| ≤ Lv
√
N which implies (2.10). (2.9) and (2.10) imply

that the event

{

∫

ν⊗2
g {z1 · z2 ≤ −ε}dQ(ν) ≤ 4ε

}

⋂

{

sup
z∈S

|g(z)| ≤ Lv
√
N
}

is not empty and this finishes the proof.
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A A gaussian concentration inequality.

For completeness, we give a proof of the Gaussian concentration inequality which can be
found, for example, in [5].

Lemma 3 Let ν be a finite measure and g(z) be a Gaussian process on R
N such that

Eg(z)2 ≤ a for z in the support of measure ν. If

X = log

∫

exp g(z)dν(z)

then E(X − EX)2 ≤ 8a.

Proof. Let g1 and g2 be two independent copies of g. For t ∈ [0, 1] and j = 1, 2 we define

gjt (z) =
√
tgj(z) +

√
1− tg(z) and gt(z

1, z2) = g1t (z
1) + g2t (z

2).

Let

Fj = log

∫

exp gjt (z)dν(z) (A.1)

and let F = F1 + F2. For s ≥ 0, let ϕ(t) = E exp s(F2 − F1). We can write

ϕ′(t) = sE exp s(F2 − F1)
∑

j≤2

(−1)j+1 exp(−Fj)

∫

∂gjt (z)

∂t
exp gjt (z)dν(z).
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If ζ(z1, z2) := Eg(z1)g(z2) then

2E
∂gjt (z

1)

∂t
gjt (z

2) = ζ(z1, z2)− ζ(z1, z2) = 0

and

2E
∂g1t (z

1)

∂t
g2t (z

2) = −ζ(z1, z2).

Therefore, Gaussian integration by parts gives

ϕ′(t) = −s2E exp s(F1 − F2) exp(−F )
∫

ζ(z1, z2) exp gt(z
1, z2)dν(z1)dν(z2)

and since by assumption |ζ(z1, z2)| ≤ a on the support of measure ν⊗2 we get

ϕ′(t) ≤ as2E exp s(F1 − F2) exp(−F )
∫

exp gt(z
1, z2)dν(z1)dν(z2) = as2ϕ(t).

By construction ϕ(0) = 1 and the above inequality implies that ϕ(1) ≤ exp as2. On the
other hand, by construction, ϕ(1) = E exp s(X − X ′), where X ′ is an independent copy of
X. Thus,

E exp s(X −X ′) ≤ exp as2.

By Jensen’s inequality, E exp s(X − EX) ≤ exp as2 and by Markov’s inequality

P
(

X − EX ≥ t
)

≤ inf
s>0

exp(as2 − st) = exp
(

− t2

4a

)

.

Obviously, a similar inequality can be written for EX −X and, therefore,

P
(

|X − EX| ≥ t
)

≤ 2 exp
(

− t2

4a

)

.

The result follows.
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