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Summary

In this paper, the data aided (DA) and non-data aided (NDA) maximum likelihood (ML) symbol timing estimators

and their corresponding conditional Cramer–Rao bound (CCRB) and modified Cramer–Rao bound (MCRB) in

multiple-input-multiple-output (MIMO) correlated flat-fading channels are derived. It is shown that the approxi-

mated ML algorithm in References [4,13] is just a special case of the DA ML estimator; while the extended

squaring algorithm in Reference [14] is just a special case of the NDA ML estimator. For the DA case, the optimal

orthogonal training sequences are also derived. It is found that the optimal orthogonal sequences resemble the

Walsh sequences, but present different envelopes. Simulation results under different operating conditions (e.g.

number of antennas and correlation between antennas) are given to assess and compare the performances of the DA

and NDA ML estimators with respect to their corresponding CCRBs and MCRBs. It is found that (i) the mean

square error (MSE) of the DA ML estimator is close to the CCRB and MCRB, (ii) the MSE of the NDA ML

estimator is close to the CCRB but not to the MCRB, (iii) the MSEs of both DA and NDA ML estimators are

approximately independent of the number of transmit antennas and are inversely proportional to the number of

receive antennas, (iv) correlation between antennas has little effect on the MSEs of DA and NDA ML estimators

and (v) DA ML estimator performs better than NDA ML estimator at the cost of lower transmission efficiency and

higher implementation complexity. Copyright # 2004 John Wiley & Sons, Ltd.
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1. Introduction

Communication over multiple-input-multiple-output

(MIMO) channels has attracted much attention re-

cently [1–12] due to the huge capacity gain over

single antenna systems. While many different techni-

ques and algorithms have been proposed to explore

the potential capacity, synchronization in MIMO

channels received comparatively less attention.

Symbol timing synchronization in MIMO uncorre-

lated flat-fading channels was first studied by Naguib

et al. [4], where the timing delay is estimated by

selecting the sample with maximum amplitude

from the oversampled approximated log-likelihood

*Correspondence to: Erchin Serpedin, Department of Electrical Engineering, Texas A&M University, College Station, TX
77843-3128, U.S.A.
yE-mail: serpedin@ee.tamu.edu

Contract/grant sponsor: NSF Award; contract/grant number: CCR-0092901.
Contract/grant sponsor: Croucher Foundation.

Copyright # 2004 John Wiley & Sons, Ltd.



function. This algorithm was extended by the authors

in Reference [13] to increase its estimation accuracy.

Unfortunately, the algorithms in References [4,13] are

derived in an ad hoc fashion and there is no objective

criteria for comparison. On the other hand, the well-

known squaring algorithm [24] for symbol timing

estimation in single-input-single-output (SISO) chan-

nels was extended to MIMO channels in Reference

[14], resulting in a non-data aided estimator. However,

the estimator proposed in Reference [14] suffers from

the problem of self-noise, which is inherited from the

original squaring algorithm.

In this paper, the data aided (DA) and non-data

aided (NDA) maximum likelihood (ML) symbol tim-

ing estimators in MIMO correlated flat-fading chan-

nels are derived. In particular, the technique of

conditional ML [21,22], in which the nuisance para-

meters are treated as deterministic but unknown and

are estimated together with the parameter of interest,

is employed. The advantage of conditional ML

method is that there is no need to know or assume

the statistical properties of the nuisance parameters. It

is shown that the approximated ML algorithm in

Reference [4,13] is just a special case of the DA ML

estimator; while the extended squaring algorithm in

Reference [14] is just a special case of the NDA ML

estimator. For the DA case, the optimal orthogonal

training sequences are also derived. It is found that the

optimal orthogonal training sequences resemble

Walsh sequences, but with different envelopes. Two

performance bounds are derived for comparison. The

first one is the conditional Cramer–Rao bound

(CCRB) [18,19], which is the Cramer–Rao bound

(CRB) for the symbol timing estimation conditioned

that the nuisance parameters are treated as determi-

nistic and are jointly estimated together with the

unknown symbol timing. Therefore, the CCRB serves

as a performance lower bound for the ML estimators

derived. The second one is the modified CRB

(MCRB) [20], which is a lower bound for any un-

biased symbol timing estimator, irrespective of the

underlaying assumption about the nuisance para-

meters. Being easier to evaluate than CRB, MCRB

serves as the ultimate estimation accuracy that may be

achieved.

Simulation results under different operating condi-

tions (e.g. number of antennas and correlation be-

tween antennas) are given to assess the performances

of the DA and NDA ML estimators and compared to

the corresponding CCRBs and MCRBs. It is found

that (i) the mean square error (MSE) of the DA ML

estimator is close to the CCRB and MCRB, meaning

that the DA ML estimator is almost the best estimator

(in terms of the MSE performance) for the problem

under consideration, (ii) the MSE of the NDA ML

estimator is close to the CCRB but not MCRB,

meaning that NDA ML estimator is an efficient

estimator conditioned that the nuisance parameters

are being jointly estimated, but there might exist other

NDA estimators with better performances; (iii) the

MSEs of both DA and NDA ML estimators are

approximately independent of the number of transmit

antennas and are inversely proportional to the number

of receive antennas, (iv) correlation between antennas

has little effect on the MSEs of DA and NDA ML

estimators unless the correlation coefficient between

adjacent antennas is larger than 0.5, in which case

small degradation errors occur and v) DA ML esti-

mator performs better than NDA ML estimator at the

cost of lower transmission efficiency and higher im-

plementation complexity.

The rest of the paper is organized as follows: the

signal model is first described in Section 2. The DA

symbol timing estimation problem is addressed in

Section 3, in which the ML estimator, the correspond-

ing CCRB and MCRB and the optimal orthogonal

training sequences are derived. The NDA ML symbol

timing estimator and the corresponding CCRB and

MCRB are presented in Section 4. Simulation results

are then presented in Section 5 and finally conclusions

are drawn in Section 6.

The following notations are used throughout

the paper. The symbols x�, xT , xH and kxk denote

the conjugate, transpose, transpose conjugate and the

Euclidean norm of x respectively. Notation � denotes

Kronecker products, and vec(H) denotes a vector

formed by stacking the columns of H, one on top of

each other. E½x� stands for the expectation of x.

Matrices IN and 0N are the identity and the all zero

matrix respectively and both are of dimensions

N � N. Zi;:, Z:; j and Zij denote the ith row, jth column

and ði; jÞth
element of Z respectively. Furthermore, we

refer to the DA ML estimator as MLDA, the NDA ML

estimator as MLNDA and the corresponding CCRB

(MCRB) as CCRBDA (MCRBDA) and CCRBNDA

(MCRBNDA) respectively.

2. Signal Model

Consider a MIMO communication system with N

transmit and M receive antennas. At each receiving

antenna, a superposition of faded signals from all the

transmit antennas plus noise is received. Throughout
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this paper, it is assumed that the channel is frequency

flat and quasi-static. The complex envelope of the

received signal at the jth receive antenna can be

written as

rjðtÞ ¼
ffiffiffiffiffiffiffi
Es

NT

r XN
i¼1

hij
X
n

diðnÞgðt � nT � "oTÞ þ �jðtÞ;

j ¼ 1; 2; . . . ;M ð1Þ

where, Es=N is the symbol energy; hij is the complex

channel coefficient between the ith transmit antenna

and the jth receive antenna; diðnÞ is the zero-mean

complex valued symbol transmitted from the ith

transmit antenna; gðtÞ is the transmit filter with unit

energy; T is the symbol duration; "o is the unknown

timing offset, which is assumed to be uniformly

distributed in the range ½0; 1Þ; and �jðtÞ is the

complex-valued circularly distributed Gaussian white

noise at the jth receive antenna, with power density

No. Notice that the timing offsets between all pairs of

transmit and receive antennas are assumed to be the

same. This assumption holds when both the transmit

and receive antenna array sizes are small.

After passing through the anti-aliasing filter, the

received signal is then sampled at rate fs ¼ 1=Ts,
where, Ts

4
T=Q. Note that the oversampling factor

Q is determined by the frequency span of gðtÞ; if gðtÞ
is bandlimited to f ¼ �1=T (an example of which is

the root raised cosine (RRC) pulse), then Q ¼ 2 is

sufficient. The received vector rj, which consists of

LoQ consecutive received samples (Lo is the observa-

tion length) from the jth receive antenna, can be

expressed as (without loss of generality, we consider

the received sequence start at t ¼ 0)

rj ¼ �A"oZH
T
j;: þ gj ð2Þ

where,

�
4

ffiffiffiffiffiffiffi
Es

NT

r
ð3Þ

rj
4½rjð0ÞrjðTsÞ . . . rjððLoQ� 1ÞTsÞ�T ð4Þ

A"o
4½a�Lgð"oÞa�Lgþ1ð"oÞ . . . aLoþLg�1ð"oÞ� ð5Þ

aið"oÞ 4½gð�iT � "oTÞgðTs � iT � "oTÞ
. . . gððLoQ� 1ÞTs � iT � "oTÞ�T

ð6Þ

Z
4 ½d1d2 � � � dN � ð7Þ

di
4 ½dið�LgÞdið�Lg þ 1Þ � � � diðLo þ Lg � 1Þ�T ð8Þ

H
4

h11 h21 � � � hN1

h12 h22 � � � hN2

..

. ..
.

h1M h2M � � � hNM

2
6664

3
7775 ð9Þ

gj
4 ½�jð0Þ�jð1Þ . . . �jðLoQ� 1Þ�T ð10Þ

with �jðiÞ 4 �jðiT=QÞ and Lg denotes the number of

symbols affected by the inter-symbol interference

(ISI) introduced by one side of gðtÞ. Stacking the

received vectors from all the M receive antennas gives

r ¼ �ðIM � A"oÞvecðZHTÞ þ g ð11Þ

where, r
4 ½rT1 rT2 . . . rTM �

T
and g4 ½gT1gT2 . . . gTM�

T

In order to include the correlation between channel

coefficients, the channel transfer function is expressed as:

H ¼
ffiffiffiffiffiffiffi
UR

p
Hi:i:d:

ffiffiffiffiffiffiffi
UT

p T
ð12Þ

where, UT and UR are the power correlation matrices

[10] (normalized such that the diagonal elements are

ones) of transmit and receive antenna arrays (which

are assumed known) respectively. Hi:i:d: 2 CM�N con-

tains independently and identically distributed (i.i.d.)

zero-mean, unit-variance, circular symmetric com-

plex Gaussian entries and the matrix square roots

denote Cholesky factors such that
ffiffiffiffi
U

p ffiffiffiffi
U

p H ¼ U.

Note that Equation (12) models the correlation among

transmit and receive antenna arrays independently.

This model is based on the assumption that only

immediate surroundings of the antenna array impose

the correlation between antenna array elements and

have no impact on the correlations at the other end of

the communication link. The validity of this model for

narrowband nonline-of-sight MIMO channels is ver-

ified by recent measurements [7–10]. Substituting

Equation (12) into Equation (11), we obtain

r ¼ �ðIM � A"oÞvec Z
ffiffiffiffiffiffiffi
UT

p
HT

i:i:d:

ffiffiffiffiffiffiffi
UR

p T
� �

þ g

ð13Þ

3. Symbol Timing Estimation with
Known Training Data

3.1. ML Estimator

In this case, the matrix Z contains the known training

sequences and the only unknown is Hi:i:d:. Noting the
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fact that vecðAYBÞ ¼ ðBT � AÞvecY, then Equation

(13) becomes

r ¼ �ðIM � A"oÞð
ffiffiffiffiffiffiffi
UR

p
� Z

ffiffiffiffiffiffiffi
UT

p
ÞvecðHT

i:i:d:Þ þ g

¼ �ð
ffiffiffiffiffiffiffi
UR

p
� A"oZ

ffiffiffiffiffiffiffi
UT

p
ÞvecðHT

i:i:d:Þ þ g

ð14Þ

where, the last line comes from the fact that

ðA� BÞðC� DÞ ¼ ðACÞ � ðBDÞ.
From Equation (14), the joint ML estimate of "o

and vecðHT
i:i:d:Þ is obtained by maximizing

pðrj"; hÞ ¼ 1

ð�NoÞLoQ
exp �ðr� �AA"HÞHðr� �AA"hÞ

No

" #

ð15Þ

or equivalently minimizing

J1ðrj"; hÞ ¼ ðr� �AA"hÞHðr� �AA"hÞ ð16Þ

where, �AA"
4
�ð

ffiffiffiffiffiffiffi
UR

p
� A"Z

ffiffiffiffiffiffiffi
UT

p
Þ, and " and h are the

trial values for "o and vecðHT
i:i:d:Þ, respectively.

Setting the partial derivatives of J1ðrj"; hÞ with

respect to h equal to zero, we obtain the ML estimate

for vecðHT
i:i:d:Þ (when " is fixed) as Reference [15]

ĥh ¼ ð�AAH

"
�AA"Þ�1 �AA

H

" r ð17Þ

Substituting Equation (17) into Equation (16), after

some straightforward manipulations and dropping the

irrelevant terms, the timing delay is estimated by

maximizing the following likelihood function

�DAð"Þ ¼ rH �AA"ð�AA
H

"
�AA"Þ�1 �AA

H

" r ð18Þ

Using the well-known properties of the Kronecker

product ðA� BÞ�1 ¼ A�1 � B�1 and ðA� BÞH ¼
AH � BH to expand �AA"ð�AA

H

"
�AA"Þ�1 �AA

H

" , we have

�AA"ð�AAH
"
�AA"Þ�1 �AAH

" ¼
ffiffiffiffiffiffiffi
UR

p
ð
ffiffiffiffiffiffiffi
UR

p H ffiffiffiffiffiffiffi
UR

p
Þ�1

ffiffiffiffiffiffiffi
UR

p H
h i

� A"Z
ffiffiffiffiffiffiffi
UT

p
ð
ffiffiffiffiffiffiffi
UT

p H
ZHAH

" A"Z
ffiffiffiffiffiffiffi
UT

p
Þ�1

ffiffiffiffiffiffiffi
UT

p H
ZHAH

"

h i
¼ IM � A"ZðZHAH

" A"ZÞ�1
ZHAH

"

ð19Þ

where in the second equality, we used the fact thatffiffiffiffiffiffiffi
UR

p
and

ffiffiffiffiffiffiffi
UT

p
are both non-singular square matrices.

Substituting this result back into Equation (18), the

DA likelihood function is given by

�DAð"Þ ¼ rHðIM � A"ZðZHAH
" A"ZÞ�1ZHAH

" Þr

¼
XM
j¼1

rHj A"ZðZHAH
" A"ZÞ�1ZHAH

" rj

ð20Þ

and the MLDA symbol timing estimator can be written

as

"̂" ¼ arg max
"

�DAð"Þ ð21Þ

We make the following remarks:

(1) The maximization of the likelihood function

usually involves a two-step approach. The first

step (coarse search) computes �DAð"Þ over a grid

of timing delay "k
4
k=K for k ¼ 0; 1; . . . ;K � 1,

and then the "k that maximizes �DAð"Þ is selected.

The second step (fine search) finds the global

maximum by using either the gradient method

[19], dichotomous search [17] or interpolation

[17]. In this paper, we employ the parabolic

interpolation in the second step due to its imple-

mentation simplicity. More specifically, assume

that �DAð"k̂kÞ is identified as the maximum among

all �DAð"kÞ in the first step. Define I1
4

�DAð"k̂k�1Þ, I2
4
�DAð"k̂kÞ and I3

4
m�DA ð"k̂kþ1Þ,

then [17]

"̂" ¼ "k̂k þ
I1 � I3

2KðI1 þ I3 � 2I2Þ
ð22Þ

(2) The likelihood function at each received antenna

can be calculated independently and then added

together to obtain the overall likelihood function.

(3) The correlations in the transmit and receive an-

tenna arrays do not appear in the estimator. That

is, the MLDA symbol timing estimator is indepen-

dent of the antenna correlations. This is a reason-

able result since another way of deriving the DA

likelihood function (20) is not separating
ffiffiffiffiffiffiffi
UR

p

and
ffiffiffiffiffiffiffi
UT

p
from Hi:i:d: and treat vecðHTÞ as deter-

ministic unknown. Thus, UR and UT would not

appear in the estimator.

(4) In order for the estimate of vecðHT
i:i:d:Þ to hold in

Equation (17), it is required that �AA" is full rank

[15] or equivalently
ffiffiffiffiffiffiffi
UR

p
, A", Z and

ffiffiffiffiffiffiffi
UT

p
are all

full rank. Note that
ffiffiffiffiffiffiffi
UR

p
and

ffiffiffiffiffiffiffi
UT

p
are lower

triangular matrices with positive diagonal ele-

ments [16], so they are full rank. Furthermore, if

gðtÞ being a RRC pulse (which is the most
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frequently used pulse shape), numerical calcula-

tions show that A" is full rank. Finally, Z can be

made full rank by properly designing the training

data. A sufficient condition is that parts of the

training sequences from different transmit anten-

nas are orthogonal. That is, for i 6¼ j,

½diðaÞ � � � diðbÞ� � ½djðaÞ � � � djðbÞ�H ¼ 0 ð23Þ

for some a; b 2 f�Lg;�Lg þ 1; . . . ; Lo þ Lg � 1g
with a < b.

(5) For a large observation interval Lo, the ði; jÞth
element of AH

" A" (i; j ¼ �Lg; Lg þ 1; . . . ; Loþ
Lg � 1) can be approximated by

½AH
" A"�ij �

X1
n¼�1

g�ðnTs � iT � "TÞ

�gðnTs � jT � "TÞ ¼ Rggðði� jÞTÞ
ð24Þ

where, Rggð�Þ is the continuous autocorrelation

function of gðtÞ and the last equality is due to the

fact that the sampling rate is at least at the

Nyquist rate, which guarantees the equivalence

between the discrete and continuous autocorrela-

tion functions of gðtÞ. Therefore, ½AH
" A"�ij is

approximately independent of ". Note that this

approximation is very accurate for the central

portion of AH
" A". If Rggð�Þ satisfies the Nyquist

condition for zero ISI (e.g. gðtÞ being a RRC

pulse or the class of non-bandlimited pulse

shapes with Rggð�Þ being time-limited to

½�T=2; T=2�), then ½AH
" A"�ij � �ij. Furthermore,

if the training sequences from different transmit

antennas are orthogonal and with the same norm

(i.e. ZHZ ¼ cIN for some constant c), then

�DAð"Þ �
1

c

XM
j¼1

rHj A"ZZ
HAH

" rj

¼ 1

c

XM
j¼1

XN
i¼1

jdHi AH
" rjj

2

ð25Þ

Note that AH
" rj is the matched filtering of rj with

one output sample per symbol with delay "
[21,23]. This reduces to the approximated ML

function proposed in Reference [4].

(6) An interesting question is how large Lo is suffi-

cient for the use of Equation (25) in place of

Equation (20) without a noticeable loss in perfor-

mance. The answer depends on the signal-to-

noise ratio (SNR) where the estimators work. In

general, the higher the SNR, the larger the Lo is

required. For example, Figure 1 compares the

MSE performances of the true ML estimator

and the approximated ML estimator (the training

sequences are the optimal orthogonal sequences

derived later in this paper). It can be seen that for

SNR 	 20 dB, Lo ¼ 32 is enough for both esti-

mators to have similar performances. For SNR¼
30 dB, Lo ¼ 64 is required.

(7) In some space-time processing algorithms, (e.g.

space-time coding [2–5]), it is required that the

channel matrix be also estimated. It is clear that

once the timing estimate "̂" has been found by

maximizing Equation (21), the channel estimate

can also be obtained readily by using Equation

(17). Putting " ¼ "̂" into Equation (17) and ex-

panding it gives

ĥh ¼ ��1 ð
ffiffiffiffiffiffiffi
UR

p
Þ�1 � ð

ffiffiffiffiffiffiffi
UT

p
Þ�1

�
ðZHAH

"̂" A"̂"ZÞ�1ZHAH
"̂"

�
r

ð26Þ

If the channel coefficients are uncorrelated (i.e.

UT ¼ IN and UR ¼ IM) and the training sequences

from different transmit antennas are orthogonal (i.e.

ZHZ ¼ cIN), it can be easily shown that Equation (26)

reduces to

ĥhij �
1

c�
d�iA

H
"̂" rj ð27Þ

Fig. 1. Mean square error (MSE) performances comparison
between the true and approximated data aided maximum
likelihood (DA ML) estimators with different
LoðM ¼ N ¼ 4; Lg ¼ 4; gðtÞ being a root raised cosine
(RRC) pulse with roll-off factor � ¼ 0:3, UT ¼ I4,

Z ¼ Zopt).

SYMBOL TIMING ESTIMATION IN MIMO CHANNELS 777

Copyright # 2004 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2004; 4:773–790



which is the channel estimation method proposed in

Reference [4].

3.2. The CCRB and MCRB

For the model in Equation (14), it is known that for a

specific timing delay "o, the CCRBDA is given byz

Reference [22].

CCRBDAð"oÞ ¼
�2

2trð�DDH

"o
P?
�AA
�DD"oChÞ

ð28Þ

In Equation (28), �2 ¼ Nofs ¼ NoQ=T is the noise

variance, trð:Þ denotes the trace of a matrix,

�DD"
4 d�AA"

d"
¼ �

ffiffiffiffiffiffiffi
UR

p
� D"Z

ffiffiffiffiffiffiffi
UT

p
ð29Þ

with D"
4

dA"=d", P?
�AA

is the orthogonal projector onto

the null space of �AA"o and is given by

P?
�AA

4
IMLoQ � �AA"oð�AA

H

"o
�AA"oÞ

�1 �AA
H

"o

¼ IM � ðILoQ � A"oZðZHAH
"o
A"oZÞ

�1ZHAH
"o
Þ

¼ IM � P?
AZ

ð30Þ

where, P?
AZ

4
ILoQ � A"oZðZHAH

"o
A"oZÞ

�1ZHAH
"o

, and

Ch
4
E½vecðHT

i:i:d:ÞvecðHT
i:i:d:Þ

H � ¼ IMN ¼ IM � IN

ð31Þ

Subsituting Equations (29), (30) and (31) into Equa-

tion (28), we obtain

where, ~ZZ
4
Z=

ffiffiffiffi
N

p
and ~DD"

4
D"=

ffiffiffiffi
Q

p
. In passing from

the second line to the third line in Equation (32), we

used the fact that trðABÞ ¼ trðBAÞ and the diagonal

elements of UR are all one regardless of the specific

value of the correlation matrix.

For a specific timing delay "o, MCRBDA is given by

Reference [22]

MCRBDAð"oÞ ¼
�2

2trð�DDH

"o
�DD"oChÞ

ð33Þ

and based on similar calculations with those used for

CCRBDA, it can be shown that

MCRBDAð"oÞ ¼
1

2Mtrð~ZZH ~DDH
"o
~DD"o

~ZZUTÞ
Es

No

� ��1

ð34Þ

The following remarks concerning the CCRBDA and

MCRBDA are now in order:

(1) Since the timing delay "o is assumed uniformly

distributed, the average of CCRBDA and

MCRBDA can be calculated by numerical integra-

tion of Equations (32) and (34) respectively.

(2) The CCRBDA and MCRBDA do not depend on the

receive antenna array correlation matrix UR.

Furthermore, the CCRBDA and MCRBDA are

inversely proportional to the number of receive

antennas M. Thus, the CCRBDA and MCRBDA

will be reduced by a factor of 2 whenever the

number of receive antennas M is doubled.

(3) The expressions for CCRBDA and MCRBDA

would still be given by Equations (32) and (34)

respectively, even if we treat vecðHTÞ as determi-

nistic unknown rather than vecðHT
i:i:d:Þ in the

system model.

3.3. Optimal Orthogonal Training Sequences

Since the CCRBDA can be reached asymptotically by

the MLDA estimator, (21) [15], it is natural to search

for optimal training sequences by minimizing the

zStrictly speaking, the bound given is the asymptotic CCRB.
However, it is shown in Reference [22] that the true CCRB
tends to the asymptotic CCRB, when M;N ! 1.

CCRBDAð"oÞ ¼
�2

2�2tr
�
ð
ffiffiffiffiffiffiffi
UR

p
� D"oZ

ffiffiffiffiffiffiffi
UT

p
ÞHðIM � P?

AZÞð
ffiffiffiffiffiffiffi
UR

p
� D"oZ

ffiffiffiffiffiffiffi
UT

p
ÞðIM � INÞ

�
¼ QN

2trð
ffiffiffiffiffiffiffi
UR

p H ffiffiffiffiffiffiffi
UR

p
Þtrð

ffiffiffiffiffiffiffi
UT

p H
ZHDH

"o
P?
AZD"oZ

ffiffiffiffiffiffiffi
UT

p
Þ

Es

No

� ��1

¼ 1

2Mtrð~ZZH ~DDH
"o
P?
AZ

~DD"o
~ZZUTÞ

Es

No

� ��1

ð32Þ
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CCRBDA in Equation (32) with respect to Z. Unfortu-

nately, since the denominator of Equation (32) is a

very complicated function of Z, it is difficult, if not

impossible, to obtain a simple solution. On the other

hand, the expression for the MCRBDA in Equation

(34) has a much simpler dependence on Z. Moreover,

it will be shown later in this section that for the

derived optimal training sequences, the corresponding

CCRBDA is actually very close to that of MCRBDA

(see Figure 3). Therefore, in the following the optimal

training sequences are derived by minimizing the

MCRBDA with respect to Z.

With the constraint that the columns of Z has to be

orthogonal§ (i.e. ZHZ ¼ ðLo þ 2LgÞIN), it is proved in

Appendix I that the matrix Z that minimizes

MCRBDAð"oÞ is given by

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLo þ 2LgÞ

q
~UUð"oÞUH

T ð35Þ

where, ~UUð"oÞ is the matrix containing the N eigen-

vectors corresponding to the N largest eigenvalues of
~DDH
"o
~DD"o as columns and UT is the unitary matrix

containing all the eigenvectors of UT as columns.

In general, the optimal orthogonal training se-

quences depend on the unknown parameter "o. How-

ever, note that, following the same argument as

in Equation (24), ½~DDH

"o
~DD"o �ij � Rg0g0 ðði� jÞTÞT2=Q,

where, g0ðtÞ ¼ dgðtÞ=dt. Therefore, ~DD
H

"o
~DD"o is approxi-

mately independent of the parameter "o and in prac-

tice, we can fix a nominal timing delay, say "t ¼ 0

(actually other values do not make a large difference

as we will show), for designing the training sequences.

This idea is verified by Figure 2, where,

�
4 1

trð~ZZH ~DD
H

"o
~DD"o

~ZZUTÞ
ð36Þ

is plotted against "o for "t ¼ 0; 0:25; 0:5; 0:75 with

N ¼ 4; Lo ¼ 32; Lg ¼ 4, gðtÞ being a RRC pulse with

roll-off factor � ¼ 0:3 and UT ¼ I4. The case of

"t ¼ "o is also shown for a reference. It is obvious

that the mismatch of "t and "o does not increase the

value of � significantly. From Figure 2, we note that

the worst case increase of � due to the mismatch of "t
and "o is about 2 � 10�5 and when "t ¼ "o,

� � 2:695 � 10�3. Thus, the worst case relative error

for the MCRBDA in this example is

MCRBDAð"oj"t 6¼ "oÞ � MCRBDAð"oj"t ¼ "oÞ
MCRBDAð"oj"t ¼ "oÞ

� 2 � 10�5

2:695 � 10�3
¼ 7:42 � 10�3

ð37Þ

The implication of the above calculation is that the

worst case variation of the MCRBDAð"oÞ due to the

mismatch between "o and "t is at least 100 times

smaller than the value of the MCRBDAð"oÞ when

"t ¼ "o. Therefore, the optimality of the orthogonal

training sequences derived is approximately indepen-

dent of "o and we can write Zopt ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLo þ 2LgÞ

p
~UUð0ÞUH

T .

With the optimal orthogonal training sequences

Zopt, the ratios CCRBDAð"oÞ=MCRBDAð"oÞ are

plotted in Figure 3 against the number of transmit

antenna N for "o ¼ 0; 0:25; 0:5; 0:75 with Lo ¼
32 and 128; Lg ¼ 4, gðtÞ being a RRC pulse with

� ¼ 0:3 and UT ¼ IN . It can be seen that the ratios

CCRBDAð"oÞ=MCRBDAð"oÞ for different "o are

close to 1 (this is true for the case Lo ¼ 128, and for

moderate number of transmit antennas when Lo ¼ 32).

Since, MCRBDAð"oÞ 	 CCRBDAð"oÞ, even there are

some other orthogonal sequences that actually mini-

mize the CCRBDAð"oÞ, the space for performance

improvement is very small (e.g. for Lo ¼ 32 and

N 	 4, the ratio CCRBDAð"oÞ=MCRBDAð"oÞ is

§Notice that in this paper, the search for optimal training
sequences would be confined to the class of orthogonal
sequences. The question of whether there exists any non-
orthogonal training sequences with better performances and
how to find them is a subject open to future investigations.

Fig. 2. Plots of �
4

1=trð~ZZH ~DD
H

"o
~DD"o

~ZZUTÞ against "o for
"t ¼ 0; 0:25; 0:5; 0:75 (N ¼ 4; Lo ¼ 32; Lg ¼ 4, gðtÞ being

a RRC pulse with � ¼ 0:3, UT ¼ I4).
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smaller than 1.1, the best possible performance im-

provement is only 10 log10ð1:1Þ � 0:4dB), not men-

tioning that these training sequences are difficult to

find or may even do not exist. This justifies the search

for optimal orthogonal training sequences by mini-

mizing the MCRBDA.

It is interesting to find that, when UT ¼ IN and gðtÞ
is a RRC pulse, the optimal orthogonal training

sequences resemble the Walsh sequences. Let, wn be

the Walsh sequence with length 32 and with n sign

changes. For comparison, Figures 4 and 5 show

½Zopt�:;1 and ½Zopt�:;2 with Lo ¼ 32; Lg ¼ 4 and

� ¼ 0:3, together with w31 and �w30 plotted from

the index 5 to 36. Note that the lines are drawn for

easy reading, there is no value defined in between

integer indexes. It can be observed that, the values of

the optimal sequences at indices 1–4 and 37–40 are

very small. Moreover, with the exception of the

different envelope shapings, the sign-changing pat-

terns of the optimal orthogonal sequences follow that

of Walsh sequences (for indices 5–36). In general, the

same relationship can be found between ½Zopt�:;i and

w32�i. We also remark that the use of Walsh sequences

with the largest number of sign changes for symbol

timing estimation in space-time coding system has

been initially proposed in Reference [14].

Finally, Figure 6 compares the performance of

MLDA, Equation (21) with different kinds of training

sequences in a 4-transmit, 4-receive antenna system

Fig. 3. Plots of conditional Cramer–Rao bound
ðCCRBDAÞð"oÞ= modified Cramer–Rao bound ðMCRBDAÞ
ð"oÞ against the number of transmit antenna N for
"o ¼ 0; 0:25; 0:5; 0:75 (Lo ¼ 32 and 128, Lg ¼ 4 and gðtÞ

being a RRC pulse with � ¼ 0:3, UT ¼ IN , Z ¼ Zopt).

Fig. 4. Plots of ½Zopt�:;1 and w31 (gðtÞ being a RRC pulse with
� ¼ 0:3, Lo ¼ 32, Lg ¼ 4).

Fig. 5. Plots of ½Zopt�:;2 and �w30 (gðtÞ being a RRC pulse
with � ¼ 0:3, Lo ¼ 32; Lg ¼ 4).

Fig. 6. Comparison of the MSE performances of MLDA with
different training sequences (gðtÞ being a RRC pulse with
� ¼ 0:3, M ¼ N ¼ 4, Lo ¼ 32, Lg ¼ 4, UT ¼ UR ¼ I4).
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with Lo ¼ 32; Lg ¼ 4, gðtÞ being a RRC pulse with

� ¼ 0:3. For simplicity, we set UT ¼ UR ¼ I4. Three

different kinds of training sequences are considered.

The first one is the optimal orthogonal training se-

quences derived above. The second one is the Walsh

sequences w31;w30;w29;w28 and extended to length

40 by adding a cyclic prefix and suffix, each of length

equal to 4. The final one is the perfect sequences

proposed in Reference [13], where they were derived

to minimize the contribution of the ISI term in the

approximated log-likelihood function (25) (see Re-

ference [13] for detail). From Figure 6, it can be seen

that the perfect sequences perform not as well as the

Walsh sequences and the optimal sequences. This is

because the true ML estimator is used in simulations

and the perfect sequences (which were derived based

on the approximated log-likelihood function) may not

have any optimality. Due to the resemblance of the

optimal orthogonal sequences and the Walsh se-

quences, the performance of the MLDA by using these

two kinds of sequences are close to each other, with

the case of optimal orthogonal sequences performing

marginally better. For fair comparison, we mention

that the perfect sequences and the Walsh sequences

are constant modulus sequences while the optimal

orthogonal sequences are not.

4. Non-Data Aided Symbol
Timing Estimation

4.1. ML Estimator

In this case, no training sequence is used and Z

contains real data. Now, the matrices Z and Hi:i:d: in

Equation (13) are unknown and Equation (13) can be

rewritten in the following form:

r ¼ �ðIM � A"oÞð
ffiffiffiffiffiffiffi
UR

p
� ILoþ2LgÞvecðZ

ffiffiffiffiffiffiffi
UT

p
HT

i:i:d:Þ þ g

¼ �ð
ffiffiffiffiffiffiffi
UR

p
� A"oÞvecðZ

ffiffiffiffiffiffiffi
UT

p
HT

i:i:d:Þ þ g

ð38Þ

Note that although, UT is assumed to be known, it

cannot be separated from Z and Hi:i:d: because the

correlation in transmit antennas can be translated into

correlation of unknown data or vice versa. Since the

noise is white and Gaussian, the MLNDA estimator

resumes to the minimization of

J2ðrj"; xÞ ¼ ðr� �AA"xÞHðr� �AA"xÞ ð39Þ

where, �AA"
4
�ð

ffiffiffiffiffiffiffi
UR

p
� A"Þ, " and x are the trial values

for "o and vecðZ
ffiffiffiffiffiffiffi
UT

p
HT

i:i:d:Þ respectively.

With the linear model of Equation (38), the ML

estimate for vecðZ
ffiffiffiffiffiffiffi
UT

p
HT

i:i:d:Þ (when " is fixed) is

given by

x̂x ¼ ð�AAH

"
�AA"Þ�1 �AA

H

" r ð40Þ

Putting Equation (40) into Equation (39), after some

straightforward calculations and dropping the irrele-

vant terms, the MLNDA symbol timing estimator

reduces to the maximization of the following like-

lihood function:

�NDAð"Þ ¼ rH �AA"ð�AA
H

"
�AA"Þ�1 �AA

H

" r ð41Þ

It can be easily shown that

�AA"ð�AA
H

"
�AA"Þ�1 �AA

H

" ¼ IM � A"ðAH
" A"Þ�1

AH
" ð42Þ

which gives

�NDAð"Þ ¼
XM
j¼1

rHj A"ðAH
" A"Þ�1AH

" rj ð43Þ

The MLNDA symbol timing estimation can be stated as

"̂" ¼ arg max
"

�NDAð"Þ ð44Þ

and can be implemented by the two-step approach as

for the MLDA.

Note that the implementation of the MLNDA esti-

mator does not require the knowledge of correlation

among antennas. Note also that the likelihood func-

tion in Equation (43) is the sum of individual like-

lihood functions for each receive antenna, just as the

case of training-based likelihood function in Equation

(20). For each of the receive antenna, the likelihood

function is the same as the likelihood function for

SISO systems [22,23]. Furthermore, applying the low-

complexity maximization technique [23] to the like-

lihood function (43) and with the approximation

AH
" A" � ILoþ2Lg for Nyquist zero-ISI pulse, it can

be easily shown that the MLNDA (44) reduces to

the extension of squaring algorithm proposed in

Reference [14].

4.2. The CCRB and MCRB

For the model in Equation (38), the CCRB for a

specific "o is given by Reference [21]

CCRBNDAð"oÞ ¼
�2

2trð�DDH

"o
P?
�AA
�DD"oCxÞ

ð45Þ
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where,

�DD"
4 d�AA"

d"
¼

ffiffiffiffiffiffiffi
UR

p
� D" ð46Þ

P?
�AA

4
IMLoQ � �AA"oð�AA"o

H �AA"oÞ
�1 �AA"o

H ¼ IM � P?
A

ð47Þ

with P?
A

4
ILoQ � A"oðAH

"o
A"oÞ

�1AH
"o
; and

Cx
4
E½vecðZ

ffiffiffiffiffiffiffi
UT

p
HT

i:i:d:Þ vecðZ
ffiffiffiffiffiffiffi
UT

p
HT

i:i:d:Þ
H � ð48Þ

It is shown in Appendix II that

Cx ¼ IM �W ð49Þ

where W is a Hermitian and Toeplitz matrix with

elements ½W�ij
4

tr Czð j� iÞUTð Þ and Czðj� iÞ 4
E½ðZ�ÞTj;:ðZÞi;:� is the average cross-correlation matrix

of the symbols transmitted with time index difference

j� i.

Substituting Equations (46), (47) and (49) into

Equation (45), we obtain

¼ 1

2Mtrð~DDH

"o
P?
A
~DD"oW=NÞ

Es

No

� ��1

ð51Þ

Following the same calculations as for the

CCRBNDA, the MCRBNDA is given by

MCRBNDAð"oÞ ¼
�2

2trð�DDH

"o
�DD"oCxÞ

ð52Þ

¼ 1

2Mtrð~DDH

"o
~DD"oW=NÞ

Es

No

� ��1

ð53Þ

Note that the average of CCRBNDA and MCRBNDA

can be computed by numerical integration of Equa-

tions (51) and (53) respectively. In the following, we

consider two special cases.

Special Case 1: The data is spatially and temporally

white (e.g. Vertical-Bell Labs Layered Space-Time

(V-BLAST) system{ [12]). In this case, Czð j� iÞ ¼
IN�ij, implying that ½W�ij ¼ �ijtrðUTÞ ¼ N�ij. There-

fore, the corresponding CCRBNDA and MCRBNDA

are

CCRBNDAð"oÞ ¼
1

2Mtrð~DDH

"o
P?
A
~DD"oÞ

Es

No

� ��1

ð54Þ

and

MCRBNDAð"oÞ ¼
1

2Mtrð~DDH

"o
~DD"oÞ

Es

No

� ��1

ð55Þ

respectively. Note that in this case, the CCRBNDA and

MCRBNDA do not depend on the number of transmit

antennas and the correlations among antennas.

Special Case 2: Space-time block code (STBC)

system. In general, a block of STBC symbols can be

represented by a s� N matrix [6]

G ¼
Xrs
k¼1

RðbkÞXk þ j
Xrs
k¼1

IðbkÞYk ð56Þ

where, r is the rate of the STBC, s is the length of the

STBC, bk’s are the i.i.d., complex valued symbols to

be encoded, Rð:Þ and Ið:Þ denote the real and ima-

ginary parts, j
4 ffiffiffiffiffiffiffi

�1
p

and Xk;Yk are the fixed, real-

valued elementary code matrices. Without loss of

CCRBNDAð"oÞ ¼
�2

2�2tr
�
ð
ffiffiffiffiffiffiffi
UR

p
� D"oÞ

HðIM � P?
AÞð

ffiffiffiffiffiffiffi
UR

p
� D"oÞðIM �WÞ

ð50Þ

{In its initial development, V-BLAST system does not
employ any temporal error control code. Although, temporal
error control code may be applied in V-BLAST system, we
assume the data is temporally white since from the point of
view of the symbol synchronizer, the data appears to be
uncorrelated.

782 Y.-C. WU AND E. SERPEDIN

Copyright # 2004 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2004; 4:773–790



generality, we assume jbkj ¼ 1. It is proved in Appen-

dix III that for the STBC system,

For example, let us consider the half-rate orthogo-

nal STBC with four transmit antennas [5], in which

case N ¼ 4; s ¼ 8; r ¼ 1=2 and the matrix G given by

G ¼

b1 b2 b3 b4

�b2 b1 �b4 b3

�b3 b4 b1 �b2

�b4 �b3 b2 b1

b�1 b�2 b�3 b�4

�b�2 b�1 �b�4 b�3

�b�3 b�4 b�1 �b�2

�b�4 �b�3 b�2 b�1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð58Þ

Decomposing G in terms of Xk and Yk and using

Equation (57), it is found that

Czð j� iÞ ¼

I4 for i ¼ j

1
4

0 2 0 1

�2 0 1 0

0 �1 0 2

�1 0 �2 0

2
66664

3
77775 for j j� ij ¼ 1

1
4

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

2
66664

3
77775 for j j� ij ¼ 3

04 otherwise

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð59Þ

Then, W can be computed according to

½W�ij ¼ tr Czð j� iÞUTð Þ and the CCRBNDA and

MCRBNDA are given by Equations (51) and (53)

respectively.

5. Simulation Results and Discussions

In this section, the MSE performances of the proposed

symbol timing estimators, MLDA (21) and MLNDA

(44) are assessed by Monte Carlo simulations. In all

the simulations, Lo ¼ 32, Lg ¼ 4 (i.e. the total length

of training data is 40), Q ¼ 2, K ¼ 16, "o is uniformly

distributed in the range ½0; 1Þ and gðtÞ is a RRC filter

with roll-off factor � ¼ 0:3. Each point is obtained

by averaging 104 Monte-Carlo simulation runs. For the

DA case, the optimal orthogonal sequences Zopt

derived in Section 3.3 are used as training data. For

the NDA case, the data format is QPSK.

5.1. Effects of N and M

In this Section, the effects of the number of transmit

and receive antennas are examined. First, let us

assume, UT ¼ IN and UR ¼ IM for the moment.

Furthermore, it is assumed there is no space-time

coding in the NDA case. The effect of antenna

correlation and space-time coding will be examined

later. The effect of the number of transmit antennas N

is shown in Figures 7 and 8 for the DA and NDA cases

respectively, with M ¼ 4. From both figures, it can be

seen that different numbers of transmit antennas result

in similar estimation accuracies. Therefore, the MSEs

are approximately independent of N for both MLDA

and MLNDA. Next, the effect of the number of receive

antennas M is shown in Figures 9 and 10 for DA and

Czð j� iÞ ¼
0N for j j� ij 
 s

1
2s

Ps�‘
n¼1ð

Prs
k¼1½Xk�Tn�‘;:½Xk�n;: þ

Prs
k¼1½Yk�Tnþ‘;:½Yk�n;:Þ for j j� ij ¼ ‘; ‘ < s

ð57Þ
(

Fig. 7. MSEs of the MLDA estimator and the corresponding
CCRBs with different number of transmit antennas

(UT ¼ IN , UR ¼ IM , Z ¼ Zopt).
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NDA case respectively, with N ¼ 4. It is clear that

increasing M leads to considerable MSE improve-

ments. Since, from Equations (32) and (51), the

CCRBDA and CCRBNDA are inversely proportional

to M and from Figures 9 and 10, the performances of

MLDA and MLNDA are very close to their correspond-

ing CCRBs, it can be concluded that the MSEs of

MLDA and MLNDA estimators are approximately in-

versely proportional to M.

It is reasonable to have improved performances

when the number of receive antennas increases since,

more receive antennas provide diversity gain. It is

tempted to argue that using more transmit antennas,

should also improve the performances of symbol

timing estimation since from the experience of

STBC [2,5], more transmit antennas also provide

diversity gain. However, notice that the diversity

gain of STBC does not come automatically by just

increasing the number of transmit antennas. In STBC,

the observation length for demodulating a symbol has

to be increased with the number of transmit antennas.

For symbol timing estimation, irrespective of the

number of transmit antennas, the total transmit

power and the observation length are kept constant,

it is not unreasonable to have MSE performances

approximately independent of N. For multiple receive

antennas, although the observation length (for each

receive antenna) is kept constant, the observations

from different receive antennas are independent (si-

milar to the situation of maximal-ratio receive com-

bining scheme). These independent observations

increase the effective observation length and

performance is improved due to the longer effective

observation.

5.2. Effects of Correlation Among Antennas

Figures 11 and 12 show the MSE performances of

MLDA and MLNDA of a 4 � 4 system under the effect

of correlated fading among antennas. The measured

Fig. 8. MSEs of the non-data aided maximum likelihood
MLNDA estimator and the corresponding CCRBs with
different number of transmit antennas (UT ¼ IN , UR ¼ IM
and the data transmitted is spatially and temporally

white).

Fig. 9. MSEs of the MLDA estimator and the corresponding
CCRBs with different number of receive antennas

(UT ¼ IN , UR ¼ IM , Z ¼ Zopt).

Fig. 10. MSEs of the MLNDA estimator and the correspond-
ing CCRBs with different number of receive antennas
(UT ¼ IN , UR ¼ IM and the data transmitted is spatially

and temporally white).
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correlation matrices from Nokia [10] are used in

simulations

UT ¼

1 0:4154 0:2057 0:1997

0:4154 1 0:3336 0:3453

0:2057 0:3336 1 0:5226

0:1997 0:3453 0:5226 1

2
6664

3
7775;

UR ¼

1 0:3644 0:0685 0:3566

0:3644 1 0:3245 0:1848

0:0685 0:3245 1 0:3093

0:3566 0:1848 0:3093 1

2
6664

3
7775
ð60Þ

Three cases are considered in Figure 11 for the DA

case. The first case assumes no correlation among

antenna arrays and serves as a reference and is shown

by the ‘þ ’ markers. The second one, which is shown

by ‘o’ markers, assumes that correlations exist among

antennas and perfect knowledge of UT is available for

designing optimal training sequences. The last case,

denoted by the ‘.’ markers, assumes that correlations

exist among antennas but no knowledge of correla-

tions is assumed when designing the training se-

quences. It can be seen that the fading correlations

among antennas do not change the MSE performance

of the MLDA estimator or the CCRBDA. Furthermore,

surprisingly, the knowledge of UT for designing

optimal training sequences is not important as the

results show that training sequences assuming no

correlation perform equally well in the presence of

correlation among antennas. For the NDA case

(Figure 12), three cases are considered, too. The first

one is no space-time coding and no fading correlation,

which is shown using ‘þ ’ markers. The second one is

no space-time coding but with fading correlation,

which is shown by ‘o’ markers. The final one is that

the data is encoded with the half rate STBC (58) and

with correlated fading, which is shown by ‘.’ markers.

It can be seen that the presence of correlated fading

and space-time coding do not affect the MSE perfor-

mances of the MLNDA estimator.

In order to investigate the performance of MLDA

and MLNDA estimators under different degree of

fading correlation, we employ the following single

parameter correlation model:

½UT �ij ¼ ½UR�ij ¼ 	ji�jj ð61Þ

where, 	 2 ½0; 1Þ is the correlation coefficient between

adjacent antennas (note that 	 ¼ 0 means no correla-

tion). Figure 13 shows the MSEs of the MLDA

estimator against 	 for Es=No ¼ 10, 20 and 30 dB in

a 4 � 4 system. Two cases are considered. The first

one assumes perfect knowledge of correlation for

designing training sequences and the second one

assumes no correlation when designing training se-

quences. It can be seen that for 	 	 0:5, the perfor-

mance degradation due to antenna correlation is

extremely small. Only when 	 > 0:5, the performance

start to degrade, but with limited degree. Also, design-

ing training sequences without knowledge of correla-

tion results only in a slight degradation with respect to

the case, which assumes perfect knowledge of corre-

lation, and this only happens when 	 > 0:5. This

property facilitates the practical implementation of

Fig. 11. MSEs of the MLDA estimator and the corresponding
CCRBs with and without fading correlation between anten-

nas for a 4 � 4 system.

Fig. 12. MSEs of the MLNDA estimator and the correspond-
ing CCRBs with and without fading correlation between

antennas for a 4 � 4 system.
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the proposed scheme since in practice, the correlation

matrix may not be perfectly known. This also explains

the results in Figure 11 that the MLDA estimator does

not suffer any loss of performance since the largest

measured correlation coefficient between adjacent

antennas in Equation (60) is about 0.5. Figure 14

shows the MSEs of the MLNDA estimator against 	 for

Es=No ¼ 10, 20 and 30 dB in a 4 � 4 system. Two

cases are simulated. The first case is no space-time

coding, while the second case is encoded by Equation

(58). It can be seen that, basically, the space-time

coding considered in this example does not have any

effect on the MSE performances of the MLNDA with

respect to the no coding case. Furthermore, the de-

gradation due to extreme antenna correlations is very

small.

The small dependence of the MSEs on correlation

between antennas is due to the fact that, in this study,

the nuisance parameters (i.e. vecðHT
i:i:d:Þ for DA case

and vecðZ
ffiffiffiffiffiffiffi
UT

p
HT

i:i:d:Þ for NDA case) are treated as

deterministic unknown and are being jointly estimated

together with "o. The correlation between antennas,

can always be lumped into the nuisance parameters.

Since, this action does not change the dimension of

the nuisance parameters and there is no constraint on

the value of the nuisance parameters, the effect of

correlation between antennas on the MSE of "̂" would

be very small.

5.3. Comparison of DA and NDA Estimators

Here, we compare the performance of the MLDA and

MLNDA estimators with their corresponding CCRBs

and MCRBs for a 4 � 4 system. For simplicity, it is

assumed that there is no correlation among antennas

and there is no space-time coding for NDA case

(since the effects of these are small as shown earlier).

Figure 15 shows the results. Note that from Figure 15,

the MSE performances of MLDA and MLNDA estima-

tors are very close to their corresponding CCRBs.

This means that MLDA and MLNDA are efficient

estimators conditioned that the nuisance parameters

are being jointly estimated together with the unknown

timing delay. Also, note that the performance of

MLDA estimator is very close to the MCRBDA, which

implies that MLDA is almost the best possible esti-

mator under the problem at hand, regardless of how

we deal with the nuisance parameters. For the NDA

Fig. 13. MSEs of the MLDA estimator against the correlation
coefficient 	 between adjacent antennas for Es=No ¼ 10, 20

and 30 dB in a 4 � 4 system.

Fig. 14. MSEs of the MLNDA estimator against the correla-
tion coefficient between adjacent antennas 	 for Es=No ¼ 10,

20 and 30 dB in a 4 � 4 system.
Fig. 15. Comparison of MSEs of the MLNDA and MLDA and
their corresponding CCRBs and MCRBs for a 4 � 4 system.
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case, unfortunately, although the performance of

MLNDA estimator reaches the corresponding

CCRBNDA, the CCRBNDA is quite far away from the

MCRBNDA. Notice that, according to Reference [21],

CCRB is a valid bound only for estimators that rely on

quadratic non-linearity, there is a possibility that some

other NDA estimators employing higher order (>2)

non-linearities would have performances closer to the

MCRB. This is subject to further investigations.

Finally, as expected, MLDA estimator performs

much better than the MLNDA estimator. However,

this comes with a price. The MLDA estimator requires

training sequences, resulting in lower transmission

efficiency. Moreover, the estimation has to be per-

formed at specific times when the training data is

available, while MLNDA can be performed at any time

during transmission. This also means that, for the DA

case, there is a need to synchronize the training

sequences before timing estimation. This requires

extra implementation complexity. In addition, degra-

dation may occur if the positions of the training

sequences are mislocated. Furthermore, the computa-

tion of the DA likelihood function (20) is more

complicated than that of the NDA likelihood function

(43). Therefore, MLDA and MLNDA provide a perfor-

mance, transmission efficiency and complexity trade-

off for symbol timing estimation in MIMO channels.

6. Conclusions

The DA and NDA ML symbol timing estimators, their

corresponding CCRB and MCRB for MIMO corre-

lated flat-fading channels have been derived in this

paper. For the DA case, the optimal orthogonal train-

ing sequences have also been derived. It was shown

that the approximated ML algorithm in References

[4,13] is just a special case of the DA ML algorithm;

while the extended squaring algorithm in Reference

[14] is just a special case of the NDA ML estimator.

For the optimal orthogonal training sequences, it was

found that they resemble Walsh sequences but with

modified envelopes. Simulation results under different

operating conditions (e.g. number of antennas and

correlation between antennas) were given to assess the

performances of the DA and NDA ML estimators and

compare them with the corresponding CCRBs and

MCRBs. It was found that (i) the MSE of the DA ML

estimator is close to the CCRB and MCRB, meaning

that the DA ML estimator is almost the best estimator

(in terms of MSE performance) for the problem under

consideration, (ii) the MSE of the NDA ML estimator

is close to the CCRB but not MCRB, meaning that

NDA ML estimator is an efficient estimator condi-

tioned that the nuisance parameters are being jointly

estimated, but there might exist other NDA estimators

with better performances, (iii) the MSEs of both DA

and NDA ML estimators are approximately indepen-

dent of the number of transmit antennas and are

inversely proportional to the number of receive anten-

nas, (iv) correlation between antennas has little impact

on the MSEs of DA and NDA ML estimators unless

the correlation coefficient between adjacent antennas

is larger than 0.5, in which case a small degradation

occurs and (vi) DA ML performs better than NDA ML

estimator at the cost of lower transmission efficiency

and higher implementation complexity.

Appendix I: Proof of Equation (35)

From the expression of MCRBDA in Equation (34),

only the product inside the trð:Þ operator depends on

Z, therefore the problem of finding optimal training

sequence is equivalent to maximizing trð~ZZH ~DD
H

"o
~DD"o

~ZZUTÞ with respect to Z with the constraints that (i) the

columns of Z have to be independent of each other

and (ii) ½ZHZ�ii ¼ Lo þ 2Lg for i ¼ 1; . . . ;N. The first

constraint is for the MLDA to hold and has been

mentioned before. The second constraint is the power

constraint, and we assume that the training sequence

has average unit energy on each data bit. Now,

consider the eigenvector decomposition ~DD
H

"o
~DD"o ¼

UDRDU
H
D , where, RD is a diagonal matrix with the

eigenvalues of ~DD
H

"o
~DD"o located on the diagonal and UD

is the unitary matrix containing all the corresponding

eigenvectors as columns. Similarly, express UT ¼
UTRTU

H
T . Then

tr ~ZZ
H ~DD

H

"o
~DD"o

~ZZUT

� �
¼ tr ~ZZ

H
UDRDU

H
D
~ZZUTRTU

H
T

� �
ð62Þ

¼ tr
ffiffiffiffiffiffi
RT

p H
UH

T
~ZZ
H
UDRDU

H
D
~ZZUT

ffiffiffiffiffiffi
RT

p� �
ð63Þ

¼ tr �HRD�
� �

ð64Þ

¼
XN
i¼1

½�:;i�HRD�:;i ð65Þ

where, �
4
UH

D
~ZZUT

ffiffiffiffiffiffi
RT

p
. Note that, if we set

ZHZ ¼ ðLo þ 2LgÞIN (this is a sufficient condition

that makes the two constraints mentioned earlier
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satisfied), then the columns of � are orthogonal to

each other (since �H� ¼
ffiffiffiffiffiffi
RT

p H
UH

T
~ZZ
H
UD UH

D
~ZZUTffiffiffiffiffiffi

RT

p
¼ ðLo þ 2LgÞRT=N). Therefore, by confining

the training sequences to be orthogonal, the problem

then becomes to maximize ½�:;i�HRD�:;i with respect

to �:;i for each i with the constraints that

½�:;i�H�:;i ¼ ðLo þ 2LgÞ½RT �ii=N and ½�:;i�H�:;j ¼ 0

for j ¼ 1; . . . ; i� 1.

It is well-known that for a Hermitian matrix R, the

vector u that maximizes uHRu subject to the con-

straints that kuk ¼ 1 and uHui ¼ 0, for i ¼
1; 2; . . . ; k � 1, where ui is the eigenvector corre-

sponding to the ith largest eigenvalue of R, is uk
[16]. Setting R ¼ RD and with the proper power

constraints, it is not difficult to see that �:;i is the

eigenvector corresponding to the ith largest eigenva-

lue of RD scaled by the energy factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLo þ 2LgÞ½RT �ii=N

p
. Since RD is a diagonal matrix,

the ith eigenvector is a vector of length Lo þ 2Lg with

one at the ith position and zero at other positions.

Therefore,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLo þ 2LgÞ

N

r ffiffiffiffiffiffi
RT

p

0ðLoþ2Lg�NÞ�N

� 	
ð66Þ

where, 0ðLoþ2Lg�NÞ�N is an all zero matrix with dimen-

sions ðLo þ 2Lg � NÞ � N, with � ¼ UH
D
~ZZUT

ffiffiffiffiffiffi
RT

p
,

we have

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLo þ 2LgÞ

q
UD

IN

0ðLoþ2Lg�NÞ�N

" #

UH
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLo þ 2LgÞ

q
~UUð"oÞUH

T

ð67Þ

where, ~UUð"oÞ is the matrix containing the N eigen-

vectors corresponding to the N largest eigenvalues of
~DD
H

"o
~DD"o as columns.

Appendix II: Proof of Equation (49)

First note that Cx can be rewritten in the following

form:

Cx
4
E vec Z

ffiffiffiffiffiffiffi
UT

p
HT

i:i:d:

� �
vec Z

ffiffiffiffiffiffiffi
UT

p
HT

i:i:d:

� �H� 	

¼ E Hi:i:d: � Zð Þvec
ffiffiffiffiffiffiffi
UT

p� �
vec

ffiffiffiffiffiffiffi
UT

p� �H
ðHi:i:d: � ZÞH

� 	
¼ E ðHi:i:d: � ZÞðHH

i:i:d: � ZHÞ

 �

ð68Þ

where, �
4

vecð
ffiffiffiffiffiffiffi
UT

p
Þvecð

ffiffiffiffiffiffiffi
UT

p
ÞH . The ði; jÞth ele-

ment of Cx is given by

½Cx�ij ¼ E ðHi:i:d: � ZÞi;:�ðHH
i:i:d: � ZHÞ:;j

h i
¼ E tr �ðHH

i:i:d: � ZHÞ:;jðHi:i:d: � ZÞi;:
� �h i

¼ tr �E½ðHH
i:i:d: � ZHÞ:;jðHi:i:d: � ZÞi;:�

� �
ð69Þ

with i; j ¼ 0; 1; . . . ;MðLo þ 2LgÞ.
Let i ¼ iqðLo þ 2LgÞ þ ir and j ¼ jqðLo þ 2LgÞ þ jr

such that iq; jq 2 f0; 1; . . . ;M � 1g and ir; jr 2
f1; . . . ; Lo þ 2Lgg are the quotients and remainders

of divisions i=ðLo þ 2LgÞ and j=ðLo þ 2LgÞ respec-

tively. Also

E½ðHH
i:i:d: � ZHÞ:;jðHi:i:d: � ZÞi;:�

¼ E HH
i:i:d:

� �
:;jq
�ðZHÞ:;jr

� �
ðHi:i:d:Þiq;: � ðZÞir ;:
� �h i

¼ E ðH�
i:i:d:Þ

T
jq;:
ðHi:i:d:Þiq;:� � E½ðZ�ÞTjr ;:ðZÞir ;:

h i
¼ IN�iqjq � Czðjr � irÞ ð70Þ

where, Czðjr � irÞ 4 E½ðZ�ÞTjr ;:ðZÞir ;:� is the average

cross-correlation matrix of the symbols transmitted

with the time index difference jr � ir. Note that

E½ðZ�ÞTjr ;:ðZÞir ;:� depends only on the time index dif-

ference but not on the absolute time index since, in the

NDA case we never know where the observation

begins, the average cross-correlation between time

indices 1 and 3 would be the same as that for time

indices 5 and 7. Putting Equation (70) into Equation

(69), we obtain

½Cx�ij ¼ �iqjq tr �ðIN � Czðjr � irÞÞð Þ ð71Þ

implying that

Cx ¼ IM �W ð72Þ

where, W is a Hermitian, Toeplitz matrix with

½W�ij ¼ tr �ðIN � Czð j� iÞÞð Þ. Note that ½W�ij can be

simplified as

½W�ij ¼ tr vec
ffiffiffiffiffiffiffi
UT

p� �
vec

ffiffiffiffiffiffiffi
UT

p� �H
ðIN � Czðj� iÞÞ

� �

¼ tr vec
ffiffiffiffiffiffiffi
UT

p� �H
ðIN � Czðj� iÞÞvec

ffiffiffiffiffiffiffi
UT

p� �� �

¼ tr
ffiffiffiffiffiffiffi
UT

p� �H
Czðj� iÞ

ffiffiffiffiffiffiffi
UT

p� �� �
¼ tr Czðj� iÞUTð Þ ð73Þ
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Appendix III: Proof of Equation (57)

First note that the observation interval usually in-

volves more than one independent space-time en-

coded block, each given by the form (56), therefore

Czðj� iÞ ¼ 0N for jj� ij 
 s. Furthermore, since

Czðj� iÞ ¼ Cz
�ði� jÞ, it is sufficient to concentrate

on Czðj� iÞ, for j� i ¼ ‘ with ‘ ¼ 0; 1; . . . ; s� 1

Czð‘Þ ¼
1

s

Xs�‘

n¼1

E½ðGnþ‘;:ÞHðGn;:Þ� ð74Þ

where, the factor 1=s exists because in NDA estima-

tion, the probability that the observation start at a

particular row of the matrix G is 1=s. Putting Equation

(56) into Equation (74), we obtain

Czð‘Þ ¼
1

s

Xs�‘

n¼1

E

" Xrs
k¼1

RðbkÞXk þ j
Xrs
k¼1

IðbkÞYk

!H

nþ‘;: Xrs
k0¼1

Rðbk0 ÞXk0 þ j
Xrs
k0¼1

Iðbk0 ÞYk0

!
n;:

#

¼ 1

s

Xs�‘

n¼1

 Xrs
k¼1

E½RðbkÞRðbkÞ�½Xk�Tnþ‘;:½Xk�n;:

þ
Xrs
k¼1

E½IðbkÞIðbkÞ�½Yk�Tnþ‘;:½Yk�n;:

!
ð75Þ

where, we have used the i.i.d. property of bk,

E½RðbkÞRðbk0 Þ� ¼ 0, E½IðbkÞIðbk0 Þ� ¼ 0 for k 6¼ k0

and E½RðbkÞIðbk0 Þ� ¼ 0 for all combination of k and

k0. Further note that, E½RðbkÞRðbkÞ� ¼ E½IðbkÞ
IðbkÞ� ¼ 1=2, then we have for j� i ¼ ‘ with

‘ ¼ 0; 1; . . . ; s� 1

Czð j� iÞ ¼ 1

2s

Xs�‘

n¼1

 Xrs
k¼1

½Xk�Tnþ‘;:½Xk�n;:

þ
Xrs
k¼1

½Yk�Tnþ‘;:½Yk�n;:

! ð76Þ

Finally, note that since Xk and Yk are real-valued,

Czðj� iÞ would also be real-valued and Czðj� iÞ ¼
Czði� jÞ. Therefore, it can be concluded that Equation

(76) is true for jj� ij ¼ ‘ ð‘ ¼ 0; 1; . . . ; s� 1Þ.
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