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Abstract

We study a charged particle in an electromagnetic field without kinetic
or potential term. Although dynamically trivial, this system is interest-
ing because it has an infinite dimensional symmetry group. We discuss
the way in which this group behaves under quantization.
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It is a challenging task to quantize nonlinear sigma models with an action given only by a
Wess-Zumino-Witten term. We have already studied these models from a classical point
of view in [1]. Here we discuss the quantization of the 0 + 1-dimensional case. This is
the simplest version of such theories, describing a particle moving on an n-dimensional
manifold N , with action

S =

∫
dt q̇αAα(q) , (1)

where A is a fixed background electromagnetic potential. This model is also related to
Chern-Simons theories and therefore has come to be known as “Chern-Simons quantum
mechanics” [2,3]. We will now recall the main features of the model, and refer the reader
to [1] for more details.

The Euler-Lagrange equations which follow from (1) are

q̇αFαβ = 0 (2)

where Fαβ = ∂αAβ − ∂βAα is the field strength. These equations demand that q̇α be
a null eigenvector of F . Without loss of generality, in this paper we will consider only
the case in which F is nondegenerate (i.e. it is a symplectic form). In fact, if F was
degenerate, there would be a nontrivial gauge group G and the model would be equivalent
to a particle moving on N/G in a nondegenerate electromagnetic field. Note that when
F is nondegenerate, eq.(2) states simply that q̇α = 0. In this case the Hamiltonian is
identically zero.

The action (1) is invariant under the group S(F) of symplectic diffeomorphisms of N ,
also called the canonical transformations of N . The Lie algebra of S(F), denoted X(F),
is the algebra of vectorfields v on N such that the Lie derivative of F along v vanishes;
equivalently, if N is simply connected,

vαFαβ = ∂βΩv , (3)

for some (globally defined) real function Ωv on N (X(F) is called the algebra of hamilto-
nian vectorfields on N). The Noether charge correponding to an infinitesimal symmetry
transformation v is −Ωv. The symplectic diffeomorphisms are genuine symmetries and not
gauge invariances. Thus we are in a very unusual situation in which a finite dimensional
system possesses an infinite dimensional symmetry group.

The phase space of this theory is N itself, with symplectic form F [1,4]. The Poisson
bracket of two functions f , g on N is

{f, g} = (F−1)αβ∂αf ∂βg . (4)

The Lie algebra of all smooth real functions on N with this bracket will be denoted by
Γ. Given any Ω ∈ Γ we can construct a unique hamiltonian vectorfield v using eq.(3).
Since functions differing by a constant give the same v, Γ is a central extension of X(F).
Conversely given a hamiltonian vectorfield v, eq.(3) defines Ωv only up to a constant. If it
is possible to fix this ambiguity in such a way that

{Ωv, Ωw} = Ω[v,w] , (5)
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then, as an algebra, Γ = R ⊕ X(F). In this case the center R can be dropped and the
Noether charges provide a realization of the abstract algebra X(F). However, as we shall
see later, this is sometimes impossible and a nonremovable central term c(v, w) may appear
on the r.h.s. of eq.(5). Note that all this is still at the classical level.

Since the dynamics of the system is trivial, the only interesting thing to discuss are
its symmetries. Note further that the classical observables of a dynamical system are the
functions on phase space; since in our case all functions are generators of symmetries, there
follows that the discussion of the algebra of observables coincides with the discussion of
the symmetry algebra.

Now, there is a well-known theorem, originally due to van Hove, which implies that
there is no way of quantizing this system preserving the whole classical symmetry algebra.
More precisely, there is no irreducible representation of the observables f ∈ Γ as self-adjoint
operators f̂ on a Hilbert space such that

[f̂ , ĝ] = i ̂{f, g} . (6)

For a clear exposition, see [5]. This impossibility of preserving a classical symmetry al-
gebra at the quantum level is reminiscent of anomalies in gauge theories. However, the
situation here is quite different. In gauge theories the anomalies manifest themselves as
non conservation of certain charges. On the other hand in our model all Noether charges
are conserved because of the vanishing Hamiltonian. Instead, the algebra obeyed by these
charges is modified.

In what follows we will consider various special cases for N and discuss the fate of the
symmetry group when the model is quantized.

N = R2

We take Aα = −1
2εαβqβ , with α, β = 1, 2 and ε12 = 1. Then Fαβ = εαβ is the euclidean

invariant volume form on R2 and S(F) is the group SDiffR2 of volume-preserving dif-
feomorphisms of R2. A constant factor g in front of F can be absorbed by a rescaling of
the coordinates. Thus the theory is independent of the strength of the magnetic field.

The maximal finite dimensional subgroup of SDiffR2 is the semidirect product of
the group R × R of translations (with generators v(1) = ∂1, v(2) = ∂2) and the group
SL(2,R) ∼ Sp(1,R) (with generators v(0) = q2∂2 − q1∂1, v(+) = q2∂1 and v(−) = q1∂2).
The nonvanishing Lie brackets of these vectorfields are [v(+), v(−)] = v(0), [v(0), v(±)] =
±2v(±), [v(1), v(0)] = −v(1), [v(2), v(0)] = v(2), [v(1), v(−)] = v(2), [v(2), v(+)] = v(1). Note
that v(1), v(2) and v(−) − v(+) generate the Euclidean group.

Already at the classical level, the Noether charges do not give a representation of
the symmetry algebra X(F), but rather of its central extension Γ. A basis for Γ is given
by the monomials f (m,n) = (q1)m(q2)n, with m, n = 0, 1, 2 . . . . The functions which
generate the finite dimensional subgroup are Ω(1) = f (0,1), Ω(2) = −f (1,0), Ω(0) = −f (1,1),

Ω(+) = 1
2f (0,2), Ω(−) = −1

2f (2,0). The Poisson algebra of these generators is the same
as the Lie bracket algebra of the corresponding vectorfields, except for {Ω(1), Ω(2)} = −1.
Clearly the center cannot be eliminated by redefining the generators. Therefore in this
model the generators of translations fail to commute already at the classical level and the
algebra of translations is enlarged to the Heisenberg algebra h(1).
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The system can be quantized in the Schrödinger picture replacing q2 and q1 by the
operators q̂2 = q and q̂1 = −i ∂

∂q
acting on the Hilbert space of square integrable functions

of q. The quantization of all functions in Γ can be achieved by replacing each monomial

f (m,n) by the symmetrically ordered operator f̂ (m,n) = S
(m,n)
α1,...,αm+n

q̂α1 . . . q̂αm+n , where
S(m,n) is the totally symmetric tensor with components

S(m,n)
α1,...,αm+n

=
{

m!n!/(m + n)! if αi = 1 for m values of i;
0 otherwise.

(7)

The algebra of these operators closes, but is different from the classical symmetry algebra.
We begin by observing that the maximal finite dimensional subalgebra is not modified
by quantization; in particular, the operators Ω̂(0) and Ω̂(±) give a representation of the
algebra sl(2,R) with Casimir operator 1

2 (Ω̂(+)Ω̂(−) + Ω̂(−)Ω̂(+)) + 1
4 (Ω̂(0))

2 = 3
16 . This is

known as the metaplectic representation [6]. The complete quantum symmetry algebra is

the universal enveloping algebra of h(1) +
�
�sl(2,R). The realization of this algebra on the

Hilbert space has a nontrivial kernel generated by the elements of the form

Ω̂(0) −
1

2
(Ω̂(1)Ω̂(2) + Ω̂(2)Ω̂(1)) , Ω̂(+) −

1

2
(Ω̂(1))

2 , Ω̂(−) +
1

2
(Ω̂(2))

2 . (8)

The algebra which is realized faithfully is obtained by factoring out this kernel. It is
isomorphic to the universal enveloping algebra U(h(1)).

We note that any ordering prescription would give rise to a closed algebra of quantum
operators. All these algebras are isomorphic. In fact, a choice of ordering prescription is
equivalent to a choice of basis in the universal enveloping algebra.

Another possibility is to introduce a Z2 grading in the space of the quantum operators
f̂ (m,n): we call them fermionic or bosonic depending on whether m + n is odd or even.
Then, introducing a corresponding graded bracket, the operators f̂ (m,n) with m+n = 1, 2,
generate the noncompact version of the superalgebra osp(1, 2). Note that in this approach
it is not necessary to introduce the constant multiples of unity to close the algebra. This
representation of osp(1, 2) is also known as the metaplectic representation [7]. With this

graded bracket the entire algebra generated by the operators f̂ (m,n), with m + n > 0, is
the universal enveloping algebra of osp(1, 2). Note that this is also known as the higher
spin algebra shs(2) [8]. Again, there is a nontrivial kernel given by (8).

Finally, we observe that all that has been said so far for the case N = R2 can be
generalized in a straightforward manner to the case N = R2n. We choose F2i−1,2i =
−F2i,2i−1 = 1, for i = 1, . . . , n. Then, the quantum symmetry algebra is the universal

enveloping algebra of h(n) +
�
�sp(n,R) if only commutators are used, and of osp(1, 2n) if

the graded brackets are used.

N = S2 = SO(3)/O(2)

In this case we take F to be the field strength of a monopole with magnetic charge g. Unlike
the previous case, here it is not possible to eliminate the constant g from the discussion
by redefining coordinates. In polar coordinates θ and ϕ, Aθ = 0, Aϕ = −g(1 + cos θ), and
Fθϕ = g sin θ. The symmetry group S(F) is now the group SDiffS2 of volume-preserving
diffeomorphisms of the sphere. Its maximal finite dimensional subgroup is SO(3).
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The Noether charges can be uniquely defined by requiring that their integral over S2 be
zero. In this way no center arises [1]. This gives a realization of the Lie algebra of SDiffS2

as the Poisson algebra of functions on S2 with vanishing integral. A suitable basis for these
functions are the spherical harmonics Y m

l with l = 1, 2 . . .. The structure constants of the
Lie algebra of SDiffS2 have been computed in this basis in [9]. We note for future
reference that the spherical harmonics can be thought of as homogeneous polynomials in
the variables x1, x2, x3, if S2 is embedded in R3 by the equation x2

1 + x2
2 + x2

3 = 1. The
three harmonics with l = 1 (corresponding to the polynomials x1, x2, x3) generate the
group SO(3). In fact, defining

J1 = − gx1 = −g sin θ cos ϕ = g

√
2π

3
(Y 1

1 + Y −1
1 ) , (9a)

J2 = − gx2 = −g sin θ sin ϕ = −ig

√
2π

3
(Y 1

1 − Y −1
1 ) , (9b)

J3 = − gx3 = −g cos θ = −g

√
4π

3
Y 0

1 , (9c)

and using the Poisson bracket (4), we get {Jα, Jβ} = εαβγJγ .
For the quantization of a classical system with compact phase space the best approach

is that of geometric quantization [10]. This method yields a Hilbert space and a set of
quantum observables whose algebra is isomorphic to the Poisson algebra of the correspond-
ing classical observables. Because of van Hove’s theorem, this procedure can not work for
all observables. In the case of S2 it works successfully only for the functions Jα.

Geometric quantization requires that 2g be an integer, i.e. that the Dirac condition
be satisfied. Then, the Hilbert space Hg is the space of polynomials of order ≤ 2g in the
complex variable z = eiϕ cot(θ/2), with inner product [11]

〈Ψ, Φ〉 =
2g + 1

2πi

∫

S2

dz dz̄

(1 + zz̄)2g+2
Ψ∗(z)Φ(z) . (10)

The dimension of Hg is 2g + 1 and a basis is given by the functions 1, z, z2, . . . , z2g.
The operators corresponding to J1, J2 and J3 are

Ĵ1 =
1

2
(1 − z2)∂z + gz , (11a)

Ĵ2 =
i

2
(1 + z2)∂z − igz , (11b)

Ĵ3 = z∂z − g , (11c)

obeying [Ĵα, Ĵβ] = iεαβγ Ĵγ . Notice that the value of the Casimir operator Ĵ2 in the rep-
resentation (11) is g(g + 1). Therefore, the Hilbert space Hg is the familiar representation
space of angular momentum spanned by kets |j, m〉, with j = g. The function zn in Hg

corresponds to the state |g, n− g〉.
As we have mentioned, the remaining functions on the sphere cannot be quantized in

such a way that their classical Poisson algebra is preserved. Nevertheless, as in the case of
R2, one could envisage a more general scheme.
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It follows from previous remarks that a basis for all smooth functions on the sphere is
given by polynomials in the three harmonics with l = 1. In order to achieve a quantization
of the whole set of classical observables it is therefore sufficient to quantize powers of J ’s.
We associate to each monomial f (n1,n2,n3) = (J1)

n1(J2)
n2(J3)

n3 an operator f̂ (n1,n2,n3),
in which the factors Ĵα have been ordered according to some given prescription. In this
way the whole algebra Γ of functions on S2 is turned under quantization into the universal
enveloping algebra U(so(3)). The quantum symmetry algebra consists of the operators in
Hg corresponding to functions with vanishing integral. These form the algebra U(so(3))/R,
where R are the constant multiples of unity.

Since the Hilbert space is finite dimensional, this representation will have an infinite
dimensional kernel. A classical theorem of Burnside [12] says that factoring out this kernel
we remain with the finite dimensional algebra of linear transformations in Hg. Thus one
can regard the quantum symmetry algebra to be sl(2g + 1,C) or sl(2g + 1,R), depending
on whether the representation of so(3) is complex or real.

N = S(1,1) = SO(1, 2)/O(2)

The hyperboloid S(1,1) is the surface in R3 defined by the equation x2
1 + x2

2 − x2
0 = −1.

On this surface we define coordinates χ, ϕ by x1 = sinhχ cos ϕ, x2 = sinh χ sin ϕ and
x0 = cosh χ. As electromagnetic field we take Aχ = 0, Aϕ = g cosh χ and Fχϕ = g sinhχ.
The symmetry group S(F) = SDiffS(1,1) consists of volume-preserving diffeomorphisms
of S(1,1). Its maximal finite dimensional subgroup is SO(1, 2). As in the case of the sphere,
a basis for functions on the hyperboloid is given by the homogeneous polynomials in the
variables x1, x2, x0. The polynomials of degree ≥ 1 clearly give rise (through eq.(3)) to
all hamiltonian vectorfields, and close under Poisson bracket. Therefore also in this case
the Poisson algebra of the Noether charges does not get a central extension.

The maximal compact subalgebra so(1, 2) is generated by the functions

K1 = gx1 = g sinhχ cos ϕ , (13a)

K2 = gx2 = g sinhχ sin ϕ , (13b)

K0 = gx0 = g cosh χ , (13c)

obeying {K1, K2} = −K0, {K0, K1} = K2, {K0, K2} = −K1. This subalgebra can be
quantized without modification. It is convenient to define the complex coordinate z =
tanh(χ/2)eiϕ (|z| < 1). For g ≥ 1/2 we define the Hilbert space Hg as the space of
holomorphic functions on the unit disk with inner product

〈Ψ, Φ〉 =
(2g − 1)

2πi

∫

|z|<1

dz dz̄(1 − zz̄)2g−2Ψ∗(z)Φ(z) . (14)

The condition on g is dictated by the requirement that the inner product be well defined
(similar conditions have been discussed in [13]). For g < 1/2 one can use other represen-
tations of so(1, 2)[14], but we will not discuss this here. The operators corresponding to
K1, K2 and K3 are [14,11]

K̂1 =
1

2
(1 + z2)∂z + gz , (15a)

6



K̂2 =
i

2
(1 − z2)∂z − igz , (15b)

K̂3 = z∂z + g . (15c)

The value of the Casimir operator K̂2
1 +K̂2

2 −K̂2
0 in this representation is g(1−g). For non-

integer values of 2g, the above representation of the algebra so(1, 2) leads to multi-valued
representations of the group SO(1, 2) [14].

Proceeding as in the case of the sphere, we now associate to each monomial f (n1,n2,n3) =
(K1)

n1(K2)
n2(K3)

n3 the operator f̂ (n1,n2,n3) with a given ordering of the factors K̂α. Then
the quantum algebra of the Noether charges will be U(so(1, 2))/R. It is represented faith-
fully on Hg.

The examples we have considered suggest that the quantization of Chern-Simons quan-
tum mechanics will follow the same general pattern, at least for a wide class of manifolds
N . The classical symmetry group of canonical transformations has a maximal finite dimen-
sional subgroup G. One can build a Hilbert space H carrying a realization of this group;
thus the algebra of the corresponding Noether charges can be quantized in accordance with
eq.(6). We assume that all the symmetry charges (all functions on N) can be expanded in
polynomials in the generators of G (this is called the “strong generating principle” in [15]).
Then, choosing any ordering, all these charges can be realized as quantum operators on
H. However, their algebra will now be different from the classical one: it is the universal
enveloping algebra of the Lie algebra of G. This realization of the universal enveloping
algebra might have a nontrivial kernel, so to obtain a faithfully realized symmetry algebra
one has to factor it out. If N is compact, the resulting quantum symmetry algebra is finite
dimensional.

We conclude by observing that this way of quantizing a classical dynamical system is
not restricted to Chern-Simons quantum mechanics, but may be used also in the presence
of a kinetic term. Our approach allows to quantize all functions on phase space, i.e. to
construct a quantum operator acting on Hilbert space for each classical observable. The
obstruction to quantization given in van Hove’s theorem is circumvented by relaxing the
condition that (6) holds for all f , g. As a consequence the algebra of quantum observables
is a deformation of the classical Poisson algebra and only reduces to the latter in the
classical limit. This is different from the usual point of view on quantization, where one
insists on (6) but does not seek to quantize all functions on phase space. Typically, one
tries only to quantize those functions which generate the symmetries of the theory. When
a kinetic or potential term is present, the symmetry group is finite dimensional and, as we
have observed, the algebra of its generators is quantized without deformation. It is only
for “topological” theories with vanishing Hamiltonian that every function on phase space
is a symmetry generator, and the necessity of quantizing all observables arises.
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